Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics

Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight famil...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 214; no. 3; pp. 1355 - 1367
Main Authors Zhang, Shu‐Dong, Jin, Jian‐Jun, Chen, Si‐Yun, Chase, Mark W., Soltis, Douglas E., Li, Hong‐Tao, Yang, Jun‐Bo, Li, De‐Zhu, Yi, Ting‐Shuang
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.05.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution.
AbstractList Summary Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution.
Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution.
Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution.Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution.
Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution.
Summary Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution.
* Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. * With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. * Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. * Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution.
Author Jun-Bo Yang
De-Zhu Li
Shu-Dong Zhang
Si-Yun Chen
Douglas E. Soltis
Jian-Jun Jin
Mark W. Chase
Ting-Shuang Yi
Hong-Tao Li
Author_xml – sequence: 1
  givenname: Shu‐Dong
  surname: Zhang
  fullname: Zhang, Shu‐Dong
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Jian‐Jun
  surname: Jin
  fullname: Jin, Jian‐Jun
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Si‐Yun
  surname: Chen
  fullname: Chen, Si‐Yun
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Mark W.
  surname: Chase
  fullname: Chase, Mark W.
  organization: University of Western Australia
– sequence: 5
  givenname: Douglas E.
  surname: Soltis
  fullname: Soltis, Douglas E.
  organization: University of Florida
– sequence: 6
  givenname: Hong‐Tao
  surname: Li
  fullname: Li, Hong‐Tao
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Jun‐Bo
  surname: Yang
  fullname: Yang, Jun‐Bo
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: De‐Zhu
  surname: Li
  fullname: Li, De‐Zhu
  email: DZL@mail.kib.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Ting‐Shuang
  surname: Yi
  fullname: Yi, Ting‐Shuang
  email: tingshuangyi@mail.kib.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28186635$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhi1URNPCggcAWWIDi7S2x9clCpciRYBQkdhZHs8Z4mgyHmwHlLfHbRIWFTcv7IW__9z-c4ZOxjgCQo8puaD1XI7T6oJyLuk9NKNcmrmmjTpBM0KYnksuv5yis5zXhBAjJHuATpmmWspGzND1q_AdUg598K6EOOLY408xOw8OcA6jB1xWgJeuAF4kKPUjbjNuXYYOV3waXC6hw9NqN8SvMMZN8Pkhut-7IcOjw3uOPr95fb24mi8_vH23eLmce6EIrXfbdEoK0wraM8NE13MmKGHgG2BgqISGkZbI3nHPXMuF9x1tOBGyVx1nzTl6vo87pfhtC7nYTcgehsGNN1VaVjsWREui_olSbajWTNL_QaUSXBGlK_rsDrqO2zTWnmvuOngljf4rVXPKWiWjpFJPD9S23UBnpxQ2Lu3s0asKXO4Bn2LOCXrrQ7k1rSQXBkuJvdkGW7fB3m5DVby4ozgG_R17iP4jDLD7M2jff7w6Kp7sFetcYvqlMHXo1RvT_ARl4sm7
CitedBy_id crossref_primary_10_17660_ActaHortic_2023_1368_46
crossref_primary_10_1016_j_apsb_2020_01_012
crossref_primary_10_1186_s13020_020_0298_x
crossref_primary_10_1186_s12864_023_09439_6
crossref_primary_10_1111_jipb_13415
crossref_primary_10_1111_njb_03185
crossref_primary_10_1080_23802359_2020_1768928
crossref_primary_10_1111_mec_16325
crossref_primary_10_7717_peerj_7662
crossref_primary_10_1016_j_pld_2019_06_002
crossref_primary_10_1186_s12870_022_03946_6
crossref_primary_10_1111_njb_02532
crossref_primary_10_1016_j_ympev_2018_12_023
crossref_primary_10_1016_j_ympev_2019_02_018
crossref_primary_10_1007_s12686_017_0946_3
crossref_primary_10_1002_tax_12928
crossref_primary_10_1111_jse_12748
crossref_primary_10_1093_sysbio_syab064
crossref_primary_10_1371_journal_pone_0232602
crossref_primary_10_37427_botcro_2025_016
crossref_primary_10_1186_s12864_017_4319_9
crossref_primary_10_7717_peerj_6320
crossref_primary_10_3390_d15040479
crossref_primary_10_3389_fpls_2020_00151
crossref_primary_10_1016_j_pld_2018_04_003
crossref_primary_10_1080_23802359_2023_2270212
crossref_primary_10_1080_23802359_2024_2429655
crossref_primary_10_1186_s12870_023_04088_z
crossref_primary_10_1007_s11816_024_00943_z
crossref_primary_10_1007_s12228_020_09609_w
crossref_primary_10_3390_genes15060716
crossref_primary_10_1007_s10722_018_0691_9
crossref_primary_10_3389_fgene_2022_1026919
crossref_primary_10_1038_s41598_020_68092_1
crossref_primary_10_1080_23802359_2019_1639559
crossref_primary_10_1111_jipb_13318
crossref_primary_10_3390_life8030025
crossref_primary_10_3897_phytokeys_249_138951
crossref_primary_10_1016_j_sajb_2024_08_056
crossref_primary_10_1016_j_ygeno_2021_03_013
crossref_primary_10_3390_plants12183318
crossref_primary_10_11110_kjpt_2023_53_2_102
crossref_primary_10_1371_journal_pone_0279849
crossref_primary_10_3100_hpib_v29iss1_2024_n8
crossref_primary_10_1016_j_gene_2025_149324
crossref_primary_10_1111_syen_12530
crossref_primary_10_1080_23802359_2019_1678433
crossref_primary_10_3389_fpls_2024_1367645
crossref_primary_10_1016_j_ympev_2023_107961
crossref_primary_10_1186_s12864_022_08397_9
crossref_primary_10_1080_23802359_2022_2098857
crossref_primary_10_3389_fgene_2022_900357
crossref_primary_10_1111_nph_19175
crossref_primary_10_1007_s00606_020_01640_4
crossref_primary_10_1002_ajb2_1253
crossref_primary_10_1007_s10142_023_01121_0
crossref_primary_10_1016_j_ympev_2023_107956
crossref_primary_10_1371_journal_pone_0266535
crossref_primary_10_23902_trkjnat_1252980
crossref_primary_10_1016_j_pld_2023_03_013
crossref_primary_10_1038_s41598_020_80143_1
crossref_primary_10_1111_jse_12536
crossref_primary_10_1111_1755_0998_13684
crossref_primary_10_7717_peerj_18667
crossref_primary_10_1007_s00425_021_03753_7
crossref_primary_10_1038_s41598_021_04635_4
crossref_primary_10_1080_23802359_2019_1565977
crossref_primary_10_3389_fpls_2020_605793
crossref_primary_10_1111_jse_13072
crossref_primary_10_3389_fpls_2024_1349358
crossref_primary_10_1093_botlinnean_boae002
crossref_primary_10_1007_s12298_021_01097_w
crossref_primary_10_1111_jse_12542
crossref_primary_10_3897_phytokeys_242_117481
crossref_primary_10_1007_s00425_021_03667_4
crossref_primary_10_1080_23802359_2019_1573113
crossref_primary_10_1007_s10709_022_00169_3
crossref_primary_10_1111_jse_13076
crossref_primary_10_1093_jpe_rtaa089
crossref_primary_10_1080_23802359_2020_1772144
crossref_primary_10_1038_s41438_019_0171_1
crossref_primary_10_1186_s12870_018_1585_x
crossref_primary_10_1080_23802359_2024_2399928
crossref_primary_10_1186_s12915_020_00931_z
crossref_primary_10_1038_s41598_019_51601_2
crossref_primary_10_1007_s10722_024_01874_y
crossref_primary_10_1007_s10265_022_01369_w
crossref_primary_10_1073_pnas_2105431118
crossref_primary_10_1038_s41438_021_00623_x
crossref_primary_10_11110_kjpt_2022_52_2_118
crossref_primary_10_1002_ece3_7281
crossref_primary_10_1016_j_gecco_2020_e00973
crossref_primary_10_7717_peerj_3919
crossref_primary_10_3390_f15101811
crossref_primary_10_3389_fpls_2022_926574
crossref_primary_10_3390_f16030385
crossref_primary_10_1080_23802359_2019_1591213
crossref_primary_10_3389_fpls_2022_895543
crossref_primary_10_3389_fpls_2018_01876
crossref_primary_10_1007_s12686_017_0867_1
crossref_primary_10_12705_676_7
crossref_primary_10_3390_genes13122229
crossref_primary_10_1186_s13059_020_02154_5
crossref_primary_10_7717_peerj_12418
crossref_primary_10_1600_036364421X16370109698597
crossref_primary_10_1002_tax_12209
crossref_primary_10_3389_fpls_2021_743643
crossref_primary_10_3389_fpls_2021_824672
crossref_primary_10_3390_ijms21144933
crossref_primary_10_1111_jse_12526
crossref_primary_10_11110_kjpt_2022_52_3_156
crossref_primary_10_1111_jbi_13745
crossref_primary_10_1002_ece3_6765
crossref_primary_10_1093_aobpla_plaa017
crossref_primary_10_1111_pce_13887
crossref_primary_10_1111_tpj_14538
crossref_primary_10_3389_fpls_2021_820997
crossref_primary_10_1016_j_ympev_2023_107914
crossref_primary_10_1111_njb_03719
crossref_primary_10_1002_tax_12679
crossref_primary_10_3897_phytokeys_236_111819
crossref_primary_10_1038_s41598_020_67943_1
crossref_primary_10_3389_fpls_2019_01731
crossref_primary_10_1080_23802359_2021_1975513
crossref_primary_10_3897_phytokeys_154_52790
crossref_primary_10_3389_fpls_2019_01615
crossref_primary_10_1007_s00606_022_01810_6
crossref_primary_10_3897_phytokeys_146_50728
crossref_primary_10_1093_aob_mcaa201
crossref_primary_10_1016_j_ympev_2018_09_012
crossref_primary_10_1038_s41598_018_27090_0
crossref_primary_10_3390_horticulturae8121144
crossref_primary_10_1080_23802359_2019_1597654
crossref_primary_10_3390_f13111891
crossref_primary_10_3390_horticulturae10101101
crossref_primary_10_3390_ijms25168962
crossref_primary_10_1016_j_ygeno_2021_01_027
crossref_primary_10_3389_fpls_2022_768810
crossref_primary_10_1016_j_pld_2018_06_005
crossref_primary_10_1016_j_ympev_2023_107772
crossref_primary_10_1007_s10528_022_10302_8
crossref_primary_10_1007_s10265_023_01502_3
crossref_primary_10_1139_cjb_2018_0026
crossref_primary_10_31857_S0006813623010027
crossref_primary_10_1080_23802359_2020_1735275
crossref_primary_10_1002_jemt_24135
crossref_primary_10_1093_botlinnean_boaa009
crossref_primary_10_1093_nsr_nwab092
crossref_primary_10_1080_23802359_2019_1591202
crossref_primary_10_3390_molecules23030602
crossref_primary_10_1093_sysbio_syaa013
crossref_primary_10_1111_jse_12467
crossref_primary_10_3389_fpls_2023_1160535
crossref_primary_10_1186_s12864_023_09242_3
crossref_primary_10_1186_s12870_020_02696_7
crossref_primary_10_1093_aob_mcae003
crossref_primary_10_1186_s12870_024_05322_y
crossref_primary_10_1111_jipb_13246
crossref_primary_10_1186_s12864_023_09680_z
crossref_primary_10_3390_ijms25158497
crossref_primary_10_1111_grs_12344
crossref_primary_10_3390_genes13040641
crossref_primary_10_1111_njb_03121
crossref_primary_10_3390_d14050323
crossref_primary_10_1016_j_ympev_2021_107083
crossref_primary_10_17129_botsci_3065
crossref_primary_10_3390_molecules23112917
crossref_primary_10_1111_ecog_05759
crossref_primary_10_1002_ajb2_1775
crossref_primary_10_3389_fpls_2024_1404071
crossref_primary_10_3390_plants10112534
crossref_primary_10_1038_s41598_024_71838_w
crossref_primary_10_1002_ece3_7408
crossref_primary_10_32604_phyton_2024_051559
crossref_primary_10_1080_23802359_2022_2161329
crossref_primary_10_1093_aob_mcy220
crossref_primary_10_1002_tax_12885
crossref_primary_10_1007_s11295_022_01556_9
crossref_primary_10_1186_s12870_024_04784_4
crossref_primary_10_1016_j_ijbiomac_2019_12_009
crossref_primary_10_3390_f15111927
crossref_primary_10_1016_j_fochx_2024_101334
crossref_primary_10_1111_nph_16188
crossref_primary_10_3390_ijms241713216
crossref_primary_10_1038_s41598_023_45040_3
crossref_primary_10_1080_23802359_2018_1553527
crossref_primary_10_1186_s12864_021_08225_6
crossref_primary_10_3390_ijms19041050
crossref_primary_10_1186_s12870_023_04697_8
crossref_primary_10_1007_s12225_022_10021_8
crossref_primary_10_1080_23802359_2019_1565964
crossref_primary_10_1002_tax_13163
crossref_primary_10_1111_jbi_14002
crossref_primary_10_1093_botlinnean_boad060
crossref_primary_10_1038_s41597_025_04810_6
crossref_primary_10_1086_732598
crossref_primary_10_3390_plants13172535
crossref_primary_10_1016_j_ympev_2019_106601
crossref_primary_10_1371_journal_pone_0225469
crossref_primary_10_3732_apps_1700079
crossref_primary_10_1093_molbev_msac002
crossref_primary_10_1080_23802359_2019_1688109
crossref_primary_10_3389_fgene_2021_602528
crossref_primary_10_1016_j_ympev_2021_107183
crossref_primary_10_3389_fgene_2020_560368
crossref_primary_10_3389_fmicb_2021_679936
crossref_primary_10_3389_fpls_2018_00493
crossref_primary_10_1139_cjb_2019_0109
crossref_primary_10_3389_fgene_2019_00128
crossref_primary_10_3390_plants9111605
crossref_primary_10_1186_s12870_023_04113_1
crossref_primary_10_3389_fpls_2018_00927
crossref_primary_10_3390_molecules23020389
crossref_primary_10_1007_s00606_020_01629_z
crossref_primary_10_1186_s12915_023_01544_y
crossref_primary_10_3389_fpls_2021_736053
crossref_primary_10_1016_j_ympev_2022_107591
crossref_primary_10_1016_j_heliyon_2021_e06317
crossref_primary_10_1186_s12870_024_05083_8
crossref_primary_10_3389_fpls_2023_1186598
crossref_primary_10_1002_ece3_7312
crossref_primary_10_1016_j_micron_2023_103428
crossref_primary_10_1134_S106235902360469X
crossref_primary_10_3390_biom12111648
crossref_primary_10_1080_23802359_2021_1906173
crossref_primary_10_1007_s44281_024_00032_9
crossref_primary_10_1007_s11692_019_09472_y
crossref_primary_10_1038_s41598_018_30398_6
crossref_primary_10_11110_kjpt_2024_54_1_47
crossref_primary_10_3389_fpls_2021_738119
crossref_primary_10_1016_j_plgene_2024_100486
crossref_primary_10_1086_710083
crossref_primary_10_1080_23802359_2019_1610093
crossref_primary_10_1007_s11676_020_01288_3
crossref_primary_10_1016_j_ympev_2020_106784
crossref_primary_10_1093_botlinnean_boaa052
crossref_primary_10_1016_j_sjbs_2021_10_070
crossref_primary_10_3390_plants9020133
crossref_primary_10_1093_aob_mcaa028
crossref_primary_10_1186_s12870_023_04438_x
crossref_primary_10_1080_23802359_2019_1687354
crossref_primary_10_3389_fgene_2022_831206
crossref_primary_10_1080_23802359_2019_1591179
crossref_primary_10_31857_S1026347024020023
crossref_primary_10_1016_j_gene_2024_149086
crossref_primary_10_1016_j_pld_2024_07_001
crossref_primary_10_1186_s12862_021_01917_3
crossref_primary_10_1186_s12870_019_2147_6
crossref_primary_10_1186_s12870_022_03480_5
crossref_primary_10_3389_fpls_2021_799904
crossref_primary_10_1080_14772000_2019_1670750
crossref_primary_10_1080_23802359_2019_1591182
crossref_primary_10_1371_journal_pone_0272563
crossref_primary_10_1007_s10265_018_1057_2
crossref_primary_10_1038_s41597_024_03046_0
crossref_primary_10_1038_s41598_023_49381_x
crossref_primary_10_3390_plants13070974
crossref_primary_10_3389_fpls_2017_02206
crossref_primary_10_3390_d14060417
crossref_primary_10_1186_s12864_021_07422_7
crossref_primary_10_3389_fevo_2018_00052
crossref_primary_10_3389_fpls_2018_00138
crossref_primary_10_1002_tax_12030
crossref_primary_10_1038_s41598_023_49830_7
crossref_primary_10_1111_1755_0998_13719
crossref_primary_10_3390_agronomy14050913
crossref_primary_10_3389_fgene_2021_721022
Cites_doi 10.1073/pnas.1105499108
10.1093/bioinformatics/bts199
10.1101/gr.144311.112
10.1111/j.1365-2699.2010.02434.x
10.1073/pnas.0907801107
10.1016/j.ympev.2011.10.005
10.1093/oxfordjournals.molbev.a026334
10.1038/nrg1603
10.1515/9781400862924.437
10.1007/s00606-007-0539-9
10.1093/sysbio/syr089
10.1093/dnares/dst049
10.1371/journal.pbio.1000602
10.1515/9781400862924.421
10.3732/ajb.0800060
10.3732/ajb.1000404
10.1371/journal.pbio.1002220
10.1093/molbev/msq170
10.1186/1471-2156-14-98
10.1016/j.ympev.2011.04.008
10.1093/gbe/evr105
10.1080/10635150500541730
10.1093/bioinformatics/bts492
10.1093/oxfordjournals.molbev.a025779
10.1111/1755-0998.12251
10.1007/s00606-014-1063-3
10.1093/aob/mct264
10.1111/nph.13491
10.1111/j.1095-8312.2004.00368.x
10.1101/gr.8.3.163
10.1038/nature08069
10.1073/pnas.1016876108
10.1080/10635150801888871
10.1177/117693430600200024
10.1006/mpev.1999.0692
10.1002/tax.602021
10.1093/sysbio/sys039
10.1080/10635150701294741
10.1016/j.ympev.2014.11.003
10.1098/rspb.2001.1782
10.1038/ng.2586
10.1007/s00239-010-9398-z
10.1126/science.1059412
10.1186/s12870-014-0289-0
10.3732/ajb.0900346
10.1007/s00606-007-0540-3
10.1186/1471-2148-12-100
10.1093/molbev/msq261
10.1080/10635150490522304
10.1093/bioinformatics/btp368
10.1038/346029a0
10.1093/molbev/msh112
10.1093/bioinformatics/btl446
10.3732/ajb.89.9.1478
10.1126/science.1086292
10.1080/10635150701472164
10.1093/bioinformatics/btg412
10.1073/pnas.0709121104
10.1016/j.ympev.2014.02.024
10.1086/660880
10.1186/1471-2164-12-569
10.1186/1471-2148-14-23
10.1371/journal.pcbi.1003537
10.1073/pnas.0708072104
10.1002/j.1537-2197.1994.tb15570.x
10.1038/nature05516
10.1093/nar/gki198
10.1038/ng.654
10.1007/s006060200012
10.1073/pnas.1323926111
10.1371/journal.pone.0073946
10.3732/ajb.91.10.1599
10.1093/bib/bbu015
10.1111/j.1759-6831.2012.00224.x
10.1111/boj.12385
10.2307/2395198
10.1016/j.ympev.2010.03.005
10.1007/s00606-007-0545-y
10.1016/j.tig.2006.02.003
10.1038/srep14023
10.1111/j.0908-8857.2004.03297.x
10.1006/mpev.2000.0828
10.1038/ng.740
10.1073/pnas.0813376106
10.1073/pnas.1205818109
10.1080/10635150701397643
10.1126/science.1157704
10.1073/pnas.91.15.6795
10.1007/978-3-662-07257-8_39
ContentType Journal Article
Copyright 2017 New Phytologist Trust
2017 The Authors. New Phytologist © 2017 New Phytologist Trust
2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Copyright © 2017 New Phytologist Trust
Copyright_xml – notice: 2017 New Phytologist Trust
– notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust
– notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
– notice: Copyright © 2017 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.14461
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
MEDLINE - Academic
MEDLINE


Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1367
ExternalDocumentID 4321600343
28186635
10_1111_nph_14461
NPH14461
90004239
Genre article
Journal Article
GrantInformation_xml – fundername: Science and Technology Innovation of CAS, iFlora Cross and Cooperation team
  funderid: 31129001
– fundername: National Science and Technology on Basic Research Program
  funderid: 2013FY112600
– fundername: Talent Project of Yunnan Province
  funderid: 2011CI042
– fundername: National Key Basic Research Program of China
  funderid: 2014CB954100
– fundername: Sino‐Africa Joint Research Center
  funderid: SAJC201302
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
AASVR
ABEFU
ABEML
ABGDZ
ACQPF
ADXHL
AS~
CAG
COF
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
LPU
MVM
NEJ
RCA
WHG
XOL
YXE
ZCG
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
24P
AEUQT
AFPWT
CGR
CUY
CVF
DOOOF
ECM
EIF
ESX
IPNFZ
JSODD
NPM
PKN
WRC
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5701-c5b3d7659b51f2925df425102ec3e2e916e320b06fa4c2ab45ccd134056f7d423
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:28:38 EDT 2025
Thu Jul 10 17:58:02 EDT 2025
Thu Jul 10 23:11:09 EDT 2025
Fri Jul 25 10:37:12 EDT 2025
Fri Jul 25 10:18:43 EDT 2025
Wed Feb 19 02:40:39 EST 2025
Tue Jul 01 03:09:25 EDT 2025
Thu Apr 24 22:51:39 EDT 2025
Wed Aug 20 07:26:42 EDT 2025
Thu Jul 03 22:31:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords systematic error
rapid radiation
diversification
plastome
phylogenomics
Rosaceae
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5701-c5b3d7659b51f2925df425102ec3e2e916e320b06fa4c2ab45ccd134056f7d423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.14461
PMID 28186635
PQID 1886200210
PQPubID 2026848
PageCount 13
ParticipantIDs proquest_miscellaneous_2000508607
proquest_miscellaneous_1891882617
proquest_miscellaneous_1867547078
proquest_journals_2064676988
proquest_journals_1886200210
pubmed_primary_28186635
crossref_citationtrail_10_1111_nph_14461
crossref_primary_10_1111_nph_14461
wiley_primary_10_1111_nph_14461_NPH14461
jstor_primary_90004239
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2017
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2017
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2012; 61
2010; 56
2004; 21
2007; 104
2007; 266
2010; 97
2004; 20
1990; 346
2010; 107
2002; 231
2015; 301
2013; 23
2011; 60
1975
2011; 98
2011; 12
2003; 19
2016; 181
2013; 8
2012; 12
2001; 268
2014; 21
2009; 96
2010; 27
2013; 14
2000; 17
2001
2001; 292
2006; 22
2015; 83
2002; 89
1997; 14
1999; 13
1986
2014; 14
2012; 28
2011; 28
2005; 33
2014; 10
2012; 63
1998; 14
2010; 71
2015; 13
2007; 445
2009; 25
2015; 5
2015; 16
2013; 45
2006; 55
1953
1997
1996
2008; 57
2004
2015; 207
1992
2006; 2
2009; 459
1994; 81
2004; 91
2011; 38
2008; 320
2014; 111
2011; 3
2011; 172
2007; 56
2012; 109
2014; 113
2011; 9
2012; 50
2004; 53
2010; 42
2011; 108
2015; 27
1964
2014; 36
2005; 6
2011; 43
1994; 91
2003; 300
1975; 62
2014; 76
1998; 8
2009; 106
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_68_1
Hohmann N (e_1_2_7_33_1) 2015; 27
e_1_2_7_49_1
e_1_2_7_90_1
Evanhoff E (e_1_2_7_26_1) 2001
e_1_2_7_94_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
MacGinite HD (e_1_2_7_51_1) 1953
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_17_1
Knobloch E (e_1_2_7_45_1) 1986
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
Crepet WL (e_1_2_7_16_1) 1996
Schulze‐Menz GK (e_1_2_7_71_1) 1964
Hutchinson J (e_1_2_7_34_1) 1964
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
Takhtajan A (e_1_2_7_80_1) 1997
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_38_1
Jin GH (e_1_2_7_41_1) 2014; 36
References_xml – volume: 266
  start-page: 45
  year: 2007
  end-page: 57
  article-title: A brief review of the fossil history of the family Rosaceae with a focus on the Eocene Okanogan Highlands of eastern Washington State, USA, and British Columbia, Canada
  publication-title: Plant Systematics and Evolution
– volume: 56
  start-page: 156
  year: 2010
  end-page: 175
  article-title: A comprehensive chloroplast DNA‐based phylogeny of the genus (Rosaceae): implications for its geographic origin, phylogeography and generic circumscription
  publication-title: Molecular Phylogenetics and Evolution
– volume: 2
  start-page: 247
  year: 2006
  end-page: 250
  article-title: LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies
  publication-title: Evolutionary Bioinformatics
– volume: 42
  start-page: 833
  year: 2010
  end-page: 839
  article-title: The genome of the domesticated apple (  ×  Borkh.)
  publication-title: Nature Genetics
– volume: 301
  start-page: 171
  year: 2015
  end-page: 184
  article-title: : a molecular phylogenetic study of a remarkably polyphyletic genus in Rosaceae
  publication-title: Plant Systematics and Evolution
– volume: 20
  start-page: 289
  year: 2004
  end-page: 290
  article-title: APE: analyses of phylogenetics and evolution in R language
  publication-title: Bioinformatics
– volume: 266
  start-page: 5
  year: 2007
  end-page: 43
  article-title: Phylogeny and classification of Rosaceae
  publication-title: Plant Systematics and Evolution
– volume: 22
  start-page: 225
  year: 2006
  end-page: 231
  article-title: Phylogenomics: the beginning of incongruence?
  publication-title: Trends in Genetics
– volume: 106
  start-page: 3853
  year: 2009
  end-page: 3858
  article-title: Rosid radiation and the rapid rise of angiosperm‐dominated forests
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 14
  start-page: 1024
  year: 2014
  end-page: 1031
  article-title: Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs
  publication-title: Molecular Ecology Resources
– volume: 320
  start-page: 1763
  year: 2008
  end-page: 1768
  article-title: A phylogenomic study of birds reveals their evolutionary history
  publication-title: Science
– volume: 266
  start-page: 119
  year: 2007
  end-page: 145
  article-title: Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): limited resolution of a complex evolutionary history
  publication-title: Plant Systematics and Evolution
– year: 1975
– volume: 56
  start-page: 389
  year: 2007
  end-page: 399
  article-title: Detecting and overcoming systematic errors in genome‐scale phylogenies
  publication-title: Systematic Biology
– volume: 55
  start-page: 314
  year: 2006
  end-page: 328
  article-title: Multiple sequence alignment accuracy and phylogenetic inference
  publication-title: Systematic Biology
– start-page: 343
  year: 2004
  end-page: 386
– volume: 5
  start-page: 14023
  year: 2015
  article-title: Large‐scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen‐fixing symbioses in angiosperms associated with climate change
  publication-title: Scientific Reports
– volume: 8
  start-page: e73946
  year: 2013
  article-title: Plastid genome sequence of a wild woody oil species, , provides insights into evolutionary and mutational patterns of Rosaceae chloroplast genomes
  publication-title: PLoS ONE
– year: 1986
– volume: 21
  start-page: 1095
  year: 2004
  end-page: 1109
  article-title: A Bayesian mixture model for across‐site heterogeneities in the amino‐acid replacement process
  publication-title: Molecular Biology and Evolution
– volume: 104
  start-page: 19369
  year: 2007
  end-page: 19374
  article-title: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome‐scale evolutionary patterns
  publication-title: Proceedings of the National Academy of Sciences, USA
– start-page: 25
  year: 1996
  end-page: 28
– volume: 17
  start-page: 540
  year: 2000
  end-page: 552
  article-title: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis
  publication-title: Molecular Biology and Evolution
– volume: 33
  start-page: 511
  year: 2005
  end-page: 518
  article-title: MAFFT version 5: improvement in accuracy of multiple sequence alignment
  publication-title: Nucleic Acids Research
– volume: 107
  start-page: 4623
  year: 2010
  end-page: 4628
  article-title: Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 96
  start-page: 349
  year: 2009
  end-page: 365
  article-title: Angiosperm diversification through time
  publication-title: American Journal of Botany
– volume: 97
  start-page: 1296
  year: 2010
  end-page: 1303
  article-title: The age and diversification of the angiosperms re‐revisited
  publication-title: American Journal of Botany
– volume: 28
  start-page: 2689
  year: 2012
  end-page: 2690
  article-title: treePL: divergence time estimation using penalized likelihood for large phylogenies
  publication-title: Bioinformatics
– volume: 172
  start-page: 948
  year: 2011
  end-page: 958
  article-title: and (Rosaceae) flowers from the late early Eocene Republic flora of northeastern Washington State, USA
  publication-title: International Journal of Plant Sciences
– volume: 43
  start-page: 109
  year: 2011
  end-page: 116
  article-title: The genome of woodland strawberry ( )
  publication-title: Nature Genetics
– volume: 91
  start-page: 6795
  year: 1994
  end-page: 6801
  article-title: Rates and patterns of chloroplast DNA evolution
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 61
  start-page: 913
  year: 2012
  end-page: 926
  article-title: The pipid root
  publication-title: Systematic Biology
– year: 1964
– volume: 268
  start-page: 2211
  year: 2001
  end-page: 2220
  article-title: Evolution of the angiosperms: calibrating the family tree
  publication-title: Proceedings of the Royal Society of London, B, Biological Sciences
– volume: 10
  start-page: e1003537
  year: 2014
  article-title: BEAST 2: a software platform for Bayesian evolutionary analysis
  publication-title: PLoS Computational Biology
– volume: 23
  start-page: 396
  year: 2013
  end-page: 408
  article-title: The genome of the pear ( Rehd.)
  publication-title: Genome Research
– volume: 91
  start-page: 1599
  year: 2004
  end-page: 1613
  article-title: Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life
  publication-title: American Journal of Botany
– volume: 53
  start-page: 793
  year: 2004
  end-page: 808
  article-title: Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests
  publication-title: Systematic Biology
– volume: 50
  start-page: 477
  year: 2012
  end-page: 487
  article-title: Nelumbonaceae: systematic position and species diversification revealed by the complete chloroplast genome
  publication-title: Journal of Systematics and Evolution
– volume: 27
  start-page: 2855
  year: 2010
  end-page: 2863
  article-title: The position of Gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics
  publication-title: Molecular Biology and Evolution
– volume: 28
  start-page: 1647
  year: 2012
  end-page: 1649
  article-title: Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data
  publication-title: Bioinformatics
– volume: 56
  start-page: 564
  year: 2007
  end-page: 577
  article-title: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments
  publication-title: Systematic Biology
– volume: 17
  start-page: 388
  year: 2000
  end-page: 400
  article-title: The granule‐bound starch synthase (GBSSI) gene in the Rosaceae: multiple loci and phylogenetic utility
  publication-title: Molecular Phylogenetics and Evolution
– volume: 292
  start-page: 686
  year: 2001
  end-page: 693
  article-title: Trends, rhythms, and aberrations in global climate 65 Ma to present
  publication-title: Science
– volume: 8
  start-page: 163
  year: 1998
  end-page: 167
  article-title: Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis
  publication-title: Genome Research
– volume: 22
  start-page: 2688
  year: 2006
  end-page: 2690
  article-title: RAxML‐VI‐HPC: maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models
  publication-title: Bioinformatics
– volume: 61
  start-page: 150
  year: 2012
  end-page: 164
  article-title: Phylogenomic analysis resolves the interordinal relationships and rapid diversification of the laurasiatherian mammals
  publication-title: Systematic Biology
– volume: 27
  start-page: 2770
  year: 2015
  end-page: 2784
  article-title: A time‐calibrated road map of Brassicaceae species radiation and evolutionary history
  publication-title: Plant Cell
– volume: 89
  start-page: 1478
  year: 2002
  end-page: 1484
  article-title: The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes
  publication-title: American Journal of Botany
– volume: 14
  start-page: 289
  year: 2014
  article-title: A precise chloroplast genome of (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicots
  publication-title: BMC Plant Biology
– year: 1953
– volume: 63
  start-page: 230
  year: 2012
  end-page: 243
  article-title: Expanded phylogenetic and dating analyses of the apples and their relatives (Pyreae, Rosaceae)
  publication-title: Molecular Phylogenetics and Evolution
– volume: 16
  start-page: 536
  year: 2015
  end-page: 548
  article-title: Causes, consequences and solutions of phylogenetic incongruence
  publication-title: Brief Bioinform
– start-page: 437
  year: 1992
  end-page: 450
– volume: 13
  start-page: e1002220
  year: 2015
  article-title: Beyond the whole‐genome duplication: phylogenetic evidence for an ancient interspecies hybridization in the baker's yeast lineage
  publication-title: PLoS Biology
– volume: 56
  start-page: 206
  year: 2007
  end-page: 221
  article-title: Is multiple‐sequence alignment required for accurate inference of phylogeny?
  publication-title: Systematic Biology
– volume: 13
  start-page: 493
  year: 1999
  end-page: 503
  article-title: Molecular phylogenies of plants and support multiple origins of actinorhizal symbioses
  publication-title: Molecular Phylogenetics and Evolution
– year: 2001
– volume: 14
  start-page: 817
  year: 1998
  end-page: 818
  article-title: MODELTEST: testing the model of DNA substitution
  publication-title: Bioinformatics
– volume: 3
  start-page: 1340
  year: 2011
  end-page: 1348
  article-title: Systematic error in seed plant phylogenomics
  publication-title: Genome Biology and Evolution
– volume: 104
  start-page: 19363
  year: 2007
  end-page: 19368
  article-title: Using plastid genome‐scale data to resolve enigmatic relationships among basal angiosperms
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 12
  start-page: 569
  year: 2011
  end-page: 575
  article-title: Whole genome sequencing of peach ( L.) for SNP identification and selection
  publication-title: BMC Genomics
– volume: 38
  start-page: 664
  year: 2011
  end-page: 680
  article-title: Early evolutionary history of the flowering plant family Annonaceae: steady diversification and boreotropical geodispersal
  publication-title: Journal of Biogeography
– volume: 111
  start-page: E4859
  year: 2014
  end-page: E4868
  article-title: Phylotranscriptomic analysis of the origin and early diversification of land plants
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 21
  start-page: 169
  year: 2014
  end-page: 181
  article-title: Dissection of the octoploid strawberry genome by deep sequencing of the genomes of species
  publication-title: DNA Research
– volume: 14
  start-page: 428
  year: 1997
  end-page: 441
  article-title: Effects of nucleotide sequence alignment on phylogeny estimation: a case study of 18S rDNAs of apicomplexa
  publication-title: Molecular Biology and Evolution
– volume: 83
  start-page: 156
  year: 2015
  end-page: 166
  article-title: Deep phylogenetic incongruence in the angiosperm clade Rosidae
  publication-title: Molecular Phylogenetics and Evolution
– volume: 60
  start-page: 21
  year: 2011
  end-page: 28
  article-title: Multi‐gene analysis provides a well‐supported phylogeny of Rosales
  publication-title: Molecular Phylogenetics and Evolution
– volume: 459
  start-page: 969
  year: 2009
  end-page: 973
  article-title: Increased seasonality through the Eocene to Oligocene transition in northern high latitudes
  publication-title: Nature
– volume: 81
  start-page: 890
  year: 1994
  end-page: 903
  article-title: Systematic and evolutionary implications of sequence variation in Rosaceae
  publication-title: American Journal of Botany
– volume: 14
  start-page: 98
  year: 2013
  article-title: Genome‐wide DNA polymorphisms in two cultivars of mei ( Sieb. et Zucc.)
  publication-title: BMC Genetics
– volume: 19
  start-page: 1572
  year: 2003
  end-page: 1574
  article-title: MrBayes 3: Bayesian phylogenetic inference under mixed models
  publication-title: Bioinformatics
– volume: 14
  start-page: 23
  year: 2014
  article-title: From algae to angiosperms‐inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes
  publication-title: BMC Evolutionary Biology
– year: 1997
– volume: 6
  start-page: 361
  year: 2005
  end-page: 375
  article-title: Phylogenomics and the reconstruction of the tree of life
  publication-title: Nature Reviews Genetics
– volume: 25
  start-page: 2286
  year: 2009
  end-page: 2288
  article-title: PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating
  publication-title: Bioinformatics
– volume: 108
  start-page: 15920
  year: 2011
  end-page: 15924
  article-title: MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 60
  start-page: 555
  year: 2011
  end-page: 564
  article-title: Endocarps of (Rosaceae: Prunoideae) from the early Eocene of Wutu, Shandong Province, China
  publication-title: Taxon
– volume: 57
  start-page: 38
  year: 2008
  end-page: 57
  article-title: Resolving an ancient, rapid radiation in Saxifragales
  publication-title: Systematic Biology
– volume: 9
  start-page: e1000602
  year: 2011
  article-title: Resolving difficult phylogenetic questions: why more sequences are not enough
  publication-title: PLoS Biology
– volume: 36
  start-page: 468
  year: 2014
  end-page: 484
  article-title: Characterization of the complete chloroplast genome of apple ( × , Rosaceae)
  publication-title: Plant Diversity and Resources
– volume: 181
  start-page: 1
  year: 2016
  end-page: 20
  article-title: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV
  publication-title: Botanical Journal of the Linnean Society
– volume: 109
  start-page: 17519
  year: 2012
  end-page: 17524
  article-title: Phylogenomics and data partitioning resolve the Cretaceous angiosperm radiation Malpighiales
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 71
  start-page: 319
  year: 2010
  end-page: 331
  article-title: Automated removal of noisy data in phylogenomic analyses
  publication-title: Journal of Molecular Evolution
– volume: 445
  start-page: 635
  year: 2007
  end-page: 638
  article-title: Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition
  publication-title: Nature
– start-page: 421
  year: 1992
  end-page: 436
– volume: 98
  start-page: 704
  year: 2011
  end-page: 730
  article-title: Angiosperm phylogeny: 17 genes, 640 taxa
  publication-title: American Journal of Botany
– volume: 12
  start-page: 100
  year: 2012
  article-title: Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from L. (Pinaceae)
  publication-title: BMC Evolutionary Biology
– volume: 76
  start-page: 34
  year: 2014
  end-page: 48
  article-title: Diversification of almonds, peaches, plums and cherries – molecular systematics and biogeographic history of (Rosaceae)
  publication-title: Molecular Phylogenetics and Evolution
– volume: 45
  start-page: 487
  year: 2013
  end-page: 494
  article-title: The high‐quality draft genome of peach ( ) identifies unique patterns of genetic diversity, domestication and genome evolution
  publication-title: Nature Genetics
– volume: 108
  start-page: 6187
  year: 2011
  end-page: 6192
  article-title: Mammalian phylogeny reveals recent diversification rate shifts
  publication-title: Proceedings of the National Academy of Science, USA
– volume: 231
  start-page: 77
  year: 2002
  end-page: 89
  article-title: Phylogenetic relationships in Rosaceae inferred from chloroplast and nucleotide sequence data
  publication-title: Plant Systematics and Evolution
– volume: 300
  start-page: 1706
  year: 2003
  end-page: 1707
  article-title: Phylogenomics: intersection of evolution and genomics
  publication-title: Science
– volume: 346
  start-page: 29
  year: 1990
  end-page: 34
  article-title: Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?
  publication-title: Nature
– volume: 28
  start-page: 835
  year: 2011
  end-page: 847
  article-title: Complete plastid genome sequences of three rosids ( , , ): evidence for at least two independent transfers of to the nucleus
  publication-title: Molecular Biology and Evolution
– start-page: 209
  year: 1964
  end-page: 218
– volume: 113
  start-page: 119
  year: 2014
  end-page: 133
  article-title: Resolving ancient radiations: can complete plastid gene sets elucidate deep relationships among the tropical gingers (Zingiberales)?
  publication-title: Annals of Botany
– volume: 207
  start-page: 454
  year: 2015
  end-page: 467
  article-title: Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications
  publication-title: New Phytologist
– volume: 62
  start-page: 264
  year: 1975
  end-page: 279
  article-title: Some aspects of plant geography of the Northern Hemisphere during the late Cretaceous and Tertiary
  publication-title: Annals of the Missouri Botanical Garden
– volume-title: Fossil plants of the Florissant beds of Colorado
  year: 1953
  ident: e_1_2_7_51_1
– ident: e_1_2_7_10_1
  doi: 10.1073/pnas.1105499108
– ident: e_1_2_7_44_1
  doi: 10.1093/bioinformatics/bts199
– ident: e_1_2_7_91_1
  doi: 10.1101/gr.144311.112
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1365-2699.2010.02434.x
– ident: e_1_2_7_56_1
  doi: 10.1073/pnas.0907801107
– ident: e_1_2_7_50_1
  doi: 10.1016/j.ympev.2011.10.005
– ident: e_1_2_7_11_1
  doi: 10.1093/oxfordjournals.molbev.a026334
– ident: e_1_2_7_17_1
  doi: 10.1038/nrg1603
– ident: e_1_2_7_14_1
  doi: 10.1515/9781400862924.437
– ident: e_1_2_7_65_1
  doi: 10.1007/s00606-007-0539-9
– ident: e_1_2_7_100_1
  doi: 10.1093/sysbio/syr089
– ident: e_1_2_7_31_1
  doi: 10.1093/dnares/dst049
– ident: e_1_2_7_62_1
  doi: 10.1371/journal.pbio.1000602
– ident: e_1_2_7_90_1
  doi: 10.1515/9781400862924.421
– ident: e_1_2_7_52_1
  doi: 10.3732/ajb.0800060
– ident: e_1_2_7_74_1
  doi: 10.3732/ajb.1000404
– ident: e_1_2_7_53_1
  doi: 10.1371/journal.pbio.1002220
– start-page: 209
  volume-title: Engler's Syllabus der Pflanzenfamilien II
  year: 1964
  ident: e_1_2_7_71_1
– ident: e_1_2_7_99_1
  doi: 10.1093/molbev/msq170
– ident: e_1_2_7_78_1
  doi: 10.1186/1471-2156-14-98
– ident: e_1_2_7_97_1
  doi: 10.1016/j.ympev.2011.04.008
– ident: e_1_2_7_98_1
  doi: 10.1093/gbe/evr105
– ident: e_1_2_7_59_1
  doi: 10.1080/10635150500541730
– ident: e_1_2_7_73_1
  doi: 10.1093/bioinformatics/bts492
– ident: e_1_2_7_58_1
  doi: 10.1093/oxfordjournals.molbev.a025779
– ident: e_1_2_7_95_1
  doi: 10.1111/1755-0998.12251
– ident: e_1_2_7_25_1
  doi: 10.1007/s00606-014-1063-3
– ident: e_1_2_7_3_1
  doi: 10.1093/aob/mct264
– ident: e_1_2_7_82_1
  doi: 10.1111/nph.13491
– ident: e_1_2_7_64_1
  doi: 10.1111/j.1095-8312.2004.00368.x
– volume-title: Fossil flora and stratigraphy of the Florissant Formation, Colorado
  year: 2001
  ident: e_1_2_7_26_1
– ident: e_1_2_7_22_1
  doi: 10.1101/gr.8.3.163
– ident: e_1_2_7_24_1
  doi: 10.1038/nature08069
– start-page: 25
  volume-title: The anther: form, function and phylogeny
  year: 1996
  ident: e_1_2_7_16_1
– ident: e_1_2_7_76_1
  doi: 10.1073/pnas.1016876108
– ident: e_1_2_7_40_1
  doi: 10.1080/10635150801888871
– ident: e_1_2_7_67_1
  doi: 10.1177/117693430600200024
– volume-title: Monographie der Früchte und Samen in der Kreide von Mitteleuropa
  year: 1986
  ident: e_1_2_7_45_1
– ident: e_1_2_7_39_1
  doi: 10.1006/mpev.1999.0692
– ident: e_1_2_7_49_1
  doi: 10.1002/tax.602021
– ident: e_1_2_7_6_1
  doi: 10.1093/sysbio/sys039
– ident: e_1_2_7_32_1
  doi: 10.1080/10635150701294741
– ident: e_1_2_7_79_1
  doi: 10.1016/j.ympev.2014.11.003
– ident: e_1_2_7_88_1
  doi: 10.1098/rspb.2001.1782
– ident: e_1_2_7_35_1
  doi: 10.1038/ng.2586
– ident: e_1_2_7_29_1
  doi: 10.1007/s00239-010-9398-z
– ident: e_1_2_7_96_1
  doi: 10.1126/science.1059412
– volume-title: Diversity and classification of flowering plants
  year: 1997
  ident: e_1_2_7_80_1
– ident: e_1_2_7_92_1
  doi: 10.1186/s12870-014-0289-0
– ident: e_1_2_7_4_1
  doi: 10.3732/ajb.0900346
– ident: e_1_2_7_18_1
  doi: 10.1007/s00606-007-0540-3
– ident: e_1_2_7_61_1
  doi: 10.1186/1471-2148-12-100
– ident: e_1_2_7_37_1
  doi: 10.1093/molbev/msq261
– ident: e_1_2_7_63_1
  doi: 10.1080/10635150490522304
– ident: e_1_2_7_46_1
  doi: 10.1093/bioinformatics/btp368
– volume: 27
  start-page: 2770
  year: 2015
  ident: e_1_2_7_33_1
  article-title: A time‐calibrated road map of Brassicaceae species radiation and evolutionary history
  publication-title: Plant Cell
– ident: e_1_2_7_54_1
  doi: 10.1038/346029a0
– ident: e_1_2_7_47_1
  doi: 10.1093/molbev/msh112
– ident: e_1_2_7_77_1
  doi: 10.1093/bioinformatics/btl446
– ident: e_1_2_7_28_1
  doi: 10.3732/ajb.89.9.1478
– ident: e_1_2_7_23_1
  doi: 10.1126/science.1086292
– volume-title: The genera of flowering plants. Vol. 1. Dicotyledons
  year: 1964
  ident: e_1_2_7_34_1
– volume: 36
  start-page: 468
  year: 2014
  ident: e_1_2_7_41_1
  article-title: Characterization of the complete chloroplast genome of apple (Malus × domestica, Rosaceae)
  publication-title: Plant Diversity and Resources
– ident: e_1_2_7_81_1
  doi: 10.1080/10635150701472164
– ident: e_1_2_7_60_1
  doi: 10.1093/bioinformatics/btg412
– ident: e_1_2_7_21_1
– ident: e_1_2_7_36_1
  doi: 10.1073/pnas.0709121104
– ident: e_1_2_7_12_1
  doi: 10.1016/j.ympev.2014.02.024
– ident: e_1_2_7_5_1
  doi: 10.1086/660880
– ident: e_1_2_7_2_1
  doi: 10.1186/1471-2164-12-569
– ident: e_1_2_7_70_1
  doi: 10.1186/1471-2148-14-23
– ident: e_1_2_7_7_1
  doi: 10.1371/journal.pcbi.1003537
– ident: e_1_2_7_55_1
  doi: 10.1073/pnas.0708072104
– ident: e_1_2_7_57_1
  doi: 10.1002/j.1537-2197.1994.tb15570.x
– ident: e_1_2_7_20_1
  doi: 10.1038/nature05516
– ident: e_1_2_7_43_1
  doi: 10.1093/nar/gki198
– ident: e_1_2_7_84_1
  doi: 10.1038/ng.654
– ident: e_1_2_7_66_1
  doi: 10.1007/s006060200012
– ident: e_1_2_7_87_1
  doi: 10.1073/pnas.1323926111
– ident: e_1_2_7_86_1
  doi: 10.1371/journal.pone.0073946
– ident: e_1_2_7_8_1
  doi: 10.3732/ajb.91.10.1599
– ident: e_1_2_7_75_1
  doi: 10.1093/bib/bbu015
– ident: e_1_2_7_94_1
  doi: 10.1111/j.1759-6831.2012.00224.x
– ident: e_1_2_7_83_1
  doi: 10.1111/boj.12385
– ident: e_1_2_7_89_1
  doi: 10.2307/2395198
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ympev.2010.03.005
– ident: e_1_2_7_9_1
  doi: 10.1007/s00606-007-0545-y
– ident: e_1_2_7_38_1
  doi: 10.1016/j.tig.2006.02.003
– ident: e_1_2_7_48_1
  doi: 10.1038/srep14023
– ident: e_1_2_7_69_1
  doi: 10.1111/j.0908-8857.2004.03297.x
– ident: e_1_2_7_27_1
  doi: 10.1006/mpev.2000.0828
– ident: e_1_2_7_72_1
  doi: 10.1038/ng.740
– ident: e_1_2_7_85_1
  doi: 10.1073/pnas.0813376106
– ident: e_1_2_7_93_1
  doi: 10.1073/pnas.1205818109
– ident: e_1_2_7_68_1
  doi: 10.1080/10635150701397643
– ident: e_1_2_7_30_1
  doi: 10.1126/science.1157704
– ident: e_1_2_7_13_1
  doi: 10.1073/pnas.91.15.6795
– ident: e_1_2_7_42_1
  doi: 10.1007/978-3-662-07257-8_39
SSID ssj0009562
Score 2.6279242
Snippet Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their...
Summary Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their...
Summary Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their...
* Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1355
SubjectTerms Apomixis
Calibration
Comparative analysis
Comparative studies
Cretaceous
Diversification
Fossils
Frameworks
Genetic Variation
Genomics
geological eons
hybridization
Likelihood Functions
monophyly
Nucleotide sequence
Oligocene
Phylogenetics
phylogenomics
Phylogeny
Plastids
Plastids - genetics
plastome
Plastomes
rapid radiation
Rosaceae
Rosaceae - genetics
Rosales
sequence alignment
systematic error
Time Factors
Title Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics
URI https://www.jstor.org/stable/90004239
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14461
https://www.ncbi.nlm.nih.gov/pubmed/28186635
https://www.proquest.com/docview/1886200210
https://www.proquest.com/docview/2064676988
https://www.proquest.com/docview/1867547078
https://www.proquest.com/docview/1891882617
https://www.proquest.com/docview/2000508607
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFH-U0oMXrR_VrVVG8eAlJTuTmZ3gqVbLIlqktLAHIcwnFkuyNLsH_et9b_JBK1sRLyEwLyTzPjK_N_PmNwBv8lAi7g1l5q1QWWFlkVkuQqZtqaPWUfi0FPPlVM0vik8LudiCd8NemI4fYpxwo8hI_2sKcGPbG0FeL7_TymRKfahWiwDRGb9BuKv4wMCsCrXoWYWoimd88tZY1JUjbgKat3FrGnhOHsC34ZO7epMfh-uVPXS__mBz_M8-7cL9HpCyo86DHsJWqB_BzvsGQePPx3D-oavbiP3UHmsiO2ta44IJrL1Ej2GIINlnRKzsmEoXXWjWLaOx0TMUXyI4X116hsbELw5pD3T7BC5OPp4fz7P-IIbMyVk-xasVfqZkaeU08pJLHzHUEZoEJwIPiDCD4LnNVTSF48YW0jk_FYgFVZx5BGx7sF03dXgGTAflTYgiCtphJ2fWa2l0jMY5XkQfJ_B2MEnlepZyOizjqhqyFdRRlXQ0gdej6LKj5tgktJfsOkrQIalEejiBg8HQVR-2bTXVmOClNHhjM0f8RiXBWk_g1diM8UiLLKYmBVdEECgL4lD6m0yJbyIu_LtleKLm0SpHmaedH4594ImmUEhUVvKmu7tfnX6dp5v9fxd9Dvc4YZdU1XkA26vrdXiByGtlX6YQ-w16Hiev
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LaxRBEG5CFPTiO3E1aisKXibs9mt7Dh40a9iYzSJhA3sbp18YlJnF2UXib_Kv-J-s6nmQyEa85OBtYApmurqq-qvu6q8Iedn3KeBenybOcJUII0ViGPeJNqkOWgfu4lHM0VSNT8SHuZxvkJ_tXZiaH6LbcEPPiPEaHRw3pM95ebH4jEeTatCUVB76s--QsFVvDkYwu68Y238_2xsnTU-BxMohZM5WGu6GSqZGDgJLmXQBrBZWWW-5Zx7Akuesb_oq5MKy3AhprRtwgDUqDJ1AmgMI-Newgzgy9Y-O2TmKX8Vazmcl1LzhMcK6oe5XL6x-dQHkOmh7ESnHpW7_NvnVKqmucPmyu1qaXfvjD_7I_0WLd8itBnPTt7WT3CUbvrhHrr8rARef3SezUV2aEprdS1oGelxWufW5p9UpOAUFkEwnAMrpHlZnWl-uKorLv6MgvoD8Y3nqKNgrqMjHa97VA3JyJSPaIptFWfiHhGqvXO4DDxwvEcqhcVrmOoTcWiaCCz3yurWBzDZE7NgP5GvWJmQwJ1mckx550YkuavaRdUJb0ZA6CewDi7yOPbLTWlbWRKYqG2jIYWOmv_Y1A4iKVc9a98jz7jWEHDxHygtUcIYciFIgTdTfZFL4EtL9Xy7DIvuQVn2Q2a4NvxsDi0yMXIKyovlePvxs-nEcHx79u-gzcmM8O5pkk4Pp4WNykyFUi0WsO2Rz-W3lnwDQXJqn0b8p-XTVrvAbdBWECw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LaxRBEG5CFPHiO3E1aisKXibM9mt7Dh4067IxcQkhgb2N0y8Mhp0ls4vEv-Rf8UdZ1fMgkY14ycHbQBfMdHVV9VfT1V8R8jr1GeBenyXOcJUII0ViGPeJNpkOWgfu4lHM54kaH4tPUzldIz_buzA1P0T3ww09I8ZrdPC5CxecfDb_iieTqt9UVO758--Qr1XvdoewuG8YG3082hknTUuBxMoBJM5WGu4GSmZG9gPLmHQBjBY2WW-5Zx6wkucsNakKhbCsMEJa6_ocUI0KAyeQ5QDi_Q2h0gz7RAwP2QWGX8Vaymcl1LShMcKyoe5TL21-df3jKmR7GSjHnW50l_xqdVQXuHzbXi7Mtv3xB33kf6LEe-ROg7jp-9pF7pM1P3tAbn4oARWfPyRHw7owJTT_LmkZ6GFZFdYXnlYn4BIUIDLdB0hOd7A20_pyWVHc_B0F8TlkH4sTR8FaQUM-XvKuHpHja5nRBlmflTP_mFDtlSt84IHjFUI5ME7LQodQWMtEcKFH3rYmkNuGhh27gZzmbToGa5LHNemRV53ovOYeWSW0Ee2ok8AusMjq2CNbrWHlTVyq8r6GDDbm-SuHGQBUrHnWukdedsMQcPAUqZihgnNkQJQCSaL-JpPBm5Ds_2oZFrmHtEpBZrO2-24OLPIwcgnKitZ79fTzycE4Pjz5d9EX5NbBcJTv7072npLbDHFarGDdIuuLs6V_BihzYZ5H76bky3V7wm9KdYK6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversification+of+Rosaceae+since+the+Late+Cretaceous+based+on+plastid+phylogenomics&rft.jtitle=The+New+phytologist&rft.au=Zhang%2C+Shu%E2%80%90Dong&rft.au=Jin%2C+Jian%E2%80%90Jun&rft.au=Chen%2C+Si%E2%80%90Yun&rft.au=Chase%2C+Mark+W&rft.date=2017-05-01&rft.issn=0028-646X&rft.volume=214&rft.issue=3+p.1355-1367&rft.spage=1355&rft.epage=1367&rft_id=info:doi/10.1111%2Fnph.14461&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon