视频测量影像序列椭圆形人工目标点快速识别和跟踪方法

针对视频测量建筑物健康监测获取海量影像序列数据快速、准确识别和跟踪目标点的需求,提出基于影像块技术的椭圆形目标点识别和跟踪完整算法.该算法采用影像分块技术降低数据处理量,实现椭圆形目标点跟踪,集成数学形态学和椭圆几何属性特征,消除图像块边缘检测的非椭圆边缘信息,实现椭圆轮廓的提取,并采用最小二乘法拟合椭圆中心实现亚像素定位,快速、准确地实现视频测量建筑物健康监测椭圆形目标点的识别与跟踪.试验结果表明该方法获取的椭圆中心点像素坐标的RMS残差优于0.025个像素,且相对于随机Hough变换和模板识别算法,跟踪效率提高5倍以上....

Full description

Saved in:
Bibliographic Details
Published in测绘学报 no. 6; pp. 663 - 669
Main Author 刘祥磊 童小华 马静
Format Journal Article
LanguageChinese
Published 北京建筑大学测绘与城市空间信息学院,北京 100044 2015
现代城市测绘国家测绘地理信息局重点实验室,北京 100044%同济大学测绘与地理信息学院,上海,200092%北京市地质工程勘察院,北京,100048
Subjects
Online AccessGet full text
ISSN1001-1595
DOI10.11947/j.AGCS.2015.20130452

Cover

Abstract 针对视频测量建筑物健康监测获取海量影像序列数据快速、准确识别和跟踪目标点的需求,提出基于影像块技术的椭圆形目标点识别和跟踪完整算法.该算法采用影像分块技术降低数据处理量,实现椭圆形目标点跟踪,集成数学形态学和椭圆几何属性特征,消除图像块边缘检测的非椭圆边缘信息,实现椭圆轮廓的提取,并采用最小二乘法拟合椭圆中心实现亚像素定位,快速、准确地实现视频测量建筑物健康监测椭圆形目标点的识别与跟踪.试验结果表明该方法获取的椭圆中心点像素坐标的RMS残差优于0.025个像素,且相对于随机Hough变换和模板识别算法,跟踪效率提高5倍以上.
AbstractList 针对视频测量建筑物健康监测获取海量影像序列数据快速、准确识别和跟踪目标点的需求,提出基于影像块技术的椭圆形目标点识别和跟踪完整算法.该算法采用影像分块技术降低数据处理量,实现椭圆形目标点跟踪,集成数学形态学和椭圆几何属性特征,消除图像块边缘检测的非椭圆边缘信息,实现椭圆轮廓的提取,并采用最小二乘法拟合椭圆中心实现亚像素定位,快速、准确地实现视频测量建筑物健康监测椭圆形目标点的识别与跟踪.试验结果表明该方法获取的椭圆中心点像素坐标的RMS残差优于0.025个像素,且相对于随机Hough变换和模板识别算法,跟踪效率提高5倍以上.
P232; 针对视频测量建筑物健康监测获取海量影像序列数据快速、准确识别和跟踪目标点的需求,提出基于影像块技术的椭圆形目标点识别和跟踪完整算法.该算法采用影像分块技术降低数据处理量,实现椭圆形目标点跟踪,集成数学形态学和椭圆几何属性特征,消除图像块边缘检测的非椭圆边缘信息,实现椭圆轮廓的提取,并采用最小二乘法拟合椭圆中心实现亚像素定位,快速、准确地实现视频测量建筑物健康监测椭圆形目标点的识别与跟踪.试验结果表明该方法获取的椭圆中心点像素坐标的RMS 残差优于0.025个像素,且相对于随机 Hough 变换和模板识别算法,跟踪效率提高5倍以上.
Abstract_FL In order to satisfy the requi rement of identification and tracking the el l iptical artificial targets fast and accurately for the image sequences from videogrammetric measurement for structural health monitoring,this paper proposes a systemic algorithm to identify and track the el l iptical targets using the image block technique.The proposed method extracts the image block from original images to reduce the amount of data processing for the oval targets tracking.The mathematical morphology and el l iptical geometric characteristics are integrated to el iminate the non-el l iptical edge information to extract the el l iptical contour in the range of image block.At last,the sub-pixel center location for el l iptical artificial targets is acqui red by the least square algorithm.The experimental results show that RMS error of 0.025 pixel can be achieved by the proposed method,furthermore,compared with the random Hough transform and template recognition algorithm,the tracking efficiency is improved over 5 times.
Author 刘祥磊 童小华 马静
AuthorAffiliation 北京建筑大学测绘与城市空间信息学院,北京100044 现代城市测绘国家测绘地理信息局重点实验室,北京100044 同济大学测绘与地理信息学院,上海200092 北京市地质工程勘察院,北京100048
AuthorAffiliation_xml – name: 北京建筑大学测绘与城市空间信息学院,北京 100044; 现代城市测绘国家测绘地理信息局重点实验室,北京 100044%同济大学测绘与地理信息学院,上海,200092%北京市地质工程勘察院,北京,100048
Author_FL MA Jing
LIU Xiang Lei
TONG Xiaohua
Author_FL_xml – sequence: 1
  fullname: LIU Xiang Lei
– sequence: 2
  fullname: TONG Xiaohua
– sequence: 3
  fullname: MA Jing
Author_xml – sequence: 1
  fullname: 刘祥磊 童小华 马静
BookMark eNotkEtLAlEAhe_CIDN_Qpug5dh937nLkLJIaJF7ufPyQY2lRLWLAhUKpKBaFBhSBElFRJiC9Ge64_gvGrHNOZuPczhnDsT8iu8CsIBgCiFJxXI5tZJJb6cwRGwiBFKGYyCOIEQGYpLNgmStVrIgZJQIRmQcbIbP9XHnMvg6Hzdaevihz1p60NLN2-DxVd_X9bDzOxjo3tPo7i14aIxO-_qnOz5ph-913ezqq4uw1w6_X4KbfvB5PQ9mPLVTc5P_ngC5tdVcet3IbmU20itZw2YCGsxEmCCsoGdyk2JOuUUF50rajiKSSulAz5XCItxTDneEME3mKYswFyHMJSMJsDSNPVS-p_xCvlw5qPpRYd4uHlmT7ZBDBCNuccrZxYpf2C9F5F61tKuqx3nOGeI4OoH8AUbRdbQ
ClassificationCodes P232
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11947/j.AGCS.2015.20130452
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitle_FL A Systemic Algorithm of Elliptical Artificial Targets Identification and Tracking for Image Sequences from Videogrammetry
EndPage 669
ExternalDocumentID chxb201506010
665162543
GrantInformation_xml – fundername: 现代城市测绘国家测绘地理信息局重点实验室开放课题; 北京建筑大学科学研究基金(00331614022)@@@@Foundation of Key Laboratory fo r U rban Geoma t ics of National Adm in i st ra-tion of Su rveying,Mapping and Geo info rmation; Scientific Resea rch Foundation of Beijing Un iversi ty of Civ i l Eng ineering and Arch i tectu re
  funderid: (20131203 NY,20131202NZ); (.20131203 NY,20131202NZ); (00331614022)
GroupedDBID -01
2B.
2C.
2RA
5VS
5XA
5XB
7X2
92E
92I
92L
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CQIGP
CW9
GROUPED_DOAJ
HCIFZ
IPNFZ
M0K
M7P
OK1
P2P
PATMY
PCBAR
PIMPY
PYCSY
RIG
TCJ
TGP
U1G
U5K
W94
~WA
4A8
93N
ABJNI
AEUYN
PHGZM
PHGZT
PMFND
PSX
ID FETCH-LOGICAL-c570-5812312a0f86842646b4766a9cda39499d0fe97b36fad6d77885fab35e1126953
ISSN 1001-1595
IngestDate Thu May 29 04:11:07 EDT 2025
Wed Feb 14 10:30:29 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords 视频测量
最小二乘法
el l ipse identification
影像块
椭圆识别
image block
mathematical morphology
least square algorithm
数学形态学
videogrammetric measurement
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c570-5812312a0f86842646b4766a9cda39499d0fe97b36fad6d77885fab35e1126953
Notes 11-2089/P
PageCount 7
ParticipantIDs wanfang_journals_chxb201506010
chongqing_primary_665162543
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 测绘学报
PublicationTitleAlternate Acta Geodaetica et Cartographica Sinica
PublicationTitle_FL Acta Geodaetica et Cartographica Sinica
PublicationYear 2015
Publisher 北京建筑大学测绘与城市空间信息学院,北京 100044
现代城市测绘国家测绘地理信息局重点实验室,北京 100044%同济大学测绘与地理信息学院,上海,200092%北京市地质工程勘察院,北京,100048
Publisher_xml – name: 现代城市测绘国家测绘地理信息局重点实验室,北京 100044%同济大学测绘与地理信息学院,上海,200092%北京市地质工程勘察院,北京,100048
– name: 北京建筑大学测绘与城市空间信息学院,北京 100044
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.0302193
Snippet ...
P232;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 663
SubjectTerms 影像块
数学形态学
最小二乘法
椭圆识别
视频测量
Title 视频测量影像序列椭圆形人工目标点快速识别和跟踪方法
URI http://lib.cqvip.com/qk/90069X/201506/665162543.html
https://d.wanfangdata.com.cn/periodical/chxb201506010
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9RAMNT64ov4SWu13IPri5zma78eN7nEYlEQK_TtyCU5--JVbQvaJ1FoCwpFQX1QqRRFsKiISG2h-GfM9fovnNnk7tJS8AOOZW92dnZ2ZpOdze7MGsZZO5FN27bSqkidpIrRCKuRE1n44Flp0zHtNEZv5CtX2dgN9_IknRw48KZ0amlutnEhnt_Xr-R_tAow0Ct6yf6DZntEAQB50C-koGFI_0rHJBBEcSIYCSRRNpEWCRjxKBEeQmCdL0ISUOLViGdhRjhdiCoyQhDJsZZyiaohRPqaoK4FNAMXkeGHEE4UJQEn0iMq0LVMbAUgwiae1DghUXnrJpGh5jAsCEJbWARN2ET4WAQEcxwPihQSlEzTgdQh-b2YXdO51DVOPI9IgaSAZ8WwSCjgrTt8uj0TiAss51wr6L3qo3DkBkuAabMrjhoRQR8FpAo_HzOyRvI7lrrfSHL_UD2edU1fC1JLC2tQ5BHFxpFHqcWPMua7uN7bIRclIQItpLDIIMTWdKQmKLEhz9XIIGytc2GhmPuUAUePiCAknq-FvZfD85beZi9NSnjsDcxOWnoey5MOK6aItPgn958apcv13Kgu-dfxTCPFBDfK7b4t0DuhGU_da9h5-El0YDxoc27hidnxa2XrHWxnUbYO4WVein5HXQcWwz1rGa82cFk_OiW1HO4w2VutoilM9eGEoruFwx0yfnE_tjEcytR06-YdMPK0z12rGbVulszDiSPG4WJdV1H5Q3rUGJifOmYMqRncaZq-db9yrqLz-YfEmePGeOfDws7q0_b3xzuLy9nW1-zRcra5nC29bL_7lL1eyLZWf21uZuvvt199br9d3H64kf1c23mw0vmykC2tZc-edNZXOj8-tl9stL89P2FMhMGEP1YtLjapxpSbVQpGtWPZkdkUuAvOXNZwOWORjJPIwWBRidlMJW84rBklLOFcCNqMGg5N0d9PUuekMdiabqVDRsWJaZoI001oKl3UBo1il5lRZKY2p0k0bIz0RFS_ncevqTNGLYZBMIaN0UJo9eKtNlPfpfhTf0IYMQ5hPv8medoYnL07l54BK322MarHym8aELG_
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%A7%86%E9%A2%91%E6%B5%8B%E9%87%8F%E5%BD%B1%E5%83%8F%E5%BA%8F%E5%88%97%E6%A4%AD%E5%9C%86%E5%BD%A2%E4%BA%BA%E5%B7%A5%E7%9B%AE%E6%A0%87%E7%82%B9%E5%BF%AB%E9%80%9F%E8%AF%86%E5%88%AB%E5%92%8C%E8%B7%9F%E8%B8%AA%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E5%88%98%E7%A5%A5%E7%A3%8A&rft.au=%E7%AB%A5%E5%B0%8F%E5%8D%8E&rft.au=%E9%A9%AC%E9%9D%99&rft.date=2015&rft.pub=%E5%8C%97%E4%BA%AC%E5%BB%BA%E7%AD%91%E5%A4%A7%E5%AD%A6%E6%B5%8B%E7%BB%98%E4%B8%8E%E5%9F%8E%E5%B8%82%E7%A9%BA%E9%97%B4%E4%BF%A1%E6%81%AF%E5%AD%A6%E9%99%A2%EF%BC%8C%E5%8C%97%E4%BA%AC+100044&rft.issn=1001-1595&rft.issue=6&rft.spage=663&rft.epage=669&rft_id=info:doi/10.11947%2Fj.AGCS.2015.20130452&rft.externalDocID=chxb201506010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90069X%2F90069X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg