Dietary Casein and Soy Protein Isolate Modulate the Effects of Raffinose and Fructooligosaccharides on the Composition and Fermentation of Gut Microbiota in Rats

Although diet has an important influence on the composition of gut microbiota, the impact of dietary protein sources has only been studied to a minor extent. In this study, we examined the influence of different dietary protein sources regarding the effects of prebiotic oligosaccharides on the compo...

Full description

Saved in:
Bibliographic Details
Published inJournal of food science Vol. 81; no. 8; pp. H2093 - H2098
Main Authors Bai, Gaowa, Ni, Kuikui, Tsuruta, Takeshi, Nishino, Naoki
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.08.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although diet has an important influence on the composition of gut microbiota, the impact of dietary protein sources has only been studied to a minor extent. In this study, we examined the influence of different dietary protein sources regarding the effects of prebiotic oligosaccharides on the composition and metabolic activity of gut microbiota. Thirty female rats were fed casein and soy protein isolate with cellulose, raffinose (RAF), and fructooligosaccharides (FOS). Microbiota composition was examined by real‐time qPCR and denaturing gradient gel electrophoresis. Dietary protein source affected cecum microbiota; acetic acid concentration and Lactobacillus spp. populations were greater with soy protein than with casein. Prebiotic oligosaccharides had distinctive effects on gut microbiota; RAF increased the acetic acid concentration and Bifidobacterium spp. populations, and FOS increased the butyric acid concentration regardless of the dietary protein. Likewise, Bifidobacterium sp., Collinsella sp., and Lactobacillus sp. were detected in microbiota of the rats fed RAF, and Bacteroides sp., Roseburia sp., and Blautia sp. were seen in microbiota of the rats fed FOS. Interactions between dietary proteins and prebiotic oligosaccharides were observed with Clostridium perfringens group populations and cecum IgA concentration. RAF and FOS decreased C. perfringens group populations in casein‐fed rats, and the combination of soy protein and RAF substantially increased cecum IgA concentration. These results indicate that dietary proteins can differentially modulate the effects of prebiotic oligosaccharides on gut fermentation and microbiota, depending on the type of carbohydrate polymers involved. Practical Application Prebiotic raffinose and fructooligosaccharides increased acetic acid and butyric acid concentrations in the cecum, respectively. Bifidobacterium sp., Collinsella sp., and Lactobacillus sp. were observed with raffinose feeding, while Bacteroides sp., Roseburia sp., and Blautia sp. were seen with fructooligosaccharides feeding. Dietary proteins can modulate the effects of prebiotic oligosaccharides. Cecum acetic acid concentration and Lactobacillus spp. populations were increased by soy protein compared with casein feeding, and cecum IgA concentration increased when combining soy protein and raffinose. Although raffinose and fructooligosaccharides induced a decrease in Clostridium perfringens group populations, this trend was only seen with casein feeding.
AbstractList Although diet has an important influence on the composition of gut microbiota, the impact of dietary protein sources has only been studied to a minor extent. In this study, we examined the influence of different dietary protein sources regarding the effects of prebiotic oligosaccharides on the composition and metabolic activity of gut microbiota. Thirty female rats were fed casein and soy protein isolate with cellulose, raffinose (RAF), and fructooligosaccharides (FOS). Microbiota composition was examined by real‐time qPCR and denaturing gradient gel electrophoresis. Dietary protein source affected cecum microbiota; acetic acid concentration and Lactobacillus spp. populations were greater with soy protein than with casein. Prebiotic oligosaccharides had distinctive effects on gut microbiota; RAF increased the acetic acid concentration and Bifidobacterium spp. populations, and FOS increased the butyric acid concentration regardless of the dietary protein. Likewise, Bifidobacterium sp., Collinsella sp., and Lactobacillus sp. were detected in microbiota of the rats fed RAF, and Bacteroides sp., Roseburia sp., and Blautia sp. were seen in microbiota of the rats fed FOS. Interactions between dietary proteins and prebiotic oligosaccharides were observed with Clostridium perfringens group populations and cecum IgA concentration. RAF and FOS decreased C. perfringens group populations in casein‐fed rats, and the combination of soy protein and RAF substantially increased cecum IgA concentration. These results indicate that dietary proteins can differentially modulate the effects of prebiotic oligosaccharides on gut fermentation and microbiota, depending on the type of carbohydrate polymers involved. Practical Application Prebiotic raffinose and fructooligosaccharides increased acetic acid and butyric acid concentrations in the cecum, respectively. Bifidobacterium sp., Collinsella sp., and Lactobacillus sp. were observed with raffinose feeding, while Bacteroides sp., Roseburia sp., and Blautia sp. were seen with fructooligosaccharides feeding. Dietary proteins can modulate the effects of prebiotic oligosaccharides. Cecum acetic acid concentration and Lactobacillus spp. populations were increased by soy protein compared with casein feeding, and cecum IgA concentration increased when combining soy protein and raffinose. Although raffinose and fructooligosaccharides induced a decrease in Clostridium perfringens group populations, this trend was only seen with casein feeding.
Although diet has an important influence on the composition of gut microbiota, the impact of dietary protein sources has only been studied to a minor extent. In this study, we examined the influence of different dietary protein sources regarding the effects of prebiotic oligosaccharides on the composition and metabolic activity of gut microbiota. Thirty female rats were fed casein and soy protein isolate with cellulose, raffinose (RAF), and fructooligosaccharides (FOS). Microbiota composition was examined by real-time qPCR and denaturing gradient gel electrophoresis. Dietary protein source affected cecum microbiota; acetic acid concentration and Lactobacillus spp. populations were greater with soy protein than with casein. Prebiotic oligosaccharides had distinctive effects on gut microbiota; RAF increased the acetic acid concentration and Bifidobacterium spp. populations, and FOS increased the butyric acid concentration regardless of the dietary protein. Likewise, Bifidobacterium sp., Collinsella sp., and Lactobacillus sp. were detected in microbiota of the rats fed RAF, and Bacteroides sp., Roseburia sp., and Blautia sp. were seen in microbiota of the rats fed FOS. Interactions between dietary proteins and prebiotic oligosaccharides were observed with Clostridium perfringens group populations and cecum IgA concentration. RAF and FOS decreased C. perfringens group populations in casein-fed rats, and the combination of soy protein and RAF substantially increased cecum IgA concentration. These results indicate that dietary proteins can differentially modulate the effects of prebiotic oligosaccharides on gut fermentation and microbiota, depending on the type of carbohydrate polymers involved.
Although diet has an important influence on the composition of gut microbiota, the impact of dietary protein sources has only been studied to a minor extent. In this study, we examined the influence of different dietary protein sources regarding the effects of prebiotic oligosaccharides on the composition and metabolic activity of gut microbiota. Thirty female rats were fed casein and soy protein isolate with cellulose, raffinose (RAF), and fructooligosaccharides (FOS). Microbiota composition was examined by real-time qPCR and denaturing gradient gel electrophoresis. Dietary protein source affected cecum microbiota; acetic acid concentration and Lactobacillus spp. populations were greater with soy protein than with casein. Prebiotic oligosaccharides had distinctive effects on gut microbiota; RAF increased the acetic acid concentration and Bifidobacterium spp. populations, and FOS increased the butyric acid concentration regardless of the dietary protein. Likewise, Bifidobacterium sp., Collinsella sp., and Lactobacillus sp. were detected in microbiota of the rats fed RAF, and Bacteroides sp., Roseburia sp., and Blautia sp. were seen in microbiota of the rats fed FOS. Interactions between dietary proteins and prebiotic oligosaccharides were observed with Clostridium perfringens group populations and cecum IgA concentration. RAF and FOS decreased C. perfringens group populations in casein-fed rats, and the combination of soy protein and RAF substantially increased cecum IgA concentration. These results indicate that dietary proteins can differentially modulate the effects of prebiotic oligosaccharides on gut fermentation and microbiota, depending on the type of carbohydrate polymers involved. Practical Application Prebiotic raffinose and fructooligosaccharides increased acetic acid and butyric acid concentrations in the cecum, respectively. Bifidobacterium sp., Collinsella sp., and Lactobacillus sp. were observed with raffinose feeding, while Bacteroides sp., Roseburia sp., and Blautia sp. were seen with fructooligosaccharides feeding. Dietary proteins can modulate the effects of prebiotic oligosaccharides. Cecum acetic acid concentration and Lactobacillus spp. populations were increased by soy protein compared with casein feeding, and cecum IgA concentration increased when combining soy protein and raffinose. Although raffinose and fructooligosaccharides induced a decrease in Clostridium perfringens group populations, this trend was only seen with casein feeding.
Abstract Although diet has an important influence on the composition of gut microbiota, the impact of dietary protein sources has only been studied to a minor extent. In this study, we examined the influence of different dietary protein sources regarding the effects of prebiotic oligosaccharides on the composition and metabolic activity of gut microbiota. Thirty female rats were fed casein and soy protein isolate with cellulose, raffinose (RAF), and fructooligosaccharides (FOS). Microbiota composition was examined by real‐time qPCR and denaturing gradient gel electrophoresis. Dietary protein source affected cecum microbiota; acetic acid concentration and Lactobacillus spp. populations were greater with soy protein than with casein. Prebiotic oligosaccharides had distinctive effects on gut microbiota; RAF increased the acetic acid concentration and Bifidobacterium spp. populations, and FOS increased the butyric acid concentration regardless of the dietary protein. Likewise, Bifidobacterium sp., Collinsella sp., and Lactobacillus sp. were detected in microbiota of the rats fed RAF, and Bacteroides sp., Roseburia sp., and Blautia sp. were seen in microbiota of the rats fed FOS. Interactions between dietary proteins and prebiotic oligosaccharides were observed with Clostridium perfringens group populations and cecum IgA concentration. RAF and FOS decreased C. perfringens group populations in casein‐fed rats, and the combination of soy protein and RAF substantially increased cecum IgA concentration. These results indicate that dietary proteins can differentially modulate the effects of prebiotic oligosaccharides on gut fermentation and microbiota, depending on the type of carbohydrate polymers involved. Practical Application Prebiotic raffinose and fructooligosaccharides increased acetic acid and butyric acid concentrations in the cecum, respectively. Bifidobacterium sp., Collinsella sp., and Lactobacillus sp. were observed with raffinose feeding, while Bacteroides sp., Roseburia sp., and Blautia sp. were seen with fructooligosaccharides feeding. Dietary proteins can modulate the effects of prebiotic oligosaccharides. Cecum acetic acid concentration and Lactobacillus spp. populations were increased by soy protein compared with casein feeding, and cecum IgA concentration increased when combining soy protein and raffinose. Although raffinose and fructooligosaccharides induced a decrease in Clostridium perfringens group populations, this trend was only seen with casein feeding.
Author Nishino, Naoki
Ni, Kuikui
Tsuruta, Takeshi
Bai, Gaowa
Author_xml – sequence: 1
  givenname: Gaowa
  surname: Bai
  fullname: Bai, Gaowa
  organization: Dept. of Animal Science, Graduate School of Life and Environmental Science, Okayama Univ, Okayama, Japan
– sequence: 2
  givenname: Kuikui
  surname: Ni
  fullname: Ni, Kuikui
  organization: Dept. of Animal Science, Graduate School of Life and Environmental Science, Okayama Univ, Okayama, Japan
– sequence: 3
  givenname: Takeshi
  surname: Tsuruta
  fullname: Tsuruta, Takeshi
  organization: Dept. of Animal Science, Graduate School of Life and Environmental Science, Okayama Univ, Okayama, Japan
– sequence: 4
  givenname: Naoki
  surname: Nishino
  fullname: Nishino, Naoki
  email: j1oufeed@okayama-u.ac.jp
  organization: Dept. of Animal Science, Graduate School of Life and Environmental Science, Okayama Univ, Okayama, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27434756$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB-wZocisWGT1o5fyRKmnaFVW0oLQmJjOc41dcnEg-0I5ufwT_HMtLNgAfXGvlffOVe2zz7aGfwACL0k-JDkdUQkxyWtGTkklDbkCdrbdnbQHsZVVRLC5C7aj_EOr2oqnqHdSjLKJBd76Pexg6TDspjoCG4o9NAVN35ZXAWfVvVp9L1OUFz4blwf0i0UJ9aCSbHwtrjW1rrBR1grp2E0yfveffNRG3Org-sgc8NaNvHzhY8uOb-ZM4UwhyHpdSN7zcZUXDgTfOt80kWefq1TfI6eWt1HeHG_H6DP05NPk_fl-YfZ6eTteWm4xKRsLXRU45Yx2tbC0oppK2RXG9u2HBouWC6NJkbkDkguiQXbcUIxNkRqTA_Qm43vIvgfI8Sk5i4a6Hs9gB-jIjXlvGEVax6BEi4aIil5DIprISpeZfT1X-idH8OQ76xIU-OmYUzIf1LZi1e1JDxTRxsqv2aMAaxaBDfP_6wIVqvkqFVO1Conap2crHh17zu2c-i2_ENUMiA2wE_Xw_J_fupsenzz4FxuhC4m-LUV6vBd5ftIrr5cztTk68fZu7PmSl3SP3Ma3rU
CODEN JFDSAZ
CitedBy_id crossref_primary_10_1080_1828051X_2019_1612286
crossref_primary_10_1002_jsfa_12940
crossref_primary_10_1016_S1674_6384_17_60109_6
crossref_primary_10_7717_peerj_13415
crossref_primary_10_3390_nu15081959
crossref_primary_10_3945_cdn_117_001180
crossref_primary_10_1093_jas_skac265
crossref_primary_10_3390_nutraceuticals2040025
crossref_primary_10_1016_j_taap_2020_115130
crossref_primary_10_1111_jpn_13782
crossref_primary_10_1038_s41598_020_67709_9
crossref_primary_10_1186_s40168_017_0295_1
crossref_primary_10_1080_09637486_2017_1382454
crossref_primary_10_3920_JAAN2020_0011
crossref_primary_10_1016_j_isci_2022_105313
crossref_primary_10_3390_microorganisms12020356
crossref_primary_10_1002_mnfr_201700484
crossref_primary_10_3382_ps_pex218
crossref_primary_10_3390_nu13010201
crossref_primary_10_1007_s12035_024_04099_3
crossref_primary_10_1093_jn_nxab252
crossref_primary_10_3389_fsufs_2018_00072
crossref_primary_10_1093_glycob_cwad015
crossref_primary_10_1002_mnfr_202300586
crossref_primary_10_1007_s00394_024_03407_w
crossref_primary_10_3382_ps_pey021
crossref_primary_10_3389_fmicb_2022_911500
crossref_primary_10_1080_19490976_2021_1875796
crossref_primary_10_3390_microorganisms11051194
crossref_primary_10_1039_D2FO00446A
crossref_primary_10_1186_s13063_020_04523_8
crossref_primary_10_3389_fnut_2019_00142
crossref_primary_10_3390_nu12061745
crossref_primary_10_1021_acs_jafc_2c04410
crossref_primary_10_1111_1750_3841_15392
crossref_primary_10_1080_19490976_2020_1799533
crossref_primary_10_3390_nu15040956
crossref_primary_10_1038_s41598_018_35171_3
crossref_primary_10_3390_nu13124466
crossref_primary_10_1016_j_ijbiomac_2019_09_159
crossref_primary_10_1080_10408398_2018_1485628
crossref_primary_10_3390_cimb45090452
crossref_primary_10_1016_j_fbio_2024_104627
crossref_primary_10_3934_microbiol_2021001
Cites_doi 10.1111/j.1365-2672.2011.05010.x
10.1016/j.cimid.2013.05.001
10.1007/s00253-013-5271-5
10.1016/j.ijfoodmicro.2011.03.003
10.2144/04365ST04
10.1136/gut.34.3.386
10.1038/srep15220
10.1093/jn/126.5.1362
10.1111/1750-3841.13086
10.1128/AEM.01777-06
10.2527/2003.81102505x
10.3390/nu4081095
10.3177/jnsv.45.173
10.1093/jn/131.10.3098
10.1136/gut.35.1_Suppl.S35
10.3390/nu7105397
10.1038/nrgastro.2012.156
10.4014/jmb.1310.10043
10.1111/j.1365-2672.2004.02409.x
10.3168/jds.2014-7968
10.1007/s00394-013-0607-6
10.3109/08910609009140252
10.1016/j.idairyj.2005.09.006
ContentType Journal Article
Copyright 2016 Institute of Food Technologists
Copyright_xml – notice: 2016 Institute of Food Technologists
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QR
7ST
7T7
7U7
8FD
C1K
F28
FR3
P64
RC3
SOI
7X8
DOI 10.1111/1750-3841.13391
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Chemoreception Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Biotechnology Research Abstracts
MEDLINE - Academic
Genetics Abstracts
Genetics Abstracts
CrossRef
Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1750-3841
EndPage H2098
ExternalDocumentID 4143597481
10_1111_1750_3841_13391
27434756
JFDS13391
ark_67375_WNG_CZQGBJ9P_N
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29K
3-9
31~
33P
3EH
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABJNI
ABPVW
ACAHQ
ACBNA
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFDN
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
P-O
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RXW
SAMSI
SJN
SUPJJ
TAE
TN5
UB1
UBH
UHB
UKR
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
Y6R
YQJ
ZCA
ZCG
ZGI
ZT4
ZXP
ZZTAW
~IA
~KM
~WT
G8K
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QR
7ST
7T7
7U7
8FD
C1K
F28
FR3
P64
RC3
SOI
7X8
ID FETCH-LOGICAL-c5701-bfed3a0b443b86f324af67d8cfbb5e9564f67ca1c6cfbe7571fefd51300c17a03
IEDL.DBID DR2
ISSN 0022-1147
IngestDate Fri Aug 16 23:27:32 EDT 2024
Sat Aug 17 03:04:23 EDT 2024
Fri Aug 16 13:29:39 EDT 2024
Thu Oct 10 16:16:11 EDT 2024
Thu Oct 10 20:21:45 EDT 2024
Fri Aug 23 02:16:02 EDT 2024
Tue Aug 27 13:45:29 EDT 2024
Sat Aug 24 00:50:25 EDT 2024
Wed Oct 30 09:52:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2016 Institute of Food Technologists
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5701-bfed3a0b443b86f324af67d8cfbb5e9564f67ca1c6cfbe7571fefd51300c17a03
Notes ArticleID:JFDS13391
ark:/67375/WNG-CZQGBJ9P-N
istex:F28B84529E515284F7708A77363FD98CC89F8A4C
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27434756
PQID 1810528715
PQPubID 40513
PageCount 6
ParticipantIDs proquest_miscellaneous_1835594249
proquest_miscellaneous_1815691731
proquest_miscellaneous_1810866252
proquest_journals_1980994467
proquest_journals_1810528715
crossref_primary_10_1111_1750_3841_13391
pubmed_primary_27434756
wiley_primary_10_1111_1750_3841_13391_JFDS13391
istex_primary_ark_67375_WNG_CZQGBJ9P_N
PublicationCentury 2000
PublicationDate August 2016
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chicago
PublicationTitle Journal of food science
PublicationTitleAlternate Journal of Food Science
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Flint HJ, Scott KP, Louis P, Duncan SH. 2012. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577-89.
Hayakawa K, Mizutani J, Wada K, Masai T, Yoshihara I, Mitsuoka T. 1990. Effects of soybean oligosaccharides on human faecal flora. Microb Ecol Health Dis 3:293-303.
Henningsson AM, Bjorck IM, Nyman EM. 2002. Combinations of indigestible carbohydrates affect short-chain fatty acid formation in the hindgut of rats. J. Nutr 132:3098-104.
Rinttila T, Kassinen A, Malinen E, Krogius L, Palva A. 2004. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 97:1166-77.
Ruengsomwong S, Korenori Y, Sakamoto N, Wannissorn B, Nakayama J, Nitisinprasert S. 2014. Senior Thai fecal microbiota comparison between vegetarians and non-vegetarians using PCR-DGGE and real-time PCR. J Microbiol Biotechnol 24:1026-33.
Vuyst LD, Leroy F. 2011. Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifidobacterial competitiveness, butyrate production, and gas production. Intl J Food Microbiol 149:73-80.
An C, Kuda T, Yazaki T, Takahashi H, Kumura B. 2014. Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal. Appl Microbiol Biotechnol 98:2779-87.
Xiao J, Metzler-Zebeli BU, Zebeli Q. 2015. Gut function-enhancing properties and metabolic effects of dietary indigestible sugars in rodents and rabbits. Nutrients 7:8348-65.
Gallaher DD, Stallings WH, Blessing LL, Busta FF, Brady LJ. 1996. Probiotics, cecal microflora, and aberrant crypts in the rat colon. J Nutr 126:1362-71.
Kudoh K, Shimizu J, Ishiyama A, Wada M, Takita T, Kanke T, Innami S. 1999. Secretion and excretion of immunoglobulin A to cecum and feces differ with type of indigestible saccharides. J Nutr Sci Vitaminol 45:173-81.
Brown K, DeCoffe D, Molcan E, Gibson DL. 2012. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 4:1095-119.
Graf D, Cagno RD, Fak F, Flint HJ, Nyman M, Saarela M, Watzl B. 2015. Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 26:26164.
Han H, Ogata Y, Yamamoto Y, Nagao S, Nishino N. 2014. Identification of lactic acid bacteria in the rumen and feces of dairy cows fed total mixed ration silage to assess the survival of silage bacteria in the gut. J Dairy Sci 97:5754-62.
Makras L, Vuyst LD. 2006. The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. Intl Dairy J 16:1049-57.
Dinoto A, Marques TM, Sakamoto K, Fukiya S, Watanabe J, Ito S, Yokota A. 2006. Population dynamics of Bifidobacterium species in human feces during raffinose administration monitored by fluorescence in situ hybridization-flow cytometry. Appl Environ Microbiol 72:7739-47.
Yu Z, Morrison M. 2004. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36:808-12.
McIntyre A, Gibson PR, Young GP. 1993. Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut 34:386-91.
Zhu Y, Lin X, Zhao F, Shi X, Li H, Li Y, Zhu W, Xu X, Lu C, Zhou G. 2015. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci Rep 5:15220.
Allaart JG, Ajam van Asten, Grone A. 2013. Predisposing factors and prevention of Clostridium perfringens-associated enteritis. Comp Immunol Microbiol Infect Dis 36:449-64.
Hara H. 2002. Physiological effects of short-chain fatty acid produces from prebiotics in the colon. J Intestinal Microbiol 16:35-42.
Matijasic BB, Obermajer T, Lipoglavsek L, Grabnar I, Avgustin G, Rogelj I. 2014. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr 53:1051-64.
Smiricky-Tjardes MR, Flickinger EA, Grieshop CM, Bauer LL, Murphy MR, Fahey GC. 2003. In vitro fermentation characteristics of selected oligosaccharides by swine fecal microflora. J Anim Sci 81:2505-14.
Li S, Gao L, Chen L, Ou S, Wang Y, Peng X. 2015. Continuously ingesting fructooligosaccharide can't maintain rat's gut Bifidobacterium at a high level. J Food Sci 80:M2530-4.
Scheppach W. 1994. Effects of short chain fatty acids on gut morphology and function. Gut 35:S35-8.
Li Y, Nishino N. 2011. Monitoring the bacterial community of maize silage stored in a bunker silo inoculated with Enterococcus faecium. Lactobacillus plantarum and Lactobacillus buchneri. J Appl Microbiol 110:1561-70.
2002; 16
2015; 5
2006; 72
2003; 81
2002; 132
2006; 16
1999; 45
2014; 24
2015; 80
1996; 126
2015; 7
2011; 110
1990; 3
2011; 149
2015; 26
1993; 34
2004; 97
2013; 36
2004; 36
1994; 35
2012; 4
2014; 98
2012; 9
2014; 97
2014; 53
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Hara H. (e_1_2_5_10_1) 2002; 16
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Graf D (e_1_2_5_8_1) 2015; 26
References_xml – volume: 81
  start-page: 2505
  year: 2003
  end-page: 14
  article-title: In vitro fermentation characteristics of selected oligosaccharides by swine fecal microflora
  publication-title: J Anim Sci
– volume: 72
  start-page: 7739
  year: 2006
  end-page: 47
  article-title: Population dynamics of species in human feces during raffinose administration monitored by fluorescence in situ hybridization‐flow cytometry
  publication-title: Appl Environ Microbiol
– volume: 3
  start-page: 293
  year: 1990
  end-page: 303
  article-title: Effects of soybean oligosaccharides on human faecal flora
  publication-title: Microb Ecol Health Dis
– volume: 7
  start-page: 8348
  year: 2015
  end-page: 65
  article-title: Gut function‐enhancing properties and metabolic effects of dietary indigestible sugars in rodents and rabbits
  publication-title: Nutrients
– volume: 80
  start-page: M2530
  year: 2015
  end-page: 4
  article-title: Continuously ingesting fructooligosaccharide can't maintain rat's gut at a high level
  publication-title: J Food Sci
– volume: 16
  start-page: 1049
  year: 2006
  end-page: 57
  article-title: The in vitro inhibition of Gram‐negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids
  publication-title: Intl Dairy J
– volume: 97
  start-page: 5754
  year: 2014
  end-page: 62
  article-title: Identification of lactic acid bacteria in the rumen and feces of dairy cows fed total mixed ration silage to assess the survival of silage bacteria in the gut
  publication-title: J Dairy Sci
– volume: 26
  start-page: 26164
  year: 2015
  article-title: Contribution of diet to the composition of the human gut microbiota
  publication-title: Microb Ecol Health Dis
– volume: 110
  start-page: 1561
  year: 2011
  end-page: 70
  article-title: Monitoring the bacterial community of maize silage stored in a bunker silo inoculated with and
  publication-title: J Appl Microbiol
– volume: 36
  start-page: 808
  year: 2004
  end-page: 12
  article-title: Improved extraction of PCR‐quality community DNA from digesta and fecal samples
  publication-title: Biotechniques
– volume: 45
  start-page: 173
  year: 1999
  end-page: 81
  article-title: Secretion and excretion of immunoglobulin A to cecum and feces differ with type of indigestible saccharides
  publication-title: J Nutr Sci Vitaminol
– volume: 5
  start-page: 15220
  year: 2015
  article-title: Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria
  publication-title: Sci Rep
– volume: 16
  start-page: 35
  year: 2002
  end-page: 42
  article-title: Physiological effects of short‐chain fatty acid produces from prebiotics in the colon
  publication-title: J Intestinal Microbiol
– volume: 53
  start-page: 1051
  year: 2014
  end-page: 64
  article-title: Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia
  publication-title: Eur J Nutr
– volume: 9
  start-page: 577
  year: 2012
  end-page: 89
  article-title: The role of the gut microbiota in nutrition and health
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 34
  start-page: 386
  year: 1993
  end-page: 91
  article-title: Butyrate production from dietary fibre and protection against large bowel cancer in a rat model
  publication-title: Gut
– volume: 35
  start-page: S35
  year: 1994
  end-page: 8
  article-title: Effects of short chain fatty acids on gut morphology and function
  publication-title: Gut
– volume: 132
  start-page: 3098
  year: 2002
  end-page: 104
  article-title: Combinations of indigestible carbohydrates affect short‐chain fatty acid formation in the hindgut of rats
  publication-title: J. Nutr
– volume: 24
  start-page: 1026
  year: 2014
  end-page: 33
  article-title: Senior Thai fecal microbiota comparison between vegetarians and non‐vegetarians using PCR‐DGGE and real‐time PCR
  publication-title: J Microbiol Biotechnol
– volume: 126
  start-page: 1362
  year: 1996
  end-page: 71
  article-title: Probiotics, cecal microflora, and aberrant crypts in the rat colon
  publication-title: J Nutr
– volume: 97
  start-page: 1166
  year: 2004
  end-page: 77
  article-title: Development of an extensive set of 16S rDNA‐targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real‐time PCR
  publication-title: J Appl Microbiol
– volume: 4
  start-page: 1095
  year: 2012
  end-page: 119
  article-title: Diet‐induced dysbiosis of the intestinal microbiota and the effects on immunity and disease
  publication-title: Nutrients
– volume: 36
  start-page: 449
  year: 2013
  end-page: 64
  article-title: Predisposing factors and prevention of ‐associated enteritis
  publication-title: Comp Immunol Microbiol Infect Dis
– volume: 149
  start-page: 73
  year: 2011
  end-page: 80
  article-title: Cross‐feeding between bifidobacteria and butyrate‐producing colon bacteria explains bifidobacterial competitiveness, butyrate production, and gas production
  publication-title: Intl J Food Microbiol
– volume: 98
  start-page: 2779
  year: 2014
  end-page: 87
  article-title: Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal
  publication-title: Appl Microbiol Biotechnol
– ident: e_1_2_5_14_1
  doi: 10.1111/j.1365-2672.2011.05010.x
– ident: e_1_2_5_2_1
  doi: 10.1016/j.cimid.2013.05.001
– ident: e_1_2_5_3_1
  doi: 10.1007/s00253-013-5271-5
– ident: e_1_2_5_23_1
  doi: 10.1016/j.ijfoodmicro.2011.03.003
– ident: e_1_2_5_25_1
  doi: 10.2144/04365ST04
– volume: 26
  start-page: 26164
  year: 2015
  ident: e_1_2_5_8_1
  article-title: Contribution of diet to the composition of the human gut microbiota
  publication-title: Microb Ecol Health Dis
  contributor:
    fullname: Graf D
– ident: e_1_2_5_18_1
  doi: 10.1136/gut.34.3.386
– ident: e_1_2_5_26_1
  doi: 10.1038/srep15220
– ident: e_1_2_5_7_1
  doi: 10.1093/jn/126.5.1362
– volume: 16
  start-page: 35
  year: 2002
  ident: e_1_2_5_10_1
  article-title: Physiological effects of short‐chain fatty acid produces from prebiotics in the colon
  publication-title: J Intestinal Microbiol
  contributor:
    fullname: Hara H.
– ident: e_1_2_5_15_1
  doi: 10.1111/1750-3841.13086
– ident: e_1_2_5_5_1
  doi: 10.1128/AEM.01777-06
– ident: e_1_2_5_22_1
  doi: 10.2527/2003.81102505x
– ident: e_1_2_5_4_1
  doi: 10.3390/nu4081095
– ident: e_1_2_5_13_1
  doi: 10.3177/jnsv.45.173
– ident: e_1_2_5_12_1
  doi: 10.1093/jn/131.10.3098
– ident: e_1_2_5_21_1
  doi: 10.1136/gut.35.1_Suppl.S35
– ident: e_1_2_5_24_1
  doi: 10.3390/nu7105397
– ident: e_1_2_5_6_1
  doi: 10.1038/nrgastro.2012.156
– ident: e_1_2_5_20_1
  doi: 10.4014/jmb.1310.10043
– ident: e_1_2_5_19_1
  doi: 10.1111/j.1365-2672.2004.02409.x
– ident: e_1_2_5_9_1
  doi: 10.3168/jds.2014-7968
– ident: e_1_2_5_17_1
  doi: 10.1007/s00394-013-0607-6
– ident: e_1_2_5_11_1
  doi: 10.3109/08910609009140252
– ident: e_1_2_5_16_1
  doi: 10.1016/j.idairyj.2005.09.006
SSID ssj0002236
Score 2.4175665
Snippet Although diet has an important influence on the composition of gut microbiota, the impact of dietary protein sources has only been studied to a minor extent....
Abstract Although diet has an important influence on the composition of gut microbiota, the impact of dietary protein sources has only been studied to a minor...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage H2093
SubjectTerms Acetic acid
Acids
Animals
Bacteria - drug effects
Bacteria - growth & development
Bacteria - metabolism
Bacteroides
Bifidobacterium
Bifidobacterium - drug effects
Bifidobacterium - growth & development
Bifidobacterium - metabolism
Butyric acid
Butyric Acid - metabolism
Carbohydrates
Casein
Caseins - metabolism
Caseins - pharmacology
Cecum
Cecum - metabolism
Cellulose
Clostridium perfringens
Concentration (composition)
Concentration gradient
Denaturing Gradient Gel Electrophoresis
Diet
Dietary Proteins - metabolism
Dietary Proteins - pharmacology
Feces - microbiology
Feeding
Female
Fermentation
Fermentation - drug effects
Food science
Fructooligosaccharides
Gastrointestinal Microbiome - drug effects
Gel electrophoresis
Immunoglobulin A
Intestinal microflora
Lactobacillus
Lactobacillus - drug effects
Lactobacillus - growth & development
Lactobacillus - metabolism
Microbiota
Oligosaccharides
Oligosaccharides - metabolism
Oligosaccharides - pharmacology
Polymers
Populations
Prebiotics
Protein sources
Proteins
Raffinose
Raffinose - metabolism
Raffinose - pharmacology
Rats
Rodents
Soy products
Soybean Proteins - metabolism
Soybean Proteins - pharmacology
Title Dietary Casein and Soy Protein Isolate Modulate the Effects of Raffinose and Fructooligosaccharides on the Composition and Fermentation of Gut Microbiota in Rats
URI https://api.istex.fr/ark:/67375/WNG-CZQGBJ9P-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1750-3841.13391
https://www.ncbi.nlm.nih.gov/pubmed/27434756
https://www.proquest.com/docview/1810528715
https://www.proquest.com/docview/1980994467
https://search.proquest.com/docview/1810866252
https://search.proquest.com/docview/1815691731
https://search.proquest.com/docview/1835594249
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hcoALb6ihoEVCiIuDHe_LR0hISqRGJaUCcbH2iawiG9W2BPwb_imzazvQqipCXCI7nl3bk5mdb-KZzwg9S4hRJtckFlK4mBgjYgFRO1aOZ1RkWmcysH2u2f4xWX2kYzWh74Xp-SG2f7h5zwjrtXdwqZo_nBzinmeGJekE0qzQv55m3Bd1zTe_CaQg-LGRLxyQPx_IfXwtz7nxZ-LSVa_ibxeBzrMYNgShxU2kxsvva09OJl2rJvrHOWbH_7q_W-jGAFHxq96mbqMrtrqDro0dzM1d9HNe2hYmxjMIgWWFZWXwUf0dH3rOB9h_C_YMEBYf1KYLGwAycU-T3ODa4Y10rqzqxoaRC09gW9dfys91I7XvAiuNBbkqDPPr1VBX1ktDJBnapSo_17Jr8UHZs0m1EsPZN7Jt7qHjxZv3s_14eNVDrClPUjANazKZKEIyJZgDlCcd40ZopxS1kMMR2NUy1Qy-sZzy1FlnqH8Wp1Muk-w-2qnqyu4izHIzzbTjiTaCCEckNxySopQJoxL4iNCL8YcuvvaMHsWYCXmdF17nRdB5hJ4HQ9jKydMTXwjHafFhvSxmn94tX6_yw2Idob3RUophDWgKwE4J9QkpvfhwLgCdQzbOI_R0exic2z-xkZWtu34KwSBFnV4qQxkk3Vl6mQzAypxAqh2hB70hb-9pChiScMoi9DKY49-UUqwW86Ow9fCfRzxC1wFwsr6Acg_ttKedfQygrlVPgt_-AuBoQQ4
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQ9jBe-P7IGGAkhHhJSRrHdh-hpe3KWo1uE9NeLMcfKBpKpiWVgP-G_5Szk5RtmoYQL1XSnF35euf7XXL3C0KvI6IzPVAk5JLbkGjNQw5RO8wsS1KeKJVIz_a5oNMjMjtOjy_0wjT8EOsbbs4z_H7tHNzdkL7g5RD4HDUsiXuQZ7kG9k1w-sS9vmG0_EMhBeGPdozhgP1ZS-_jqnmuTHApMm06JX-_DnZeRrE-DI3vItUtoKk-Oe2t6qynfl7hdvy_Fd5Dd1qUit83ZnUf3TLFA7TVNTFXD9GvUW5qmBkPIQrmBZaFxgflD7zvaB_gfBdMGlAsnpd65Q8AZ-KGKbnCpcVLaW1elJXxI8eOw7Ysv-Vfy0oq1wiWawNyhR_mtqy2tKyRhmDSdkwVbq7JqsbzvCGUqiWGX1_KunqEjsYfD4fTsH3bQ6hSFsVgHUYnMsoISTJOLQA9aSnTXNksSw2kcQROlYwVhW8MS1lsjdWpexynYiaj5DHaKMrCPEWYDnQ_UZZFSnPCLZFMM8iLYsp1FsFHgN52_7Q4a0g9RJcMOZ0Lp3PhdR6gN94S1nLy_NTVwrFUfFlMxPDk8-TDbLAvFgHa6UxFtNtAJQA-RanLSdPrLw84AHRIyFmAXq0vg3-7hzayMOWqmYJTyFL7N8qkFPLuJL5JBpDlgEC2HaAnjSWv19QHGElYSgP0ztvj35QiZuPRgT_a_ucRL9HW9HC-J_Z2F5-eoduAP2lTT7mDNurzlXkOGK_OXngn_g3QrUUm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hVgIuvB-GAouEEBcHO95XjpCQtIFGIaUCcVmt94GsIruqHQn4N_xTZtd2oFVVhLhEdjy7sSczO9_YM58RepYQk5uRJrFQwsXEGBELiNpx7nhGRaZ1pgLb54LtHpL5J9pXE_pemJYfYnPDzXtGWK-9gx8b94eTQ9zzzLAkHUCa5fvXtwkD_Otx0eo3gxREP9YThgP05x27jy_mOTPBqcC07XX87TzUeRrEhig0vY7y_vzb4pOjwbrJB_rHGWrH_7rAG-hah1Hxq9aobqJLtryFrvQtzPVt9HNS2AYmxmOIgUWJVWnwQfUdLz3pA-zvgUEDhsX7lVmHDUCZuOVJrnHl8Eo5V5RVbcPIqWewraqvxZeqVtq3gRXGglwZhvkFqyssa6UhlHT9UqWfa7Zu8H7R0kk1CsOvr1RT30GH0zcfxrtx966HWFOepGAb1mQqyQnJcsEcwDzlGDdCuzynFpI4ArtapZrBN5ZTnjrrDPUP43TKVZLdRVtlVdr7CLORGWba8UQbQYQjihsOWVHKhMkT-IjQi_6PlsctpYfsUyGvc-l1LoPOI_Q8GMJGTp0c-Uo4TuXHxUyOP7-fvZ6PlnIRoZ3eUmS3CNQSwFNCfUZKzz88EgDPIR3nEXq6OQze7R_ZqNJW63YKwSBHHV4oQxlk3Vl6kQzgyhGBXDtC91pD3lzTEEAk4ZRF6GUwx78pRc6nk4Ow9eCfRzxBl5eTqXy3t3j7EF0F8Mn8_fmU7qCt5mRtHwHAa_LHwYV_Ab1mQ9o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dietary+Casein+and+Soy+Protein+Isolate+Modulate+the+Effects+of+Raffinose+and+Fructooligosaccharides+on+the+Composition+and+Fermentation+of+Gut+Microbiota+in+Rats&rft.jtitle=Journal+of+food+science&rft.au=Bai%2C+Gaowa&rft.au=Ni%2C+Kuikui&rft.au=Tsuruta%2C+Takeshi&rft.au=Nishino%2C+Naoki&rft.date=2016-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-1147&rft.eissn=1750-3841&rft.volume=81&rft.issue=8&rft.spage=H2093&rft_id=info:doi/10.1111%2F1750-3841.13391&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4143597481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1147&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1147&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1147&client=summon