Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor
Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metas...
Saved in:
Published in | The oncologist (Dayton, Ohio) Vol. 20; no. 6; pp. 660 - 673 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Durham, NC, USA
AlphaMed Press
01.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR‐2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet‐derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti‐VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors.
Implications for Practice:
Significant advances in cancer treatment have been achieved with the development of antiangiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF‐targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents.
It is increasingly clear that there are many interconnected and compensatory pathways that can overcome vascular endothelial growth factor‐targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents. |
---|---|
AbstractList | Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR-2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet-derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti-VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors.
Significant advances in cancer treatment have been achieved with the development of antiangiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF-targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents. Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR‐2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet‐derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti‐VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors. Implications for Practice: Significant advances in cancer treatment have been achieved with the development of antiangiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF‐targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents. It is increasingly clear that there are many interconnected and compensatory pathways that can overcome vascular endothelial growth factor‐targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents. Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR-2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet-derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti-VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors.UNLABELLEDAngiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR-2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet-derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti-VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors.Significant advances in cancer treatment have been achieved with the development of antiangiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF-targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents.IMPLICATIONS FOR PRACTICESignificant advances in cancer treatment have been achieved with the development of antiangiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF-targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents. Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR-2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop anti-angiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Implications for Practice: Significant advances in cancer treatment have been achieved with the development of anti-angiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF-targeted inhibition of angiogenesis. Maximizing the potential of anti-angiogenic therapy is likely to require a broader therapeutic approach using a new generation of multit-argeted anti-angiogenic agents. It is increasingly clear that there are many interconnected and compensatory pathways that can overcome vascular endothelial growth factor-targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents. Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR-2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet-derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti-VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors. |
Author | Zhao, Yujie Adjei, Alex A. |
Author_xml | – sequence: 1 givenname: Yujie surname: Zhao fullname: Zhao, Yujie – sequence: 2 givenname: Alex A. surname: Adjei fullname: Adjei, Alex A. email: alex.adjei@roswellpark.org |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26001391$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUV1rFDEUDVKxH_oXdB59mXozySQTQaEu_RCq-7KK-BIymbuzkWyyJrMt---dodtifbFw4R7IOececo7JQYgBCXlD4ZQKxt8NK4zBRh97l4fTCigvgYv6GTmiNVclV_DjYMTQsFLSWh2S45x_AYyQVS_IYSVGzBQ9Ij8XJvU4uNAXZ6F3sceA2eXChWJmgsVULFaYzGb3vvgSbybaJ9zF0BXfTbZbb1JxHro4xvHO-OIyxdthVVwYO8T0kjxfGp_x1X6fkG8X54vZVXk9v_w8O7subS0BSi6ZaFVLm66VrTKmEQiGCq5Yix1nneqWCrBuZMdrzoCilTBO1QnTmiUKdkI-3vlutu0aO4thSMbrTXJrk3Y6GqcfvwS30n280byWVDZsNHi7N0jx9xbzoNcuW_TeBIzbrKmspJC8adQTqFCJmjGAkfr671gPee7_fiR8uCPYFHNOuNTWDWZwcUrpvKagp671o6711LWeuh718h_9_Yn_K_eXb53H3VNlev51NgchgP0BgtPJwQ |
CitedBy_id | crossref_primary_10_1007_s12031_022_02054_2 crossref_primary_10_3389_fcell_2022_824075 crossref_primary_10_18632_oncotarget_22295 crossref_primary_10_1155_2017_4708076 crossref_primary_10_1186_s12943_018_0766_4 crossref_primary_10_1080_14740338_2020_1691167 crossref_primary_10_3390_cells12010064 crossref_primary_10_1007_s00262_023_03490_8 crossref_primary_10_1016_j_gene_2021_145625 crossref_primary_10_1016_j_jconrel_2023_10_022 crossref_primary_10_3389_fimmu_2024_1487610 crossref_primary_10_3390_pr11030917 crossref_primary_10_1016_j_bbrc_2019_11_017 crossref_primary_10_1080_09546634_2018_1506082 crossref_primary_10_1038_s41392_023_01460_1 crossref_primary_10_1016_j_critrevonc_2020_103196 crossref_primary_10_3892_ol_2018_9213 crossref_primary_10_18632_aging_203895 crossref_primary_10_1016_j_lungcan_2016_10_011 crossref_primary_10_1089_jop_2016_0027 crossref_primary_10_3390_molecules28237767 crossref_primary_10_1016_j_ygyno_2021_03_020 crossref_primary_10_1111_jcmm_12749 crossref_primary_10_1080_15376516_2020_1727596 crossref_primary_10_1016_j_prp_2019_152729 crossref_primary_10_1155_2020_1474050 crossref_primary_10_1111_jcmm_14922 crossref_primary_10_1016_j_canlet_2017_04_037 crossref_primary_10_1016_j_lfs_2020_117670 crossref_primary_10_2485_jhtb_26_33 crossref_primary_10_1007_s11906_020_01040_6 crossref_primary_10_17816_onco642394 crossref_primary_10_3892_ijo_2017_3884 crossref_primary_10_1080_01635581_2020_1862256 crossref_primary_10_1016_j_ajpath_2015_12_020 crossref_primary_10_1016_j_phrs_2016_03_024 crossref_primary_10_4155_fmc_2016_0189 crossref_primary_10_1016_j_neo_2022_100826 crossref_primary_10_1371_journal_pone_0295745 crossref_primary_10_4196_kjpp_2018_22_2_203 crossref_primary_10_1016_j_ejphar_2020_173488 crossref_primary_10_1016_j_molstruc_2018_03_034 crossref_primary_10_3390_biomedicines12122820 crossref_primary_10_1007_s40265_019_01249_z crossref_primary_10_3389_fmmed_2021_749283 crossref_primary_10_1248_bpb_b21_00089 crossref_primary_10_1080_07391102_2023_2240895 crossref_primary_10_1016_j_bbrc_2019_03_142 crossref_primary_10_3390_jcm10194529 crossref_primary_10_1080_1061186X_2021_1961791 crossref_primary_10_1007_s11060_017_2650_2 crossref_primary_10_1039_C7NR09612G crossref_primary_10_1371_journal_pone_0183969 crossref_primary_10_3389_fendo_2021_665631 crossref_primary_10_2147_CMAR_S278068 crossref_primary_10_1038_s12276_022_00744_w crossref_primary_10_1080_14656566_2020_1713092 crossref_primary_10_2174_0929867325666171123204851 crossref_primary_10_1186_s12943_022_01670_1 crossref_primary_10_2174_0929867325666180821151409 crossref_primary_10_1016_j_intimp_2021_107895 crossref_primary_10_1186_s12890_020_01180_0 crossref_primary_10_1016_j_polar_2018_04_006 crossref_primary_10_3389_fonc_2020_564298 crossref_primary_10_1016_j_jtemb_2019_06_008 crossref_primary_10_3390_md21050307 crossref_primary_10_1097_PPO_0000000000000138 crossref_primary_10_1089_ars_2019_7987 crossref_primary_10_1016_j_bbagen_2018_08_013 crossref_primary_10_1016_j_jbiotec_2021_06_025 crossref_primary_10_3892_br_2017_1034 crossref_primary_10_3390_cells9071586 crossref_primary_10_1093_bioinformatics_btx454 crossref_primary_10_1002_bip_22814 crossref_primary_10_1186_s12906_017_1706_3 crossref_primary_10_3892_or_2015_4337 crossref_primary_10_1039_D4RA05244G crossref_primary_10_1111_brv_12428 crossref_primary_10_2174_1389200220666191003161114 crossref_primary_10_1007_s00441_021_03481_0 crossref_primary_10_1186_s12943_017_0640_9 crossref_primary_10_3390_cancers13051072 crossref_primary_10_1007_s00432_019_03055_2 crossref_primary_10_3389_fphar_2024_1336249 crossref_primary_10_1111_jcmm_15708 crossref_primary_10_1016_j_dld_2020_09_008 crossref_primary_10_1016_j_actbio_2019_11_043 crossref_primary_10_1155_2024_9077926 crossref_primary_10_1177_17588359211042689 crossref_primary_10_3892_ol_2018_8656 crossref_primary_10_4103_jcrt_JCRT_325_19 crossref_primary_10_1016_j_bios_2020_112787 crossref_primary_10_14712_18059694_2019_129 crossref_primary_10_1016_j_algal_2022_102885 crossref_primary_10_1186_s12885_023_11625_4 crossref_primary_10_1007_s10456_017_9581_6 crossref_primary_10_3390_cells10030575 crossref_primary_10_1016_j_ejmech_2018_05_005 crossref_primary_10_1007_s11682_017_9770_3 crossref_primary_10_3390_cancers13112819 crossref_primary_10_1096_fj_202000380RR crossref_primary_10_1097_CM9_0000000000001200 crossref_primary_10_1093_protein_gzx042 crossref_primary_10_3390_cells8121623 crossref_primary_10_4103_ijmr_IJMR_1560_19 crossref_primary_10_3390_ph14060521 crossref_primary_10_3389_fcell_2021_616306 crossref_primary_10_1007_s12013_024_01393_8 crossref_primary_10_1177_10732748211038424 crossref_primary_10_1155_2019_1947156 crossref_primary_10_1155_2022_8105229 crossref_primary_10_1080_13813455_2019_1669057 crossref_primary_10_3892_ol_2020_11521 crossref_primary_10_1186_s40959_021_00101_2 crossref_primary_10_1016_j_eimce_2019_06_014 crossref_primary_10_1038_s41417_021_00305_9 crossref_primary_10_1016_j_ijbiomac_2020_01_256 crossref_primary_10_1186_s40199_016_0161_x crossref_primary_10_3389_fimmu_2023_1256740 crossref_primary_10_1667_RADE_21_00242_1 crossref_primary_10_1039_D1TB00209K crossref_primary_10_1080_13543784_2019_1672655 crossref_primary_10_1080_21655979_2021_2005225 crossref_primary_10_3389_fonc_2021_778258 crossref_primary_10_1039_D3MD00053B crossref_primary_10_1016_j_eimc_2019_06_002 crossref_primary_10_18632_oncotarget_18654 crossref_primary_10_1016_j_ejmech_2021_113205 crossref_primary_10_3892_ol_2019_10760 crossref_primary_10_3389_fonc_2022_1019153 crossref_primary_10_1016_j_intimp_2019_105847 crossref_primary_10_18632_oncotarget_7378 crossref_primary_10_1016_j_semcancer_2019_08_010 crossref_primary_10_1007_s11557_022_01821_0 crossref_primary_10_3389_fimmu_2018_00262 crossref_primary_10_1186_s12943_018_0869_y crossref_primary_10_1186_s13046_020_01709_5 crossref_primary_10_1002_smsc_202300067 crossref_primary_10_1016_j_critrevonc_2015_08_012 crossref_primary_10_3390_ph16060867 crossref_primary_10_15252_embr_201744578 crossref_primary_10_3390_pharmacy10040095 crossref_primary_10_3389_fphar_2022_950109 crossref_primary_10_2174_1568026620666200826122402 crossref_primary_10_2174_1573412917999200925204910 crossref_primary_10_1186_s12951_017_0321_2 crossref_primary_10_1016_j_apsb_2019_06_011 crossref_primary_10_1186_s13045_024_01558_1 crossref_primary_10_1111_jth_15354 crossref_primary_10_1016_j_jksus_2023_102638 crossref_primary_10_3390_jcm10040566 crossref_primary_10_3390_ijms24119667 crossref_primary_10_3389_fonc_2022_933579 crossref_primary_10_1053_j_gastro_2018_09_051 crossref_primary_10_1016_j_cytox_2019_100005 crossref_primary_10_3390_molecules24234278 crossref_primary_10_1016_j_jep_2024_119222 crossref_primary_10_2174_0115680096307334240429050730 crossref_primary_10_1016_j_drup_2015_06_002 crossref_primary_10_1158_1535_7163_MCT_18_0548 crossref_primary_10_1021_jacs_8b12136 crossref_primary_10_1016_j_imlet_2020_12_007 crossref_primary_10_1007_s12149_020_01458_7 crossref_primary_10_3390_genes14040819 crossref_primary_10_1016_j_celrep_2023_112570 crossref_primary_10_1007_s00432_023_04722_1 crossref_primary_10_1002_ijc_32560 crossref_primary_10_3892_or_2017_5801 crossref_primary_10_1097_CAD_0000000000000969 crossref_primary_10_1158_1055_9965_EPI_18_0654 crossref_primary_10_3390_ijms17081254 crossref_primary_10_1016_j_heliyon_2020_e03199 crossref_primary_10_1080_13880209_2019_1577466 crossref_primary_10_1016_j_bonr_2025_101837 crossref_primary_10_1080_13543784_2017_1353599 crossref_primary_10_1016_j_biocel_2016_07_016 crossref_primary_10_3389_fcell_2021_649265 crossref_primary_10_1186_s12944_023_01868_2 crossref_primary_10_3390_cancers15174422 crossref_primary_10_1155_2018_1052102 crossref_primary_10_1007_s11605_020_04616_4 crossref_primary_10_18632_oncotarget_21973 crossref_primary_10_1016_j_biopha_2024_116354 crossref_primary_10_1016_j_lfs_2024_122499 crossref_primary_10_3390_ijms20143577 crossref_primary_10_2174_1573413719666230110124509 crossref_primary_10_1016_j_ccr_2024_216284 crossref_primary_10_1016_j_lfs_2022_120716 crossref_primary_10_1097_PAP_0000000000000124 crossref_primary_10_1016_j_tice_2022_101740 crossref_primary_10_1016_S1470_2045_15_00398_8 crossref_primary_10_2147_CMAR_S252181 crossref_primary_10_3390_biomedicines9030274 crossref_primary_10_1039_C9RA07830D crossref_primary_10_1007_s12029_021_00629_7 crossref_primary_10_2174_1568009620666201009130008 crossref_primary_10_3390_ijms19113491 crossref_primary_10_1186_s12885_020_07210_8 crossref_primary_10_1016_j_cmrp_2017_04_002 crossref_primary_10_1371_journal_pone_0252233 crossref_primary_10_3390_curroncol29100607 crossref_primary_10_3390_ijms23137192 crossref_primary_10_1038_s41433_023_02610_z crossref_primary_10_3390_metabo13030323 crossref_primary_10_1002_iid3_1311 crossref_primary_10_1155_2018_8250521 crossref_primary_10_3389_fphar_2023_1116081 crossref_primary_10_1021_acs_molpharmaceut_8b00133 crossref_primary_10_1007_s00404_019_05257_y crossref_primary_10_3390_cancers12102992 crossref_primary_10_1097_MD_0000000000030529 crossref_primary_10_3390_ijms160716176 crossref_primary_10_1021_acsabm_4c00660 crossref_primary_10_1080_17512433_2019_1630272 crossref_primary_10_7197_cmj_1189799 crossref_primary_10_1080_01635581_2020_1810290 crossref_primary_10_62347_KIVS3169 crossref_primary_10_1093_cvr_cvae105 crossref_primary_10_1097_gscm_0000000000000021 crossref_primary_10_1039_C8BM00213D crossref_primary_10_1080_19420862_2021_1982447 crossref_primary_10_1007_s12307_018_0207_3 crossref_primary_10_1002_med_21452 crossref_primary_10_1038_s41598_018_33037_2 crossref_primary_10_2174_1566524021666211124092804 crossref_primary_10_3390_toxins16030127 crossref_primary_10_1667_RR14473_1 crossref_primary_10_3389_fphar_2023_1147717 crossref_primary_10_1093_cvr_cvab096 crossref_primary_10_3390_cancers13071552 crossref_primary_10_3389_fimmu_2024_1493978 crossref_primary_10_1158_1078_0432_CCR_15_2145 crossref_primary_10_1515_hsz_2018_0111 crossref_primary_10_1002_jcc_25734 crossref_primary_10_1002_cbdv_201900232 crossref_primary_10_1007_s10549_021_06470_7 crossref_primary_10_1080_01635581_2020_1824001 crossref_primary_10_3390_md21030156 crossref_primary_10_1038_npjsba_2016_30 crossref_primary_10_1080_14656566_2024_2395379 crossref_primary_10_3390_cells8050407 crossref_primary_10_2174_1573394714666180904122412 crossref_primary_10_3389_fonc_2021_644854 crossref_primary_10_3389_fonc_2021_758503 crossref_primary_10_1186_s13046_019_1357_y crossref_primary_10_3389_fimmu_2021_733853 crossref_primary_10_3389_fimmu_2022_830292 crossref_primary_10_1186_s12883_021_02202_y crossref_primary_10_1096_fj_202100808RRR crossref_primary_10_18632_oncotarget_7794 crossref_primary_10_5812_ijcm_120315 crossref_primary_10_1002_wsbm_1549 crossref_primary_10_1080_14728214_2023_2259790 crossref_primary_10_1038_srep37085 crossref_primary_10_1111_jop_12371 crossref_primary_10_3389_fmolb_2021_690206 crossref_primary_10_3390_cancers17030499 crossref_primary_10_1002_med_21517 crossref_primary_10_18632_oncotarget_19114 crossref_primary_10_2147_DDDT_S296502 crossref_primary_10_1186_s12881_020_01030_0 crossref_primary_10_2174_0929867328666211117094550 crossref_primary_10_1007_s10585_022_10162_x crossref_primary_10_3390_ph12020068 crossref_primary_10_3390_ph14070626 crossref_primary_10_2147_OTT_S268613 crossref_primary_10_3390_ijms242417578 crossref_primary_10_2174_0929867325666171226115626 crossref_primary_10_1016_j_jare_2017_06_006 crossref_primary_10_1080_1061186X_2020_1797050 crossref_primary_10_1089_dna_2024_0109 crossref_primary_10_1080_13543784_2022_2033208 crossref_primary_10_1080_07391102_2023_2297821 crossref_primary_10_3892_ol_2019_10961 crossref_primary_10_1038_onc_2017_163 crossref_primary_10_1016_j_bbcan_2018_12_001 crossref_primary_10_1080_01635581_2018_1490449 crossref_primary_10_2174_1573408016666200123160509 crossref_primary_10_1038_s41388_021_02112_w crossref_primary_10_1016_j_cmi_2017_12_027 crossref_primary_10_1016_j_msec_2020_111229 crossref_primary_10_1177_1533033820980116 crossref_primary_10_1186_s12876_024_03210_1 crossref_primary_10_1016_j_lungcan_2023_03_009 crossref_primary_10_3390_jcm11175096 crossref_primary_10_1016_j_ejps_2021_106052 crossref_primary_10_4103_neurol_india_Neurol_India_D_24_00127 crossref_primary_10_12659_MSM_898204 crossref_primary_10_1186_s13045_024_01601_1 crossref_primary_10_18632_oncotarget_20398 crossref_primary_10_1002_slct_202101792 crossref_primary_10_1007_s00432_023_04680_8 crossref_primary_10_1021_acsomega_9b00224 crossref_primary_10_1172_JCI154943 crossref_primary_10_3390_pharmaceutics14010100 crossref_primary_10_1007_s12094_023_03107_7 crossref_primary_10_1007_s10517_017_3735_9 crossref_primary_10_3390_ijms222011036 crossref_primary_10_1016_j_ejmech_2020_112851 crossref_primary_10_3389_fphar_2019_00079 crossref_primary_10_18632_oncotarget_19394 crossref_primary_10_3389_fimmu_2023_1149810 crossref_primary_10_1002_hep_29643 crossref_primary_10_3389_fimmu_2022_949553 crossref_primary_10_1038_cddis_2017_123 crossref_primary_10_1155_2021_6610769 crossref_primary_10_7717_peerj_5990 crossref_primary_10_1186_s12935_018_0530_2 crossref_primary_10_3389_fonc_2024_1413213 crossref_primary_10_1002_ardp_202200133 crossref_primary_10_1002_jcp_26049 crossref_primary_10_1016_j_ygyno_2023_01_034 crossref_primary_10_1186_s40164_021_00252_z crossref_primary_10_1038_aps_2017_96 crossref_primary_10_2478_enr_2019_0018 crossref_primary_10_1080_21655979_2021_2012553 crossref_primary_10_3390_ijms21020667 crossref_primary_10_1080_14728222_2017_1371137 crossref_primary_10_3390_life13102027 crossref_primary_10_1016_j_jcyt_2020_02_005 crossref_primary_10_3389_fendo_2024_1424839 crossref_primary_10_15789_1563_0625_IOV_1894 crossref_primary_10_1016_j_nano_2018_04_019 crossref_primary_10_3390_ijms25063313 crossref_primary_10_1517_13543784_2016_1117071 crossref_primary_10_18632_oncotarget_7915 crossref_primary_10_1080_02652048_2020_1767223 crossref_primary_10_3389_fcvm_2018_00154 crossref_primary_10_3390_cancers11030316 crossref_primary_10_3390_vaccines4040041 crossref_primary_10_3389_fimmu_2017_01804 crossref_primary_10_3390_nu8110628 crossref_primary_10_1016_j_canlet_2015_09_004 crossref_primary_10_1007_s00432_021_03701_8 crossref_primary_10_1097_MD_0000000000008698 crossref_primary_10_3390_biomedicines11102724 crossref_primary_10_1016_j_jtemb_2024_127533 crossref_primary_10_1007_s12272_018_1051_1 crossref_primary_10_3389_fonc_2021_731535 crossref_primary_10_3390_cancers14215315 crossref_primary_10_1002_cbin_10881 crossref_primary_10_1016_j_tranon_2019_05_007 crossref_primary_10_1016_j_carbpol_2022_119412 crossref_primary_10_1016_j_jss_2016_09_004 crossref_primary_10_1038_s41467_021_21071_0 crossref_primary_10_3389_fonc_2020_560413 crossref_primary_10_1080_10428194_2023_2248330 crossref_primary_10_3390_vetsci7020067 crossref_primary_10_1016_j_apjtm_2015_12_012 crossref_primary_10_3389_fimmu_2021_684344 crossref_primary_10_1016_j_gene_2018_02_026 crossref_primary_10_1016_j_bbadis_2019_04_008 crossref_primary_10_3390_ph16020219 crossref_primary_10_1007_s12038_020_0013_1 crossref_primary_10_1016_j_neuroscience_2022_03_030 crossref_primary_10_1002_biof_1677 crossref_primary_10_1016_j_ijbiomac_2022_09_129 crossref_primary_10_1111_jam_13458 crossref_primary_10_1186_s13045_019_0718_5 crossref_primary_10_1016_S1470_2045_20_30493_9 crossref_primary_10_1039_D3DT01648J crossref_primary_10_1080_10717544_2020_1809559 crossref_primary_10_1155_2021_7037786 crossref_primary_10_2174_0115680096265896231226062212 crossref_primary_10_3390_jcm10102169 crossref_primary_10_1096_fj_202302629RR crossref_primary_10_1016_j_cccb_2021_100030 crossref_primary_10_1016_j_semcancer_2024_10_001 crossref_primary_10_1016_j_biopha_2019_109007 crossref_primary_10_3390_biomedicines11082142 crossref_primary_10_18632_oncotarget_6514 crossref_primary_10_1111_pim_12724 crossref_primary_10_1002_med_21496 crossref_primary_10_3390_pharmaceutics15041284 crossref_primary_10_3389_fonc_2021_659217 crossref_primary_10_1039_D0RA10622D crossref_primary_10_1089_dna_2015_2918 crossref_primary_10_18632_oncotarget_24693 crossref_primary_10_1016_j_heliyon_2024_e29504 crossref_primary_10_1007_s40203_022_00125_1 crossref_primary_10_3390_cells12202510 crossref_primary_10_2214_AJR_16_17560 crossref_primary_10_2174_1871520620666200228110704 crossref_primary_10_3389_fonc_2022_972322 crossref_primary_10_1016_j_bbadis_2018_02_014 crossref_primary_10_2147_IJN_S429629 crossref_primary_10_1016_j_ejps_2016_04_008 crossref_primary_10_1016_j_biopha_2019_109221 crossref_primary_10_1016_j_heliyon_2023_e15152 crossref_primary_10_1080_24701556_2021_1956953 crossref_primary_10_3390_ijms242317065 crossref_primary_10_3390_jcm10163721 crossref_primary_10_1016_j_ccr_2018_01_009 crossref_primary_10_1038_s41598_017_03276_w crossref_primary_10_3892_or_2016_4721 crossref_primary_10_1016_j_intimp_2021_107927 crossref_primary_10_1111_imm_12618 crossref_primary_10_1002_ardp_201900340 crossref_primary_10_1016_j_tips_2017_11_004 crossref_primary_10_1080_17425255_2024_2401586 crossref_primary_10_1080_1061186X_2020_1744157 crossref_primary_10_1063_5_0244706 crossref_primary_10_3390_ani14071118 |
Cites_doi | 10.1096/fj.03-0271fje 10.1183/09059180.00008913 10.1038/nrd2115 10.1016/S1471-4914(02)02394-8 10.1200/JCO.2011.38.7621 10.1200/JCO.2012.42.8201 10.1016/j.molmed.2013.05.002 10.3390/ijms151223024 10.1345/aph.1L426 10.1016/S0140-6736(14)60845-X 10.2147/OTT.S18155 10.1172/JCI24612 10.1016/S0002-9440(10)64325-8 10.2217/fon.12.73 10.1177/1758834012458480 10.1016/j.cytogfr.2004.03.010 10.1158/0008-5472.CAN-12-4697 10.1016/j.ccr.2004.08.034 10.1158/1078-0432.CCR-05-1770 10.1126/science.2479986 10.1038/bjc.2011.85 10.1517/13543784.2010.488220 10.1016/j.canlet.2012.03.008 10.1101/cshperspect.a009134 10.1186/1756-8722-2-33 10.1016/j.ejca.2013.11.032 10.1016/0006-291X(89)92729-0 10.1016/j.ccr.2009.02.007 10.1215/15228517-2008-061 10.4161/cbt.9.3.10635 10.1016/S1470-2045(14)70444-9 10.1200/jco.2014.32.18_suppl.lba6008 10.1038/nrd1381 10.1200/JCO.2012.48.4659 10.3109/00498254.2010.545452 10.1016/S1470-2045(13)70093-7 10.1038/nrclinonc.2011.21 10.1200/JCO.2012.47.2464 10.1038/nrc2524 10.1016/j.cytogfr.2005.01.004 10.1038/nature10144 10.1200/JCO.2008.19.5511 10.1200/JCO.2010.32.4145 10.1038/nrclinonc.2009.94 10.1021/jm7013309 10.1200/JCO.2012.42.5355 10.1038/nrc2894 10.1158/1078-0432.CCR-09-0694 10.1634/theoncologist.2009-0274 10.1158/1078-0432.CCR-07-5270 10.1158/0008-5472.CAN-04-4409 10.1007/s11912-010-0149-5 10.1016/S0140-6736(14)60421-9 10.1016/j.cell.2010.01.045 10.1016/j.cytogfr.2009.11.003 10.5483/BMBRep.2008.41.12.833 10.1016/S1470-2045(14)70439-5 10.1073/pnas.1208324109 10.1038/nm.2575 10.1056/NEJMoa0708857 10.1126/scisignal.259re1 10.1200/JCO.2014.57.1513 10.1016/j.ccr.2012.05.037 10.1200/JCO.2011.35.5040 10.1158/1078-0432.CCR-12-0002 10.1371/journal.pone.0077117 10.1016/j.ccr.2005.09.005 10.1016/j.mri.2006.09.041 10.1177/107327481201900407 10.1016/S0140-6736(12)60651-5 10.1002/path.1618 10.1182/blood-2010-02-269894 10.1093/annonc/mdr596 10.1158/1078-0432.CCR-12-1281 10.1200/JCO.2012.42.6031 10.1038/bjc.2011.440 10.1158/1535-7163.MCT-10-0379 10.1016/j.ejphar.2013.02.026 10.1038/nrd2792 10.1016/S0140-6736(11)61613-9 10.1007/s10637-013-9962-7 10.1158/0008-5472.CAN-07-6307 10.1158/1535-7163.MCT-12-1162 10.1158/1078-0432.CCR-09-2944 10.1073/pnas.1111079108 10.1200/JCO.2012.48.4410 10.1093/annonc/mdp506 10.1007/s00109-008-0337-z 10.1172/JCI200317929 10.1073/pnas.172398299 10.1200/JCO.2009.24.8252 10.1371/journal.pone.0076009 10.1158/0008-5472.CAN-06-1377 10.3858/emm.2012.44.1.025 10.1111/j.1349-7006.2010.01639.x 10.1158/1535-7163.MCT-06-0595 10.4254/wjh.v6.i12.830 10.1172/JCI70212 10.1016/j.ejca.2012.12.010 10.1016/S1470-2045(14)70030-0 10.1200/JCO.2013.54.3298 10.1007/s00280-006-0393-4 10.1038/nrc3680 10.1158/1078-0432.CCR-12-2885 10.1016/S1470-2045(14)70420-6 10.1073/pnas.172398399 10.1200/jco.2013.31.15_suppl.8034 10.1101/cshperspect.a006593 10.2174/13816128113196660757 10.1158/1078-0432.CCR-09-2755 10.3390/ijms14059338 10.1200/JCO.2005.06.081 10.1200/JCO.2002.10.088 10.1056/NEJMoa065044 10.1101/cshperspect.a009209 10.1186/1478-811X-11-97 10.1158/0008-5472.CAN-09-3746 10.1016/S0140-6736(12)61900-X 10.1158/1078-0432.CCR-11-3005 10.1517/13543784.2014.871259 10.1007/s40265-013-0154-8 10.1002/ijc.23131 10.1371/journal.pone.0003794 10.1158/1078-0432.CCR-12-2353 10.1016/j.ccr.2009.01.027 10.1016/S0140-6736(13)61719-5 10.1016/j.ccr.2006.11.021 10.1016/S1470-2045(13)70586-2 10.1200/JCO.2009.23.9764 10.1016/S0140-6736(12)61857-1 |
ContentType | Journal Article |
Copyright | 2015 AlphaMed Press AlphaMed Press. AlphaMed Press 2015 |
Copyright_xml | – notice: 2015 AlphaMed Press – notice: AlphaMed Press. – notice: AlphaMed Press 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TO H94 5PM |
DOI | 10.1634/theoncologist.2014-0465 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Oncogenes and Growth Factors Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Targeting Angiogenesis: Moving Beyond VEGF |
EISSN | 1549-490X |
EndPage | 673 |
ExternalDocumentID | PMC4571783 26001391 10_1634_theoncologist_2014_0465 ONCO0660 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Boehringer Ingelheim |
GroupedDBID | --- 0R~ 123 18M 1OC 24P 2WC 36B 4.4 53G 5VS AAPXW AAVAP AAWTL AAZKR ABEJV ABPTD ABXVV ACXQS ADBBV ADXAS AEGXH AENEX AJAOE ALMA_UNASSIGNED_HOLDINGS AMNDL AOIJS BAWUL BFHJK CS3 DCZOG DIK DU5 E3Z EBD EBS EJD EMB EMOBN F5P FRP GROUPED_DOAJ GX1 H13 HYE HZ~ IAO IHR INH ITC LUTES LYRES O9- OK1 P2P P2W RAO RHF RHI ROL ROX RPM SUPJJ SV3 TOX TR2 UDS W2D W8F WIN WOHZO WOQ WOW XSB ZZTAW AAFWJ AAYXX ABGNP AFPKN CITATION OVT 7X7 88E 8FI 8FJ AAMMB ABUWG AEFGJ AFKRA AGXDD AIDQK AIDYY BENPR CCPQU CGR CUY CVF ECM EIF FYUFA HMCUK M1P NPM PHGZM PHGZT PIMPY PJZUB PPXIY PSQYO UKHRP 7X8 7TO H94 5PM |
ID | FETCH-LOGICAL-c5700-4736b9b18db7b9aa86e0a16493bed43d9df90e587d454301ec70c702d6abafe63 |
ISSN | 1083-7159 1549-490X |
IngestDate | Thu Aug 21 18:31:14 EDT 2025 Tue Aug 05 10:39:38 EDT 2025 Fri Jul 11 10:05:21 EDT 2025 Mon Jul 21 05:54:12 EDT 2025 Tue Jul 01 00:48:16 EDT 2025 Thu Apr 24 23:13:28 EDT 2025 Wed Jan 22 16:24:16 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Fibroblast growth factor Molecular targeted therapy Receptors Platelet-derived growth factor Antibodies, monoclonal, humanized Angiogenesis inhibitors Vascular endothelial growth factor |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model AlphaMed Press. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5700-4736b9b18db7b9aa86e0a16493bed43d9df90e587d454301ec70c702d6abafe63 |
Notes | Disclosures of potential conflicts of interest may be found at the end of this article. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://theoncologist.onlinelibrary.wiley.com/doi/pdfdirect/10.1634/theoncologist.2014-0465 |
PMID | 26001391 |
PQID | 1702653300 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4571783 proquest_miscellaneous_1727674889 proquest_miscellaneous_1702653300 pubmed_primary_26001391 crossref_citationtrail_10_1634_theoncologist_2014_0465 crossref_primary_10_1634_theoncologist_2014_0465 wiley_primary_10_1634_theoncologist_2014_0465_ONCO0660 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2015 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: June 2015 |
PublicationDecade | 2010 |
PublicationPlace | Durham, NC, USA |
PublicationPlace_xml | – name: Durham, NC, USA – name: United States |
PublicationTitle | The oncologist (Dayton, Ohio) |
PublicationTitleAlternate | Oncologist |
PublicationYear | 2015 |
Publisher | AlphaMed Press |
Publisher_xml | – name: AlphaMed Press |
References | 2010; 10 2004; 204 2010; 16 2013; 4 2010; 15 2010; 19 2010; 101 2002; 99 2013; 123 2004; 3 2014; 25 2004; 6 2012; 19 2005; 65 2012; 18 2013; 8 2013; 5 2014; 23 2011; 473 2014; 20 2010; 21 2010; 116 2010; 28 2003; 162 2014; 15 2007; 6 2014; 14 2008; 359 2012; 379 2012; 23 2012; 22 2009; 15 2010; 9 2011; 378 2002; 8 2006; 116 2011; 4 2008; 51 2008; 122 2007; 11 2011; 8 2012; 30 2012; 109 1989; 246 2013; 73 2005; 8 2008; 41 2005; 16 2014; 383 2012; 44 2014; 384 2014; 32 2012; 320 2009; 43 2013; 23 2015; 33 2008; 8 2011; 13 2010; 140 2008; 3 2011; 17 2003; 111 2005; 23 2013; 19 2013; 14 2013; 11 2006; 66 2013; 12 2008; 68 2010; 70 2014; 50 2011; 29 2014; 6 2007; 25 2013; 49 2006; 12 2012 2013; 705 2008; 14 2008; 10 2013; 381 2009; 27 2007; 59 2007; 356 2011; 105 2011; 104 2012; 2 2011; 108 2004; 18 2002; 20 2004; 15 1989; 165 2013; 31 1999; 79 2011; 41 2009; 8 2009; 6 2014 2013 2008; 86 2009; 2 2012; 8 Demetri (2021122309231697900_B100) 2012; 18 Cainap (2021122309231697900_B129) 2015; 33 Bois (2021122309231697900_B122) 2010; 21 Aprile (2021122309231697900_B32) 2013; 73 Olson (2021122309231697900_B106) 2011; 108 Du Bois (2021122309231697900_B92) 2013; 23 Cao (2021122309231697900_B10) 2009; 2 De Falco (2021122309231697900_B13) 2012; 44 Zhu (2021122309231697900_B35) 2014; 25 Kurzrock (2021122309231697900_B67) 2011; 29 Fischer (2021122309231697900_B12) 2008; 8 Holash (2021122309231697900_B25) 2002; 99 Cao (2021122309231697900_B49) 2008; 86 Brose (2021122309231697900_B99) 2014; 384 Motzer (2021122309231697900_B136) 2014; 15 Wehland (2021122309231697900_B145) 2013; 14 Wells (2021122309231697900_B68) 2012; 30 Sonpavde (2021122309231697900_B140) 2014; 23 Johnson (2021122309231697900_B123) 2013; 31 Batchelor (2021122309231697900_B133) 2013; 31 Demetri (2021122309231697900_B96) 2013; 381 Ellis (2021122309231697900_B121) 2010; 16 (2021122309231697900_B6) 2013 Kieran (2021122309231697900_B2) 2012; 2 Presta (2021122309231697900_B51) 2005; 16 Levitzki (2021122309231697900_B40) 2004; 15 (2021122309231697900_B85) 2013 Pàez-Ribes (2021122309231697900_B21) 2009; 15 Motzer (2021122309231697900_B102) 2013; 14 Grothey (2021122309231697900_B95) 2013; 381 Hilberg (2021122309231697900_B82) 2008; 68 Tammela (2021122309231697900_B14) 2010; 140 Ebos (2021122309231697900_B75) 2011; 8 Okamoto (2021122309231697900_B116) 2010; 9 Cyran (2021122309231697900_B112) 2013; 8 Dvorak (2021122309231697900_B11) 2002; 20 (2021122309231697900_B7) 2014 Gligorov (2021122309231697900_B143) 2014; 15 Matsui (2021122309231697900_B127) 2008; 14 Chau (2021122309231697900_B88) 2013; 19 Mancuso (2021122309231697900_B20) 2006; 116 Wilke (2021122309231697900_B30) 2014; 15 Griffioen (2021122309231697900_B104) 2012; 18 Elisei (2021122309231697900_B66) 2013; 31 Van der Graaf (2021122309231697900_B94) 2012; 379 Casanovas (2021122309231697900_B55) 2005; 8 Hicklin (2021122309231697900_B3) 2005; 23 Tait (2021122309231697900_B57) 2004; 204 Mulligan (2021122309231697900_B64) 2014; 14 Kim (2021122309231697900_B108) 2007; 6 Cai (2021122309231697900_B124) 2008; 51 Welti (2021122309231697900_B71) 2013; 123 Shojaei (2021122309231697900_B19) 2012; 320 Bousquet (2021122309231697900_B120) 2011; 105 Kodama (2021122309231697900_B44) 2010; 101 Gressett (2021122309231697900_B24) 2009; 43 Chang (2021122309231697900_B107) 2007; 59 Van Cutsem (2021122309231697900_B28) 2012; 30 Rini (2021122309231697900_B89) 2011; 378 Liu (2021122309231697900_B109) 2006; 66 Eisen (2021122309231697900_B118) 2013; 31 Angevin (2021122309231697900_B126) 2013; 19 Leung (2021122309231697900_B8) 1989; 246 Fuchs (2021122309231697900_B29) 2014; 383 (2021122309231697900_B83) 2013 Sahade (2021122309231697900_B139) 2012; 8 Reck (2021122309231697900_B115) 2010; 19 Ferrara (2021122309231697900_B15) 2004; 3 Xue (2021122309231697900_B45) 2012; 18 Crinò (2021122309231697900_B69) 2014; 23 Batchelor (2021122309231697900_B79) 2007; 11 Llovet (2021122309231697900_B98) 2008; 359 Wu (2021122309231697900_B38) 2008; 3 Jahangiri (2021122309231697900_B63) 2013; 19 (2021122309231697900_B81) 2012 Motzer (2021122309231697900_B101) 2007; 356 (2021122309231697900_B5) 2014 (2021122309231697900_B113) 2015 Wedge (2021122309231697900_B125) 2005; 65 Zhou (2021122309231697900_B130) 2009; 2 Ding (2021122309231697900_B42) 2010; 116 Cascone (2021122309231697900_B56) 2012; 30 Stopfer (2021122309231697900_B138) 2011; 41 Ferrara (2021122309231697900_B36) 2010; 21 Ballas (2021122309231697900_B70) 2011; 4 Hoff (2021122309231697900_B131) 2012; 30 Kopetz (2021122309231697900_B72) 2010; 28 Wilmes (2021122309231697900_B80) 2007; 25 Folkman (2021122309231697900_B1) 2007; 6 You (2021122309231697900_B60) 2008; 41 Carmeliet (2021122309231697900_B4) 2011; 473 (2021122309231697900_B84) 2013 Turner (2021122309231697900_B48) 2010; 70 Kudo (2021122309231697900_B117) 2011; 17 Laurie (2021122309231697900_B135) 2014; 50 Loupakis (2021122309231697900_B23) 2011; 104 Garon (2021122309231697900_B33) 2014; 384 Pilotto (2021122309231697900_B146) 2014; 20 Ibáñez (2021122309231697900_B65) 2013; 5 Tischer (2021122309231697900_B9) 1989; 165 Zhu (2021122309231697900_B142) 2013; 5 Schmoll (2021122309231697900_B132) 2012; 30 Sternberg (2021122309231697900_B103) 2013; 49 (2021122309231697900_B16) 2015 Clarke (2021122309231697900_B74) 2013; 4 Hanna (2021122309231697900_B91) 2013; 31 Doebele (2021122309231697900_B119) 2012; 23 Heldin (2021122309231697900_B37) 2013; 11 Cao (2021122309231697900_B52) 2012; 109 Giavazzi (2021122309231697900_B54) 2003; 162 Mackey (2021122309231697900_B34) 2015; 33 Von Minckwitz (2021122309231697900_B144) 2014; 15 Cao (2021122309231697900_B39) 2013; 19 Majumder (2021122309231697900_B105) 2013; 705 Sun (2021122309231697900_B141) 2014; 6 Kristensen (2021122309231697900_B17) 2014; 15 Wojta (2021122309231697900_B61) 1999; 79 Bergers (2021122309231697900_B77) 2003; 111 Spratlin (2021122309231697900_B31) 2011; 13 (2021122309231697900_B86) 2013 Lu (2021122309231697900_B46) 2010; 9 Erber (2021122309231697900_B78) 2004; 18 Tejada (2021122309231697900_B41) 2006; 12 Beenken (2021122309231697900_B47) 2009; 8 Mross (2021122309231697900_B114) 2010; 16 Loges (2021122309231697900_B76) 2009; 15 Javerzat (2021122309231697900_B50) 2002; 8 Lieu (2021122309231697900_B73) 2013; 8 Chen (2021122309231697900_B22) 2009; 6 Ledermann (2021122309231697900_B134) 2013 Huang (2021122309231697900_B53) 2010; 10 Escudier (2021122309231697900_B97) 2009; 27 (2021122309231697900_B87) 2013 Lu (2021122309231697900_B62) 2012; 22 Cao (2021122309231697900_B43) 2004; 6 Gerald (2021122309231697900_B58) 2013; 73 Kim (2021122309231697900_B27) 2002; 99 Reck (2021122309231697900_B90) 2014; 15 Matsui (2021122309231697900_B128) 2008; 122 Mortimer (2021122309231697900_B18) 2012; 19 Abou-Elkacem (2021122309231697900_B111) 2013; 12 Hamberg (2021122309231697900_B110) 2010; 15 Sternberg (2021122309231697900_B93) 2010; 28 Schlumberger (2021122309231697900_B137) 2014; 32 Gomez-Manzano (2021122309231697900_B26) 2008; 10 Graveel (2021122309231697900_B59) 2013; 5 22965961 - J Clin Oncol. 2012 Oct 10;30(29):3588-95 21204634 - Xenobiotica. 2011 Apr;41(4):297-311 23177514 - Lancet. 2013 Jan 26;381(9863):303-12 23209176 - Cold Spring Harb Perspect Med. 2012 Dec;2(12):a006593 17160391 - Cancer Chemother Pharmacol. 2007 Apr;59(5):561-74 23467610 - Cancer Res. 2013 Mar 15;73(6):1649-57 23307858 - Clin Cancer Res. 2013 Apr 1;19(7):1773-83 18288793 - J Med Chem. 2008 Mar 27;51(6):1976-80 23940216 - J Clin Oncol. 2013 Sep 10;31(26):3212-8 12759248 - Am J Pathol. 2003 Jun;162(6):1913-26 25514409 - Int J Mol Sci. 2014;15(12):23024-41 23619301 - Mol Cancer Ther. 2013 Jul;12(7):1322-31 22949147 - J Clin Oncol. 2012 Oct 1;30(28):3499-506 21364524 - Nat Rev Clin Oncol. 2011 Apr;8(4):210-21 24768112 - Lancet. 2014 Jul 26;384(9940):319-28 22228176 - Exp Mol Med. 2012 Jan 31;44(1):1-9 20606160 - Blood. 2010 Oct 21;116(16):2984-93 12383771 - Trends Mol Med. 2002 Oct;8(10):483-9 15307132 - J Pathol. 2004 Sep;204(1):1-10 22345119 - Ann Oncol. 2012 Aug;23(8):2094-102 23177515 - Lancet. 2013 Jan 26;381(9863):295-302 17575107 - Mol Cancer Ther. 2007 Jun;6(6):1785-92 21222245 - Curr Oncol Rep. 2011 Apr;13(2):97-102 24143206 - PLoS One. 2013;8(10):e77117 23908119 - J Clin Invest. 2013 Aug;123(8):3190-200 22789536 - Cancer Cell. 2012 Jul 10;22(1):21-35 15488757 - Cancer Cell. 2004 Oct;6(4):333-45 24098755 - PLoS One. 2013;8(9):e76009 24138719 - Curr Pharm Des. 2014;20(24):3958-72 20100962 - J Clin Oncol. 2010 Feb 20;28(6):1061-8 15207814 - Cytokine Growth Factor Rev. 2004 Aug;15(4):229-35 23339124 - Clin Cancer Res. 2013 Mar 1;19(5):1257-68 21407216 - Br J Cancer. 2011 Apr 12;104(8):1262-9 19581909 - Nat Rev Clin Oncol. 2009 Aug;6(8):465-77 18765537 - Clin Cancer Res. 2008 Sep 1;14(17):5459-65 22830398 - Future Oncol. 2012 Jul;8(7):775-81 20465363 - Expert Opin Investig Drugs. 2010 Jun;19(6):789-94 20651738 - Nat Rev Cancer. 2010 Aug;10(8):575-85 21131553 - Clin Cancer Res. 2011 Mar 15;17(6):1373-81 17222792 - Cancer Cell. 2007 Jan;11(1):83-95 19123972 - BMB Rep. 2008 Dec 31;41(12):833-9 19642998 - J Hematol Oncol. 2009;2:33 22595799 - Lancet. 2012 May 19;379(9829):1879-86 19249675 - Cancer Cell. 2009 Mar 3;15(3):167-70 20179196 - Cancer Res. 2010 Mar 1;70(5):2085-94 20511320 - Oncologist. 2010;15(6):539-47 22084065 - Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1275-84 23818496 - Cold Spring Harb Perspect Biol. 2013 Jul;5(7). pii: a009209. doi: 10.1101/cshperspect.a009209 22967508 - Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15894-9 24411639 - Lancet Oncol. 2014 Feb;15(2):143-55 17178882 - Cancer Res. 2006 Dec 15;66(24):11851-8 24094768 - Lancet. 2014 Jan 4;383(9911):31-9 17371720 - Magn Reson Imaging. 2007 Apr;25(3):319-27 23598172 - Lancet Oncol. 2013 May;14(6):552-62 12727920 - J Clin Invest. 2003 May;111(9):1287-95 2479986 - Science. 1989 Dec 8;246(4935):1306-9 16226705 - Cancer Cell. 2005 Oct;8(4):299-309 19451442 - J Clin Oncol. 2009 Jul 10;27(20):3312-8 19029957 - Nat Rev Cancer. 2008 Dec;8(12):942-56 15136787 - Nat Rev Drug Discov. 2004 May;3(5):391-400 17016557 - J Clin Invest. 2006 Oct;116(10):2610-21 22138754 - Nat Med. 2012 Jan;18(1):100-10 12409337 - J Clin Oncol. 2002 Nov 1;20(21):4368-80 23980084 - J Clin Oncol. 2013 Oct 1;31(28):3517-24 2610687 - Biochem Biophys Res Commun. 1989 Dec 29;165(3):1198-206 25488963 - J Clin Oncol. 2015 Jan 10;33(2):172-9 25240821 - Lancet Oncol. 2014 Oct;15(11):1224-35 20005148 - Cytokine Growth Factor Rev. 2010 Feb;21(1):21-6 15863032 - Cytokine Growth Factor Rev. 2005 Apr;16(2):159-78 23629668 - Int J Mol Sci. 2013;14(5):9338-64 19244214 - Sci Signal. 2009 Feb 24;2(59):re1 20624165 - Cancer Sci. 2010 Sep;101(9):1984-9 18559524 - Cancer Res. 2008 Jun 15;68(12):4774-82 20009575 - Cancer Biol Ther. 2010 Feb;9(3):176-82 22027711 - Br J Cancer. 2011 Nov 22;105(11):1640-5 10211995 - Lab Invest. 1999 Apr;79(4):427-38 22056247 - Lancet. 2011 Dec 3;378(9807):1931-9 20008624 - J Clin Oncol. 2010 Jan 20;28(3):453-9 12177446 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11399-404 24933332 - Lancet. 2014 Aug 23;384(9944):665-73 15899831 - Cancer Res. 2005 May 15;65(10):4389-400 19247306 - Nat Rev Drug Discov. 2009 Mar;8(3):235-53 16675559 - Clin Cancer Res. 2006 May 1;12(9):2676-88 15585754 - J Clin Oncol. 2005 Feb 10;23(5):1011-27 18708344 - Neuro Oncol. 2008 Dec;10(6):940-5 20178740 - Cell. 2010 Feb 19;140(4):460-76 18650514 - N Engl J Med. 2008 Jul 24;359(4):378-90 25544869 - World J Hepatol. 2014 Dec 27;6(12):830-5 25185099 - J Clin Oncol. 2015 Jan 10;33(2):141-8 18392794 - J Mol Med (Berl). 2008 Jul;86(7):785-9 22965965 - J Clin Oncol. 2012 Oct 10;30(29):3596-603 12177445 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11393-8 23625328 - Invest New Drugs. 2013 Oct;31(5):1283-93 17215529 - N Engl J Med. 2007 Jan 11;356(2):115-24 23378586 - Cold Spring Harb Perspect Biol. 2013 Feb;5(2). pii: a009134. doi: 10.1101/cshperspect.a009134 20028771 - Clin Cancer Res. 2010 Jan 1;16(1):311-9 20688946 - Mol Cancer Ther. 2010 Oct;9(10):2825-33 22425960 - Cancer Lett. 2012 Jul 28;320(2):130-7 14657001 - FASEB J. 2004 Feb;18(2):338-40 19249680 - Cancer Cell. 2009 Mar 3;15(3):220-31 23321547 - Eur J Cancer. 2013 Apr;49(6):1287-96 20460487 - Clin Cancer Res. 2010 May 15;16(10):2881-9 23037498 - Cancer Control. 2012 Oct;19(4):309-16 19030102 - PLoS One. 2008;3(11):e3794 24387233 - Expert Opin Investig Drugs. 2014 Mar;23(3):305-15 23997938 - J Gastrointest Oncol. 2013 Sep;4(3):253-63 17396134 - Nat Rev Drug Discov. 2007 Apr;6(4):273-86 24556040 - Lancet Oncol. 2014 Mar;15(3):286-96 22184396 - J Clin Oncol. 2012 Feb 1;30(4):441-4 24360368 - Eur J Cancer. 2014 Mar;50(4):706-12 19889612 - Ann Oncol. 2010 Feb;21(2):370-5 19261963 - Ann Pharmacother. 2009 Mar;43(3):490-501 22661587 - Clin Cancer Res. 2012 Jun 1;18(11):3170-9 24561444 - Nat Rev Cancer. 2014 Mar;14(3):173-86 23323146 - Ther Adv Med Oncol. 2013 Jan;5(1):41-50 24591665 - Eur Respir Rev. 2014 Mar 1;23(131):79-91 25273342 - Lancet Oncol. 2014 Oct;15(11):1269-78 22573349 - Clin Cancer Res. 2012 Jul 15;18(14):3961-71 22025146 - J Clin Oncol. 2012 Jan 10;30(2):134-41 24277700 - Drugs. 2013 Dec;73(18):2003-15 24359404 - Cell Commun Signal. 2013;11:97 23773831 - Trends Mol Med. 2013 Aug;19(8):460-73 25273343 - Lancet Oncol. 2014 Nov;15(12):1351-60 21691577 - Onco Targets Ther. 2011;4:43-58 23454556 - Eur J Pharmacol. 2013 Apr 5;705(1-3):86-95 21606412 - J Clin Oncol. 2011 Jul 1;29(19):2660-6 17943726 - Int J Cancer. 2008 Feb 1;122(3):664-71 21593862 - Nature. 2011 May 19;473(7347):298-307 23231950 - Clin Cancer Res. 2013 Feb 1;19(3):524-9 24002501 - J Clin Oncol. 2013 Oct 10;31(29):3639-46 |
References_xml | – volume: 31 start-page: 3212 year: 2013 end-page: 3218 article-title: Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma publication-title: J Clin Oncol – volume: 13 start-page: 97 year: 2011 end-page: 102 article-title: Ramucirumab (IMC‐1121B): Monoclonal antibody inhibition of vascular endothelial growth factor receptor‐2 publication-title: Curr Oncol Rep – volume: 31 start-page: 3517 year: 2013 end-page: 3524 article-title: Brivanib versus sorafenib as first‐line therapy in patients with unresectable, advanced hepatocellular carcinoma: Results from the randomized phase III BRISK‐FL study publication-title: J Clin Oncol – volume: 162 start-page: 1913 year: 2003 end-page: 1926 article-title: Distinct role of fibroblast growth factor‐2 and vascular endothelial growth factor on tumor growth and angiogenesis publication-title: Am J Pathol – volume: 33 start-page: 141 year: 2015 end-page: 148 article-title: Primary results of ROSE/TRIO‐12, a randomized placebo‐controlled phase III trial evaluating the addition of ramucirumab to first‐line docetaxel chemotherapy in metastatic breast cancer publication-title: J Clin Oncol – volume: 16 start-page: 159 year: 2005 end-page: 178 article-title: Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis publication-title: Cytokine Growth Factor Rev – volume: 15 start-page: 286 year: 2014 end-page: 296 article-title: Dovitinib versus sorafenib for third‐line targeted treatment of patients with metastatic renal cell carcinoma: An open‐label, randomised phase 3 trial publication-title: Lancet Oncol – volume: 6 start-page: 830 year: 2014 end-page: 835 article-title: Role of anti‐angiogenesis therapy in the management of hepatocellular carcinoma: The jury is still out publication-title: World J Hepatol – volume: 6 start-page: 1785 year: 2007 end-page: 1792 article-title: Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice publication-title: Mol Cancer Ther – volume: 15 start-page: 143 year: 2014 end-page: 155 article-title: Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non‐small‐cell lung cancer (LUME‐Lung 1): A phase 3, double‐blind, randomised controlled trial publication-title: Lancet Oncol – year: 2014 – volume: 18 start-page: 3961 year: 2012 end-page: 3971 article-title: Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients publication-title: Clin Cancer Res – volume: 359 start-page: 378 year: 2008 end-page: 390 article-title: Sorafenib in advanced hepatocellular carcinoma publication-title: N Engl J Med – volume: 65 start-page: 4389 year: 2005 end-page: 4400 article-title: AZD2171: A highly potent, orally bioavailable, vascular endothelial growth factor receptor‐2 tyrosine kinase inhibitor for the treatment of cancer publication-title: Cancer Res – volume: 28 start-page: 1061 year: 2010 end-page: 1068 article-title: Pazopanib in locally advanced or metastatic renal cell carcinoma: Results of a randomized phase III trial publication-title: J Clin Oncol – volume: 320 start-page: 130 year: 2012 end-page: 137 article-title: Anti‐angiogenesis therapy in cancer: Current challenges and future perspectives publication-title: Cancer Lett – volume: 18 start-page: 3170 year: 2012 end-page: 3179 article-title: Complete longitudinal analyses of the randomized, placebo‐controlled, phase III trial of sunitinib in patients with gastrointestinal stromal tumor following imatinib failure publication-title: Clin Cancer Res – volume: 378 start-page: 1931 year: 2011 end-page: 1939 article-title: Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): A randomised phase 3 trial publication-title: Lancet – volume: 23 start-page: 7 issue: suppl 1 year: 2013 article-title: AGO‐OVAR 12: A randomized placebo‐controlled GCIG/ENGOT‐intergroup phase III trial of standard frontline chemotherapy +/− nintedanib for advanced ovarian cancer publication-title: Int J Gynecol Cancer – volume: 111 start-page: 1287 year: 2003 end-page: 1295 article-title: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors publication-title: J Clin Invest – volume: 44 start-page: 1 year: 2012 end-page: 9 article-title: The discovery of placenta growth factor and its biological activity publication-title: Exp Mol Med – volume: 14 start-page: 5459 year: 2008 end-page: 5465 article-title: Multi‐kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA‐MB‐231 via inhibition of vascular endothelial growth factor‐receptor (VEGF‐R) 2 and VEGF‐R3 kinase publication-title: Clin Cancer Res – volume: 381 start-page: 295 year: 2013 end-page: 302 article-title: Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): An international, multicentre, randomised, placebo‐controlled, phase 3 trial publication-title: Lancet – volume: 17 start-page: 1373 year: 2011 end-page: 1381 article-title: Antitumor activity of BIBF 1120, a triple angiokinase inhibitor, and use of VEGFR2+pTyr+ peripheral blood leukocytes as a pharmacodynamic biomarker in vivo publication-title: Clin Cancer Res – volume: 18 start-page: 338 year: 2004 end-page: 340 article-title: Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte‐mediated endothelial cell survival mechanisms publication-title: FASEB J – volume: 109 start-page: 15894 year: 2012 end-page: 15899 article-title: Collaborative interplay between FGF‐2 and VEGF‐C promotes lymphangiogenesis and metastasis publication-title: Proc Natl Acad Sci USA – volume: 3 start-page: 391 year: 2004 end-page: 400 article-title: Discovery and development of bevacizumab, an anti‐VEGF antibody for treating cancer publication-title: Nat Rev Drug Discov – volume: 18 start-page: 100 year: 2012 end-page: 110 article-title: PDGF‐BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells publication-title: Nat Med – volume: 15 start-page: 1224 year: 2014 end-page: 1235 article-title: Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro‐oesophageal junction adenocarcinoma (RAINBOW): A double‐blind, randomised phase 3 trial publication-title: Lancet Oncol – volume: 6 start-page: 333 year: 2004 end-page: 345 article-title: PDGF‐BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis publication-title: Cancer Cell – volume: 2 start-page: re1 year: 2009 article-title: Positive and negative modulation of angiogenesis by VEGFR1 ligands publication-title: Sci Signal – volume: 3 start-page: e3794 year: 2008 article-title: Comprehensive dissection of PDGF‐PDGFR signaling pathways in PDGFR genetically defined cells publication-title: PLoS One – volume: 6 start-page: 273 year: 2007 end-page: 286 article-title: Angiogenesis: An organizing principle for drug discovery? publication-title: Nature Rev Drug Discov – volume: 19 start-page: 460 year: 2013 end-page: 473 article-title: Multifarious functions of PDGFs and PDGFRs in tumor growth and metastasis publication-title: Trends Mol Med – volume: 8 start-page: e77117 year: 2013 article-title: The association of alternate VEGF ligands with resistance to anti‐VEGF therapy in metastatic colorectal cancer publication-title: PLoS One – volume: 43 start-page: 490 year: 2009 end-page: 501 article-title: Intricacies of bevacizumab‐induced toxicities and their management publication-title: Ann Pharmacother – volume: 32 start-page: LBA6008a year: 2014 article-title: A phase 3, multicenter, double‐blind, placebo‐controlled trial of lenvatinib (E7080) in patients with 131I‐refractory differentiated thyroid cancer (SELECT) publication-title: J Clin Oncol – volume: 19 start-page: 789 year: 2010 end-page: 794 article-title: BIBF 1120 for the treatment of non‐small cell lung cancer publication-title: Expert Opin Investig Drugs – volume: 12 start-page: 2676 year: 2006 end-page: 2688 article-title: Tumor‐driven paracrine platelet‐derived growth factor receptor alpha signaling is a key determinant of stromal cell recruitment in a model of human lung carcinoma publication-title: Clin Cancer Res – volume: 705 start-page: 86 year: 2013 end-page: 95 article-title: Study of the cellular mechanism of sunitinib mediated inactivation of activated hepatic stellate cells and its implications in angiogenesis publication-title: Eur J Pharmacol – volume: 20 start-page: 3958 year: 2014 end-page: 3972 article-title: Anti‐angiogenic drugs and biomarkers in non‐small‐cell lung cancer: A ‘hard days night’ publication-title: Curr Pharm Des – volume: 15 start-page: 23024 year: 2014 end-page: 23041 article-title: Anti‐vascular endothelial growth factor therapy in breast cancer publication-title: Int J Mol Sci – volume: 8 start-page: 299 year: 2005 end-page: 309 article-title: Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late‐stage pancreatic islet tumors publication-title: Cancer Cell – volume: 23 start-page: 2094 year: 2012 end-page: 2102 article-title: A phase I, open‐label dose‐escalation study of continuous treatment with BIBF 1120 in combination with paclitaxel and carboplatin as first‐line treatment in patients with advanced non‐small‐cell lung cancer publication-title: Ann Oncol – volume: 99 start-page: 11393 year: 2002 end-page: 11398 article-title: VEGF‐Trap: A VEGF blocker with potent antitumor effects publication-title: Proc Natl Acad Sci USA – volume: 31 start-page: 8034a year: 2013 article-title: LUME‐lung 2: A multicenter, randomized, double‐blind, phase III study of nintedanib plus pemetrexed versus placebo plus pemetrexed in patients with advanced nonsquamous non‐small cell lung cancer (NSCLC) after failure of first‐line chemotherapy publication-title: J Clin Oncol – volume: 23 start-page: 1011 year: 2005 end-page: 1027 article-title: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis publication-title: J Clin Oncol – volume: 204 start-page: 1 year: 2004 end-page: 10 article-title: Angiopoietins in tumours: The angiogenic switch publication-title: J Pathol – volume: 27 start-page: 3312 year: 2009 end-page: 3318 article-title: Sorafenib for treatment of renal cell carcinoma: Final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial publication-title: J Clin Oncol – volume: 21 start-page: 370 year: 2010 end-page: 375 article-title: A phase I open‐label dose‐escalation study of oral BIBF 1120 combined with standard paclitaxel and carboplatin in patients with advanced gynecological malignancies publication-title: Ann Oncol – volume: 33 start-page: 172 year: 2015 end-page: 179 article-title: Linifanib versus sorafenib in patients with advanced hepatocellular carcinoma: Results of a randomized phase III trial publication-title: J Clin Oncol – volume: 30 start-page: 3588 year: 2012 end-page: 3595 article-title: Cediranib with mFOLFOX6 versus bevacizumab with mFOLFOX6 as first‐line treatment for patients with advanced colorectal cancer: A double‐blind, randomized phase III study (HORIZON III) publication-title: J Clin Oncol – volume: 31 start-page: 3639 year: 2013 end-page: 3646 article-title: Cabozantinib in progressive medullary thyroid cancer publication-title: J Clin Oncol – volume: 28 start-page: 453 year: 2010 end-page: 459 article-title: Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: Efficacy and circulating angiogenic biomarkers associated with therapeutic resistance publication-title: J Clin Oncol – volume: 25 start-page: LBA16a issue: suppl 5 year: 2014 article-title: Ramucirumab (RAM) as a second‐line treatment in patients (PTS) with advanced hepatocellular carcinoma (HCC) following first‐line therapy with sorafenib: Results from the randomized phase III REACH study publication-title: Ann Oncol – volume: 5 start-page: 41 year: 2013 end-page: 50 article-title: New agents on the horizon in hepatocellular carcinoma publication-title: Ther Adv Med Oncol – volume: 19 start-page: 309 year: 2012 end-page: 316 article-title: Lessons learned from the bevacizumab experience publication-title: Cancer Contr – volume: 101 start-page: 1984 year: 2010 end-page: 1989 article-title: Expression of platelet‐derived growth factor (PDGF)‐B and PDGF‐receptor β is associated with lymphatic metastasis in human gastric carcinoma publication-title: Cancer Sci – volume: 246 start-page: 1306 year: 1989 end-page: 1309 article-title: Vascular endothelial growth factor is a secreted angiogenic mitogen publication-title: Science – volume: 30 start-page: 134 year: 2012 end-page: 141 article-title: Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double‐blind phase III trial publication-title: J Clin Oncol – volume: 41 start-page: 833 year: 2008 end-page: 839 article-title: The hepatocyte growth factor/c‐Met signaling pathway as a therapeutic target to inhibit angiogenesis publication-title: BMB Rep – volume: 105 start-page: 1640 year: 2011 end-page: 1645 article-title: Phase I study of BIBF 1120 with docetaxel and prednisone in metastatic chemo‐naive hormone‐refractory prostate cancer patients publication-title: Br J Cancer – volume: 15 start-page: 229 year: 2004 end-page: 235 article-title: PDGF receptor kinase inhibitors for the treatment of PDGF driven diseases publication-title: Cytokine Growth Factor Rev – volume: 19 start-page: 524 year: 2013 end-page: 529 article-title: Vandetanib for the treatment of medullary thyroid cancer publication-title: Clin Cancer Res – volume: 41 start-page: 297 year: 2011 end-page: 311 article-title: Pharmacokinetics and metabolism of BIBF 1120 after oral dosing to healthy male volunteers publication-title: Xenobiotica – volume: 70 start-page: 2085 year: 2010 end-page: 2094 article-title: FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer publication-title: Cancer Res – volume: 383 start-page: 31 year: 2014 end-page: 39 article-title: Ramucirumab monotherapy for previously treated advanced gastric or gastro‐oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo‐controlled, phase 3 trial publication-title: Lancet – volume: 21 start-page: 21 year: 2010 end-page: 26 article-title: Pathways mediating VEGF‐independent tumor angiogenesis publication-title: Cytokine Growth Factor Rev – volume: 379 start-page: 1879 year: 2012 end-page: 1886 article-title: Pazopanib for metastatic soft‐tissue sarcoma (PALETTE): A randomised, double‐blind, placebo‐controlled phase 3 trial publication-title: Lancet – volume: 140 start-page: 460 year: 2010 end-page: 476 article-title: Lymphangiogenesis: Molecular mechanisms and future promise publication-title: Cell – volume: 384 start-page: 665 year: 2014 end-page: 673 article-title: Ramucirumab plus docetaxel versus placebo plus docetaxel for second‐line treatment of stage IV non‐small‐cell lung cancer after disease progression on platinum‐based therapy (REVEL): A multicentre, double‐blind, randomised phase 3 trial publication-title: Lancet – volume: 25 start-page: 319 year: 2007 end-page: 327 article-title: AG‐013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast‐enhanced magnetic resonance imaging publication-title: Magn Reson Imaging – volume: 31 start-page: 1283 year: 2013 end-page: 1293 article-title: Effect of small angiokinase inhibitor nintedanib (BIBF 1120) on QT interval in patients with previously untreated, advanced renal cell cancer in an open‐label, phase II study publication-title: Invest New Drugs – volume: 30 start-page: 3596 year: 2012 end-page: 3603 article-title: Cediranib plus FOLFOX/CAPOX versus placebo plus FOLFOX/CAPOX in patients with previously untreated metastatic colorectal cancer: A randomized, double‐blind, phase III study (HORIZON II) publication-title: J Clin Oncol – volume: 122 start-page: 664 year: 2008 end-page: 671 article-title: E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition publication-title: Int J Cancer – volume: 23 start-page: 305 year: 2014 end-page: 315 article-title: Fibroblast growth factor receptors as therapeutic targets in clear‐cell renal cell carcinoma publication-title: Expert Opin Investig Drugs – year: 2013 – volume: 10 start-page: 940 year: 2008 end-page: 945 article-title: VEGF Trap induces antiglioma effect at different stages of disease publication-title: Neuro Oncol – volume: 59 start-page: 561 year: 2007 end-page: 574 article-title: Sorafenib (BAY 43‐9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models publication-title: Cancer Chemother Pharmacol – volume: 2 start-page: 33 year: 2009 article-title: ABT‐869, a promising multi‐targeted tyrosine kinase inhibitor: From bench to bedside publication-title: J Hematol Oncol – volume: 15 start-page: 1351 year: 2014 end-page: 1360 article-title: Maintenance capecitabine and bevacizumab versus bevacizumab alone after initial first‐line bevacizumab and docetaxel for patients with HER2‐negative metastatic breast cancer (IMELDA): A randomised, open‐label, phase 3 trial publication-title: Lancet Oncol – volume: 14 start-page: 552 year: 2013 end-page: 562 article-title: Axitinib versus sorafenib as second‐line treatment for advanced renal cell carcinoma: Overall survival analysis and updated results from a randomised phase 3 trial publication-title: Lancet Oncol – volume: 68 start-page: 4774 year: 2008 end-page: 4782 article-title: BIBF 1120: Triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy publication-title: Cancer Res – volume: 16 start-page: 2881 year: 2010 end-page: 2889 article-title: Phase I open‐label study of continuous treatment with BIBF 1120, a triple angiokinase inhibitor, and pemetrexed in pretreated non‐small cell lung cancer patients publication-title: Clin Cancer Res – volume: 86 start-page: 785 year: 2008 end-page: 789 article-title: R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways publication-title: J Mol Med (Berl) – volume: 23 start-page: 79 year: 2014 end-page: 91 article-title: Therapeutic options targeting angiogenesis in nonsmall cell lung cancer publication-title: Eur Respir Rev – volume: 11 start-page: 83 year: 2007 end-page: 95 article-title: AZD2171, a pan‐VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients publication-title: Cancer Cell – volume: 8 start-page: 775 year: 2012 end-page: 781 article-title: Cediranib: A VEGF receptor tyrosine kinase inhibitor publication-title: Future Oncol – volume: 384 start-page: 319 year: 2014 end-page: 328 article-title: Sorafenib in radioactive iodine‐refractory, locally advanced or metastatic differentiated thyroid cancer: A randomised, double‐blind, phase 3 trial publication-title: Lancet – volume: 20 start-page: 4368 year: 2002 end-page: 4380 article-title: Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy publication-title: J Clin Oncol – volume: 5 start-page: a009209 year: 2013 article-title: MET: A critical player in tumorigenesis and therapeutic target publication-title: Cold Spring Harb Perspect Biol – volume: 66 start-page: 11851 year: 2006 end-page: 11858 article-title: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5 publication-title: Cancer Res – volume: 15 start-page: 539 year: 2010 end-page: 547 article-title: (Pre‐)clinical pharmacology and activity of pazopanib, a novel multikinase angiogenesis inhibitor publication-title: The Oncologist – volume: 19 start-page: 1257 year: 2013 end-page: 1268 article-title: Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma publication-title: Clin Cancer Res – volume: 19 start-page: 1773 year: 2013 end-page: 1783 article-title: Gene expression profile identifies tyrosine kinase c‐Met as a targetable mediator of antiangiogenic therapy resistance publication-title: Clin Cancer Res – volume: 29 start-page: 2660 year: 2011 end-page: 2666 article-title: Activity of XL184 (cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer publication-title: J Clin Oncol – volume: 8 start-page: e76009 year: 2013 article-title: Regorafenib effects on human colon carcinoma xenografts monitored by dynamic contrast‐enhanced computed tomography with immunohistochemical validation publication-title: PLoS One – volume: 8 start-page: 210 year: 2011 end-page: 221 article-title: Antiangiogenic therapy: Impact on invasion, disease progression, and metastasis publication-title: Nat Rev Clin Oncol – volume: 9 start-page: 176 year: 2010 end-page: 182 article-title: Targeting pericytes with a PDGF‐B aptamer in human ovarian carcinoma models publication-title: Cancer Biol Ther – volume: 79 start-page: 427 year: 1999 end-page: 438 article-title: Hepatocyte growth factor increases expression of vascular endothelial growth factor and plasminogen activator inhibitor‐1 in human keratinocytes and the vascular endothelial growth factor receptor flk‐1 in human endothelial cells publication-title: Lab Invest – volume: 123 start-page: 3190 year: 2013 end-page: 3200 article-title: Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer publication-title: J Clin Invest – volume: 4 start-page: 253 year: 2013 end-page: 263 article-title: Understanding and targeting resistance to anti‐angiogenic therapies publication-title: J Gastrointest Oncol – volume: 10 start-page: 575 year: 2010 end-page: 585 article-title: Targeting the ANGPT‐TIE2 pathway in malignancy publication-title: Nat Rev Cancer – volume: 165 start-page: 1198 year: 1989 end-page: 1206 article-title: Vascular endothelial growth factor: A new member of the platelet‐derived growth factor gene family publication-title: Biochem Biophys Res Commun – volume: 4 start-page: 43 year: 2011 end-page: 58 article-title: Rationale for targeting VEGF, FGF, and PDGF for the treatment of NSCLC publication-title: Onco Targets Ther – volume: 50 start-page: 706 year: 2014 end-page: 712 article-title: Randomised, double‐blind trial of carboplatin and paclitaxel with daily oral cediranib or placebo in patients with advanced non‐small cell lung cancer: NCIC Clinical Trials Group study BR29 publication-title: Eur J Cancer – volume: 8 start-page: 942 year: 2008 end-page: 956 article-title: FLT1 and its ligands VEGFB and PlGF: Drug targets for anti‐angiogenic therapy? publication-title: Nat Rev Cancer – volume: 381 start-page: 303 year: 2013 end-page: 312 article-title: Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo‐controlled, phase 3 trial publication-title: Lancet – volume: 22 start-page: 21 year: 2012 end-page: 35 article-title: VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex publication-title: Cancer Cell – volume: 9 start-page: 2825 year: 2010 end-page: 2833 article-title: Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors publication-title: Mol Cancer Ther – volume: 30 start-page: 441 year: 2012 end-page: 444 article-title: Targeting the angiopoietin/Tie2 pathway: Cutting tumor vessels with a double‐edged sword? publication-title: J Clin Oncol – volume: 6 start-page: 465 year: 2009 end-page: 477 article-title: Adverse effects of anticancer agents that target the VEGF pathway publication-title: Nat Rev Clin Oncol – volume: 14 start-page: 173 year: 2014 end-page: 186 article-title: RET revisited: Expanding the oncogenic portfolio publication-title: Nat Rev Cancer – volume: 30 start-page: 3499 year: 2012 end-page: 3506 article-title: Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin‐based regimen publication-title: J Clin Oncol – volume: 356 start-page: 115 year: 2007 end-page: 124 article-title: Sunitinib versus interferon alfa in metastatic renal‐cell carcinoma publication-title: N Engl J Med – volume: 11 start-page: 97 year: 2013 article-title: Targeting the PDGF signaling pathway in tumor treatment publication-title: Cell Commun Signal – volume: 15 start-page: 220 year: 2009 end-page: 231 article-title: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis publication-title: Cancer Cell – volume: 116 start-page: 2984 year: 2010 end-page: 2993 article-title: Platelet‐derived growth factor (PDGF)‐PDGF receptor interaction activates bone marrow‐derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: Implications for an angiogenic switch publication-title: Blood – volume: 12 start-page: 1322 year: 2013 end-page: 1331 article-title: Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model publication-title: Mol Cancer Ther – volume: 116 start-page: 2610 year: 2006 end-page: 2621 article-title: Rapid vascular regrowth in tumors after reversal of VEGF inhibition publication-title: J Clin Invest – volume: 49 start-page: 1287 year: 2013 end-page: 1296 article-title: A randomised, double‐blind phase III study of pazopanib in patients with advanced and/or metastatic renal cell carcinoma: Final overall survival results and safety update publication-title: Eur J Cancer – volume: 99 start-page: 11399 year: 2002 end-page: 11404 article-title: Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma publication-title: Proc Natl Acad Sci USA – year: 2012 – volume: 5 start-page: a009134 year: 2013 article-title: Structure and physiology of the RET receptor tyrosine kinase publication-title: Cold Spring Harb Perspect Biol – volume: 8 start-page: 235 year: 2009 end-page: 253 article-title: The FGF family: Biology, pathophysiology and therapy publication-title: Nat Rev Drug Discov – year: 2013 article-title: Randomised double‐blind phase III trial of cediranib (AZD 2171) in relapsed platinum sensitive ovarian cancer: Results of the ICON6 trial [abstract E17‐7020] – volume: 473 start-page: 298 year: 2011 end-page: 307 article-title: Molecular mechanisms and clinical applications of angiogenesis publication-title: Nature – volume: 2 start-page: a006593 year: 2012 article-title: The VEGF pathway in cancer and disease: Responses, resistance, and the path forward publication-title: Cold Spring Harb Perspect Med – volume: 73 start-page: 2003 year: 2013 end-page: 2015 article-title: Critical appraisal of ramucirumab (IMC‐1121B) for cancer treatment: From benchside to clinical use publication-title: Drugs – volume: 16 start-page: 311 year: 2010 end-page: 319 article-title: Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors publication-title: Clin Cancer Res – volume: 104 start-page: 1262 year: 2011 end-page: 1269 article-title: Pharmacodynamic and pharmacogenetic angiogenesis‐related markers of first‐line FOLFOXIRI plus bevacizumab schedule in metastatic colorectal cancer publication-title: Br J Cancer – volume: 15 start-page: 1269 year: 2014 end-page: 1278 article-title: Bevacizumab plus chemotherapy versus chemotherapy alone as second‐line treatment for patients with HER2‐negative locally recurrent or metastatic breast cancer after first‐line treatment with bevacizumab plus chemotherapy (TANIA): An open‐label, randomised phase 3 trial publication-title: Lancet Oncol – volume: 14 start-page: 9338 year: 2013 end-page: 9364 article-title: Biomarkers for anti‐angiogenic therapy in cancer publication-title: Int J Mol Sci – volume: 73 start-page: 1649 year: 2013 end-page: 1657 article-title: Angiopoietin‐2: An attractive target for improved antiangiogenic tumor therapy publication-title: Cancer Res – volume: 51 start-page: 1976 year: 2008 end-page: 1980 article-title: Discovery of brivanib alaninate ((S)‐((R)‐1‐(4‐(4‐fluoro‐2‐methyl‐1H‐indol‐5‐yloxy)‐5‐methylpyrrolo[2,1‐f][1,2,4]triazin‐6‐yloxy)propan‐2‐yl)2‐aminopropanoate), a novel prodrug of dual vascular endothelial growth factor receptor‐2 and fibroblast growth factor receptor‐1 kinase inhibitor (BMS‐540215) publication-title: J Med Chem – volume: 108 start-page: E1275 year: 2011 end-page: E1284 article-title: Imaging guided trials of the angiogenesis inhibitor sunitinib in mouse models predict efficacy in pancreatic neuroendocrine but not ductal carcinoma publication-title: Proc Natl Acad Sci USA – volume: 15 start-page: 167 year: 2009 end-page: 170 article-title: Silencing or fueling metastasis with VEGF inhibitors: Antiangiogenesis revisited publication-title: Cancer Cell – volume: 8 start-page: 483 year: 2002 end-page: 489 article-title: The role of fibroblast growth factors in vascular development publication-title: Trends Mol Med – volume: 18 start-page: 338 year: 2004 ident: 2021122309231697900_B78 article-title: Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms publication-title: FASEB J doi: 10.1096/fj.03-0271fje – volume: 23 start-page: 79 year: 2014 ident: 2021122309231697900_B69 article-title: Therapeutic options targeting angiogenesis in nonsmall cell lung cancer publication-title: Eur Respir Rev doi: 10.1183/09059180.00008913 – volume: 6 start-page: 273 year: 2007 ident: 2021122309231697900_B1 article-title: Angiogenesis: An organizing principle for drug discovery? publication-title: Nature Rev Drug Discov doi: 10.1038/nrd2115 – volume: 8 start-page: 483 year: 2002 ident: 2021122309231697900_B50 article-title: The role of fibroblast growth factors in vascular development publication-title: Trends Mol Med doi: 10.1016/S1471-4914(02)02394-8 – volume: 79 start-page: 427 year: 1999 ident: 2021122309231697900_B61 article-title: Hepatocyte growth factor increases expression of vascular endothelial growth factor and plasminogen activator inhibitor-1 in human keratinocytes and the vascular endothelial growth factor receptor flk-1 in human endothelial cells publication-title: Lab Invest – volume: 30 start-page: 441 year: 2012 ident: 2021122309231697900_B56 article-title: Targeting the angiopoietin/Tie2 pathway: Cutting tumor vessels with a double-edged sword? publication-title: J Clin Oncol doi: 10.1200/JCO.2011.38.7621 – volume: 30 start-page: 3499 year: 2012 ident: 2021122309231697900_B28 article-title: Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen publication-title: J Clin Oncol doi: 10.1200/JCO.2012.42.8201 – volume: 19 start-page: 460 year: 2013 ident: 2021122309231697900_B39 article-title: Multifarious functions of PDGFs and PDGFRs in tumor growth and metastasis publication-title: Trends Mol Med doi: 10.1016/j.molmed.2013.05.002 – volume-title: Nexavar [package insert] year: 2013 ident: 2021122309231697900_B85 – volume: 15 start-page: 23024 year: 2014 ident: 2021122309231697900_B17 article-title: Anti-vascular endothelial growth factor therapy in breast cancer publication-title: Int J Mol Sci doi: 10.3390/ijms151223024 – volume: 43 start-page: 490 year: 2009 ident: 2021122309231697900_B24 article-title: Intricacies of bevacizumab-induced toxicities and their management publication-title: Ann Pharmacother doi: 10.1345/aph.1L426 – volume: 384 start-page: 665 year: 2014 ident: 2021122309231697900_B33 article-title: Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): A multicentre, double-blind, randomised phase 3 trial publication-title: Lancet doi: 10.1016/S0140-6736(14)60845-X – volume: 4 start-page: 43 year: 2011 ident: 2021122309231697900_B70 article-title: Rationale for targeting VEGF, FGF, and PDGF for the treatment of NSCLC publication-title: Onco Targets Ther doi: 10.2147/OTT.S18155 – volume: 116 start-page: 2610 year: 2006 ident: 2021122309231697900_B20 article-title: Rapid vascular regrowth in tumors after reversal of VEGF inhibition publication-title: J Clin Invest doi: 10.1172/JCI24612 – volume: 162 start-page: 1913 year: 2003 ident: 2021122309231697900_B54 article-title: Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)64325-8 – volume: 8 start-page: 775 year: 2012 ident: 2021122309231697900_B139 article-title: Cediranib: A VEGF receptor tyrosine kinase inhibitor publication-title: Future Oncol doi: 10.2217/fon.12.73 – volume: 5 start-page: 41 year: 2013 ident: 2021122309231697900_B142 article-title: New agents on the horizon in hepatocellular carcinoma publication-title: Ther Adv Med Oncol doi: 10.1177/1758834012458480 – volume: 15 start-page: 229 year: 2004 ident: 2021122309231697900_B40 article-title: PDGF receptor kinase inhibitors for the treatment of PDGF driven diseases publication-title: Cytokine Growth Factor Rev doi: 10.1016/j.cytogfr.2004.03.010 – volume: 25 start-page: LBA16a issue: (suppl 5) year: 2014 ident: 2021122309231697900_B35 article-title: Ramucirumab (RAM) as a second-line treatment in patients (PTS) with advanced hepatocellular carcinoma (HCC) following first-line therapy with sorafenib: Results from the randomized phase III REACH study publication-title: Ann Oncol – volume: 73 start-page: 1649 year: 2013 ident: 2021122309231697900_B58 article-title: Angiopoietin-2: An attractive target for improved antiangiogenic tumor therapy publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-4697 – volume-title: Cyramza [package insert] year: 2014 ident: 2021122309231697900_B7 – volume: 6 start-page: 333 year: 2004 ident: 2021122309231697900_B43 article-title: PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis publication-title: Cancer Cell doi: 10.1016/j.ccr.2004.08.034 – volume: 12 start-page: 2676 year: 2006 ident: 2021122309231697900_B41 article-title: Tumor-driven paracrine platelet-derived growth factor receptor alpha signaling is a key determinant of stromal cell recruitment in a model of human lung carcinoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-05-1770 – volume: 246 start-page: 1306 year: 1989 ident: 2021122309231697900_B8 article-title: Vascular endothelial growth factor is a secreted angiogenic mitogen publication-title: Science doi: 10.1126/science.2479986 – volume: 104 start-page: 1262 year: 2011 ident: 2021122309231697900_B23 article-title: Pharmacodynamic and pharmacogenetic angiogenesis-related markers of first-line FOLFOXIRI plus bevacizumab schedule in metastatic colorectal cancer publication-title: Br J Cancer doi: 10.1038/bjc.2011.85 – volume: 19 start-page: 789 year: 2010 ident: 2021122309231697900_B115 article-title: BIBF 1120 for the treatment of non-small cell lung cancer publication-title: Expert Opin Investig Drugs doi: 10.1517/13543784.2010.488220 – volume: 320 start-page: 130 year: 2012 ident: 2021122309231697900_B19 article-title: Anti-angiogenesis therapy in cancer: Current challenges and future perspectives publication-title: Cancer Lett doi: 10.1016/j.canlet.2012.03.008 – volume: 5 start-page: a009134 year: 2013 ident: 2021122309231697900_B65 article-title: Structure and physiology of the RET receptor tyrosine kinase publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a009134 – volume: 2 start-page: 33 year: 2009 ident: 2021122309231697900_B130 article-title: ABT-869, a promising multi-targeted tyrosine kinase inhibitor: From bench to bedside publication-title: J Hematol Oncol doi: 10.1186/1756-8722-2-33 – volume: 50 start-page: 706 year: 2014 ident: 2021122309231697900_B135 article-title: Randomised, double-blind trial of carboplatin and paclitaxel with daily oral cediranib or placebo in patients with advanced non-small cell lung cancer: NCIC Clinical Trials Group study BR29 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2013.11.032 – volume: 165 start-page: 1198 year: 1989 ident: 2021122309231697900_B9 article-title: Vascular endothelial growth factor: A new member of the platelet-derived growth factor gene family publication-title: Biochem Biophys Res Commun doi: 10.1016/0006-291X(89)92729-0 – volume: 15 start-page: 167 year: 2009 ident: 2021122309231697900_B76 article-title: Silencing or fueling metastasis with VEGF inhibitors: Antiangiogenesis revisited publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.02.007 – volume-title: Caprelsa [package insert] year: 2013 ident: 2021122309231697900_B87 – volume: 10 start-page: 940 year: 2008 ident: 2021122309231697900_B26 article-title: VEGF Trap induces antiglioma effect at different stages of disease publication-title: Neuro Oncol doi: 10.1215/15228517-2008-061 – volume: 9 start-page: 176 year: 2010 ident: 2021122309231697900_B46 article-title: Targeting pericytes with a PDGF-B aptamer in human ovarian carcinoma models publication-title: Cancer Biol Ther doi: 10.4161/cbt.9.3.10635 – volume: 15 start-page: 1351 year: 2014 ident: 2021122309231697900_B143 article-title: Maintenance capecitabine and bevacizumab versus bevacizumab alone after initial first-line bevacizumab and docetaxel for patients with HER2-negative metastatic breast cancer (IMELDA): A randomised, open-label, phase 3 trial publication-title: Lancet Oncol doi: 10.1016/S1470-2045(14)70444-9 – volume: 32 start-page: LBA6008a year: 2014 ident: 2021122309231697900_B137 article-title: A phase 3, multicenter, double-blind, placebo-controlled trial of lenvatinib (E7080) in patients with 131I-refractory differentiated thyroid cancer (SELECT) publication-title: J Clin Oncol doi: 10.1200/jco.2014.32.18_suppl.lba6008 – volume: 3 start-page: 391 year: 2004 ident: 2021122309231697900_B15 article-title: Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer publication-title: Nat Rev Drug Discov doi: 10.1038/nrd1381 – volume-title: Cometriq [package insert] year: 2012 ident: 2021122309231697900_B81 – volume: 31 start-page: 3639 year: 2013 ident: 2021122309231697900_B66 article-title: Cabozantinib in progressive medullary thyroid cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2012.48.4659 – volume: 41 start-page: 297 year: 2011 ident: 2021122309231697900_B138 article-title: Pharmacokinetics and metabolism of BIBF 1120 after oral dosing to healthy male volunteers publication-title: Xenobiotica doi: 10.3109/00498254.2010.545452 – volume: 14 start-page: 552 year: 2013 ident: 2021122309231697900_B102 article-title: Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: Overall survival analysis and updated results from a randomised phase 3 trial publication-title: Lancet Oncol doi: 10.1016/S1470-2045(13)70093-7 – volume-title: Avastin [prescribing information] year: 2014 ident: 2021122309231697900_B5 – volume: 8 start-page: 210 year: 2011 ident: 2021122309231697900_B75 article-title: Antiangiogenic therapy: Impact on invasion, disease progression, and metastasis publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2011.21 – volume: 31 start-page: 3212 year: 2013 ident: 2021122309231697900_B133 article-title: Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma publication-title: J Clin Oncol doi: 10.1200/JCO.2012.47.2464 – volume: 8 start-page: 942 year: 2008 ident: 2021122309231697900_B12 article-title: FLT1 and its ligands VEGFB and PlGF: Drug targets for anti-angiogenic therapy? publication-title: Nat Rev Cancer doi: 10.1038/nrc2524 – volume: 16 start-page: 159 year: 2005 ident: 2021122309231697900_B51 article-title: Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis publication-title: Cytokine Growth Factor Rev doi: 10.1016/j.cytogfr.2005.01.004 – volume: 473 start-page: 298 year: 2011 ident: 2021122309231697900_B4 article-title: Molecular mechanisms and clinical applications of angiogenesis publication-title: Nature doi: 10.1038/nature10144 – volume: 27 start-page: 3312 year: 2009 ident: 2021122309231697900_B97 article-title: Sorafenib for treatment of renal cell carcinoma: Final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial publication-title: J Clin Oncol doi: 10.1200/JCO.2008.19.5511 – volume: 29 start-page: 2660 year: 2011 ident: 2021122309231697900_B67 article-title: Activity of XL184 (cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2010.32.4145 – volume: 6 start-page: 465 year: 2009 ident: 2021122309231697900_B22 article-title: Adverse effects of anticancer agents that target the VEGF pathway publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2009.94 – volume-title: Stivarga [package insert] year: 2013 ident: 2021122309231697900_B84 – volume: 51 start-page: 1976 year: 2008 ident: 2021122309231697900_B124 article-title: Discovery of brivanib alaninate ((S)-((R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan-2-yl)2-aminopropanoate), a novel prodrug of dual vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinase inhibitor (BMS-540215) publication-title: J Med Chem doi: 10.1021/jm7013309 – volume: 30 start-page: 3588 year: 2012 ident: 2021122309231697900_B132 article-title: Cediranib with mFOLFOX6 versus bevacizumab with mFOLFOX6 as first-line treatment for patients with advanced colorectal cancer: A double-blind, randomized phase III study (HORIZON III) publication-title: J Clin Oncol doi: 10.1200/JCO.2012.42.5355 – volume: 10 start-page: 575 year: 2010 ident: 2021122309231697900_B53 article-title: Targeting the ANGPT-TIE2 pathway in malignancy publication-title: Nat Rev Cancer doi: 10.1038/nrc2894 – volume: 16 start-page: 311 year: 2010 ident: 2021122309231697900_B114 article-title: Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-0694 – volume: 15 start-page: 539 year: 2010 ident: 2021122309231697900_B110 article-title: (Pre-)clinical pharmacology and activity of pazopanib, a novel multikinase angiogenesis inhibitor publication-title: The Oncologist doi: 10.1634/theoncologist.2009-0274 – volume: 14 start-page: 5459 year: 2008 ident: 2021122309231697900_B127 article-title: Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-5270 – volume: 65 start-page: 4389 year: 2005 ident: 2021122309231697900_B125 article-title: AZD2171: A highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-4409 – volume: 13 start-page: 97 year: 2011 ident: 2021122309231697900_B31 article-title: Ramucirumab (IMC-1121B): Monoclonal antibody inhibition of vascular endothelial growth factor receptor-2 publication-title: Curr Oncol Rep doi: 10.1007/s11912-010-0149-5 – volume: 384 start-page: 319 year: 2014 ident: 2021122309231697900_B99 article-title: Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 3 trial publication-title: Lancet doi: 10.1016/S0140-6736(14)60421-9 – volume-title: Presented at: ECCO-ESMO-ESTRO European Cancer Congress year: 2013 ident: 2021122309231697900_B134 article-title: Randomised double-blind phase III trial of cediranib (AZD 2171) in relapsed platinum sensitive ovarian cancer: Results of the ICON6 trial [abstract E17-7020] – volume: 140 start-page: 460 year: 2010 ident: 2021122309231697900_B14 article-title: Lymphangiogenesis: Molecular mechanisms and future promise publication-title: Cell doi: 10.1016/j.cell.2010.01.045 – volume: 21 start-page: 21 year: 2010 ident: 2021122309231697900_B36 article-title: Pathways mediating VEGF-independent tumor angiogenesis publication-title: Cytokine Growth Factor Rev doi: 10.1016/j.cytogfr.2009.11.003 – volume: 41 start-page: 833 year: 2008 ident: 2021122309231697900_B60 article-title: The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis publication-title: BMB Rep doi: 10.5483/BMBRep.2008.41.12.833 – volume: 15 start-page: 1269 year: 2014 ident: 2021122309231697900_B144 article-title: Bevacizumab plus chemotherapy versus chemotherapy alone as second-line treatment for patients with HER2-negative locally recurrent or metastatic breast cancer after first-line treatment with bevacizumab plus chemotherapy (TANIA): An open-label, randomised phase 3 trial publication-title: Lancet Oncol doi: 10.1016/S1470-2045(14)70439-5 – volume: 109 start-page: 15894 year: 2012 ident: 2021122309231697900_B52 article-title: Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1208324109 – volume: 18 start-page: 100 year: 2012 ident: 2021122309231697900_B45 article-title: PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells publication-title: Nat Med doi: 10.1038/nm.2575 – volume: 359 start-page: 378 year: 2008 ident: 2021122309231697900_B98 article-title: Sorafenib in advanced hepatocellular carcinoma publication-title: N Engl J Med doi: 10.1056/NEJMoa0708857 – volume: 2 start-page: re1 year: 2009 ident: 2021122309231697900_B10 article-title: Positive and negative modulation of angiogenesis by VEGFR1 ligands publication-title: Sci Signal doi: 10.1126/scisignal.259re1 – volume: 33 start-page: 141 year: 2015 ident: 2021122309231697900_B34 article-title: Primary results of ROSE/TRIO-12, a randomized placebo-controlled phase III trial evaluating the addition of ramucirumab to first-line docetaxel chemotherapy in metastatic breast cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2014.57.1513 – volume: 22 start-page: 21 year: 2012 ident: 2021122309231697900_B62 article-title: VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.05.037 – volume: 30 start-page: 134 year: 2012 ident: 2021122309231697900_B68 article-title: Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double-blind phase III trial publication-title: J Clin Oncol doi: 10.1200/JCO.2011.35.5040 – volume: 18 start-page: 3961 year: 2012 ident: 2021122309231697900_B104 article-title: Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-0002 – volume: 8 start-page: e77117 year: 2013 ident: 2021122309231697900_B73 article-title: The association of alternate VEGF ligands with resistance to anti-VEGF therapy in metastatic colorectal cancer publication-title: PLoS One doi: 10.1371/journal.pone.0077117 – volume: 8 start-page: 299 year: 2005 ident: 2021122309231697900_B55 article-title: Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.09.005 – volume: 23 start-page: 7 issue: (suppl 1) year: 2013 ident: 2021122309231697900_B92 article-title: AGO-OVAR 12: A randomized placebo-controlled GCIG/ENGOT-intergroup phase III trial of standard frontline chemotherapy +/− nintedanib for advanced ovarian cancer publication-title: Int J Gynecol Cancer – volume: 25 start-page: 319 year: 2007 ident: 2021122309231697900_B80 article-title: AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2006.09.041 – volume: 19 start-page: 309 year: 2012 ident: 2021122309231697900_B18 article-title: Lessons learned from the bevacizumab experience publication-title: Cancer Contr doi: 10.1177/107327481201900407 – volume: 379 start-page: 1879 year: 2012 ident: 2021122309231697900_B94 article-title: Pazopanib for metastatic soft-tissue sarcoma (PALETTE): A randomised, double-blind, placebo-controlled phase 3 trial publication-title: Lancet doi: 10.1016/S0140-6736(12)60651-5 – volume: 204 start-page: 1 year: 2004 ident: 2021122309231697900_B57 article-title: Angiopoietins in tumours: The angiogenic switch publication-title: J Pathol doi: 10.1002/path.1618 – volume-title: FDA commissioner announces Avastin decision year: 2015 ident: 2021122309231697900_B16 – volume: 116 start-page: 2984 year: 2010 ident: 2021122309231697900_B42 article-title: Platelet-derived growth factor (PDGF)-PDGF receptor interaction activates bone marrow-derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: Implications for an angiogenic switch publication-title: Blood doi: 10.1182/blood-2010-02-269894 – volume: 23 start-page: 2094 year: 2012 ident: 2021122309231697900_B119 article-title: A phase I, open-label dose-escalation study of continuous treatment with BIBF 1120 in combination with paclitaxel and carboplatin as first-line treatment in patients with advanced non-small-cell lung cancer publication-title: Ann Oncol doi: 10.1093/annonc/mdr596 – volume: 19 start-page: 1773 year: 2013 ident: 2021122309231697900_B63 article-title: Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-1281 – volume: 4 start-page: 253 year: 2013 ident: 2021122309231697900_B74 article-title: Understanding and targeting resistance to anti-angiogenic therapies publication-title: J Gastrointest Oncol – volume: 30 start-page: 3596 year: 2012 ident: 2021122309231697900_B131 article-title: Cediranib plus FOLFOX/CAPOX versus placebo plus FOLFOX/CAPOX in patients with previously untreated metastatic colorectal cancer: A randomized, double-blind, phase III study (HORIZON II) publication-title: J Clin Oncol doi: 10.1200/JCO.2012.42.6031 – volume: 105 start-page: 1640 year: 2011 ident: 2021122309231697900_B120 article-title: Phase I study of BIBF 1120 with docetaxel and prednisone in metastatic chemo-naive hormone-refractory prostate cancer patients publication-title: Br J Cancer doi: 10.1038/bjc.2011.440 – volume: 9 start-page: 2825 year: 2010 ident: 2021122309231697900_B116 article-title: Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-10-0379 – volume: 705 start-page: 86 year: 2013 ident: 2021122309231697900_B105 article-title: Study of the cellular mechanism of sunitinib mediated inactivation of activated hepatic stellate cells and its implications in angiogenesis publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2013.02.026 – volume: 8 start-page: 235 year: 2009 ident: 2021122309231697900_B47 article-title: The FGF family: Biology, pathophysiology and therapy publication-title: Nat Rev Drug Discov doi: 10.1038/nrd2792 – volume: 378 start-page: 1931 year: 2011 ident: 2021122309231697900_B89 article-title: Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): A randomised phase 3 trial publication-title: Lancet doi: 10.1016/S0140-6736(11)61613-9 – volume: 31 start-page: 1283 year: 2013 ident: 2021122309231697900_B118 article-title: Effect of small angiokinase inhibitor nintedanib (BIBF 1120) on QT interval in patients with previously untreated, advanced renal cell cancer in an open-label, phase II study publication-title: Invest New Drugs doi: 10.1007/s10637-013-9962-7 – volume: 68 start-page: 4774 year: 2008 ident: 2021122309231697900_B82 article-title: BIBF 1120: Triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-6307 – volume: 12 start-page: 1322 year: 2013 ident: 2021122309231697900_B111 article-title: Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-12-1162 – volume: 16 start-page: 2881 year: 2010 ident: 2021122309231697900_B121 article-title: Phase I open-label study of continuous treatment with BIBF 1120, a triple angiokinase inhibitor, and pemetrexed in pretreated non-small cell lung cancer patients publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-2944 – volume: 108 start-page: E1275 year: 2011 ident: 2021122309231697900_B106 article-title: Imaging guided trials of the angiogenesis inhibitor sunitinib in mouse models predict efficacy in pancreatic neuroendocrine but not ductal carcinoma publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1111079108 – volume: 31 start-page: 3517 year: 2013 ident: 2021122309231697900_B123 article-title: Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: Results from the randomized phase III BRISK-FL study publication-title: J Clin Oncol doi: 10.1200/JCO.2012.48.4410 – volume: 21 start-page: 370 year: 2010 ident: 2021122309231697900_B122 article-title: A phase I open-label dose-escalation study of oral BIBF 1120 combined with standard paclitaxel and carboplatin in patients with advanced gynecological malignancies publication-title: Ann Oncol doi: 10.1093/annonc/mdp506 – volume: 86 start-page: 785 year: 2008 ident: 2021122309231697900_B49 article-title: R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways publication-title: J Mol Med (Berl) doi: 10.1007/s00109-008-0337-z – volume: 111 start-page: 1287 year: 2003 ident: 2021122309231697900_B77 article-title: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors publication-title: J Clin Invest doi: 10.1172/JCI200317929 – volume-title: Sutent [package insert] year: 2013 ident: 2021122309231697900_B86 – volume: 99 start-page: 11393 year: 2002 ident: 2021122309231697900_B25 article-title: VEGF-Trap: A VEGF blocker with potent antitumor effects publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.172398299 – volume: 28 start-page: 453 year: 2010 ident: 2021122309231697900_B72 article-title: Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: Efficacy and circulating angiogenic biomarkers associated with therapeutic resistance publication-title: J Clin Oncol doi: 10.1200/JCO.2009.24.8252 – volume: 8 start-page: e76009 year: 2013 ident: 2021122309231697900_B112 article-title: Regorafenib effects on human colon carcinoma xenografts monitored by dynamic contrast-enhanced computed tomography with immunohistochemical validation publication-title: PLoS One doi: 10.1371/journal.pone.0076009 – volume: 66 start-page: 11851 year: 2006 ident: 2021122309231697900_B109 article-title: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-1377 – volume: 44 start-page: 1 year: 2012 ident: 2021122309231697900_B13 article-title: The discovery of placenta growth factor and its biological activity publication-title: Exp Mol Med doi: 10.3858/emm.2012.44.1.025 – volume: 101 start-page: 1984 year: 2010 ident: 2021122309231697900_B44 article-title: Expression of platelet-derived growth factor (PDGF)-B and PDGF-receptor β is associated with lymphatic metastasis in human gastric carcinoma publication-title: Cancer Sci doi: 10.1111/j.1349-7006.2010.01639.x – volume: 6 start-page: 1785 year: 2007 ident: 2021122309231697900_B108 article-title: Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-06-0595 – volume: 6 start-page: 830 year: 2014 ident: 2021122309231697900_B141 article-title: Role of anti-angiogenesis therapy in the management of hepatocellular carcinoma: The jury is still out publication-title: World J Hepatol doi: 10.4254/wjh.v6.i12.830 – volume: 123 start-page: 3190 year: 2013 ident: 2021122309231697900_B71 article-title: Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer publication-title: J Clin Invest doi: 10.1172/JCI70212 – volume: 49 start-page: 1287 year: 2013 ident: 2021122309231697900_B103 article-title: A randomised, double-blind phase III study of pazopanib in patients with advanced and/or metastatic renal cell carcinoma: Final overall survival results and safety update publication-title: Eur J Cancer doi: 10.1016/j.ejca.2012.12.010 – volume: 15 start-page: 286 year: 2014 ident: 2021122309231697900_B136 article-title: Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: An open-label, randomised phase 3 trial publication-title: Lancet Oncol doi: 10.1016/S1470-2045(14)70030-0 – volume: 33 start-page: 172 year: 2015 ident: 2021122309231697900_B129 article-title: Linifanib versus sorafenib in patients with advanced hepatocellular carcinoma: Results of a randomized phase III trial publication-title: J Clin Oncol doi: 10.1200/JCO.2013.54.3298 – volume: 59 start-page: 561 year: 2007 ident: 2021122309231697900_B107 article-title: Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-006-0393-4 – volume: 14 start-page: 173 year: 2014 ident: 2021122309231697900_B64 article-title: RET revisited: Expanding the oncogenic portfolio publication-title: Nat Rev Cancer doi: 10.1038/nrc3680 – volume: 19 start-page: 1257 year: 2013 ident: 2021122309231697900_B126 article-title: Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-2885 – volume: 15 start-page: 1224 year: 2014 ident: 2021122309231697900_B30 article-title: Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial publication-title: Lancet Oncol doi: 10.1016/S1470-2045(14)70420-6 – volume: 99 start-page: 11399 year: 2002 ident: 2021122309231697900_B27 article-title: Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.172398399 – volume: 31 start-page: 8034a year: 2013 ident: 2021122309231697900_B91 article-title: LUME-lung 2: A multicenter, randomized, double-blind, phase III study of nintedanib plus pemetrexed versus placebo plus pemetrexed in patients with advanced nonsquamous non-small cell lung cancer (NSCLC) after failure of first-line chemotherapy publication-title: J Clin Oncol doi: 10.1200/jco.2013.31.15_suppl.8034 – volume: 2 start-page: a006593 year: 2012 ident: 2021122309231697900_B2 article-title: The VEGF pathway in cancer and disease: Responses, resistance, and the path forward publication-title: Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a006593 – volume: 20 start-page: 3958 year: 2014 ident: 2021122309231697900_B146 article-title: Anti-angiogenic drugs and biomarkers in non-small-cell lung cancer: A ‘hard days night’ publication-title: Curr Pharm Des doi: 10.2174/13816128113196660757 – volume: 17 start-page: 1373 year: 2011 ident: 2021122309231697900_B117 article-title: Antitumor activity of BIBF 1120, a triple angiokinase inhibitor, and use of VEGFR2+pTyr+ peripheral blood leukocytes as a pharmacodynamic biomarker in vivo publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-2755 – volume: 14 start-page: 9338 year: 2013 ident: 2021122309231697900_B145 article-title: Biomarkers for anti-angiogenic therapy in cancer publication-title: Int J Mol Sci doi: 10.3390/ijms14059338 – volume: 23 start-page: 1011 year: 2005 ident: 2021122309231697900_B3 article-title: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis publication-title: J Clin Oncol doi: 10.1200/JCO.2005.06.081 – volume: 20 start-page: 4368 year: 2002 ident: 2021122309231697900_B11 article-title: Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy publication-title: J Clin Oncol doi: 10.1200/JCO.2002.10.088 – volume: 356 start-page: 115 year: 2007 ident: 2021122309231697900_B101 article-title: Sunitinib versus interferon alfa in metastatic renal-cell carcinoma publication-title: N Engl J Med doi: 10.1056/NEJMoa065044 – volume: 5 start-page: a009209 year: 2013 ident: 2021122309231697900_B59 article-title: MET: A critical player in tumorigenesis and therapeutic target publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a009209 – volume: 11 start-page: 97 year: 2013 ident: 2021122309231697900_B37 article-title: Targeting the PDGF signaling pathway in tumor treatment publication-title: Cell Commun Signal doi: 10.1186/1478-811X-11-97 – volume: 70 start-page: 2085 year: 2010 ident: 2021122309231697900_B48 article-title: FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-3746 – volume: 381 start-page: 303 year: 2013 ident: 2021122309231697900_B95 article-title: Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial publication-title: Lancet doi: 10.1016/S0140-6736(12)61900-X – volume-title: Votrient [package insert] year: 2013 ident: 2021122309231697900_B83 – volume: 18 start-page: 3170 year: 2012 ident: 2021122309231697900_B100 article-title: Complete longitudinal analyses of the randomized, placebo-controlled, phase III trial of sunitinib in patients with gastrointestinal stromal tumor following imatinib failure publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-11-3005 – volume-title: CHMP summary of positive opinion for Vargatef year: 2015 ident: 2021122309231697900_B113 – volume: 23 start-page: 305 year: 2014 ident: 2021122309231697900_B140 article-title: Fibroblast growth factor receptors as therapeutic targets in clear-cell renal cell carcinoma publication-title: Expert Opin Investig Drugs doi: 10.1517/13543784.2014.871259 – volume-title: Inlyta [package insert] year: 2013 ident: 2021122309231697900_B6 – volume: 73 start-page: 2003 year: 2013 ident: 2021122309231697900_B32 article-title: Critical appraisal of ramucirumab (IMC-1121B) for cancer treatment: From benchside to clinical use publication-title: Drugs doi: 10.1007/s40265-013-0154-8 – volume: 122 start-page: 664 year: 2008 ident: 2021122309231697900_B128 article-title: E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition publication-title: Int J Cancer doi: 10.1002/ijc.23131 – volume: 3 start-page: e3794 year: 2008 ident: 2021122309231697900_B38 article-title: Comprehensive dissection of PDGF-PDGFR signaling pathways in PDGFR genetically defined cells publication-title: PLoS One doi: 10.1371/journal.pone.0003794 – volume: 19 start-page: 524 year: 2013 ident: 2021122309231697900_B88 article-title: Vandetanib for the treatment of medullary thyroid cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-2353 – volume: 15 start-page: 220 year: 2009 ident: 2021122309231697900_B21 article-title: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.01.027 – volume: 383 start-page: 31 year: 2014 ident: 2021122309231697900_B29 article-title: Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial publication-title: Lancet doi: 10.1016/S0140-6736(13)61719-5 – volume: 11 start-page: 83 year: 2007 ident: 2021122309231697900_B79 article-title: AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.11.021 – volume: 15 start-page: 143 year: 2014 ident: 2021122309231697900_B90 article-title: Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial publication-title: Lancet Oncol doi: 10.1016/S1470-2045(13)70586-2 – volume: 28 start-page: 1061 year: 2010 ident: 2021122309231697900_B93 article-title: Pazopanib in locally advanced or metastatic renal cell carcinoma: Results of a randomized phase III trial publication-title: J Clin Oncol doi: 10.1200/JCO.2009.23.9764 – volume: 381 start-page: 295 year: 2013 ident: 2021122309231697900_B96 article-title: Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): An international, multicentre, randomised, placebo-controlled, phase 3 trial publication-title: Lancet doi: 10.1016/S0140-6736(12)61857-1 – reference: 21593862 - Nature. 2011 May 19;473(7347):298-307 – reference: 24359404 - Cell Commun Signal. 2013;11:97 – reference: 20178740 - Cell. 2010 Feb 19;140(4):460-76 – reference: 22661587 - Clin Cancer Res. 2012 Jun 1;18(11):3170-9 – reference: 23339124 - Clin Cancer Res. 2013 Mar 1;19(5):1257-68 – reference: 19451442 - J Clin Oncol. 2009 Jul 10;27(20):3312-8 – reference: 22595799 - Lancet. 2012 May 19;379(9829):1879-86 – reference: 22084065 - Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1275-84 – reference: 23773831 - Trends Mol Med. 2013 Aug;19(8):460-73 – reference: 20008624 - J Clin Oncol. 2010 Jan 20;28(3):453-9 – reference: 25273343 - Lancet Oncol. 2014 Nov;15(12):1351-60 – reference: 24561444 - Nat Rev Cancer. 2014 Mar;14(3):173-86 – reference: 17396134 - Nat Rev Drug Discov. 2007 Apr;6(4):273-86 – reference: 15488757 - Cancer Cell. 2004 Oct;6(4):333-45 – reference: 23467610 - Cancer Res. 2013 Mar 15;73(6):1649-57 – reference: 12409337 - J Clin Oncol. 2002 Nov 1;20(21):4368-80 – reference: 18559524 - Cancer Res. 2008 Jun 15;68(12):4774-82 – reference: 19247306 - Nat Rev Drug Discov. 2009 Mar;8(3):235-53 – reference: 20465363 - Expert Opin Investig Drugs. 2010 Jun;19(6):789-94 – reference: 18288793 - J Med Chem. 2008 Mar 27;51(6):1976-80 – reference: 24387233 - Expert Opin Investig Drugs. 2014 Mar;23(3):305-15 – reference: 19261963 - Ann Pharmacother. 2009 Mar;43(3):490-501 – reference: 16226705 - Cancer Cell. 2005 Oct;8(4):299-309 – reference: 22138754 - Nat Med. 2012 Jan;18(1):100-10 – reference: 20100962 - J Clin Oncol. 2010 Feb 20;28(6):1061-8 – reference: 22965965 - J Clin Oncol. 2012 Oct 10;30(29):3596-603 – reference: 15307132 - J Pathol. 2004 Sep;204(1):1-10 – reference: 23231950 - Clin Cancer Res. 2013 Feb 1;19(3):524-9 – reference: 24933332 - Lancet. 2014 Aug 23;384(9944):665-73 – reference: 23454556 - Eur J Pharmacol. 2013 Apr 5;705(1-3):86-95 – reference: 15585754 - J Clin Oncol. 2005 Feb 10;23(5):1011-27 – reference: 18650514 - N Engl J Med. 2008 Jul 24;359(4):378-90 – reference: 23209176 - Cold Spring Harb Perspect Med. 2012 Dec;2(12):a006593 – reference: 17371720 - Magn Reson Imaging. 2007 Apr;25(3):319-27 – reference: 23940216 - J Clin Oncol. 2013 Sep 10;31(26):3212-8 – reference: 24002501 - J Clin Oncol. 2013 Oct 10;31(29):3639-46 – reference: 22025146 - J Clin Oncol. 2012 Jan 10;30(2):134-41 – reference: 23323146 - Ther Adv Med Oncol. 2013 Jan;5(1):41-50 – reference: 17222792 - Cancer Cell. 2007 Jan;11(1):83-95 – reference: 15207814 - Cytokine Growth Factor Rev. 2004 Aug;15(4):229-35 – reference: 25185099 - J Clin Oncol. 2015 Jan 10;33(2):141-8 – reference: 18765537 - Clin Cancer Res. 2008 Sep 1;14(17):5459-65 – reference: 21222245 - Curr Oncol Rep. 2011 Apr;13(2):97-102 – reference: 12177446 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11399-404 – reference: 20606160 - Blood. 2010 Oct 21;116(16):2984-93 – reference: 19581909 - Nat Rev Clin Oncol. 2009 Aug;6(8):465-77 – reference: 19244214 - Sci Signal. 2009 Feb 24;2(59):re1 – reference: 23619301 - Mol Cancer Ther. 2013 Jul;12(7):1322-31 – reference: 17160391 - Cancer Chemother Pharmacol. 2007 Apr;59(5):561-74 – reference: 18392794 - J Mol Med (Berl). 2008 Jul;86(7):785-9 – reference: 20179196 - Cancer Res. 2010 Mar 1;70(5):2085-94 – reference: 22345119 - Ann Oncol. 2012 Aug;23(8):2094-102 – reference: 22967508 - Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15894-9 – reference: 22789536 - Cancer Cell. 2012 Jul 10;22(1):21-35 – reference: 20005148 - Cytokine Growth Factor Rev. 2010 Feb;21(1):21-6 – reference: 25514409 - Int J Mol Sci. 2014;15(12):23024-41 – reference: 23908119 - J Clin Invest. 2013 Aug;123(8):3190-200 – reference: 25240821 - Lancet Oncol. 2014 Oct;15(11):1224-35 – reference: 12727920 - J Clin Invest. 2003 May;111(9):1287-95 – reference: 21691577 - Onco Targets Ther. 2011;4:43-58 – reference: 21204634 - Xenobiotica. 2011 Apr;41(4):297-311 – reference: 21407216 - Br J Cancer. 2011 Apr 12;104(8):1262-9 – reference: 25544869 - World J Hepatol. 2014 Dec 27;6(12):830-5 – reference: 17178882 - Cancer Res. 2006 Dec 15;66(24):11851-8 – reference: 24411639 - Lancet Oncol. 2014 Feb;15(2):143-55 – reference: 21364524 - Nat Rev Clin Oncol. 2011 Apr;8(4):210-21 – reference: 22949147 - J Clin Oncol. 2012 Oct 1;30(28):3499-506 – reference: 24277700 - Drugs. 2013 Dec;73(18):2003-15 – reference: 18708344 - Neuro Oncol. 2008 Dec;10(6):940-5 – reference: 20009575 - Cancer Biol Ther. 2010 Feb;9(3):176-82 – reference: 24768112 - Lancet. 2014 Jul 26;384(9940):319-28 – reference: 19029957 - Nat Rev Cancer. 2008 Dec;8(12):942-56 – reference: 23378586 - Cold Spring Harb Perspect Biol. 2013 Feb;5(2). pii: a009134. doi: 10.1101/cshperspect.a009134 – reference: 19030102 - PLoS One. 2008;3(11):e3794 – reference: 22573349 - Clin Cancer Res. 2012 Jul 15;18(14):3961-71 – reference: 20028771 - Clin Cancer Res. 2010 Jan 1;16(1):311-9 – reference: 24591665 - Eur Respir Rev. 2014 Mar 1;23(131):79-91 – reference: 24143206 - PLoS One. 2013;8(10):e77117 – reference: 15136787 - Nat Rev Drug Discov. 2004 May;3(5):391-400 – reference: 20624165 - Cancer Sci. 2010 Sep;101(9):1984-9 – reference: 21131553 - Clin Cancer Res. 2011 Mar 15;17(6):1373-81 – reference: 22965961 - J Clin Oncol. 2012 Oct 10;30(29):3588-95 – reference: 17943726 - Int J Cancer. 2008 Feb 1;122(3):664-71 – reference: 24360368 - Eur J Cancer. 2014 Mar;50(4):706-12 – reference: 19123972 - BMB Rep. 2008 Dec 31;41(12):833-9 – reference: 25273342 - Lancet Oncol. 2014 Oct;15(11):1269-78 – reference: 17016557 - J Clin Invest. 2006 Oct;116(10):2610-21 – reference: 24094768 - Lancet. 2014 Jan 4;383(9911):31-9 – reference: 24556040 - Lancet Oncol. 2014 Mar;15(3):286-96 – reference: 10211995 - Lab Invest. 1999 Apr;79(4):427-38 – reference: 2610687 - Biochem Biophys Res Commun. 1989 Dec 29;165(3):1198-206 – reference: 20460487 - Clin Cancer Res. 2010 May 15;16(10):2881-9 – reference: 15899831 - Cancer Res. 2005 May 15;65(10):4389-400 – reference: 23037498 - Cancer Control. 2012 Oct;19(4):309-16 – reference: 17215529 - N Engl J Med. 2007 Jan 11;356(2):115-24 – reference: 22027711 - Br J Cancer. 2011 Nov 22;105(11):1640-5 – reference: 23321547 - Eur J Cancer. 2013 Apr;49(6):1287-96 – reference: 14657001 - FASEB J. 2004 Feb;18(2):338-40 – reference: 23997938 - J Gastrointest Oncol. 2013 Sep;4(3):253-63 – reference: 12759248 - Am J Pathol. 2003 Jun;162(6):1913-26 – reference: 12383771 - Trends Mol Med. 2002 Oct;8(10):483-9 – reference: 20651738 - Nat Rev Cancer. 2010 Aug;10(8):575-85 – reference: 20688946 - Mol Cancer Ther. 2010 Oct;9(10):2825-33 – reference: 22056247 - Lancet. 2011 Dec 3;378(9807):1931-9 – reference: 23307858 - Clin Cancer Res. 2013 Apr 1;19(7):1773-83 – reference: 15863032 - Cytokine Growth Factor Rev. 2005 Apr;16(2):159-78 – reference: 23177515 - Lancet. 2013 Jan 26;381(9863):295-302 – reference: 22425960 - Cancer Lett. 2012 Jul 28;320(2):130-7 – reference: 24098755 - PLoS One. 2013;8(9):e76009 – reference: 19249680 - Cancer Cell. 2009 Mar 3;15(3):220-31 – reference: 23629668 - Int J Mol Sci. 2013;14(5):9338-64 – reference: 22228176 - Exp Mol Med. 2012 Jan 31;44(1):1-9 – reference: 19249675 - Cancer Cell. 2009 Mar 3;15(3):167-70 – reference: 23818496 - Cold Spring Harb Perspect Biol. 2013 Jul;5(7). pii: a009209. doi: 10.1101/cshperspect.a009209 – reference: 23625328 - Invest New Drugs. 2013 Oct;31(5):1283-93 – reference: 23980084 - J Clin Oncol. 2013 Oct 1;31(28):3517-24 – reference: 19889612 - Ann Oncol. 2010 Feb;21(2):370-5 – reference: 20511320 - Oncologist. 2010;15(6):539-47 – reference: 22184396 - J Clin Oncol. 2012 Feb 1;30(4):441-4 – reference: 2479986 - Science. 1989 Dec 8;246(4935):1306-9 – reference: 19642998 - J Hematol Oncol. 2009;2:33 – reference: 16675559 - Clin Cancer Res. 2006 May 1;12(9):2676-88 – reference: 24138719 - Curr Pharm Des. 2014;20(24):3958-72 – reference: 21606412 - J Clin Oncol. 2011 Jul 1;29(19):2660-6 – reference: 23177514 - Lancet. 2013 Jan 26;381(9863):303-12 – reference: 23598172 - Lancet Oncol. 2013 May;14(6):552-62 – reference: 12177445 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11393-8 – reference: 22830398 - Future Oncol. 2012 Jul;8(7):775-81 – reference: 25488963 - J Clin Oncol. 2015 Jan 10;33(2):172-9 – reference: 17575107 - Mol Cancer Ther. 2007 Jun;6(6):1785-92 |
SSID | ssj0015932 |
Score | 2.619321 |
SecondaryResourceType | review_article |
Snippet | Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of... It is increasingly clear that there are many interconnected and compensatory pathways that can overcome vascular endothelial growth factor-targeted inhibition... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 660 |
SubjectTerms | Angiogenesis inhibitors Angiogenesis Inhibitors - therapeutic use Antibodies, monoclonal, humanized Fibroblast growth factor Fibroblast Growth Factors - genetics Fibroblast Growth Factors - metabolism Humans Molecular Targeted Therapy Neoplasms - drug therapy Neoplasms - genetics Neoplasms - pathology Neovascularization, Pathologic - drug therapy Neovascularization, Pathologic - genetics Neovascularization, Pathologic - pathology New Drug Development and Clinical Pharmacology Platelet-Derived Growth Factor - genetics Platelet-Derived Growth Factor - metabolism Platelet‐derived growth factor Receptors Signal Transduction - drug effects Vascular endothelial growth factor Vascular Endothelial Growth Factor A - genetics Vascular Endothelial Growth Factor A - metabolism Vascular Endothelial Growth Factor Receptor-1 - genetics Vascular Endothelial Growth Factor Receptor-1 - metabolism |
Title | Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1634%2Ftheoncologist.2014-0465 https://www.ncbi.nlm.nih.gov/pubmed/26001391 https://www.proquest.com/docview/1702653300 https://www.proquest.com/docview/1727674889 https://pubmed.ncbi.nlm.nih.gov/PMC4571783 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSIgXxDflS0bibcpIYseJeZvKxoTU9aVDZS-RnThrpilFo32Av54720kTCmxDqqIqTa6J7-fz3fk-CHmXVaKSPNRBrIQOeBoXgWJGBCku17yUUVxhgvPkWByd8M_zZL7xKtnskpXeK37-Ma_kf7gK54CvmCV7A852ROEEfAf-whE4DMfr8diGcVvHRnNWL89QbtU2wHWMzLzEeAqsGYBm_8S5DnzGypc2APWgKTEH6wId55_AJF8tdg9tC56-1opYWja2vjWgApXSj-qHj7ufLuplz51wulDW-fp1fV5v0FSem7pNp9nd3-u7GqJkExLlpSPoa8hFR9N4icmxTV0474vUOOxBpy8fhWse4Jda4bqYbElxwTgMPWZydq-GQXgYMeMaSwzrZv-2nnVRhmjfAKl8QChHQjkSuk3uxGBbYNuL2XTebT0lkrktcv-uPigQCL3_yxMNVZotO2U73LZvBlk9ZvaA3PcGCN13aHpIbpnmEbk78SEWj8lpByraBxWtG-pART2oPlAHKeogRVtI0R6kqIMUdZB6Qk4OD2bjo8A34AgKbHsAU5cJLXWUlTrVUqlMmFCBfS2ZNiVnpSwrGZokS0uY17BSmCIN4ROXQmlVGcGekp1m2ZjnhCrQnDOZwfqhwOJlmD7NlVAh44azwqgREe0Y5oWvTo9NUi7yK7g4ImF34zdXoOXqW962TMpBmOIOmWrMcv09j-DhBcZbh_-6JsYCWFkmR-SZY2z3x9jtAUyqaETSAcu7C7CY-_CXpl7You48SaM0YzAOFhzXfZd8ejyegtkQvrj5OLwk9zaz_BXZWV2uzWtQsVf6jZ0SvwBs6tSy |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+Angiogenesis+in+Cancer+Therapy%3A+Moving+Beyond+Vascular+Endothelial+Growth+Factor&rft.jtitle=The+oncologist+%28Dayton%2C+Ohio%29&rft.au=Zhao%2C+Yujie&rft.au=Adjei%2C+Alex+A.&rft.date=2015-06-01&rft.issn=1083-7159&rft.eissn=1549-490X&rft.volume=20&rft.issue=6&rft.spage=660&rft.epage=673&rft_id=info:doi/10.1634%2Ftheoncologist.2014-0465&rft.externalDBID=n%2Fa&rft.externalDocID=10_1634_theoncologist_2014_0465 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-7159&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-7159&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-7159&client=summon |