Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor

Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metas...

Full description

Saved in:
Bibliographic Details
Published inThe oncologist (Dayton, Ohio) Vol. 20; no. 6; pp. 660 - 673
Main Authors Zhao, Yujie, Adjei, Alex A.
Format Journal Article
LanguageEnglish
Published Durham, NC, USA AlphaMed Press 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR‐2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet‐derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti‐VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors. Implications for Practice: Significant advances in cancer treatment have been achieved with the development of antiangiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF‐targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents. It is increasingly clear that there are many interconnected and compensatory pathways that can overcome vascular endothelial growth factor‐targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents.
AbstractList Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR-2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet-derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti-VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors. Significant advances in cancer treatment have been achieved with the development of antiangiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF-targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents.
Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR‐2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet‐derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti‐VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors. Implications for Practice: Significant advances in cancer treatment have been achieved with the development of antiangiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF‐targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents. It is increasingly clear that there are many interconnected and compensatory pathways that can overcome vascular endothelial growth factor‐targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents.
Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR-2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet-derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti-VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors.UNLABELLEDAngiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR-2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet-derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti-VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors.Significant advances in cancer treatment have been achieved with the development of antiangiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF-targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents.IMPLICATIONS FOR PRACTICESignificant advances in cancer treatment have been achieved with the development of antiangiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF-targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents.
Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR-2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop anti-angiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Implications for Practice: Significant advances in cancer treatment have been achieved with the development of anti-angiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF-targeted inhibition of angiogenesis. Maximizing the potential of anti-angiogenic therapy is likely to require a broader therapeutic approach using a new generation of multit-argeted anti-angiogenic agents.
It is increasingly clear that there are many interconnected and compensatory pathways that can overcome vascular endothelial growth factor-targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents. Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR-2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet-derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti-VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors.
Author Zhao, Yujie
Adjei, Alex A.
Author_xml – sequence: 1
  givenname: Yujie
  surname: Zhao
  fullname: Zhao, Yujie
– sequence: 2
  givenname: Alex A.
  surname: Adjei
  fullname: Adjei, Alex A.
  email: alex.adjei@roswellpark.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26001391$$D View this record in MEDLINE/PubMed
BookMark eNqNUV1rFDEUDVKxH_oXdB59mXozySQTQaEu_RCq-7KK-BIymbuzkWyyJrMt---dodtifbFw4R7IOececo7JQYgBCXlD4ZQKxt8NK4zBRh97l4fTCigvgYv6GTmiNVclV_DjYMTQsFLSWh2S45x_AYyQVS_IYSVGzBQ9Ij8XJvU4uNAXZ6F3sceA2eXChWJmgsVULFaYzGb3vvgSbybaJ9zF0BXfTbZbb1JxHro4xvHO-OIyxdthVVwYO8T0kjxfGp_x1X6fkG8X54vZVXk9v_w8O7subS0BSi6ZaFVLm66VrTKmEQiGCq5Yix1nneqWCrBuZMdrzoCilTBO1QnTmiUKdkI-3vlutu0aO4thSMbrTXJrk3Y6GqcfvwS30n280byWVDZsNHi7N0jx9xbzoNcuW_TeBIzbrKmspJC8adQTqFCJmjGAkfr671gPee7_fiR8uCPYFHNOuNTWDWZwcUrpvKagp671o6711LWeuh718h_9_Yn_K_eXb53H3VNlev51NgchgP0BgtPJwQ
CitedBy_id crossref_primary_10_1007_s12031_022_02054_2
crossref_primary_10_3389_fcell_2022_824075
crossref_primary_10_18632_oncotarget_22295
crossref_primary_10_1155_2017_4708076
crossref_primary_10_1186_s12943_018_0766_4
crossref_primary_10_1080_14740338_2020_1691167
crossref_primary_10_3390_cells12010064
crossref_primary_10_1007_s00262_023_03490_8
crossref_primary_10_1016_j_gene_2021_145625
crossref_primary_10_1016_j_jconrel_2023_10_022
crossref_primary_10_3389_fimmu_2024_1487610
crossref_primary_10_3390_pr11030917
crossref_primary_10_1016_j_bbrc_2019_11_017
crossref_primary_10_1080_09546634_2018_1506082
crossref_primary_10_1038_s41392_023_01460_1
crossref_primary_10_1016_j_critrevonc_2020_103196
crossref_primary_10_3892_ol_2018_9213
crossref_primary_10_18632_aging_203895
crossref_primary_10_1016_j_lungcan_2016_10_011
crossref_primary_10_1089_jop_2016_0027
crossref_primary_10_3390_molecules28237767
crossref_primary_10_1016_j_ygyno_2021_03_020
crossref_primary_10_1111_jcmm_12749
crossref_primary_10_1080_15376516_2020_1727596
crossref_primary_10_1016_j_prp_2019_152729
crossref_primary_10_1155_2020_1474050
crossref_primary_10_1111_jcmm_14922
crossref_primary_10_1016_j_canlet_2017_04_037
crossref_primary_10_1016_j_lfs_2020_117670
crossref_primary_10_2485_jhtb_26_33
crossref_primary_10_1007_s11906_020_01040_6
crossref_primary_10_17816_onco642394
crossref_primary_10_3892_ijo_2017_3884
crossref_primary_10_1080_01635581_2020_1862256
crossref_primary_10_1016_j_ajpath_2015_12_020
crossref_primary_10_1016_j_phrs_2016_03_024
crossref_primary_10_4155_fmc_2016_0189
crossref_primary_10_1016_j_neo_2022_100826
crossref_primary_10_1371_journal_pone_0295745
crossref_primary_10_4196_kjpp_2018_22_2_203
crossref_primary_10_1016_j_ejphar_2020_173488
crossref_primary_10_1016_j_molstruc_2018_03_034
crossref_primary_10_3390_biomedicines12122820
crossref_primary_10_1007_s40265_019_01249_z
crossref_primary_10_3389_fmmed_2021_749283
crossref_primary_10_1248_bpb_b21_00089
crossref_primary_10_1080_07391102_2023_2240895
crossref_primary_10_1016_j_bbrc_2019_03_142
crossref_primary_10_3390_jcm10194529
crossref_primary_10_1080_1061186X_2021_1961791
crossref_primary_10_1007_s11060_017_2650_2
crossref_primary_10_1039_C7NR09612G
crossref_primary_10_1371_journal_pone_0183969
crossref_primary_10_3389_fendo_2021_665631
crossref_primary_10_2147_CMAR_S278068
crossref_primary_10_1038_s12276_022_00744_w
crossref_primary_10_1080_14656566_2020_1713092
crossref_primary_10_2174_0929867325666171123204851
crossref_primary_10_1186_s12943_022_01670_1
crossref_primary_10_2174_0929867325666180821151409
crossref_primary_10_1016_j_intimp_2021_107895
crossref_primary_10_1186_s12890_020_01180_0
crossref_primary_10_1016_j_polar_2018_04_006
crossref_primary_10_3389_fonc_2020_564298
crossref_primary_10_1016_j_jtemb_2019_06_008
crossref_primary_10_3390_md21050307
crossref_primary_10_1097_PPO_0000000000000138
crossref_primary_10_1089_ars_2019_7987
crossref_primary_10_1016_j_bbagen_2018_08_013
crossref_primary_10_1016_j_jbiotec_2021_06_025
crossref_primary_10_3892_br_2017_1034
crossref_primary_10_3390_cells9071586
crossref_primary_10_1093_bioinformatics_btx454
crossref_primary_10_1002_bip_22814
crossref_primary_10_1186_s12906_017_1706_3
crossref_primary_10_3892_or_2015_4337
crossref_primary_10_1039_D4RA05244G
crossref_primary_10_1111_brv_12428
crossref_primary_10_2174_1389200220666191003161114
crossref_primary_10_1007_s00441_021_03481_0
crossref_primary_10_1186_s12943_017_0640_9
crossref_primary_10_3390_cancers13051072
crossref_primary_10_1007_s00432_019_03055_2
crossref_primary_10_3389_fphar_2024_1336249
crossref_primary_10_1111_jcmm_15708
crossref_primary_10_1016_j_dld_2020_09_008
crossref_primary_10_1016_j_actbio_2019_11_043
crossref_primary_10_1155_2024_9077926
crossref_primary_10_1177_17588359211042689
crossref_primary_10_3892_ol_2018_8656
crossref_primary_10_4103_jcrt_JCRT_325_19
crossref_primary_10_1016_j_bios_2020_112787
crossref_primary_10_14712_18059694_2019_129
crossref_primary_10_1016_j_algal_2022_102885
crossref_primary_10_1186_s12885_023_11625_4
crossref_primary_10_1007_s10456_017_9581_6
crossref_primary_10_3390_cells10030575
crossref_primary_10_1016_j_ejmech_2018_05_005
crossref_primary_10_1007_s11682_017_9770_3
crossref_primary_10_3390_cancers13112819
crossref_primary_10_1096_fj_202000380RR
crossref_primary_10_1097_CM9_0000000000001200
crossref_primary_10_1093_protein_gzx042
crossref_primary_10_3390_cells8121623
crossref_primary_10_4103_ijmr_IJMR_1560_19
crossref_primary_10_3390_ph14060521
crossref_primary_10_3389_fcell_2021_616306
crossref_primary_10_1007_s12013_024_01393_8
crossref_primary_10_1177_10732748211038424
crossref_primary_10_1155_2019_1947156
crossref_primary_10_1155_2022_8105229
crossref_primary_10_1080_13813455_2019_1669057
crossref_primary_10_3892_ol_2020_11521
crossref_primary_10_1186_s40959_021_00101_2
crossref_primary_10_1016_j_eimce_2019_06_014
crossref_primary_10_1038_s41417_021_00305_9
crossref_primary_10_1016_j_ijbiomac_2020_01_256
crossref_primary_10_1186_s40199_016_0161_x
crossref_primary_10_3389_fimmu_2023_1256740
crossref_primary_10_1667_RADE_21_00242_1
crossref_primary_10_1039_D1TB00209K
crossref_primary_10_1080_13543784_2019_1672655
crossref_primary_10_1080_21655979_2021_2005225
crossref_primary_10_3389_fonc_2021_778258
crossref_primary_10_1039_D3MD00053B
crossref_primary_10_1016_j_eimc_2019_06_002
crossref_primary_10_18632_oncotarget_18654
crossref_primary_10_1016_j_ejmech_2021_113205
crossref_primary_10_3892_ol_2019_10760
crossref_primary_10_3389_fonc_2022_1019153
crossref_primary_10_1016_j_intimp_2019_105847
crossref_primary_10_18632_oncotarget_7378
crossref_primary_10_1016_j_semcancer_2019_08_010
crossref_primary_10_1007_s11557_022_01821_0
crossref_primary_10_3389_fimmu_2018_00262
crossref_primary_10_1186_s12943_018_0869_y
crossref_primary_10_1186_s13046_020_01709_5
crossref_primary_10_1002_smsc_202300067
crossref_primary_10_1016_j_critrevonc_2015_08_012
crossref_primary_10_3390_ph16060867
crossref_primary_10_15252_embr_201744578
crossref_primary_10_3390_pharmacy10040095
crossref_primary_10_3389_fphar_2022_950109
crossref_primary_10_2174_1568026620666200826122402
crossref_primary_10_2174_1573412917999200925204910
crossref_primary_10_1186_s12951_017_0321_2
crossref_primary_10_1016_j_apsb_2019_06_011
crossref_primary_10_1186_s13045_024_01558_1
crossref_primary_10_1111_jth_15354
crossref_primary_10_1016_j_jksus_2023_102638
crossref_primary_10_3390_jcm10040566
crossref_primary_10_3390_ijms24119667
crossref_primary_10_3389_fonc_2022_933579
crossref_primary_10_1053_j_gastro_2018_09_051
crossref_primary_10_1016_j_cytox_2019_100005
crossref_primary_10_3390_molecules24234278
crossref_primary_10_1016_j_jep_2024_119222
crossref_primary_10_2174_0115680096307334240429050730
crossref_primary_10_1016_j_drup_2015_06_002
crossref_primary_10_1158_1535_7163_MCT_18_0548
crossref_primary_10_1021_jacs_8b12136
crossref_primary_10_1016_j_imlet_2020_12_007
crossref_primary_10_1007_s12149_020_01458_7
crossref_primary_10_3390_genes14040819
crossref_primary_10_1016_j_celrep_2023_112570
crossref_primary_10_1007_s00432_023_04722_1
crossref_primary_10_1002_ijc_32560
crossref_primary_10_3892_or_2017_5801
crossref_primary_10_1097_CAD_0000000000000969
crossref_primary_10_1158_1055_9965_EPI_18_0654
crossref_primary_10_3390_ijms17081254
crossref_primary_10_1016_j_heliyon_2020_e03199
crossref_primary_10_1080_13880209_2019_1577466
crossref_primary_10_1016_j_bonr_2025_101837
crossref_primary_10_1080_13543784_2017_1353599
crossref_primary_10_1016_j_biocel_2016_07_016
crossref_primary_10_3389_fcell_2021_649265
crossref_primary_10_1186_s12944_023_01868_2
crossref_primary_10_3390_cancers15174422
crossref_primary_10_1155_2018_1052102
crossref_primary_10_1007_s11605_020_04616_4
crossref_primary_10_18632_oncotarget_21973
crossref_primary_10_1016_j_biopha_2024_116354
crossref_primary_10_1016_j_lfs_2024_122499
crossref_primary_10_3390_ijms20143577
crossref_primary_10_2174_1573413719666230110124509
crossref_primary_10_1016_j_ccr_2024_216284
crossref_primary_10_1016_j_lfs_2022_120716
crossref_primary_10_1097_PAP_0000000000000124
crossref_primary_10_1016_j_tice_2022_101740
crossref_primary_10_1016_S1470_2045_15_00398_8
crossref_primary_10_2147_CMAR_S252181
crossref_primary_10_3390_biomedicines9030274
crossref_primary_10_1039_C9RA07830D
crossref_primary_10_1007_s12029_021_00629_7
crossref_primary_10_2174_1568009620666201009130008
crossref_primary_10_3390_ijms19113491
crossref_primary_10_1186_s12885_020_07210_8
crossref_primary_10_1016_j_cmrp_2017_04_002
crossref_primary_10_1371_journal_pone_0252233
crossref_primary_10_3390_curroncol29100607
crossref_primary_10_3390_ijms23137192
crossref_primary_10_1038_s41433_023_02610_z
crossref_primary_10_3390_metabo13030323
crossref_primary_10_1002_iid3_1311
crossref_primary_10_1155_2018_8250521
crossref_primary_10_3389_fphar_2023_1116081
crossref_primary_10_1021_acs_molpharmaceut_8b00133
crossref_primary_10_1007_s00404_019_05257_y
crossref_primary_10_3390_cancers12102992
crossref_primary_10_1097_MD_0000000000030529
crossref_primary_10_3390_ijms160716176
crossref_primary_10_1021_acsabm_4c00660
crossref_primary_10_1080_17512433_2019_1630272
crossref_primary_10_7197_cmj_1189799
crossref_primary_10_1080_01635581_2020_1810290
crossref_primary_10_62347_KIVS3169
crossref_primary_10_1093_cvr_cvae105
crossref_primary_10_1097_gscm_0000000000000021
crossref_primary_10_1039_C8BM00213D
crossref_primary_10_1080_19420862_2021_1982447
crossref_primary_10_1007_s12307_018_0207_3
crossref_primary_10_1002_med_21452
crossref_primary_10_1038_s41598_018_33037_2
crossref_primary_10_2174_1566524021666211124092804
crossref_primary_10_3390_toxins16030127
crossref_primary_10_1667_RR14473_1
crossref_primary_10_3389_fphar_2023_1147717
crossref_primary_10_1093_cvr_cvab096
crossref_primary_10_3390_cancers13071552
crossref_primary_10_3389_fimmu_2024_1493978
crossref_primary_10_1158_1078_0432_CCR_15_2145
crossref_primary_10_1515_hsz_2018_0111
crossref_primary_10_1002_jcc_25734
crossref_primary_10_1002_cbdv_201900232
crossref_primary_10_1007_s10549_021_06470_7
crossref_primary_10_1080_01635581_2020_1824001
crossref_primary_10_3390_md21030156
crossref_primary_10_1038_npjsba_2016_30
crossref_primary_10_1080_14656566_2024_2395379
crossref_primary_10_3390_cells8050407
crossref_primary_10_2174_1573394714666180904122412
crossref_primary_10_3389_fonc_2021_644854
crossref_primary_10_3389_fonc_2021_758503
crossref_primary_10_1186_s13046_019_1357_y
crossref_primary_10_3389_fimmu_2021_733853
crossref_primary_10_3389_fimmu_2022_830292
crossref_primary_10_1186_s12883_021_02202_y
crossref_primary_10_1096_fj_202100808RRR
crossref_primary_10_18632_oncotarget_7794
crossref_primary_10_5812_ijcm_120315
crossref_primary_10_1002_wsbm_1549
crossref_primary_10_1080_14728214_2023_2259790
crossref_primary_10_1038_srep37085
crossref_primary_10_1111_jop_12371
crossref_primary_10_3389_fmolb_2021_690206
crossref_primary_10_3390_cancers17030499
crossref_primary_10_1002_med_21517
crossref_primary_10_18632_oncotarget_19114
crossref_primary_10_2147_DDDT_S296502
crossref_primary_10_1186_s12881_020_01030_0
crossref_primary_10_2174_0929867328666211117094550
crossref_primary_10_1007_s10585_022_10162_x
crossref_primary_10_3390_ph12020068
crossref_primary_10_3390_ph14070626
crossref_primary_10_2147_OTT_S268613
crossref_primary_10_3390_ijms242417578
crossref_primary_10_2174_0929867325666171226115626
crossref_primary_10_1016_j_jare_2017_06_006
crossref_primary_10_1080_1061186X_2020_1797050
crossref_primary_10_1089_dna_2024_0109
crossref_primary_10_1080_13543784_2022_2033208
crossref_primary_10_1080_07391102_2023_2297821
crossref_primary_10_3892_ol_2019_10961
crossref_primary_10_1038_onc_2017_163
crossref_primary_10_1016_j_bbcan_2018_12_001
crossref_primary_10_1080_01635581_2018_1490449
crossref_primary_10_2174_1573408016666200123160509
crossref_primary_10_1038_s41388_021_02112_w
crossref_primary_10_1016_j_cmi_2017_12_027
crossref_primary_10_1016_j_msec_2020_111229
crossref_primary_10_1177_1533033820980116
crossref_primary_10_1186_s12876_024_03210_1
crossref_primary_10_1016_j_lungcan_2023_03_009
crossref_primary_10_3390_jcm11175096
crossref_primary_10_1016_j_ejps_2021_106052
crossref_primary_10_4103_neurol_india_Neurol_India_D_24_00127
crossref_primary_10_12659_MSM_898204
crossref_primary_10_1186_s13045_024_01601_1
crossref_primary_10_18632_oncotarget_20398
crossref_primary_10_1002_slct_202101792
crossref_primary_10_1007_s00432_023_04680_8
crossref_primary_10_1021_acsomega_9b00224
crossref_primary_10_1172_JCI154943
crossref_primary_10_3390_pharmaceutics14010100
crossref_primary_10_1007_s12094_023_03107_7
crossref_primary_10_1007_s10517_017_3735_9
crossref_primary_10_3390_ijms222011036
crossref_primary_10_1016_j_ejmech_2020_112851
crossref_primary_10_3389_fphar_2019_00079
crossref_primary_10_18632_oncotarget_19394
crossref_primary_10_3389_fimmu_2023_1149810
crossref_primary_10_1002_hep_29643
crossref_primary_10_3389_fimmu_2022_949553
crossref_primary_10_1038_cddis_2017_123
crossref_primary_10_1155_2021_6610769
crossref_primary_10_7717_peerj_5990
crossref_primary_10_1186_s12935_018_0530_2
crossref_primary_10_3389_fonc_2024_1413213
crossref_primary_10_1002_ardp_202200133
crossref_primary_10_1002_jcp_26049
crossref_primary_10_1016_j_ygyno_2023_01_034
crossref_primary_10_1186_s40164_021_00252_z
crossref_primary_10_1038_aps_2017_96
crossref_primary_10_2478_enr_2019_0018
crossref_primary_10_1080_21655979_2021_2012553
crossref_primary_10_3390_ijms21020667
crossref_primary_10_1080_14728222_2017_1371137
crossref_primary_10_3390_life13102027
crossref_primary_10_1016_j_jcyt_2020_02_005
crossref_primary_10_3389_fendo_2024_1424839
crossref_primary_10_15789_1563_0625_IOV_1894
crossref_primary_10_1016_j_nano_2018_04_019
crossref_primary_10_3390_ijms25063313
crossref_primary_10_1517_13543784_2016_1117071
crossref_primary_10_18632_oncotarget_7915
crossref_primary_10_1080_02652048_2020_1767223
crossref_primary_10_3389_fcvm_2018_00154
crossref_primary_10_3390_cancers11030316
crossref_primary_10_3390_vaccines4040041
crossref_primary_10_3389_fimmu_2017_01804
crossref_primary_10_3390_nu8110628
crossref_primary_10_1016_j_canlet_2015_09_004
crossref_primary_10_1007_s00432_021_03701_8
crossref_primary_10_1097_MD_0000000000008698
crossref_primary_10_3390_biomedicines11102724
crossref_primary_10_1016_j_jtemb_2024_127533
crossref_primary_10_1007_s12272_018_1051_1
crossref_primary_10_3389_fonc_2021_731535
crossref_primary_10_3390_cancers14215315
crossref_primary_10_1002_cbin_10881
crossref_primary_10_1016_j_tranon_2019_05_007
crossref_primary_10_1016_j_carbpol_2022_119412
crossref_primary_10_1016_j_jss_2016_09_004
crossref_primary_10_1038_s41467_021_21071_0
crossref_primary_10_3389_fonc_2020_560413
crossref_primary_10_1080_10428194_2023_2248330
crossref_primary_10_3390_vetsci7020067
crossref_primary_10_1016_j_apjtm_2015_12_012
crossref_primary_10_3389_fimmu_2021_684344
crossref_primary_10_1016_j_gene_2018_02_026
crossref_primary_10_1016_j_bbadis_2019_04_008
crossref_primary_10_3390_ph16020219
crossref_primary_10_1007_s12038_020_0013_1
crossref_primary_10_1016_j_neuroscience_2022_03_030
crossref_primary_10_1002_biof_1677
crossref_primary_10_1016_j_ijbiomac_2022_09_129
crossref_primary_10_1111_jam_13458
crossref_primary_10_1186_s13045_019_0718_5
crossref_primary_10_1016_S1470_2045_20_30493_9
crossref_primary_10_1039_D3DT01648J
crossref_primary_10_1080_10717544_2020_1809559
crossref_primary_10_1155_2021_7037786
crossref_primary_10_2174_0115680096265896231226062212
crossref_primary_10_3390_jcm10102169
crossref_primary_10_1096_fj_202302629RR
crossref_primary_10_1016_j_cccb_2021_100030
crossref_primary_10_1016_j_semcancer_2024_10_001
crossref_primary_10_1016_j_biopha_2019_109007
crossref_primary_10_3390_biomedicines11082142
crossref_primary_10_18632_oncotarget_6514
crossref_primary_10_1111_pim_12724
crossref_primary_10_1002_med_21496
crossref_primary_10_3390_pharmaceutics15041284
crossref_primary_10_3389_fonc_2021_659217
crossref_primary_10_1039_D0RA10622D
crossref_primary_10_1089_dna_2015_2918
crossref_primary_10_18632_oncotarget_24693
crossref_primary_10_1016_j_heliyon_2024_e29504
crossref_primary_10_1007_s40203_022_00125_1
crossref_primary_10_3390_cells12202510
crossref_primary_10_2214_AJR_16_17560
crossref_primary_10_2174_1871520620666200228110704
crossref_primary_10_3389_fonc_2022_972322
crossref_primary_10_1016_j_bbadis_2018_02_014
crossref_primary_10_2147_IJN_S429629
crossref_primary_10_1016_j_ejps_2016_04_008
crossref_primary_10_1016_j_biopha_2019_109221
crossref_primary_10_1016_j_heliyon_2023_e15152
crossref_primary_10_1080_24701556_2021_1956953
crossref_primary_10_3390_ijms242317065
crossref_primary_10_3390_jcm10163721
crossref_primary_10_1016_j_ccr_2018_01_009
crossref_primary_10_1038_s41598_017_03276_w
crossref_primary_10_3892_or_2016_4721
crossref_primary_10_1016_j_intimp_2021_107927
crossref_primary_10_1111_imm_12618
crossref_primary_10_1002_ardp_201900340
crossref_primary_10_1016_j_tips_2017_11_004
crossref_primary_10_1080_17425255_2024_2401586
crossref_primary_10_1080_1061186X_2020_1744157
crossref_primary_10_1063_5_0244706
crossref_primary_10_3390_ani14071118
Cites_doi 10.1096/fj.03-0271fje
10.1183/09059180.00008913
10.1038/nrd2115
10.1016/S1471-4914(02)02394-8
10.1200/JCO.2011.38.7621
10.1200/JCO.2012.42.8201
10.1016/j.molmed.2013.05.002
10.3390/ijms151223024
10.1345/aph.1L426
10.1016/S0140-6736(14)60845-X
10.2147/OTT.S18155
10.1172/JCI24612
10.1016/S0002-9440(10)64325-8
10.2217/fon.12.73
10.1177/1758834012458480
10.1016/j.cytogfr.2004.03.010
10.1158/0008-5472.CAN-12-4697
10.1016/j.ccr.2004.08.034
10.1158/1078-0432.CCR-05-1770
10.1126/science.2479986
10.1038/bjc.2011.85
10.1517/13543784.2010.488220
10.1016/j.canlet.2012.03.008
10.1101/cshperspect.a009134
10.1186/1756-8722-2-33
10.1016/j.ejca.2013.11.032
10.1016/0006-291X(89)92729-0
10.1016/j.ccr.2009.02.007
10.1215/15228517-2008-061
10.4161/cbt.9.3.10635
10.1016/S1470-2045(14)70444-9
10.1200/jco.2014.32.18_suppl.lba6008
10.1038/nrd1381
10.1200/JCO.2012.48.4659
10.3109/00498254.2010.545452
10.1016/S1470-2045(13)70093-7
10.1038/nrclinonc.2011.21
10.1200/JCO.2012.47.2464
10.1038/nrc2524
10.1016/j.cytogfr.2005.01.004
10.1038/nature10144
10.1200/JCO.2008.19.5511
10.1200/JCO.2010.32.4145
10.1038/nrclinonc.2009.94
10.1021/jm7013309
10.1200/JCO.2012.42.5355
10.1038/nrc2894
10.1158/1078-0432.CCR-09-0694
10.1634/theoncologist.2009-0274
10.1158/1078-0432.CCR-07-5270
10.1158/0008-5472.CAN-04-4409
10.1007/s11912-010-0149-5
10.1016/S0140-6736(14)60421-9
10.1016/j.cell.2010.01.045
10.1016/j.cytogfr.2009.11.003
10.5483/BMBRep.2008.41.12.833
10.1016/S1470-2045(14)70439-5
10.1073/pnas.1208324109
10.1038/nm.2575
10.1056/NEJMoa0708857
10.1126/scisignal.259re1
10.1200/JCO.2014.57.1513
10.1016/j.ccr.2012.05.037
10.1200/JCO.2011.35.5040
10.1158/1078-0432.CCR-12-0002
10.1371/journal.pone.0077117
10.1016/j.ccr.2005.09.005
10.1016/j.mri.2006.09.041
10.1177/107327481201900407
10.1016/S0140-6736(12)60651-5
10.1002/path.1618
10.1182/blood-2010-02-269894
10.1093/annonc/mdr596
10.1158/1078-0432.CCR-12-1281
10.1200/JCO.2012.42.6031
10.1038/bjc.2011.440
10.1158/1535-7163.MCT-10-0379
10.1016/j.ejphar.2013.02.026
10.1038/nrd2792
10.1016/S0140-6736(11)61613-9
10.1007/s10637-013-9962-7
10.1158/0008-5472.CAN-07-6307
10.1158/1535-7163.MCT-12-1162
10.1158/1078-0432.CCR-09-2944
10.1073/pnas.1111079108
10.1200/JCO.2012.48.4410
10.1093/annonc/mdp506
10.1007/s00109-008-0337-z
10.1172/JCI200317929
10.1073/pnas.172398299
10.1200/JCO.2009.24.8252
10.1371/journal.pone.0076009
10.1158/0008-5472.CAN-06-1377
10.3858/emm.2012.44.1.025
10.1111/j.1349-7006.2010.01639.x
10.1158/1535-7163.MCT-06-0595
10.4254/wjh.v6.i12.830
10.1172/JCI70212
10.1016/j.ejca.2012.12.010
10.1016/S1470-2045(14)70030-0
10.1200/JCO.2013.54.3298
10.1007/s00280-006-0393-4
10.1038/nrc3680
10.1158/1078-0432.CCR-12-2885
10.1016/S1470-2045(14)70420-6
10.1073/pnas.172398399
10.1200/jco.2013.31.15_suppl.8034
10.1101/cshperspect.a006593
10.2174/13816128113196660757
10.1158/1078-0432.CCR-09-2755
10.3390/ijms14059338
10.1200/JCO.2005.06.081
10.1200/JCO.2002.10.088
10.1056/NEJMoa065044
10.1101/cshperspect.a009209
10.1186/1478-811X-11-97
10.1158/0008-5472.CAN-09-3746
10.1016/S0140-6736(12)61900-X
10.1158/1078-0432.CCR-11-3005
10.1517/13543784.2014.871259
10.1007/s40265-013-0154-8
10.1002/ijc.23131
10.1371/journal.pone.0003794
10.1158/1078-0432.CCR-12-2353
10.1016/j.ccr.2009.01.027
10.1016/S0140-6736(13)61719-5
10.1016/j.ccr.2006.11.021
10.1016/S1470-2045(13)70586-2
10.1200/JCO.2009.23.9764
10.1016/S0140-6736(12)61857-1
ContentType Journal Article
Copyright 2015 AlphaMed Press
AlphaMed Press.
AlphaMed Press 2015
Copyright_xml – notice: 2015 AlphaMed Press
– notice: AlphaMed Press.
– notice: AlphaMed Press 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TO
H94
5PM
DOI 10.1634/theoncologist.2014-0465
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
DatabaseTitleList MEDLINE

MEDLINE - Academic
Oncogenes and Growth Factors Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Targeting Angiogenesis: Moving Beyond VEGF
EISSN 1549-490X
EndPage 673
ExternalDocumentID PMC4571783
26001391
10_1634_theoncologist_2014_0465
ONCO0660
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Boehringer Ingelheim
GroupedDBID ---
0R~
123
18M
1OC
24P
2WC
36B
4.4
53G
5VS
AAPXW
AAVAP
AAWTL
AAZKR
ABEJV
ABPTD
ABXVV
ACXQS
ADBBV
ADXAS
AEGXH
AENEX
AJAOE
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AOIJS
BAWUL
BFHJK
CS3
DCZOG
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
F5P
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
IAO
IHR
INH
ITC
LUTES
LYRES
O9-
OK1
P2P
P2W
RAO
RHF
RHI
ROL
ROX
RPM
SUPJJ
SV3
TOX
TR2
UDS
W2D
W8F
WIN
WOHZO
WOQ
WOW
XSB
ZZTAW
AAFWJ
AAYXX
ABGNP
AFPKN
CITATION
OVT
7X7
88E
8FI
8FJ
AAMMB
ABUWG
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
BENPR
CCPQU
CGR
CUY
CVF
ECM
EIF
FYUFA
HMCUK
M1P
NPM
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PSQYO
UKHRP
7X8
7TO
H94
5PM
ID FETCH-LOGICAL-c5700-4736b9b18db7b9aa86e0a16493bed43d9df90e587d454301ec70c702d6abafe63
ISSN 1083-7159
1549-490X
IngestDate Thu Aug 21 18:31:14 EDT 2025
Tue Aug 05 10:39:38 EDT 2025
Fri Jul 11 10:05:21 EDT 2025
Mon Jul 21 05:54:12 EDT 2025
Tue Jul 01 00:48:16 EDT 2025
Thu Apr 24 23:13:28 EDT 2025
Wed Jan 22 16:24:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Fibroblast growth factor
Molecular targeted therapy
Receptors
Platelet-derived growth factor
Antibodies, monoclonal, humanized
Angiogenesis inhibitors
Vascular endothelial growth factor
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
AlphaMed Press.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5700-4736b9b18db7b9aa86e0a16493bed43d9df90e587d454301ec70c702d6abafe63
Notes Disclosures of potential conflicts of interest may be found at the end of this article.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://theoncologist.onlinelibrary.wiley.com/doi/pdfdirect/10.1634/theoncologist.2014-0465
PMID 26001391
PQID 1702653300
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4571783
proquest_miscellaneous_1727674889
proquest_miscellaneous_1702653300
pubmed_primary_26001391
crossref_citationtrail_10_1634_theoncologist_2014_0465
crossref_primary_10_1634_theoncologist_2014_0465
wiley_primary_10_1634_theoncologist_2014_0465_ONCO0660
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2015
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: June 2015
PublicationDecade 2010
PublicationPlace Durham, NC, USA
PublicationPlace_xml – name: Durham, NC, USA
– name: United States
PublicationTitle The oncologist (Dayton, Ohio)
PublicationTitleAlternate Oncologist
PublicationYear 2015
Publisher AlphaMed Press
Publisher_xml – name: AlphaMed Press
References 2010; 10
2004; 204
2010; 16
2013; 4
2010; 15
2010; 19
2010; 101
2002; 99
2013; 123
2004; 3
2014; 25
2004; 6
2012; 19
2005; 65
2012; 18
2013; 8
2013; 5
2014; 23
2011; 473
2014; 20
2010; 21
2010; 116
2010; 28
2003; 162
2014; 15
2007; 6
2014; 14
2008; 359
2012; 379
2012; 23
2012; 22
2009; 15
2010; 9
2011; 378
2002; 8
2006; 116
2011; 4
2008; 51
2008; 122
2007; 11
2011; 8
2012; 30
2012; 109
1989; 246
2013; 73
2005; 8
2008; 41
2005; 16
2014; 383
2012; 44
2014; 384
2014; 32
2012; 320
2009; 43
2013; 23
2015; 33
2008; 8
2011; 13
2010; 140
2008; 3
2011; 17
2003; 111
2005; 23
2013; 19
2013; 14
2013; 11
2006; 66
2013; 12
2008; 68
2010; 70
2014; 50
2011; 29
2014; 6
2007; 25
2013; 49
2006; 12
2012
2013; 705
2008; 14
2008; 10
2013; 381
2009; 27
2007; 59
2007; 356
2011; 105
2011; 104
2012; 2
2011; 108
2004; 18
2002; 20
2004; 15
1989; 165
2013; 31
1999; 79
2011; 41
2009; 8
2009; 6
2014
2013
2008; 86
2009; 2
2012; 8
Demetri (2021122309231697900_B100) 2012; 18
Cainap (2021122309231697900_B129) 2015; 33
Bois (2021122309231697900_B122) 2010; 21
Aprile (2021122309231697900_B32) 2013; 73
Olson (2021122309231697900_B106) 2011; 108
Du Bois (2021122309231697900_B92) 2013; 23
Cao (2021122309231697900_B10) 2009; 2
De Falco (2021122309231697900_B13) 2012; 44
Zhu (2021122309231697900_B35) 2014; 25
Kurzrock (2021122309231697900_B67) 2011; 29
Fischer (2021122309231697900_B12) 2008; 8
Holash (2021122309231697900_B25) 2002; 99
Cao (2021122309231697900_B49) 2008; 86
Brose (2021122309231697900_B99) 2014; 384
Motzer (2021122309231697900_B136) 2014; 15
Wehland (2021122309231697900_B145) 2013; 14
Wells (2021122309231697900_B68) 2012; 30
Sonpavde (2021122309231697900_B140) 2014; 23
Johnson (2021122309231697900_B123) 2013; 31
Batchelor (2021122309231697900_B133) 2013; 31
Demetri (2021122309231697900_B96) 2013; 381
Ellis (2021122309231697900_B121) 2010; 16
(2021122309231697900_B6) 2013
Kieran (2021122309231697900_B2) 2012; 2
Presta (2021122309231697900_B51) 2005; 16
Levitzki (2021122309231697900_B40) 2004; 15
(2021122309231697900_B85) 2013
Pàez-Ribes (2021122309231697900_B21) 2009; 15
Motzer (2021122309231697900_B102) 2013; 14
Grothey (2021122309231697900_B95) 2013; 381
Hilberg (2021122309231697900_B82) 2008; 68
Tammela (2021122309231697900_B14) 2010; 140
Ebos (2021122309231697900_B75) 2011; 8
Okamoto (2021122309231697900_B116) 2010; 9
Cyran (2021122309231697900_B112) 2013; 8
Dvorak (2021122309231697900_B11) 2002; 20
(2021122309231697900_B7) 2014
Gligorov (2021122309231697900_B143) 2014; 15
Matsui (2021122309231697900_B127) 2008; 14
Chau (2021122309231697900_B88) 2013; 19
Mancuso (2021122309231697900_B20) 2006; 116
Wilke (2021122309231697900_B30) 2014; 15
Griffioen (2021122309231697900_B104) 2012; 18
Elisei (2021122309231697900_B66) 2013; 31
Van der Graaf (2021122309231697900_B94) 2012; 379
Casanovas (2021122309231697900_B55) 2005; 8
Hicklin (2021122309231697900_B3) 2005; 23
Tait (2021122309231697900_B57) 2004; 204
Mulligan (2021122309231697900_B64) 2014; 14
Kim (2021122309231697900_B108) 2007; 6
Cai (2021122309231697900_B124) 2008; 51
Welti (2021122309231697900_B71) 2013; 123
Shojaei (2021122309231697900_B19) 2012; 320
Bousquet (2021122309231697900_B120) 2011; 105
Kodama (2021122309231697900_B44) 2010; 101
Gressett (2021122309231697900_B24) 2009; 43
Chang (2021122309231697900_B107) 2007; 59
Van Cutsem (2021122309231697900_B28) 2012; 30
Rini (2021122309231697900_B89) 2011; 378
Liu (2021122309231697900_B109) 2006; 66
Eisen (2021122309231697900_B118) 2013; 31
Angevin (2021122309231697900_B126) 2013; 19
Leung (2021122309231697900_B8) 1989; 246
Fuchs (2021122309231697900_B29) 2014; 383
(2021122309231697900_B83) 2013
Sahade (2021122309231697900_B139) 2012; 8
Reck (2021122309231697900_B115) 2010; 19
Ferrara (2021122309231697900_B15) 2004; 3
Xue (2021122309231697900_B45) 2012; 18
Crinò (2021122309231697900_B69) 2014; 23
Batchelor (2021122309231697900_B79) 2007; 11
Llovet (2021122309231697900_B98) 2008; 359
Wu (2021122309231697900_B38) 2008; 3
Jahangiri (2021122309231697900_B63) 2013; 19
(2021122309231697900_B81) 2012
Motzer (2021122309231697900_B101) 2007; 356
(2021122309231697900_B5) 2014
(2021122309231697900_B113) 2015
Wedge (2021122309231697900_B125) 2005; 65
Zhou (2021122309231697900_B130) 2009; 2
Ding (2021122309231697900_B42) 2010; 116
Cascone (2021122309231697900_B56) 2012; 30
Stopfer (2021122309231697900_B138) 2011; 41
Ferrara (2021122309231697900_B36) 2010; 21
Ballas (2021122309231697900_B70) 2011; 4
Hoff (2021122309231697900_B131) 2012; 30
Kopetz (2021122309231697900_B72) 2010; 28
Wilmes (2021122309231697900_B80) 2007; 25
Folkman (2021122309231697900_B1) 2007; 6
You (2021122309231697900_B60) 2008; 41
Carmeliet (2021122309231697900_B4) 2011; 473
(2021122309231697900_B84) 2013
Turner (2021122309231697900_B48) 2010; 70
Kudo (2021122309231697900_B117) 2011; 17
Laurie (2021122309231697900_B135) 2014; 50
Loupakis (2021122309231697900_B23) 2011; 104
Garon (2021122309231697900_B33) 2014; 384
Pilotto (2021122309231697900_B146) 2014; 20
Ibáñez (2021122309231697900_B65) 2013; 5
Tischer (2021122309231697900_B9) 1989; 165
Zhu (2021122309231697900_B142) 2013; 5
Schmoll (2021122309231697900_B132) 2012; 30
Sternberg (2021122309231697900_B103) 2013; 49
(2021122309231697900_B16) 2015
Clarke (2021122309231697900_B74) 2013; 4
Hanna (2021122309231697900_B91) 2013; 31
Doebele (2021122309231697900_B119) 2012; 23
Heldin (2021122309231697900_B37) 2013; 11
Cao (2021122309231697900_B52) 2012; 109
Giavazzi (2021122309231697900_B54) 2003; 162
Mackey (2021122309231697900_B34) 2015; 33
Von Minckwitz (2021122309231697900_B144) 2014; 15
Cao (2021122309231697900_B39) 2013; 19
Majumder (2021122309231697900_B105) 2013; 705
Sun (2021122309231697900_B141) 2014; 6
Kristensen (2021122309231697900_B17) 2014; 15
Wojta (2021122309231697900_B61) 1999; 79
Bergers (2021122309231697900_B77) 2003; 111
Spratlin (2021122309231697900_B31) 2011; 13
(2021122309231697900_B86) 2013
Lu (2021122309231697900_B46) 2010; 9
Erber (2021122309231697900_B78) 2004; 18
Tejada (2021122309231697900_B41) 2006; 12
Beenken (2021122309231697900_B47) 2009; 8
Mross (2021122309231697900_B114) 2010; 16
Loges (2021122309231697900_B76) 2009; 15
Javerzat (2021122309231697900_B50) 2002; 8
Lieu (2021122309231697900_B73) 2013; 8
Chen (2021122309231697900_B22) 2009; 6
Ledermann (2021122309231697900_B134) 2013
Huang (2021122309231697900_B53) 2010; 10
Escudier (2021122309231697900_B97) 2009; 27
(2021122309231697900_B87) 2013
Lu (2021122309231697900_B62) 2012; 22
Cao (2021122309231697900_B43) 2004; 6
Gerald (2021122309231697900_B58) 2013; 73
Kim (2021122309231697900_B27) 2002; 99
Reck (2021122309231697900_B90) 2014; 15
Matsui (2021122309231697900_B128) 2008; 122
Mortimer (2021122309231697900_B18) 2012; 19
Abou-Elkacem (2021122309231697900_B111) 2013; 12
Hamberg (2021122309231697900_B110) 2010; 15
Sternberg (2021122309231697900_B93) 2010; 28
Schlumberger (2021122309231697900_B137) 2014; 32
Gomez-Manzano (2021122309231697900_B26) 2008; 10
Graveel (2021122309231697900_B59) 2013; 5
22965961 - J Clin Oncol. 2012 Oct 10;30(29):3588-95
21204634 - Xenobiotica. 2011 Apr;41(4):297-311
23177514 - Lancet. 2013 Jan 26;381(9863):303-12
23209176 - Cold Spring Harb Perspect Med. 2012 Dec;2(12):a006593
17160391 - Cancer Chemother Pharmacol. 2007 Apr;59(5):561-74
23467610 - Cancer Res. 2013 Mar 15;73(6):1649-57
23307858 - Clin Cancer Res. 2013 Apr 1;19(7):1773-83
18288793 - J Med Chem. 2008 Mar 27;51(6):1976-80
23940216 - J Clin Oncol. 2013 Sep 10;31(26):3212-8
12759248 - Am J Pathol. 2003 Jun;162(6):1913-26
25514409 - Int J Mol Sci. 2014;15(12):23024-41
23619301 - Mol Cancer Ther. 2013 Jul;12(7):1322-31
22949147 - J Clin Oncol. 2012 Oct 1;30(28):3499-506
21364524 - Nat Rev Clin Oncol. 2011 Apr;8(4):210-21
24768112 - Lancet. 2014 Jul 26;384(9940):319-28
22228176 - Exp Mol Med. 2012 Jan 31;44(1):1-9
20606160 - Blood. 2010 Oct 21;116(16):2984-93
12383771 - Trends Mol Med. 2002 Oct;8(10):483-9
15307132 - J Pathol. 2004 Sep;204(1):1-10
22345119 - Ann Oncol. 2012 Aug;23(8):2094-102
23177515 - Lancet. 2013 Jan 26;381(9863):295-302
17575107 - Mol Cancer Ther. 2007 Jun;6(6):1785-92
21222245 - Curr Oncol Rep. 2011 Apr;13(2):97-102
24143206 - PLoS One. 2013;8(10):e77117
23908119 - J Clin Invest. 2013 Aug;123(8):3190-200
22789536 - Cancer Cell. 2012 Jul 10;22(1):21-35
15488757 - Cancer Cell. 2004 Oct;6(4):333-45
24098755 - PLoS One. 2013;8(9):e76009
24138719 - Curr Pharm Des. 2014;20(24):3958-72
20100962 - J Clin Oncol. 2010 Feb 20;28(6):1061-8
15207814 - Cytokine Growth Factor Rev. 2004 Aug;15(4):229-35
23339124 - Clin Cancer Res. 2013 Mar 1;19(5):1257-68
21407216 - Br J Cancer. 2011 Apr 12;104(8):1262-9
19581909 - Nat Rev Clin Oncol. 2009 Aug;6(8):465-77
18765537 - Clin Cancer Res. 2008 Sep 1;14(17):5459-65
22830398 - Future Oncol. 2012 Jul;8(7):775-81
20465363 - Expert Opin Investig Drugs. 2010 Jun;19(6):789-94
20651738 - Nat Rev Cancer. 2010 Aug;10(8):575-85
21131553 - Clin Cancer Res. 2011 Mar 15;17(6):1373-81
17222792 - Cancer Cell. 2007 Jan;11(1):83-95
19123972 - BMB Rep. 2008 Dec 31;41(12):833-9
19642998 - J Hematol Oncol. 2009;2:33
22595799 - Lancet. 2012 May 19;379(9829):1879-86
19249675 - Cancer Cell. 2009 Mar 3;15(3):167-70
20179196 - Cancer Res. 2010 Mar 1;70(5):2085-94
20511320 - Oncologist. 2010;15(6):539-47
22084065 - Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1275-84
23818496 - Cold Spring Harb Perspect Biol. 2013 Jul;5(7). pii: a009209. doi: 10.1101/cshperspect.a009209
22967508 - Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15894-9
24411639 - Lancet Oncol. 2014 Feb;15(2):143-55
17178882 - Cancer Res. 2006 Dec 15;66(24):11851-8
24094768 - Lancet. 2014 Jan 4;383(9911):31-9
17371720 - Magn Reson Imaging. 2007 Apr;25(3):319-27
23598172 - Lancet Oncol. 2013 May;14(6):552-62
12727920 - J Clin Invest. 2003 May;111(9):1287-95
2479986 - Science. 1989 Dec 8;246(4935):1306-9
16226705 - Cancer Cell. 2005 Oct;8(4):299-309
19451442 - J Clin Oncol. 2009 Jul 10;27(20):3312-8
19029957 - Nat Rev Cancer. 2008 Dec;8(12):942-56
15136787 - Nat Rev Drug Discov. 2004 May;3(5):391-400
17016557 - J Clin Invest. 2006 Oct;116(10):2610-21
22138754 - Nat Med. 2012 Jan;18(1):100-10
12409337 - J Clin Oncol. 2002 Nov 1;20(21):4368-80
23980084 - J Clin Oncol. 2013 Oct 1;31(28):3517-24
2610687 - Biochem Biophys Res Commun. 1989 Dec 29;165(3):1198-206
25488963 - J Clin Oncol. 2015 Jan 10;33(2):172-9
25240821 - Lancet Oncol. 2014 Oct;15(11):1224-35
20005148 - Cytokine Growth Factor Rev. 2010 Feb;21(1):21-6
15863032 - Cytokine Growth Factor Rev. 2005 Apr;16(2):159-78
23629668 - Int J Mol Sci. 2013;14(5):9338-64
19244214 - Sci Signal. 2009 Feb 24;2(59):re1
20624165 - Cancer Sci. 2010 Sep;101(9):1984-9
18559524 - Cancer Res. 2008 Jun 15;68(12):4774-82
20009575 - Cancer Biol Ther. 2010 Feb;9(3):176-82
22027711 - Br J Cancer. 2011 Nov 22;105(11):1640-5
10211995 - Lab Invest. 1999 Apr;79(4):427-38
22056247 - Lancet. 2011 Dec 3;378(9807):1931-9
20008624 - J Clin Oncol. 2010 Jan 20;28(3):453-9
12177446 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11399-404
24933332 - Lancet. 2014 Aug 23;384(9944):665-73
15899831 - Cancer Res. 2005 May 15;65(10):4389-400
19247306 - Nat Rev Drug Discov. 2009 Mar;8(3):235-53
16675559 - Clin Cancer Res. 2006 May 1;12(9):2676-88
15585754 - J Clin Oncol. 2005 Feb 10;23(5):1011-27
18708344 - Neuro Oncol. 2008 Dec;10(6):940-5
20178740 - Cell. 2010 Feb 19;140(4):460-76
18650514 - N Engl J Med. 2008 Jul 24;359(4):378-90
25544869 - World J Hepatol. 2014 Dec 27;6(12):830-5
25185099 - J Clin Oncol. 2015 Jan 10;33(2):141-8
18392794 - J Mol Med (Berl). 2008 Jul;86(7):785-9
22965965 - J Clin Oncol. 2012 Oct 10;30(29):3596-603
12177445 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11393-8
23625328 - Invest New Drugs. 2013 Oct;31(5):1283-93
17215529 - N Engl J Med. 2007 Jan 11;356(2):115-24
23378586 - Cold Spring Harb Perspect Biol. 2013 Feb;5(2). pii: a009134. doi: 10.1101/cshperspect.a009134
20028771 - Clin Cancer Res. 2010 Jan 1;16(1):311-9
20688946 - Mol Cancer Ther. 2010 Oct;9(10):2825-33
22425960 - Cancer Lett. 2012 Jul 28;320(2):130-7
14657001 - FASEB J. 2004 Feb;18(2):338-40
19249680 - Cancer Cell. 2009 Mar 3;15(3):220-31
23321547 - Eur J Cancer. 2013 Apr;49(6):1287-96
20460487 - Clin Cancer Res. 2010 May 15;16(10):2881-9
23037498 - Cancer Control. 2012 Oct;19(4):309-16
19030102 - PLoS One. 2008;3(11):e3794
24387233 - Expert Opin Investig Drugs. 2014 Mar;23(3):305-15
23997938 - J Gastrointest Oncol. 2013 Sep;4(3):253-63
17396134 - Nat Rev Drug Discov. 2007 Apr;6(4):273-86
24556040 - Lancet Oncol. 2014 Mar;15(3):286-96
22184396 - J Clin Oncol. 2012 Feb 1;30(4):441-4
24360368 - Eur J Cancer. 2014 Mar;50(4):706-12
19889612 - Ann Oncol. 2010 Feb;21(2):370-5
19261963 - Ann Pharmacother. 2009 Mar;43(3):490-501
22661587 - Clin Cancer Res. 2012 Jun 1;18(11):3170-9
24561444 - Nat Rev Cancer. 2014 Mar;14(3):173-86
23323146 - Ther Adv Med Oncol. 2013 Jan;5(1):41-50
24591665 - Eur Respir Rev. 2014 Mar 1;23(131):79-91
25273342 - Lancet Oncol. 2014 Oct;15(11):1269-78
22573349 - Clin Cancer Res. 2012 Jul 15;18(14):3961-71
22025146 - J Clin Oncol. 2012 Jan 10;30(2):134-41
24277700 - Drugs. 2013 Dec;73(18):2003-15
24359404 - Cell Commun Signal. 2013;11:97
23773831 - Trends Mol Med. 2013 Aug;19(8):460-73
25273343 - Lancet Oncol. 2014 Nov;15(12):1351-60
21691577 - Onco Targets Ther. 2011;4:43-58
23454556 - Eur J Pharmacol. 2013 Apr 5;705(1-3):86-95
21606412 - J Clin Oncol. 2011 Jul 1;29(19):2660-6
17943726 - Int J Cancer. 2008 Feb 1;122(3):664-71
21593862 - Nature. 2011 May 19;473(7347):298-307
23231950 - Clin Cancer Res. 2013 Feb 1;19(3):524-9
24002501 - J Clin Oncol. 2013 Oct 10;31(29):3639-46
References_xml – volume: 31
  start-page: 3212
  year: 2013
  end-page: 3218
  article-title: Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma
  publication-title: J Clin Oncol
– volume: 13
  start-page: 97
  year: 2011
  end-page: 102
  article-title: Ramucirumab (IMC‐1121B): Monoclonal antibody inhibition of vascular endothelial growth factor receptor‐2
  publication-title: Curr Oncol Rep
– volume: 31
  start-page: 3517
  year: 2013
  end-page: 3524
  article-title: Brivanib versus sorafenib as first‐line therapy in patients with unresectable, advanced hepatocellular carcinoma: Results from the randomized phase III BRISK‐FL study
  publication-title: J Clin Oncol
– volume: 162
  start-page: 1913
  year: 2003
  end-page: 1926
  article-title: Distinct role of fibroblast growth factor‐2 and vascular endothelial growth factor on tumor growth and angiogenesis
  publication-title: Am J Pathol
– volume: 33
  start-page: 141
  year: 2015
  end-page: 148
  article-title: Primary results of ROSE/TRIO‐12, a randomized placebo‐controlled phase III trial evaluating the addition of ramucirumab to first‐line docetaxel chemotherapy in metastatic breast cancer
  publication-title: J Clin Oncol
– volume: 16
  start-page: 159
  year: 2005
  end-page: 178
  article-title: Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis
  publication-title: Cytokine Growth Factor Rev
– volume: 15
  start-page: 286
  year: 2014
  end-page: 296
  article-title: Dovitinib versus sorafenib for third‐line targeted treatment of patients with metastatic renal cell carcinoma: An open‐label, randomised phase 3 trial
  publication-title: Lancet Oncol
– volume: 6
  start-page: 830
  year: 2014
  end-page: 835
  article-title: Role of anti‐angiogenesis therapy in the management of hepatocellular carcinoma: The jury is still out
  publication-title: World J Hepatol
– volume: 6
  start-page: 1785
  year: 2007
  end-page: 1792
  article-title: Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice
  publication-title: Mol Cancer Ther
– volume: 15
  start-page: 143
  year: 2014
  end-page: 155
  article-title: Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non‐small‐cell lung cancer (LUME‐Lung 1): A phase 3, double‐blind, randomised controlled trial
  publication-title: Lancet Oncol
– year: 2014
– volume: 18
  start-page: 3961
  year: 2012
  end-page: 3971
  article-title: Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients
  publication-title: Clin Cancer Res
– volume: 359
  start-page: 378
  year: 2008
  end-page: 390
  article-title: Sorafenib in advanced hepatocellular carcinoma
  publication-title: N Engl J Med
– volume: 65
  start-page: 4389
  year: 2005
  end-page: 4400
  article-title: AZD2171: A highly potent, orally bioavailable, vascular endothelial growth factor receptor‐2 tyrosine kinase inhibitor for the treatment of cancer
  publication-title: Cancer Res
– volume: 28
  start-page: 1061
  year: 2010
  end-page: 1068
  article-title: Pazopanib in locally advanced or metastatic renal cell carcinoma: Results of a randomized phase III trial
  publication-title: J Clin Oncol
– volume: 320
  start-page: 130
  year: 2012
  end-page: 137
  article-title: Anti‐angiogenesis therapy in cancer: Current challenges and future perspectives
  publication-title: Cancer Lett
– volume: 18
  start-page: 3170
  year: 2012
  end-page: 3179
  article-title: Complete longitudinal analyses of the randomized, placebo‐controlled, phase III trial of sunitinib in patients with gastrointestinal stromal tumor following imatinib failure
  publication-title: Clin Cancer Res
– volume: 378
  start-page: 1931
  year: 2011
  end-page: 1939
  article-title: Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): A randomised phase 3 trial
  publication-title: Lancet
– volume: 23
  start-page: 7
  issue: suppl 1
  year: 2013
  article-title: AGO‐OVAR 12: A randomized placebo‐controlled GCIG/ENGOT‐intergroup phase III trial of standard frontline chemotherapy +/− nintedanib for advanced ovarian cancer
  publication-title: Int J Gynecol Cancer
– volume: 111
  start-page: 1287
  year: 2003
  end-page: 1295
  article-title: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors
  publication-title: J Clin Invest
– volume: 44
  start-page: 1
  year: 2012
  end-page: 9
  article-title: The discovery of placenta growth factor and its biological activity
  publication-title: Exp Mol Med
– volume: 14
  start-page: 5459
  year: 2008
  end-page: 5465
  article-title: Multi‐kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA‐MB‐231 via inhibition of vascular endothelial growth factor‐receptor (VEGF‐R) 2 and VEGF‐R3 kinase
  publication-title: Clin Cancer Res
– volume: 381
  start-page: 295
  year: 2013
  end-page: 302
  article-title: Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): An international, multicentre, randomised, placebo‐controlled, phase 3 trial
  publication-title: Lancet
– volume: 17
  start-page: 1373
  year: 2011
  end-page: 1381
  article-title: Antitumor activity of BIBF 1120, a triple angiokinase inhibitor, and use of VEGFR2+pTyr+ peripheral blood leukocytes as a pharmacodynamic biomarker in vivo
  publication-title: Clin Cancer Res
– volume: 18
  start-page: 338
  year: 2004
  end-page: 340
  article-title: Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte‐mediated endothelial cell survival mechanisms
  publication-title: FASEB J
– volume: 109
  start-page: 15894
  year: 2012
  end-page: 15899
  article-title: Collaborative interplay between FGF‐2 and VEGF‐C promotes lymphangiogenesis and metastasis
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  start-page: 391
  year: 2004
  end-page: 400
  article-title: Discovery and development of bevacizumab, an anti‐VEGF antibody for treating cancer
  publication-title: Nat Rev Drug Discov
– volume: 18
  start-page: 100
  year: 2012
  end-page: 110
  article-title: PDGF‐BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells
  publication-title: Nat Med
– volume: 15
  start-page: 1224
  year: 2014
  end-page: 1235
  article-title: Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro‐oesophageal junction adenocarcinoma (RAINBOW): A double‐blind, randomised phase 3 trial
  publication-title: Lancet Oncol
– volume: 6
  start-page: 333
  year: 2004
  end-page: 345
  article-title: PDGF‐BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis
  publication-title: Cancer Cell
– volume: 2
  start-page: re1
  year: 2009
  article-title: Positive and negative modulation of angiogenesis by VEGFR1 ligands
  publication-title: Sci Signal
– volume: 3
  start-page: e3794
  year: 2008
  article-title: Comprehensive dissection of PDGF‐PDGFR signaling pathways in PDGFR genetically defined cells
  publication-title: PLoS One
– volume: 6
  start-page: 273
  year: 2007
  end-page: 286
  article-title: Angiogenesis: An organizing principle for drug discovery?
  publication-title: Nature Rev Drug Discov
– volume: 19
  start-page: 460
  year: 2013
  end-page: 473
  article-title: Multifarious functions of PDGFs and PDGFRs in tumor growth and metastasis
  publication-title: Trends Mol Med
– volume: 8
  start-page: e77117
  year: 2013
  article-title: The association of alternate VEGF ligands with resistance to anti‐VEGF therapy in metastatic colorectal cancer
  publication-title: PLoS One
– volume: 43
  start-page: 490
  year: 2009
  end-page: 501
  article-title: Intricacies of bevacizumab‐induced toxicities and their management
  publication-title: Ann Pharmacother
– volume: 32
  start-page: LBA6008a
  year: 2014
  article-title: A phase 3, multicenter, double‐blind, placebo‐controlled trial of lenvatinib (E7080) in patients with 131I‐refractory differentiated thyroid cancer (SELECT)
  publication-title: J Clin Oncol
– volume: 19
  start-page: 789
  year: 2010
  end-page: 794
  article-title: BIBF 1120 for the treatment of non‐small cell lung cancer
  publication-title: Expert Opin Investig Drugs
– volume: 12
  start-page: 2676
  year: 2006
  end-page: 2688
  article-title: Tumor‐driven paracrine platelet‐derived growth factor receptor alpha signaling is a key determinant of stromal cell recruitment in a model of human lung carcinoma
  publication-title: Clin Cancer Res
– volume: 705
  start-page: 86
  year: 2013
  end-page: 95
  article-title: Study of the cellular mechanism of sunitinib mediated inactivation of activated hepatic stellate cells and its implications in angiogenesis
  publication-title: Eur J Pharmacol
– volume: 20
  start-page: 3958
  year: 2014
  end-page: 3972
  article-title: Anti‐angiogenic drugs and biomarkers in non‐small‐cell lung cancer: A ‘hard days night’
  publication-title: Curr Pharm Des
– volume: 15
  start-page: 23024
  year: 2014
  end-page: 23041
  article-title: Anti‐vascular endothelial growth factor therapy in breast cancer
  publication-title: Int J Mol Sci
– volume: 8
  start-page: 299
  year: 2005
  end-page: 309
  article-title: Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late‐stage pancreatic islet tumors
  publication-title: Cancer Cell
– volume: 23
  start-page: 2094
  year: 2012
  end-page: 2102
  article-title: A phase I, open‐label dose‐escalation study of continuous treatment with BIBF 1120 in combination with paclitaxel and carboplatin as first‐line treatment in patients with advanced non‐small‐cell lung cancer
  publication-title: Ann Oncol
– volume: 99
  start-page: 11393
  year: 2002
  end-page: 11398
  article-title: VEGF‐Trap: A VEGF blocker with potent antitumor effects
  publication-title: Proc Natl Acad Sci USA
– volume: 31
  start-page: 8034a
  year: 2013
  article-title: LUME‐lung 2: A multicenter, randomized, double‐blind, phase III study of nintedanib plus pemetrexed versus placebo plus pemetrexed in patients with advanced nonsquamous non‐small cell lung cancer (NSCLC) after failure of first‐line chemotherapy
  publication-title: J Clin Oncol
– volume: 23
  start-page: 1011
  year: 2005
  end-page: 1027
  article-title: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis
  publication-title: J Clin Oncol
– volume: 204
  start-page: 1
  year: 2004
  end-page: 10
  article-title: Angiopoietins in tumours: The angiogenic switch
  publication-title: J Pathol
– volume: 27
  start-page: 3312
  year: 2009
  end-page: 3318
  article-title: Sorafenib for treatment of renal cell carcinoma: Final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial
  publication-title: J Clin Oncol
– volume: 21
  start-page: 370
  year: 2010
  end-page: 375
  article-title: A phase I open‐label dose‐escalation study of oral BIBF 1120 combined with standard paclitaxel and carboplatin in patients with advanced gynecological malignancies
  publication-title: Ann Oncol
– volume: 33
  start-page: 172
  year: 2015
  end-page: 179
  article-title: Linifanib versus sorafenib in patients with advanced hepatocellular carcinoma: Results of a randomized phase III trial
  publication-title: J Clin Oncol
– volume: 30
  start-page: 3588
  year: 2012
  end-page: 3595
  article-title: Cediranib with mFOLFOX6 versus bevacizumab with mFOLFOX6 as first‐line treatment for patients with advanced colorectal cancer: A double‐blind, randomized phase III study (HORIZON III)
  publication-title: J Clin Oncol
– volume: 31
  start-page: 3639
  year: 2013
  end-page: 3646
  article-title: Cabozantinib in progressive medullary thyroid cancer
  publication-title: J Clin Oncol
– volume: 28
  start-page: 453
  year: 2010
  end-page: 459
  article-title: Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: Efficacy and circulating angiogenic biomarkers associated with therapeutic resistance
  publication-title: J Clin Oncol
– volume: 25
  start-page: LBA16a
  issue: suppl 5
  year: 2014
  article-title: Ramucirumab (RAM) as a second‐line treatment in patients (PTS) with advanced hepatocellular carcinoma (HCC) following first‐line therapy with sorafenib: Results from the randomized phase III REACH study
  publication-title: Ann Oncol
– volume: 5
  start-page: 41
  year: 2013
  end-page: 50
  article-title: New agents on the horizon in hepatocellular carcinoma
  publication-title: Ther Adv Med Oncol
– volume: 19
  start-page: 309
  year: 2012
  end-page: 316
  article-title: Lessons learned from the bevacizumab experience
  publication-title: Cancer Contr
– volume: 101
  start-page: 1984
  year: 2010
  end-page: 1989
  article-title: Expression of platelet‐derived growth factor (PDGF)‐B and PDGF‐receptor β is associated with lymphatic metastasis in human gastric carcinoma
  publication-title: Cancer Sci
– volume: 246
  start-page: 1306
  year: 1989
  end-page: 1309
  article-title: Vascular endothelial growth factor is a secreted angiogenic mitogen
  publication-title: Science
– volume: 30
  start-page: 134
  year: 2012
  end-page: 141
  article-title: Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double‐blind phase III trial
  publication-title: J Clin Oncol
– volume: 41
  start-page: 833
  year: 2008
  end-page: 839
  article-title: The hepatocyte growth factor/c‐Met signaling pathway as a therapeutic target to inhibit angiogenesis
  publication-title: BMB Rep
– volume: 105
  start-page: 1640
  year: 2011
  end-page: 1645
  article-title: Phase I study of BIBF 1120 with docetaxel and prednisone in metastatic chemo‐naive hormone‐refractory prostate cancer patients
  publication-title: Br J Cancer
– volume: 15
  start-page: 229
  year: 2004
  end-page: 235
  article-title: PDGF receptor kinase inhibitors for the treatment of PDGF driven diseases
  publication-title: Cytokine Growth Factor Rev
– volume: 19
  start-page: 524
  year: 2013
  end-page: 529
  article-title: Vandetanib for the treatment of medullary thyroid cancer
  publication-title: Clin Cancer Res
– volume: 41
  start-page: 297
  year: 2011
  end-page: 311
  article-title: Pharmacokinetics and metabolism of BIBF 1120 after oral dosing to healthy male volunteers
  publication-title: Xenobiotica
– volume: 70
  start-page: 2085
  year: 2010
  end-page: 2094
  article-title: FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer
  publication-title: Cancer Res
– volume: 383
  start-page: 31
  year: 2014
  end-page: 39
  article-title: Ramucirumab monotherapy for previously treated advanced gastric or gastro‐oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo‐controlled, phase 3 trial
  publication-title: Lancet
– volume: 21
  start-page: 21
  year: 2010
  end-page: 26
  article-title: Pathways mediating VEGF‐independent tumor angiogenesis
  publication-title: Cytokine Growth Factor Rev
– volume: 379
  start-page: 1879
  year: 2012
  end-page: 1886
  article-title: Pazopanib for metastatic soft‐tissue sarcoma (PALETTE): A randomised, double‐blind, placebo‐controlled phase 3 trial
  publication-title: Lancet
– volume: 140
  start-page: 460
  year: 2010
  end-page: 476
  article-title: Lymphangiogenesis: Molecular mechanisms and future promise
  publication-title: Cell
– volume: 384
  start-page: 665
  year: 2014
  end-page: 673
  article-title: Ramucirumab plus docetaxel versus placebo plus docetaxel for second‐line treatment of stage IV non‐small‐cell lung cancer after disease progression on platinum‐based therapy (REVEL): A multicentre, double‐blind, randomised phase 3 trial
  publication-title: Lancet
– volume: 25
  start-page: 319
  year: 2007
  end-page: 327
  article-title: AG‐013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast‐enhanced magnetic resonance imaging
  publication-title: Magn Reson Imaging
– volume: 31
  start-page: 1283
  year: 2013
  end-page: 1293
  article-title: Effect of small angiokinase inhibitor nintedanib (BIBF 1120) on QT interval in patients with previously untreated, advanced renal cell cancer in an open‐label, phase II study
  publication-title: Invest New Drugs
– volume: 30
  start-page: 3596
  year: 2012
  end-page: 3603
  article-title: Cediranib plus FOLFOX/CAPOX versus placebo plus FOLFOX/CAPOX in patients with previously untreated metastatic colorectal cancer: A randomized, double‐blind, phase III study (HORIZON II)
  publication-title: J Clin Oncol
– volume: 122
  start-page: 664
  year: 2008
  end-page: 671
  article-title: E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition
  publication-title: Int J Cancer
– volume: 23
  start-page: 305
  year: 2014
  end-page: 315
  article-title: Fibroblast growth factor receptors as therapeutic targets in clear‐cell renal cell carcinoma
  publication-title: Expert Opin Investig Drugs
– year: 2013
– volume: 10
  start-page: 940
  year: 2008
  end-page: 945
  article-title: VEGF Trap induces antiglioma effect at different stages of disease
  publication-title: Neuro Oncol
– volume: 59
  start-page: 561
  year: 2007
  end-page: 574
  article-title: Sorafenib (BAY 43‐9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models
  publication-title: Cancer Chemother Pharmacol
– volume: 2
  start-page: 33
  year: 2009
  article-title: ABT‐869, a promising multi‐targeted tyrosine kinase inhibitor: From bench to bedside
  publication-title: J Hematol Oncol
– volume: 15
  start-page: 1351
  year: 2014
  end-page: 1360
  article-title: Maintenance capecitabine and bevacizumab versus bevacizumab alone after initial first‐line bevacizumab and docetaxel for patients with HER2‐negative metastatic breast cancer (IMELDA): A randomised, open‐label, phase 3 trial
  publication-title: Lancet Oncol
– volume: 14
  start-page: 552
  year: 2013
  end-page: 562
  article-title: Axitinib versus sorafenib as second‐line treatment for advanced renal cell carcinoma: Overall survival analysis and updated results from a randomised phase 3 trial
  publication-title: Lancet Oncol
– volume: 68
  start-page: 4774
  year: 2008
  end-page: 4782
  article-title: BIBF 1120: Triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy
  publication-title: Cancer Res
– volume: 16
  start-page: 2881
  year: 2010
  end-page: 2889
  article-title: Phase I open‐label study of continuous treatment with BIBF 1120, a triple angiokinase inhibitor, and pemetrexed in pretreated non‐small cell lung cancer patients
  publication-title: Clin Cancer Res
– volume: 86
  start-page: 785
  year: 2008
  end-page: 789
  article-title: R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways
  publication-title: J Mol Med (Berl)
– volume: 23
  start-page: 79
  year: 2014
  end-page: 91
  article-title: Therapeutic options targeting angiogenesis in nonsmall cell lung cancer
  publication-title: Eur Respir Rev
– volume: 11
  start-page: 83
  year: 2007
  end-page: 95
  article-title: AZD2171, a pan‐VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients
  publication-title: Cancer Cell
– volume: 8
  start-page: 775
  year: 2012
  end-page: 781
  article-title: Cediranib: A VEGF receptor tyrosine kinase inhibitor
  publication-title: Future Oncol
– volume: 384
  start-page: 319
  year: 2014
  end-page: 328
  article-title: Sorafenib in radioactive iodine‐refractory, locally advanced or metastatic differentiated thyroid cancer: A randomised, double‐blind, phase 3 trial
  publication-title: Lancet
– volume: 20
  start-page: 4368
  year: 2002
  end-page: 4380
  article-title: Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy
  publication-title: J Clin Oncol
– volume: 5
  start-page: a009209
  year: 2013
  article-title: MET: A critical player in tumorigenesis and therapeutic target
  publication-title: Cold Spring Harb Perspect Biol
– volume: 66
  start-page: 11851
  year: 2006
  end-page: 11858
  article-title: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5
  publication-title: Cancer Res
– volume: 15
  start-page: 539
  year: 2010
  end-page: 547
  article-title: (Pre‐)clinical pharmacology and activity of pazopanib, a novel multikinase angiogenesis inhibitor
  publication-title: The Oncologist
– volume: 19
  start-page: 1257
  year: 2013
  end-page: 1268
  article-title: Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma
  publication-title: Clin Cancer Res
– volume: 19
  start-page: 1773
  year: 2013
  end-page: 1783
  article-title: Gene expression profile identifies tyrosine kinase c‐Met as a targetable mediator of antiangiogenic therapy resistance
  publication-title: Clin Cancer Res
– volume: 29
  start-page: 2660
  year: 2011
  end-page: 2666
  article-title: Activity of XL184 (cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer
  publication-title: J Clin Oncol
– volume: 8
  start-page: e76009
  year: 2013
  article-title: Regorafenib effects on human colon carcinoma xenografts monitored by dynamic contrast‐enhanced computed tomography with immunohistochemical validation
  publication-title: PLoS One
– volume: 8
  start-page: 210
  year: 2011
  end-page: 221
  article-title: Antiangiogenic therapy: Impact on invasion, disease progression, and metastasis
  publication-title: Nat Rev Clin Oncol
– volume: 9
  start-page: 176
  year: 2010
  end-page: 182
  article-title: Targeting pericytes with a PDGF‐B aptamer in human ovarian carcinoma models
  publication-title: Cancer Biol Ther
– volume: 79
  start-page: 427
  year: 1999
  end-page: 438
  article-title: Hepatocyte growth factor increases expression of vascular endothelial growth factor and plasminogen activator inhibitor‐1 in human keratinocytes and the vascular endothelial growth factor receptor flk‐1 in human endothelial cells
  publication-title: Lab Invest
– volume: 123
  start-page: 3190
  year: 2013
  end-page: 3200
  article-title: Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer
  publication-title: J Clin Invest
– volume: 4
  start-page: 253
  year: 2013
  end-page: 263
  article-title: Understanding and targeting resistance to anti‐angiogenic therapies
  publication-title: J Gastrointest Oncol
– volume: 10
  start-page: 575
  year: 2010
  end-page: 585
  article-title: Targeting the ANGPT‐TIE2 pathway in malignancy
  publication-title: Nat Rev Cancer
– volume: 165
  start-page: 1198
  year: 1989
  end-page: 1206
  article-title: Vascular endothelial growth factor: A new member of the platelet‐derived growth factor gene family
  publication-title: Biochem Biophys Res Commun
– volume: 4
  start-page: 43
  year: 2011
  end-page: 58
  article-title: Rationale for targeting VEGF, FGF, and PDGF for the treatment of NSCLC
  publication-title: Onco Targets Ther
– volume: 50
  start-page: 706
  year: 2014
  end-page: 712
  article-title: Randomised, double‐blind trial of carboplatin and paclitaxel with daily oral cediranib or placebo in patients with advanced non‐small cell lung cancer: NCIC Clinical Trials Group study BR29
  publication-title: Eur J Cancer
– volume: 8
  start-page: 942
  year: 2008
  end-page: 956
  article-title: FLT1 and its ligands VEGFB and PlGF: Drug targets for anti‐angiogenic therapy?
  publication-title: Nat Rev Cancer
– volume: 381
  start-page: 303
  year: 2013
  end-page: 312
  article-title: Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo‐controlled, phase 3 trial
  publication-title: Lancet
– volume: 22
  start-page: 21
  year: 2012
  end-page: 35
  article-title: VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex
  publication-title: Cancer Cell
– volume: 9
  start-page: 2825
  year: 2010
  end-page: 2833
  article-title: Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors
  publication-title: Mol Cancer Ther
– volume: 30
  start-page: 441
  year: 2012
  end-page: 444
  article-title: Targeting the angiopoietin/Tie2 pathway: Cutting tumor vessels with a double‐edged sword?
  publication-title: J Clin Oncol
– volume: 6
  start-page: 465
  year: 2009
  end-page: 477
  article-title: Adverse effects of anticancer agents that target the VEGF pathway
  publication-title: Nat Rev Clin Oncol
– volume: 14
  start-page: 173
  year: 2014
  end-page: 186
  article-title: RET revisited: Expanding the oncogenic portfolio
  publication-title: Nat Rev Cancer
– volume: 30
  start-page: 3499
  year: 2012
  end-page: 3506
  article-title: Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin‐based regimen
  publication-title: J Clin Oncol
– volume: 356
  start-page: 115
  year: 2007
  end-page: 124
  article-title: Sunitinib versus interferon alfa in metastatic renal‐cell carcinoma
  publication-title: N Engl J Med
– volume: 11
  start-page: 97
  year: 2013
  article-title: Targeting the PDGF signaling pathway in tumor treatment
  publication-title: Cell Commun Signal
– volume: 15
  start-page: 220
  year: 2009
  end-page: 231
  article-title: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis
  publication-title: Cancer Cell
– volume: 116
  start-page: 2984
  year: 2010
  end-page: 2993
  article-title: Platelet‐derived growth factor (PDGF)‐PDGF receptor interaction activates bone marrow‐derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: Implications for an angiogenic switch
  publication-title: Blood
– volume: 12
  start-page: 1322
  year: 2013
  end-page: 1331
  article-title: Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model
  publication-title: Mol Cancer Ther
– volume: 116
  start-page: 2610
  year: 2006
  end-page: 2621
  article-title: Rapid vascular regrowth in tumors after reversal of VEGF inhibition
  publication-title: J Clin Invest
– volume: 49
  start-page: 1287
  year: 2013
  end-page: 1296
  article-title: A randomised, double‐blind phase III study of pazopanib in patients with advanced and/or metastatic renal cell carcinoma: Final overall survival results and safety update
  publication-title: Eur J Cancer
– volume: 99
  start-page: 11399
  year: 2002
  end-page: 11404
  article-title: Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma
  publication-title: Proc Natl Acad Sci USA
– year: 2012
– volume: 5
  start-page: a009134
  year: 2013
  article-title: Structure and physiology of the RET receptor tyrosine kinase
  publication-title: Cold Spring Harb Perspect Biol
– volume: 8
  start-page: 235
  year: 2009
  end-page: 253
  article-title: The FGF family: Biology, pathophysiology and therapy
  publication-title: Nat Rev Drug Discov
– year: 2013
  article-title: Randomised double‐blind phase III trial of cediranib (AZD 2171) in relapsed platinum sensitive ovarian cancer: Results of the ICON6 trial [abstract E17‐7020]
– volume: 473
  start-page: 298
  year: 2011
  end-page: 307
  article-title: Molecular mechanisms and clinical applications of angiogenesis
  publication-title: Nature
– volume: 2
  start-page: a006593
  year: 2012
  article-title: The VEGF pathway in cancer and disease: Responses, resistance, and the path forward
  publication-title: Cold Spring Harb Perspect Med
– volume: 73
  start-page: 2003
  year: 2013
  end-page: 2015
  article-title: Critical appraisal of ramucirumab (IMC‐1121B) for cancer treatment: From benchside to clinical use
  publication-title: Drugs
– volume: 16
  start-page: 311
  year: 2010
  end-page: 319
  article-title: Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors
  publication-title: Clin Cancer Res
– volume: 104
  start-page: 1262
  year: 2011
  end-page: 1269
  article-title: Pharmacodynamic and pharmacogenetic angiogenesis‐related markers of first‐line FOLFOXIRI plus bevacizumab schedule in metastatic colorectal cancer
  publication-title: Br J Cancer
– volume: 15
  start-page: 1269
  year: 2014
  end-page: 1278
  article-title: Bevacizumab plus chemotherapy versus chemotherapy alone as second‐line treatment for patients with HER2‐negative locally recurrent or metastatic breast cancer after first‐line treatment with bevacizumab plus chemotherapy (TANIA): An open‐label, randomised phase 3 trial
  publication-title: Lancet Oncol
– volume: 14
  start-page: 9338
  year: 2013
  end-page: 9364
  article-title: Biomarkers for anti‐angiogenic therapy in cancer
  publication-title: Int J Mol Sci
– volume: 73
  start-page: 1649
  year: 2013
  end-page: 1657
  article-title: Angiopoietin‐2: An attractive target for improved antiangiogenic tumor therapy
  publication-title: Cancer Res
– volume: 51
  start-page: 1976
  year: 2008
  end-page: 1980
  article-title: Discovery of brivanib alaninate ((S)‐((R)‐1‐(4‐(4‐fluoro‐2‐methyl‐1H‐indol‐5‐yloxy)‐5‐methylpyrrolo[2,1‐f][1,2,4]triazin‐6‐yloxy)propan‐2‐yl)2‐aminopropanoate), a novel prodrug of dual vascular endothelial growth factor receptor‐2 and fibroblast growth factor receptor‐1 kinase inhibitor (BMS‐540215)
  publication-title: J Med Chem
– volume: 108
  start-page: E1275
  year: 2011
  end-page: E1284
  article-title: Imaging guided trials of the angiogenesis inhibitor sunitinib in mouse models predict efficacy in pancreatic neuroendocrine but not ductal carcinoma
  publication-title: Proc Natl Acad Sci USA
– volume: 15
  start-page: 167
  year: 2009
  end-page: 170
  article-title: Silencing or fueling metastasis with VEGF inhibitors: Antiangiogenesis revisited
  publication-title: Cancer Cell
– volume: 8
  start-page: 483
  year: 2002
  end-page: 489
  article-title: The role of fibroblast growth factors in vascular development
  publication-title: Trends Mol Med
– volume: 18
  start-page: 338
  year: 2004
  ident: 2021122309231697900_B78
  article-title: Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms
  publication-title: FASEB J
  doi: 10.1096/fj.03-0271fje
– volume: 23
  start-page: 79
  year: 2014
  ident: 2021122309231697900_B69
  article-title: Therapeutic options targeting angiogenesis in nonsmall cell lung cancer
  publication-title: Eur Respir Rev
  doi: 10.1183/09059180.00008913
– volume: 6
  start-page: 273
  year: 2007
  ident: 2021122309231697900_B1
  article-title: Angiogenesis: An organizing principle for drug discovery?
  publication-title: Nature Rev Drug Discov
  doi: 10.1038/nrd2115
– volume: 8
  start-page: 483
  year: 2002
  ident: 2021122309231697900_B50
  article-title: The role of fibroblast growth factors in vascular development
  publication-title: Trends Mol Med
  doi: 10.1016/S1471-4914(02)02394-8
– volume: 79
  start-page: 427
  year: 1999
  ident: 2021122309231697900_B61
  article-title: Hepatocyte growth factor increases expression of vascular endothelial growth factor and plasminogen activator inhibitor-1 in human keratinocytes and the vascular endothelial growth factor receptor flk-1 in human endothelial cells
  publication-title: Lab Invest
– volume: 30
  start-page: 441
  year: 2012
  ident: 2021122309231697900_B56
  article-title: Targeting the angiopoietin/Tie2 pathway: Cutting tumor vessels with a double-edged sword?
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2011.38.7621
– volume: 30
  start-page: 3499
  year: 2012
  ident: 2021122309231697900_B28
  article-title: Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.42.8201
– volume: 19
  start-page: 460
  year: 2013
  ident: 2021122309231697900_B39
  article-title: Multifarious functions of PDGFs and PDGFRs in tumor growth and metastasis
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2013.05.002
– volume-title: Nexavar [package insert]
  year: 2013
  ident: 2021122309231697900_B85
– volume: 15
  start-page: 23024
  year: 2014
  ident: 2021122309231697900_B17
  article-title: Anti-vascular endothelial growth factor therapy in breast cancer
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms151223024
– volume: 43
  start-page: 490
  year: 2009
  ident: 2021122309231697900_B24
  article-title: Intricacies of bevacizumab-induced toxicities and their management
  publication-title: Ann Pharmacother
  doi: 10.1345/aph.1L426
– volume: 384
  start-page: 665
  year: 2014
  ident: 2021122309231697900_B33
  article-title: Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): A multicentre, double-blind, randomised phase 3 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)60845-X
– volume: 4
  start-page: 43
  year: 2011
  ident: 2021122309231697900_B70
  article-title: Rationale for targeting VEGF, FGF, and PDGF for the treatment of NSCLC
  publication-title: Onco Targets Ther
  doi: 10.2147/OTT.S18155
– volume: 116
  start-page: 2610
  year: 2006
  ident: 2021122309231697900_B20
  article-title: Rapid vascular regrowth in tumors after reversal of VEGF inhibition
  publication-title: J Clin Invest
  doi: 10.1172/JCI24612
– volume: 162
  start-page: 1913
  year: 2003
  ident: 2021122309231697900_B54
  article-title: Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)64325-8
– volume: 8
  start-page: 775
  year: 2012
  ident: 2021122309231697900_B139
  article-title: Cediranib: A VEGF receptor tyrosine kinase inhibitor
  publication-title: Future Oncol
  doi: 10.2217/fon.12.73
– volume: 5
  start-page: 41
  year: 2013
  ident: 2021122309231697900_B142
  article-title: New agents on the horizon in hepatocellular carcinoma
  publication-title: Ther Adv Med Oncol
  doi: 10.1177/1758834012458480
– volume: 15
  start-page: 229
  year: 2004
  ident: 2021122309231697900_B40
  article-title: PDGF receptor kinase inhibitors for the treatment of PDGF driven diseases
  publication-title: Cytokine Growth Factor Rev
  doi: 10.1016/j.cytogfr.2004.03.010
– volume: 25
  start-page: LBA16a
  issue: (suppl 5)
  year: 2014
  ident: 2021122309231697900_B35
  article-title: Ramucirumab (RAM) as a second-line treatment in patients (PTS) with advanced hepatocellular carcinoma (HCC) following first-line therapy with sorafenib: Results from the randomized phase III REACH study
  publication-title: Ann Oncol
– volume: 73
  start-page: 1649
  year: 2013
  ident: 2021122309231697900_B58
  article-title: Angiopoietin-2: An attractive target for improved antiangiogenic tumor therapy
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-4697
– volume-title: Cyramza [package insert]
  year: 2014
  ident: 2021122309231697900_B7
– volume: 6
  start-page: 333
  year: 2004
  ident: 2021122309231697900_B43
  article-title: PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2004.08.034
– volume: 12
  start-page: 2676
  year: 2006
  ident: 2021122309231697900_B41
  article-title: Tumor-driven paracrine platelet-derived growth factor receptor alpha signaling is a key determinant of stromal cell recruitment in a model of human lung carcinoma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-05-1770
– volume: 246
  start-page: 1306
  year: 1989
  ident: 2021122309231697900_B8
  article-title: Vascular endothelial growth factor is a secreted angiogenic mitogen
  publication-title: Science
  doi: 10.1126/science.2479986
– volume: 104
  start-page: 1262
  year: 2011
  ident: 2021122309231697900_B23
  article-title: Pharmacodynamic and pharmacogenetic angiogenesis-related markers of first-line FOLFOXIRI plus bevacizumab schedule in metastatic colorectal cancer
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2011.85
– volume: 19
  start-page: 789
  year: 2010
  ident: 2021122309231697900_B115
  article-title: BIBF 1120 for the treatment of non-small cell lung cancer
  publication-title: Expert Opin Investig Drugs
  doi: 10.1517/13543784.2010.488220
– volume: 320
  start-page: 130
  year: 2012
  ident: 2021122309231697900_B19
  article-title: Anti-angiogenesis therapy in cancer: Current challenges and future perspectives
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2012.03.008
– volume: 5
  start-page: a009134
  year: 2013
  ident: 2021122309231697900_B65
  article-title: Structure and physiology of the RET receptor tyrosine kinase
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a009134
– volume: 2
  start-page: 33
  year: 2009
  ident: 2021122309231697900_B130
  article-title: ABT-869, a promising multi-targeted tyrosine kinase inhibitor: From bench to bedside
  publication-title: J Hematol Oncol
  doi: 10.1186/1756-8722-2-33
– volume: 50
  start-page: 706
  year: 2014
  ident: 2021122309231697900_B135
  article-title: Randomised, double-blind trial of carboplatin and paclitaxel with daily oral cediranib or placebo in patients with advanced non-small cell lung cancer: NCIC Clinical Trials Group study BR29
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2013.11.032
– volume: 165
  start-page: 1198
  year: 1989
  ident: 2021122309231697900_B9
  article-title: Vascular endothelial growth factor: A new member of the platelet-derived growth factor gene family
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/0006-291X(89)92729-0
– volume: 15
  start-page: 167
  year: 2009
  ident: 2021122309231697900_B76
  article-title: Silencing or fueling metastasis with VEGF inhibitors: Antiangiogenesis revisited
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.02.007
– volume-title: Caprelsa [package insert]
  year: 2013
  ident: 2021122309231697900_B87
– volume: 10
  start-page: 940
  year: 2008
  ident: 2021122309231697900_B26
  article-title: VEGF Trap induces antiglioma effect at different stages of disease
  publication-title: Neuro Oncol
  doi: 10.1215/15228517-2008-061
– volume: 9
  start-page: 176
  year: 2010
  ident: 2021122309231697900_B46
  article-title: Targeting pericytes with a PDGF-B aptamer in human ovarian carcinoma models
  publication-title: Cancer Biol Ther
  doi: 10.4161/cbt.9.3.10635
– volume: 15
  start-page: 1351
  year: 2014
  ident: 2021122309231697900_B143
  article-title: Maintenance capecitabine and bevacizumab versus bevacizumab alone after initial first-line bevacizumab and docetaxel for patients with HER2-negative metastatic breast cancer (IMELDA): A randomised, open-label, phase 3 trial
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(14)70444-9
– volume: 32
  start-page: LBA6008a
  year: 2014
  ident: 2021122309231697900_B137
  article-title: A phase 3, multicenter, double-blind, placebo-controlled trial of lenvatinib (E7080) in patients with 131I-refractory differentiated thyroid cancer (SELECT)
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2014.32.18_suppl.lba6008
– volume: 3
  start-page: 391
  year: 2004
  ident: 2021122309231697900_B15
  article-title: Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1381
– volume-title: Cometriq [package insert]
  year: 2012
  ident: 2021122309231697900_B81
– volume: 31
  start-page: 3639
  year: 2013
  ident: 2021122309231697900_B66
  article-title: Cabozantinib in progressive medullary thyroid cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.48.4659
– volume: 41
  start-page: 297
  year: 2011
  ident: 2021122309231697900_B138
  article-title: Pharmacokinetics and metabolism of BIBF 1120 after oral dosing to healthy male volunteers
  publication-title: Xenobiotica
  doi: 10.3109/00498254.2010.545452
– volume: 14
  start-page: 552
  year: 2013
  ident: 2021122309231697900_B102
  article-title: Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: Overall survival analysis and updated results from a randomised phase 3 trial
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(13)70093-7
– volume-title: Avastin [prescribing information]
  year: 2014
  ident: 2021122309231697900_B5
– volume: 8
  start-page: 210
  year: 2011
  ident: 2021122309231697900_B75
  article-title: Antiangiogenic therapy: Impact on invasion, disease progression, and metastasis
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2011.21
– volume: 31
  start-page: 3212
  year: 2013
  ident: 2021122309231697900_B133
  article-title: Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.47.2464
– volume: 8
  start-page: 942
  year: 2008
  ident: 2021122309231697900_B12
  article-title: FLT1 and its ligands VEGFB and PlGF: Drug targets for anti-angiogenic therapy?
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2524
– volume: 16
  start-page: 159
  year: 2005
  ident: 2021122309231697900_B51
  article-title: Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis
  publication-title: Cytokine Growth Factor Rev
  doi: 10.1016/j.cytogfr.2005.01.004
– volume: 473
  start-page: 298
  year: 2011
  ident: 2021122309231697900_B4
  article-title: Molecular mechanisms and clinical applications of angiogenesis
  publication-title: Nature
  doi: 10.1038/nature10144
– volume: 27
  start-page: 3312
  year: 2009
  ident: 2021122309231697900_B97
  article-title: Sorafenib for treatment of renal cell carcinoma: Final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2008.19.5511
– volume: 29
  start-page: 2660
  year: 2011
  ident: 2021122309231697900_B67
  article-title: Activity of XL184 (cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2010.32.4145
– volume: 6
  start-page: 465
  year: 2009
  ident: 2021122309231697900_B22
  article-title: Adverse effects of anticancer agents that target the VEGF pathway
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2009.94
– volume-title: Stivarga [package insert]
  year: 2013
  ident: 2021122309231697900_B84
– volume: 51
  start-page: 1976
  year: 2008
  ident: 2021122309231697900_B124
  article-title: Discovery of brivanib alaninate ((S)-((R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan-2-yl)2-aminopropanoate), a novel prodrug of dual vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinase inhibitor (BMS-540215)
  publication-title: J Med Chem
  doi: 10.1021/jm7013309
– volume: 30
  start-page: 3588
  year: 2012
  ident: 2021122309231697900_B132
  article-title: Cediranib with mFOLFOX6 versus bevacizumab with mFOLFOX6 as first-line treatment for patients with advanced colorectal cancer: A double-blind, randomized phase III study (HORIZON III)
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.42.5355
– volume: 10
  start-page: 575
  year: 2010
  ident: 2021122309231697900_B53
  article-title: Targeting the ANGPT-TIE2 pathway in malignancy
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2894
– volume: 16
  start-page: 311
  year: 2010
  ident: 2021122309231697900_B114
  article-title: Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-09-0694
– volume: 15
  start-page: 539
  year: 2010
  ident: 2021122309231697900_B110
  article-title: (Pre-)clinical pharmacology and activity of pazopanib, a novel multikinase angiogenesis inhibitor
  publication-title: The Oncologist
  doi: 10.1634/theoncologist.2009-0274
– volume: 14
  start-page: 5459
  year: 2008
  ident: 2021122309231697900_B127
  article-title: Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-5270
– volume: 65
  start-page: 4389
  year: 2005
  ident: 2021122309231697900_B125
  article-title: AZD2171: A highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-4409
– volume: 13
  start-page: 97
  year: 2011
  ident: 2021122309231697900_B31
  article-title: Ramucirumab (IMC-1121B): Monoclonal antibody inhibition of vascular endothelial growth factor receptor-2
  publication-title: Curr Oncol Rep
  doi: 10.1007/s11912-010-0149-5
– volume: 384
  start-page: 319
  year: 2014
  ident: 2021122309231697900_B99
  article-title: Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 3 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)60421-9
– volume-title: Presented at: ECCO-ESMO-ESTRO European Cancer Congress
  year: 2013
  ident: 2021122309231697900_B134
  article-title: Randomised double-blind phase III trial of cediranib (AZD 2171) in relapsed platinum sensitive ovarian cancer: Results of the ICON6 trial [abstract E17-7020]
– volume: 140
  start-page: 460
  year: 2010
  ident: 2021122309231697900_B14
  article-title: Lymphangiogenesis: Molecular mechanisms and future promise
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.045
– volume: 21
  start-page: 21
  year: 2010
  ident: 2021122309231697900_B36
  article-title: Pathways mediating VEGF-independent tumor angiogenesis
  publication-title: Cytokine Growth Factor Rev
  doi: 10.1016/j.cytogfr.2009.11.003
– volume: 41
  start-page: 833
  year: 2008
  ident: 2021122309231697900_B60
  article-title: The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis
  publication-title: BMB Rep
  doi: 10.5483/BMBRep.2008.41.12.833
– volume: 15
  start-page: 1269
  year: 2014
  ident: 2021122309231697900_B144
  article-title: Bevacizumab plus chemotherapy versus chemotherapy alone as second-line treatment for patients with HER2-negative locally recurrent or metastatic breast cancer after first-line treatment with bevacizumab plus chemotherapy (TANIA): An open-label, randomised phase 3 trial
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(14)70439-5
– volume: 109
  start-page: 15894
  year: 2012
  ident: 2021122309231697900_B52
  article-title: Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1208324109
– volume: 18
  start-page: 100
  year: 2012
  ident: 2021122309231697900_B45
  article-title: PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells
  publication-title: Nat Med
  doi: 10.1038/nm.2575
– volume: 359
  start-page: 378
  year: 2008
  ident: 2021122309231697900_B98
  article-title: Sorafenib in advanced hepatocellular carcinoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0708857
– volume: 2
  start-page: re1
  year: 2009
  ident: 2021122309231697900_B10
  article-title: Positive and negative modulation of angiogenesis by VEGFR1 ligands
  publication-title: Sci Signal
  doi: 10.1126/scisignal.259re1
– volume: 33
  start-page: 141
  year: 2015
  ident: 2021122309231697900_B34
  article-title: Primary results of ROSE/TRIO-12, a randomized placebo-controlled phase III trial evaluating the addition of ramucirumab to first-line docetaxel chemotherapy in metastatic breast cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2014.57.1513
– volume: 22
  start-page: 21
  year: 2012
  ident: 2021122309231697900_B62
  article-title: VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.05.037
– volume: 30
  start-page: 134
  year: 2012
  ident: 2021122309231697900_B68
  article-title: Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double-blind phase III trial
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2011.35.5040
– volume: 18
  start-page: 3961
  year: 2012
  ident: 2021122309231697900_B104
  article-title: Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-12-0002
– volume: 8
  start-page: e77117
  year: 2013
  ident: 2021122309231697900_B73
  article-title: The association of alternate VEGF ligands with resistance to anti-VEGF therapy in metastatic colorectal cancer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0077117
– volume: 8
  start-page: 299
  year: 2005
  ident: 2021122309231697900_B55
  article-title: Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2005.09.005
– volume: 23
  start-page: 7
  issue: (suppl 1)
  year: 2013
  ident: 2021122309231697900_B92
  article-title: AGO-OVAR 12: A randomized placebo-controlled GCIG/ENGOT-intergroup phase III trial of standard frontline chemotherapy +/− nintedanib for advanced ovarian cancer
  publication-title: Int J Gynecol Cancer
– volume: 25
  start-page: 319
  year: 2007
  ident: 2021122309231697900_B80
  article-title: AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2006.09.041
– volume: 19
  start-page: 309
  year: 2012
  ident: 2021122309231697900_B18
  article-title: Lessons learned from the bevacizumab experience
  publication-title: Cancer Contr
  doi: 10.1177/107327481201900407
– volume: 379
  start-page: 1879
  year: 2012
  ident: 2021122309231697900_B94
  article-title: Pazopanib for metastatic soft-tissue sarcoma (PALETTE): A randomised, double-blind, placebo-controlled phase 3 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60651-5
– volume: 204
  start-page: 1
  year: 2004
  ident: 2021122309231697900_B57
  article-title: Angiopoietins in tumours: The angiogenic switch
  publication-title: J Pathol
  doi: 10.1002/path.1618
– volume-title: FDA commissioner announces Avastin decision
  year: 2015
  ident: 2021122309231697900_B16
– volume: 116
  start-page: 2984
  year: 2010
  ident: 2021122309231697900_B42
  article-title: Platelet-derived growth factor (PDGF)-PDGF receptor interaction activates bone marrow-derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: Implications for an angiogenic switch
  publication-title: Blood
  doi: 10.1182/blood-2010-02-269894
– volume: 23
  start-page: 2094
  year: 2012
  ident: 2021122309231697900_B119
  article-title: A phase I, open-label dose-escalation study of continuous treatment with BIBF 1120 in combination with paclitaxel and carboplatin as first-line treatment in patients with advanced non-small-cell lung cancer
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdr596
– volume: 19
  start-page: 1773
  year: 2013
  ident: 2021122309231697900_B63
  article-title: Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-12-1281
– volume: 4
  start-page: 253
  year: 2013
  ident: 2021122309231697900_B74
  article-title: Understanding and targeting resistance to anti-angiogenic therapies
  publication-title: J Gastrointest Oncol
– volume: 30
  start-page: 3596
  year: 2012
  ident: 2021122309231697900_B131
  article-title: Cediranib plus FOLFOX/CAPOX versus placebo plus FOLFOX/CAPOX in patients with previously untreated metastatic colorectal cancer: A randomized, double-blind, phase III study (HORIZON II)
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.42.6031
– volume: 105
  start-page: 1640
  year: 2011
  ident: 2021122309231697900_B120
  article-title: Phase I study of BIBF 1120 with docetaxel and prednisone in metastatic chemo-naive hormone-refractory prostate cancer patients
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2011.440
– volume: 9
  start-page: 2825
  year: 2010
  ident: 2021122309231697900_B116
  article-title: Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-10-0379
– volume: 705
  start-page: 86
  year: 2013
  ident: 2021122309231697900_B105
  article-title: Study of the cellular mechanism of sunitinib mediated inactivation of activated hepatic stellate cells and its implications in angiogenesis
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2013.02.026
– volume: 8
  start-page: 235
  year: 2009
  ident: 2021122309231697900_B47
  article-title: The FGF family: Biology, pathophysiology and therapy
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2792
– volume: 378
  start-page: 1931
  year: 2011
  ident: 2021122309231697900_B89
  article-title: Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): A randomised phase 3 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)61613-9
– volume: 31
  start-page: 1283
  year: 2013
  ident: 2021122309231697900_B118
  article-title: Effect of small angiokinase inhibitor nintedanib (BIBF 1120) on QT interval in patients with previously untreated, advanced renal cell cancer in an open-label, phase II study
  publication-title: Invest New Drugs
  doi: 10.1007/s10637-013-9962-7
– volume: 68
  start-page: 4774
  year: 2008
  ident: 2021122309231697900_B82
  article-title: BIBF 1120: Triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-6307
– volume: 12
  start-page: 1322
  year: 2013
  ident: 2021122309231697900_B111
  article-title: Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-12-1162
– volume: 16
  start-page: 2881
  year: 2010
  ident: 2021122309231697900_B121
  article-title: Phase I open-label study of continuous treatment with BIBF 1120, a triple angiokinase inhibitor, and pemetrexed in pretreated non-small cell lung cancer patients
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-09-2944
– volume: 108
  start-page: E1275
  year: 2011
  ident: 2021122309231697900_B106
  article-title: Imaging guided trials of the angiogenesis inhibitor sunitinib in mouse models predict efficacy in pancreatic neuroendocrine but not ductal carcinoma
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1111079108
– volume: 31
  start-page: 3517
  year: 2013
  ident: 2021122309231697900_B123
  article-title: Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: Results from the randomized phase III BRISK-FL study
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.48.4410
– volume: 21
  start-page: 370
  year: 2010
  ident: 2021122309231697900_B122
  article-title: A phase I open-label dose-escalation study of oral BIBF 1120 combined with standard paclitaxel and carboplatin in patients with advanced gynecological malignancies
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdp506
– volume: 86
  start-page: 785
  year: 2008
  ident: 2021122309231697900_B49
  article-title: R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways
  publication-title: J Mol Med (Berl)
  doi: 10.1007/s00109-008-0337-z
– volume: 111
  start-page: 1287
  year: 2003
  ident: 2021122309231697900_B77
  article-title: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors
  publication-title: J Clin Invest
  doi: 10.1172/JCI200317929
– volume-title: Sutent [package insert]
  year: 2013
  ident: 2021122309231697900_B86
– volume: 99
  start-page: 11393
  year: 2002
  ident: 2021122309231697900_B25
  article-title: VEGF-Trap: A VEGF blocker with potent antitumor effects
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.172398299
– volume: 28
  start-page: 453
  year: 2010
  ident: 2021122309231697900_B72
  article-title: Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: Efficacy and circulating angiogenic biomarkers associated with therapeutic resistance
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2009.24.8252
– volume: 8
  start-page: e76009
  year: 2013
  ident: 2021122309231697900_B112
  article-title: Regorafenib effects on human colon carcinoma xenografts monitored by dynamic contrast-enhanced computed tomography with immunohistochemical validation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0076009
– volume: 66
  start-page: 11851
  year: 2006
  ident: 2021122309231697900_B109
  article-title: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-1377
– volume: 44
  start-page: 1
  year: 2012
  ident: 2021122309231697900_B13
  article-title: The discovery of placenta growth factor and its biological activity
  publication-title: Exp Mol Med
  doi: 10.3858/emm.2012.44.1.025
– volume: 101
  start-page: 1984
  year: 2010
  ident: 2021122309231697900_B44
  article-title: Expression of platelet-derived growth factor (PDGF)-B and PDGF-receptor β is associated with lymphatic metastasis in human gastric carcinoma
  publication-title: Cancer Sci
  doi: 10.1111/j.1349-7006.2010.01639.x
– volume: 6
  start-page: 1785
  year: 2007
  ident: 2021122309231697900_B108
  article-title: Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-06-0595
– volume: 6
  start-page: 830
  year: 2014
  ident: 2021122309231697900_B141
  article-title: Role of anti-angiogenesis therapy in the management of hepatocellular carcinoma: The jury is still out
  publication-title: World J Hepatol
  doi: 10.4254/wjh.v6.i12.830
– volume: 123
  start-page: 3190
  year: 2013
  ident: 2021122309231697900_B71
  article-title: Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer
  publication-title: J Clin Invest
  doi: 10.1172/JCI70212
– volume: 49
  start-page: 1287
  year: 2013
  ident: 2021122309231697900_B103
  article-title: A randomised, double-blind phase III study of pazopanib in patients with advanced and/or metastatic renal cell carcinoma: Final overall survival results and safety update
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2012.12.010
– volume: 15
  start-page: 286
  year: 2014
  ident: 2021122309231697900_B136
  article-title: Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: An open-label, randomised phase 3 trial
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(14)70030-0
– volume: 33
  start-page: 172
  year: 2015
  ident: 2021122309231697900_B129
  article-title: Linifanib versus sorafenib in patients with advanced hepatocellular carcinoma: Results of a randomized phase III trial
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2013.54.3298
– volume: 59
  start-page: 561
  year: 2007
  ident: 2021122309231697900_B107
  article-title: Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models
  publication-title: Cancer Chemother Pharmacol
  doi: 10.1007/s00280-006-0393-4
– volume: 14
  start-page: 173
  year: 2014
  ident: 2021122309231697900_B64
  article-title: RET revisited: Expanding the oncogenic portfolio
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3680
– volume: 19
  start-page: 1257
  year: 2013
  ident: 2021122309231697900_B126
  article-title: Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-12-2885
– volume: 15
  start-page: 1224
  year: 2014
  ident: 2021122309231697900_B30
  article-title: Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(14)70420-6
– volume: 99
  start-page: 11399
  year: 2002
  ident: 2021122309231697900_B27
  article-title: Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.172398399
– volume: 31
  start-page: 8034a
  year: 2013
  ident: 2021122309231697900_B91
  article-title: LUME-lung 2: A multicenter, randomized, double-blind, phase III study of nintedanib plus pemetrexed versus placebo plus pemetrexed in patients with advanced nonsquamous non-small cell lung cancer (NSCLC) after failure of first-line chemotherapy
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2013.31.15_suppl.8034
– volume: 2
  start-page: a006593
  year: 2012
  ident: 2021122309231697900_B2
  article-title: The VEGF pathway in cancer and disease: Responses, resistance, and the path forward
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a006593
– volume: 20
  start-page: 3958
  year: 2014
  ident: 2021122309231697900_B146
  article-title: Anti-angiogenic drugs and biomarkers in non-small-cell lung cancer: A ‘hard days night’
  publication-title: Curr Pharm Des
  doi: 10.2174/13816128113196660757
– volume: 17
  start-page: 1373
  year: 2011
  ident: 2021122309231697900_B117
  article-title: Antitumor activity of BIBF 1120, a triple angiokinase inhibitor, and use of VEGFR2+pTyr+ peripheral blood leukocytes as a pharmacodynamic biomarker in vivo
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-09-2755
– volume: 14
  start-page: 9338
  year: 2013
  ident: 2021122309231697900_B145
  article-title: Biomarkers for anti-angiogenic therapy in cancer
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms14059338
– volume: 23
  start-page: 1011
  year: 2005
  ident: 2021122309231697900_B3
  article-title: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2005.06.081
– volume: 20
  start-page: 4368
  year: 2002
  ident: 2021122309231697900_B11
  article-title: Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2002.10.088
– volume: 356
  start-page: 115
  year: 2007
  ident: 2021122309231697900_B101
  article-title: Sunitinib versus interferon alfa in metastatic renal-cell carcinoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa065044
– volume: 5
  start-page: a009209
  year: 2013
  ident: 2021122309231697900_B59
  article-title: MET: A critical player in tumorigenesis and therapeutic target
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a009209
– volume: 11
  start-page: 97
  year: 2013
  ident: 2021122309231697900_B37
  article-title: Targeting the PDGF signaling pathway in tumor treatment
  publication-title: Cell Commun Signal
  doi: 10.1186/1478-811X-11-97
– volume: 70
  start-page: 2085
  year: 2010
  ident: 2021122309231697900_B48
  article-title: FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-3746
– volume: 381
  start-page: 303
  year: 2013
  ident: 2021122309231697900_B95
  article-title: Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)61900-X
– volume-title: Votrient [package insert]
  year: 2013
  ident: 2021122309231697900_B83
– volume: 18
  start-page: 3170
  year: 2012
  ident: 2021122309231697900_B100
  article-title: Complete longitudinal analyses of the randomized, placebo-controlled, phase III trial of sunitinib in patients with gastrointestinal stromal tumor following imatinib failure
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-11-3005
– volume-title: CHMP summary of positive opinion for Vargatef
  year: 2015
  ident: 2021122309231697900_B113
– volume: 23
  start-page: 305
  year: 2014
  ident: 2021122309231697900_B140
  article-title: Fibroblast growth factor receptors as therapeutic targets in clear-cell renal cell carcinoma
  publication-title: Expert Opin Investig Drugs
  doi: 10.1517/13543784.2014.871259
– volume-title: Inlyta [package insert]
  year: 2013
  ident: 2021122309231697900_B6
– volume: 73
  start-page: 2003
  year: 2013
  ident: 2021122309231697900_B32
  article-title: Critical appraisal of ramucirumab (IMC-1121B) for cancer treatment: From benchside to clinical use
  publication-title: Drugs
  doi: 10.1007/s40265-013-0154-8
– volume: 122
  start-page: 664
  year: 2008
  ident: 2021122309231697900_B128
  article-title: E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition
  publication-title: Int J Cancer
  doi: 10.1002/ijc.23131
– volume: 3
  start-page: e3794
  year: 2008
  ident: 2021122309231697900_B38
  article-title: Comprehensive dissection of PDGF-PDGFR signaling pathways in PDGFR genetically defined cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003794
– volume: 19
  start-page: 524
  year: 2013
  ident: 2021122309231697900_B88
  article-title: Vandetanib for the treatment of medullary thyroid cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-12-2353
– volume: 15
  start-page: 220
  year: 2009
  ident: 2021122309231697900_B21
  article-title: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.01.027
– volume: 383
  start-page: 31
  year: 2014
  ident: 2021122309231697900_B29
  article-title: Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)61719-5
– volume: 11
  start-page: 83
  year: 2007
  ident: 2021122309231697900_B79
  article-title: AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2006.11.021
– volume: 15
  start-page: 143
  year: 2014
  ident: 2021122309231697900_B90
  article-title: Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(13)70586-2
– volume: 28
  start-page: 1061
  year: 2010
  ident: 2021122309231697900_B93
  article-title: Pazopanib in locally advanced or metastatic renal cell carcinoma: Results of a randomized phase III trial
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2009.23.9764
– volume: 381
  start-page: 295
  year: 2013
  ident: 2021122309231697900_B96
  article-title: Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): An international, multicentre, randomised, placebo-controlled, phase 3 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)61857-1
– reference: 21593862 - Nature. 2011 May 19;473(7347):298-307
– reference: 24359404 - Cell Commun Signal. 2013;11:97
– reference: 20178740 - Cell. 2010 Feb 19;140(4):460-76
– reference: 22661587 - Clin Cancer Res. 2012 Jun 1;18(11):3170-9
– reference: 23339124 - Clin Cancer Res. 2013 Mar 1;19(5):1257-68
– reference: 19451442 - J Clin Oncol. 2009 Jul 10;27(20):3312-8
– reference: 22595799 - Lancet. 2012 May 19;379(9829):1879-86
– reference: 22084065 - Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1275-84
– reference: 23773831 - Trends Mol Med. 2013 Aug;19(8):460-73
– reference: 20008624 - J Clin Oncol. 2010 Jan 20;28(3):453-9
– reference: 25273343 - Lancet Oncol. 2014 Nov;15(12):1351-60
– reference: 24561444 - Nat Rev Cancer. 2014 Mar;14(3):173-86
– reference: 17396134 - Nat Rev Drug Discov. 2007 Apr;6(4):273-86
– reference: 15488757 - Cancer Cell. 2004 Oct;6(4):333-45
– reference: 23467610 - Cancer Res. 2013 Mar 15;73(6):1649-57
– reference: 12409337 - J Clin Oncol. 2002 Nov 1;20(21):4368-80
– reference: 18559524 - Cancer Res. 2008 Jun 15;68(12):4774-82
– reference: 19247306 - Nat Rev Drug Discov. 2009 Mar;8(3):235-53
– reference: 20465363 - Expert Opin Investig Drugs. 2010 Jun;19(6):789-94
– reference: 18288793 - J Med Chem. 2008 Mar 27;51(6):1976-80
– reference: 24387233 - Expert Opin Investig Drugs. 2014 Mar;23(3):305-15
– reference: 19261963 - Ann Pharmacother. 2009 Mar;43(3):490-501
– reference: 16226705 - Cancer Cell. 2005 Oct;8(4):299-309
– reference: 22138754 - Nat Med. 2012 Jan;18(1):100-10
– reference: 20100962 - J Clin Oncol. 2010 Feb 20;28(6):1061-8
– reference: 22965965 - J Clin Oncol. 2012 Oct 10;30(29):3596-603
– reference: 15307132 - J Pathol. 2004 Sep;204(1):1-10
– reference: 23231950 - Clin Cancer Res. 2013 Feb 1;19(3):524-9
– reference: 24933332 - Lancet. 2014 Aug 23;384(9944):665-73
– reference: 23454556 - Eur J Pharmacol. 2013 Apr 5;705(1-3):86-95
– reference: 15585754 - J Clin Oncol. 2005 Feb 10;23(5):1011-27
– reference: 18650514 - N Engl J Med. 2008 Jul 24;359(4):378-90
– reference: 23209176 - Cold Spring Harb Perspect Med. 2012 Dec;2(12):a006593
– reference: 17371720 - Magn Reson Imaging. 2007 Apr;25(3):319-27
– reference: 23940216 - J Clin Oncol. 2013 Sep 10;31(26):3212-8
– reference: 24002501 - J Clin Oncol. 2013 Oct 10;31(29):3639-46
– reference: 22025146 - J Clin Oncol. 2012 Jan 10;30(2):134-41
– reference: 23323146 - Ther Adv Med Oncol. 2013 Jan;5(1):41-50
– reference: 17222792 - Cancer Cell. 2007 Jan;11(1):83-95
– reference: 15207814 - Cytokine Growth Factor Rev. 2004 Aug;15(4):229-35
– reference: 25185099 - J Clin Oncol. 2015 Jan 10;33(2):141-8
– reference: 18765537 - Clin Cancer Res. 2008 Sep 1;14(17):5459-65
– reference: 21222245 - Curr Oncol Rep. 2011 Apr;13(2):97-102
– reference: 12177446 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11399-404
– reference: 20606160 - Blood. 2010 Oct 21;116(16):2984-93
– reference: 19581909 - Nat Rev Clin Oncol. 2009 Aug;6(8):465-77
– reference: 19244214 - Sci Signal. 2009 Feb 24;2(59):re1
– reference: 23619301 - Mol Cancer Ther. 2013 Jul;12(7):1322-31
– reference: 17160391 - Cancer Chemother Pharmacol. 2007 Apr;59(5):561-74
– reference: 18392794 - J Mol Med (Berl). 2008 Jul;86(7):785-9
– reference: 20179196 - Cancer Res. 2010 Mar 1;70(5):2085-94
– reference: 22345119 - Ann Oncol. 2012 Aug;23(8):2094-102
– reference: 22967508 - Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15894-9
– reference: 22789536 - Cancer Cell. 2012 Jul 10;22(1):21-35
– reference: 20005148 - Cytokine Growth Factor Rev. 2010 Feb;21(1):21-6
– reference: 25514409 - Int J Mol Sci. 2014;15(12):23024-41
– reference: 23908119 - J Clin Invest. 2013 Aug;123(8):3190-200
– reference: 25240821 - Lancet Oncol. 2014 Oct;15(11):1224-35
– reference: 12727920 - J Clin Invest. 2003 May;111(9):1287-95
– reference: 21691577 - Onco Targets Ther. 2011;4:43-58
– reference: 21204634 - Xenobiotica. 2011 Apr;41(4):297-311
– reference: 21407216 - Br J Cancer. 2011 Apr 12;104(8):1262-9
– reference: 25544869 - World J Hepatol. 2014 Dec 27;6(12):830-5
– reference: 17178882 - Cancer Res. 2006 Dec 15;66(24):11851-8
– reference: 24411639 - Lancet Oncol. 2014 Feb;15(2):143-55
– reference: 21364524 - Nat Rev Clin Oncol. 2011 Apr;8(4):210-21
– reference: 22949147 - J Clin Oncol. 2012 Oct 1;30(28):3499-506
– reference: 24277700 - Drugs. 2013 Dec;73(18):2003-15
– reference: 18708344 - Neuro Oncol. 2008 Dec;10(6):940-5
– reference: 20009575 - Cancer Biol Ther. 2010 Feb;9(3):176-82
– reference: 24768112 - Lancet. 2014 Jul 26;384(9940):319-28
– reference: 19029957 - Nat Rev Cancer. 2008 Dec;8(12):942-56
– reference: 23378586 - Cold Spring Harb Perspect Biol. 2013 Feb;5(2). pii: a009134. doi: 10.1101/cshperspect.a009134
– reference: 19030102 - PLoS One. 2008;3(11):e3794
– reference: 22573349 - Clin Cancer Res. 2012 Jul 15;18(14):3961-71
– reference: 20028771 - Clin Cancer Res. 2010 Jan 1;16(1):311-9
– reference: 24591665 - Eur Respir Rev. 2014 Mar 1;23(131):79-91
– reference: 24143206 - PLoS One. 2013;8(10):e77117
– reference: 15136787 - Nat Rev Drug Discov. 2004 May;3(5):391-400
– reference: 20624165 - Cancer Sci. 2010 Sep;101(9):1984-9
– reference: 21131553 - Clin Cancer Res. 2011 Mar 15;17(6):1373-81
– reference: 22965961 - J Clin Oncol. 2012 Oct 10;30(29):3588-95
– reference: 17943726 - Int J Cancer. 2008 Feb 1;122(3):664-71
– reference: 24360368 - Eur J Cancer. 2014 Mar;50(4):706-12
– reference: 19123972 - BMB Rep. 2008 Dec 31;41(12):833-9
– reference: 25273342 - Lancet Oncol. 2014 Oct;15(11):1269-78
– reference: 17016557 - J Clin Invest. 2006 Oct;116(10):2610-21
– reference: 24094768 - Lancet. 2014 Jan 4;383(9911):31-9
– reference: 24556040 - Lancet Oncol. 2014 Mar;15(3):286-96
– reference: 10211995 - Lab Invest. 1999 Apr;79(4):427-38
– reference: 2610687 - Biochem Biophys Res Commun. 1989 Dec 29;165(3):1198-206
– reference: 20460487 - Clin Cancer Res. 2010 May 15;16(10):2881-9
– reference: 15899831 - Cancer Res. 2005 May 15;65(10):4389-400
– reference: 23037498 - Cancer Control. 2012 Oct;19(4):309-16
– reference: 17215529 - N Engl J Med. 2007 Jan 11;356(2):115-24
– reference: 22027711 - Br J Cancer. 2011 Nov 22;105(11):1640-5
– reference: 23321547 - Eur J Cancer. 2013 Apr;49(6):1287-96
– reference: 14657001 - FASEB J. 2004 Feb;18(2):338-40
– reference: 23997938 - J Gastrointest Oncol. 2013 Sep;4(3):253-63
– reference: 12759248 - Am J Pathol. 2003 Jun;162(6):1913-26
– reference: 12383771 - Trends Mol Med. 2002 Oct;8(10):483-9
– reference: 20651738 - Nat Rev Cancer. 2010 Aug;10(8):575-85
– reference: 20688946 - Mol Cancer Ther. 2010 Oct;9(10):2825-33
– reference: 22056247 - Lancet. 2011 Dec 3;378(9807):1931-9
– reference: 23307858 - Clin Cancer Res. 2013 Apr 1;19(7):1773-83
– reference: 15863032 - Cytokine Growth Factor Rev. 2005 Apr;16(2):159-78
– reference: 23177515 - Lancet. 2013 Jan 26;381(9863):295-302
– reference: 22425960 - Cancer Lett. 2012 Jul 28;320(2):130-7
– reference: 24098755 - PLoS One. 2013;8(9):e76009
– reference: 19249680 - Cancer Cell. 2009 Mar 3;15(3):220-31
– reference: 23629668 - Int J Mol Sci. 2013;14(5):9338-64
– reference: 22228176 - Exp Mol Med. 2012 Jan 31;44(1):1-9
– reference: 19249675 - Cancer Cell. 2009 Mar 3;15(3):167-70
– reference: 23818496 - Cold Spring Harb Perspect Biol. 2013 Jul;5(7). pii: a009209. doi: 10.1101/cshperspect.a009209
– reference: 23625328 - Invest New Drugs. 2013 Oct;31(5):1283-93
– reference: 23980084 - J Clin Oncol. 2013 Oct 1;31(28):3517-24
– reference: 19889612 - Ann Oncol. 2010 Feb;21(2):370-5
– reference: 20511320 - Oncologist. 2010;15(6):539-47
– reference: 22184396 - J Clin Oncol. 2012 Feb 1;30(4):441-4
– reference: 2479986 - Science. 1989 Dec 8;246(4935):1306-9
– reference: 19642998 - J Hematol Oncol. 2009;2:33
– reference: 16675559 - Clin Cancer Res. 2006 May 1;12(9):2676-88
– reference: 24138719 - Curr Pharm Des. 2014;20(24):3958-72
– reference: 21606412 - J Clin Oncol. 2011 Jul 1;29(19):2660-6
– reference: 23177514 - Lancet. 2013 Jan 26;381(9863):303-12
– reference: 23598172 - Lancet Oncol. 2013 May;14(6):552-62
– reference: 12177445 - Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11393-8
– reference: 22830398 - Future Oncol. 2012 Jul;8(7):775-81
– reference: 25488963 - J Clin Oncol. 2015 Jan 10;33(2):172-9
– reference: 17575107 - Mol Cancer Ther. 2007 Jun;6(6):1785-92
SSID ssj0015932
Score 2.619321
SecondaryResourceType review_article
Snippet Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of...
It is increasingly clear that there are many interconnected and compensatory pathways that can overcome vascular endothelial growth factor-targeted inhibition...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 660
SubjectTerms Angiogenesis inhibitors
Angiogenesis Inhibitors - therapeutic use
Antibodies, monoclonal, humanized
Fibroblast growth factor
Fibroblast Growth Factors - genetics
Fibroblast Growth Factors - metabolism
Humans
Molecular Targeted Therapy
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - pathology
Neovascularization, Pathologic - drug therapy
Neovascularization, Pathologic - genetics
Neovascularization, Pathologic - pathology
New Drug Development and Clinical Pharmacology
Platelet-Derived Growth Factor - genetics
Platelet-Derived Growth Factor - metabolism
Platelet‐derived growth factor
Receptors
Signal Transduction - drug effects
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
Vascular Endothelial Growth Factor Receptor-1 - genetics
Vascular Endothelial Growth Factor Receptor-1 - metabolism
Title Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor
URI https://onlinelibrary.wiley.com/doi/abs/10.1634%2Ftheoncologist.2014-0465
https://www.ncbi.nlm.nih.gov/pubmed/26001391
https://www.proquest.com/docview/1702653300
https://www.proquest.com/docview/1727674889
https://pubmed.ncbi.nlm.nih.gov/PMC4571783
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSIgXxDflS0bibcpIYseJeZvKxoTU9aVDZS-RnThrpilFo32Av54720kTCmxDqqIqTa6J7-fz3fk-CHmXVaKSPNRBrIQOeBoXgWJGBCku17yUUVxhgvPkWByd8M_zZL7xKtnskpXeK37-Ma_kf7gK54CvmCV7A852ROEEfAf-whE4DMfr8diGcVvHRnNWL89QbtU2wHWMzLzEeAqsGYBm_8S5DnzGypc2APWgKTEH6wId55_AJF8tdg9tC56-1opYWja2vjWgApXSj-qHj7ufLuplz51wulDW-fp1fV5v0FSem7pNp9nd3-u7GqJkExLlpSPoa8hFR9N4icmxTV0474vUOOxBpy8fhWse4Jda4bqYbElxwTgMPWZydq-GQXgYMeMaSwzrZv-2nnVRhmjfAKl8QChHQjkSuk3uxGBbYNuL2XTebT0lkrktcv-uPigQCL3_yxMNVZotO2U73LZvBlk9ZvaA3PcGCN13aHpIbpnmEbk78SEWj8lpByraBxWtG-pART2oPlAHKeogRVtI0R6kqIMUdZB6Qk4OD2bjo8A34AgKbHsAU5cJLXWUlTrVUqlMmFCBfS2ZNiVnpSwrGZokS0uY17BSmCIN4ROXQmlVGcGekp1m2ZjnhCrQnDOZwfqhwOJlmD7NlVAh44azwqgREe0Y5oWvTo9NUi7yK7g4ImF34zdXoOXqW962TMpBmOIOmWrMcv09j-DhBcZbh_-6JsYCWFkmR-SZY2z3x9jtAUyqaETSAcu7C7CY-_CXpl7You48SaM0YzAOFhzXfZd8ejyegtkQvrj5OLwk9zaz_BXZWV2uzWtQsVf6jZ0SvwBs6tSy
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+Angiogenesis+in+Cancer+Therapy%3A+Moving+Beyond+Vascular+Endothelial+Growth+Factor&rft.jtitle=The+oncologist+%28Dayton%2C+Ohio%29&rft.au=Zhao%2C+Yujie&rft.au=Adjei%2C+Alex+A.&rft.date=2015-06-01&rft.issn=1083-7159&rft.eissn=1549-490X&rft.volume=20&rft.issue=6&rft.spage=660&rft.epage=673&rft_id=info:doi/10.1634%2Ftheoncologist.2014-0465&rft.externalDBID=n%2Fa&rft.externalDocID=10_1634_theoncologist_2014_0465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-7159&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-7159&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-7159&client=summon