Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives
The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multi...
Saved in:
Published in | Biomedicines Vol. 11; no. 2; p. 413 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
31.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2227-9059 2227-9059 |
DOI | 10.3390/biomedicines11020413 |
Cover
Loading…
Abstract | The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles’ distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives. |
---|---|
AbstractList | The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles’ distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives. The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles' distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives.The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles' distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives. |
Audience | Academic |
Author | A. Ahmed, Esraa Zanetti, Stefania Hetta, Helal F. Al-Harbi, Alhanouf I. Donadu, Matthew Gavino Ramadan, Yasmin N. Battah, Basem Abd Ellah, Noura H. |
AuthorAffiliation | 1 Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt 5 Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, 36822 Damascus, Syria 4 Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt 3 Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia 9 Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy 6 Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt 7 Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut 2014101, Egypt 2 Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt 8 Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy |
AuthorAffiliation_xml | – name: 7 Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut 2014101, Egypt – name: 5 Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, 36822 Damascus, Syria – name: 2 Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt – name: 6 Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt – name: 1 Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt – name: 4 Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt – name: 9 Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy – name: 3 Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia – name: 8 Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy |
Author_xml | – sequence: 1 givenname: Helal F. orcidid: 0000-0001-8541-7304 surname: Hetta fullname: Hetta, Helal F. – sequence: 2 givenname: Yasmin N. surname: Ramadan fullname: Ramadan, Yasmin N. – sequence: 3 givenname: Alhanouf I. orcidid: 0000-0003-0889-2886 surname: Al-Harbi fullname: Al-Harbi, Alhanouf I. – sequence: 4 givenname: Esraa surname: A. Ahmed fullname: A. Ahmed, Esraa – sequence: 5 givenname: Basem surname: Battah fullname: Battah, Basem – sequence: 6 givenname: Noura H. surname: Abd Ellah fullname: Abd Ellah, Noura H. – sequence: 7 givenname: Stefania surname: Zanetti fullname: Zanetti, Stefania – sequence: 8 givenname: Matthew Gavino orcidid: 0000-0001-7681-6194 surname: Donadu fullname: Donadu, Matthew Gavino |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36830949$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vEzEQhleoiJbSf4CQJS5cUvy167gHpBBRqFSgQnC2bO_sxtHGTm1vUA_8dxxSSlNV2AdbM8_7WjOe59WBDx6q6iXBp4xJ_Na4sILWWechEYIp5oQ9qY4opWIicS0P7t0Pq5OUlrgsSdiU8GfVIWumDEsuj6pfX7QPGezChyH0N0gnpNFVDCuXnO_RbL2OQdsFygHNw8rojD6PQ3ZtHHv0DZJLWfuM3mubITp9hmZbbB1hAT65DRRm4-An0r5F52MeI6AriGkNNpdselE97fSQ4OT2PK5-nH_4Pv80ufz68WI-u5zYupF5AiCobKkxnTYE10a2QC0V2tYd7UjNO2iFbk3DAGoO1HCuLfDO8k5w1jDDjquLnW8b9FKto1vpeKOCdupPIMRe6ZidHUAx0jEhQZgp5lzS2mjGu8bUxDBjDCHF693Oaz2a8gcWfI562DPdz3i3UH3YKClrRhpRDN7cGsRwPULKqjTbwjBoD2FMioopxoIJxgr6-gG6DGP0pVWFErKmrJH0H9XrUoDzXSjv2q2pmglOiWANwYU6fYQqu4WVs2W8Olfie4JX9wu9q_Dv8BSA7wAbQ0oRujuEYLUdU_XYmBbZ2QOZdVlnF7btcsP_xb8BSiTzFA |
CitedBy_id | crossref_primary_10_1088_2632_959X_ad437b crossref_primary_10_2147_IJN_S418588 crossref_primary_10_18502_jovr_v19i4_14498 crossref_primary_10_1016_j_envres_2024_118632 crossref_primary_10_3390_molecules29204949 crossref_primary_10_3389_fmolb_2024_1412325 crossref_primary_10_1016_j_jksus_2024_103131 crossref_primary_10_1016_j_genrep_2025_102197 crossref_primary_10_1007_s00203_024_04205_y crossref_primary_10_3390_pharmaceutics16030300 crossref_primary_10_3390_molecules28248041 crossref_primary_10_1007_s00284_024_03875_7 crossref_primary_10_3389_fmicb_2024_1381511 crossref_primary_10_3390_biomedicines11102860 crossref_primary_10_3390_antibiotics13020121 crossref_primary_10_1016_j_micpath_2024_106722 crossref_primary_10_1016_j_nxnano_2023_100035 crossref_primary_10_3390_pathogens13121049 crossref_primary_10_1007_s11033_024_09666_4 crossref_primary_10_1007_s11274_024_03925_z crossref_primary_10_1051_e3sconf_202450901015 crossref_primary_10_1016_j_hybadv_2024_100335 crossref_primary_10_3390_microorganisms13030557 crossref_primary_10_1016_j_plana_2024_100130 crossref_primary_10_1016_j_eti_2025_104147 crossref_primary_10_3390_antibiotics13040305 crossref_primary_10_3390_antibiotics14030253 crossref_primary_10_3389_fmicb_2024_1455759 crossref_primary_10_1088_1758_5090_ad6b45 crossref_primary_10_4236_ojmm_2024_141007 crossref_primary_10_1080_07373937_2024_2437690 crossref_primary_10_1186_s43088_024_00514_9 crossref_primary_10_1007_s11756_025_01873_z crossref_primary_10_1016_j_sajb_2024_01_059 crossref_primary_10_5937_sanamed19_53857 crossref_primary_10_1016_j_tiv_2024_105814 crossref_primary_10_1021_acsomega_4c02133 crossref_primary_10_3390_biomedicines11102832 crossref_primary_10_3390_molecules29112584 crossref_primary_10_3390_antibiotics14020207 crossref_primary_10_1007_s10876_024_02696_9 crossref_primary_10_1016_j_jece_2024_112637 crossref_primary_10_3390_microorganisms11081912 crossref_primary_10_1021_acsmaterialslett_4c02113 crossref_primary_10_4014_jmb_2403_03029 crossref_primary_10_1016_j_jiec_2024_09_044 crossref_primary_10_1007_s42452_024_06221_5 crossref_primary_10_3390_horticulturae9030369 crossref_primary_10_1016_j_scitotenv_2024_171675 crossref_primary_10_1007_s00203_025_04262_x crossref_primary_10_13005_bpj_2939 crossref_primary_10_1016_j_micpath_2024_106741 crossref_primary_10_1002_admt_202400458 crossref_primary_10_1016_j_matchemphys_2024_129507 crossref_primary_10_3390_ph18030364 crossref_primary_10_1016_j_inoche_2023_111899 crossref_primary_10_1007_s00284_024_04030_y crossref_primary_10_61186_jrums_23_4_207 crossref_primary_10_1016_j_micpath_2025_107455 crossref_primary_10_3390_ph16070920 crossref_primary_10_1016_j_addr_2024_115481 crossref_primary_10_3390_antibiotics13111042 crossref_primary_10_1007_s12668_024_01561_3 crossref_primary_10_1089_phage_2024_0011 crossref_primary_10_1186_s11671_024_04116_3 crossref_primary_10_3390_pharmaceutics16020254 crossref_primary_10_1007_s44174_023_00127_3 crossref_primary_10_1016_j_nxmate_2024_100447 crossref_primary_10_3390_gels10120800 crossref_primary_10_2174_0113816128326718240809091654 crossref_primary_10_3390_antibiotics13111071 crossref_primary_10_3390_antibiotics14030221 crossref_primary_10_3389_fbiom_2024_1360443 crossref_primary_10_3390_molecules29153466 crossref_primary_10_5902_2179460X72377 crossref_primary_10_3390_ph17111555 crossref_primary_10_1007_s44351_024_00002_6 crossref_primary_10_1016_j_nanoso_2024_101403 crossref_primary_10_1088_1748_605X_ad46d4 crossref_primary_10_2478_aoas_2024_0111 crossref_primary_10_3390_ijms251910377 crossref_primary_10_1155_ijm_8746754 crossref_primary_10_1016_j_colsurfb_2023_113572 crossref_primary_10_3390_ijms24119375 crossref_primary_10_1208_s12249_024_02968_7 crossref_primary_10_1016_j_micpath_2024_106957 crossref_primary_10_1016_j_micpath_2024_106679 crossref_primary_10_1039_D3RA05816F crossref_primary_10_3390_pharmaceutics16091114 crossref_primary_10_1016_j_jddst_2024_105382 crossref_primary_10_1016_j_micpath_2023_106356 crossref_primary_10_1016_j_aiepr_2023_09_002 crossref_primary_10_3390_antibiotics13010109 crossref_primary_10_3389_fmicb_2024_1391345 crossref_primary_10_2174_1389200224666230731093319 crossref_primary_10_1007_s12223_023_01116_1 crossref_primary_10_2147_IJN_S453775 crossref_primary_10_1016_j_inoche_2024_113809 crossref_primary_10_3390_antibiotics13010071 crossref_primary_10_1007_s11274_023_03653_w crossref_primary_10_1016_j_matchemphys_2024_129042 crossref_primary_10_3390_microorganisms11082084 crossref_primary_10_1021_acsomega_3c04893 crossref_primary_10_3390_molecules29112675 crossref_primary_10_3390_antibiotics14020111 crossref_primary_10_3390_biom13081182 crossref_primary_10_1002_bab_2545 crossref_primary_10_2174_0113816128337749241021084050 crossref_primary_10_3389_fmicb_2023_1272892 crossref_primary_10_3390_ijms242316939 crossref_primary_10_3390_jfb14070336 |
Cites_doi | 10.1088/2399-1984/aa69fb 10.1186/s12951-017-0308-z 10.1038/s41579-022-00767-0 10.1021/acsabm.2c00014 10.3390/ph15030357 10.1038/nrmicro3028 10.1002/adhm.201900564 10.3389/fmicb.2018.01441 10.1007/s11274-021-03187-z 10.3390/microorganisms9112365 10.1021/acs.est.5b05734 10.3390/ani13020296 10.3390/ph15060682 10.3390/pathogens2020288 10.3389/fphar.2019.01153 10.1007/s00253-022-12150-3 10.3390/molecules25133091 10.1166/jnn.2008.274 10.3390/antibiotics9090603 10.1016/j.jddst.2021.102401 10.3390/polym14040771 10.3390/nano12010161 10.1021/acsnano.2c03170 10.1002/wnan.1860 10.1021/acsabm.0c01485 10.3390/microorganisms10040758 10.1111/j.1462-5822.2009.01368.x 10.1093/femsre/fux010 10.3390/molecules25163760 10.1073/pnas.0911674106 10.1038/nrmicro2474 10.1038/nrmicro3380 10.1016/j.nmni.2015.02.007 10.1016/B978-0-323-40016-9.00009-9 10.1002/star.202100165 10.1021/acsami.8b00181 10.1002/smll.202103348 10.3390/biom11071028 10.1021/acsami.1c04330 10.1016/j.biomaterials.2011.11.057 10.3855/jidc.14885 10.2147/IJN.S121956 10.1042/BA20090198 10.1080/23744235.2021.1916071 10.1038/s41598-021-88861-w 10.1016/j.lfs.2021.119117 10.3390/antibiotics11010107 10.2147/IDR.S377797 10.1038/nature.2017.21550 10.1016/j.scitotenv.2019.02.446 10.1080/21553769.2015.1051243 10.1016/j.mpmed.2017.07.006 10.1039/C5NR03318G 10.1039/C6MD00124F 10.1016/j.ijpharm.2018.07.030 10.1016/j.jconrel.2011.07.002 10.1016/j.yrtph.2007.07.006 10.1515/ntrev-2022-0059 10.1016/j.ebiom.2021.103653 10.3390/s22041364 10.3390/microorganisms9112384 10.1038/srep18877 10.1186/s12941-021-00459-2 10.2217/nnm-2018-0348 10.1038/nmat2442 10.1007/s11274-020-02940-0 10.1038/s41598-021-90868-2 10.1038/s41579-022-00682-4 10.1016/j.nano.2017.06.015 10.1038/s41598-021-90208-4 10.1016/j.biomaterials.2010.08.076 10.1111/j.1472-8206.2009.00692.x 10.1016/j.biotechadv.2018.05.004 10.1016/j.cell.2007.03.004 10.1007/s40265-020-01359-z 10.1016/j.jddst.2021.102435 10.3390/antibiotics9100641 10.1002/9783527648122 10.3390/nano12132183 10.1021/acsinfecdis.9b00134 10.1139/m77-249 10.1038/s41598-017-18129-9 10.1016/j.msec.2021.112318 10.1016/j.ijbiomac.2022.04.225 10.2147/IDR.S277295 10.3390/pharmaceutics14081745 10.1016/j.tim.2019.07.004 10.1016/j.ijpharm.2017.06.052 10.1155/2014/541340 10.2217/nnm-2021-0325 10.3389/fmicb.2015.00591 10.1517/17425247.2016.1134486 10.1089/mdr.2019.0243 10.1038/nrmicro1839 10.1002/adfm.202008720 10.1021/mp200394t 10.1016/j.addr.2021.04.005 10.1155/2016/1851242 10.1080/10717544.2016.1177136 10.2147/IDR.S275852 10.1016/S0966-842X(01)02012-1 10.2147/IDR.S198373 10.3389/fchem.2020.00286 10.1038/s41598-020-79479-5 10.1016/j.jphotobiol.2019.03.021 10.1016/j.tiv.2016.08.007 10.1007/s12010-022-03994-6 10.1186/s12951-021-01059-0 10.1264/jsme2.ME11126 10.3390/nano6040071 10.3389/fcimb.2022.1068000 10.3390/molecules25153479 10.1186/s13756-019-0533-3 10.1371/journal.pone.0240510 10.1007/s10876-018-1411-5 10.1111/bph.13664 10.1038/s41598-022-26338-0 10.1039/C7ME00048K 10.1038/s41579-021-00540-9 10.3855/jidc.11102 10.3389/fchem.2021.687660 10.2147/IDR.S272733 10.1021/acsami.1c24229 10.3389/fbioe.2021.696514 10.1371/journal.pone.0267396 10.1016/j.ijtb.2020.07.032 10.1039/C7CS00748E 10.1002/btm2.10003 10.2147/IJN.S165125 10.1021/acsami.1c21657 10.2147/IDR.S238811 10.1016/j.scitotenv.2016.02.191 10.1080/10715760802350904 10.1016/S1473-3099(11)70054-8 10.1016/j.colsurfb.2020.110921 10.1002/advs.201902913 10.1016/j.biortech.2021.125741 10.1097/ICO.0000000000002375 10.1111/1462-2920.12155 10.1021/acsomega.2c00508 10.3390/ijms231911348 10.1093/femsre/fux003 10.1016/j.jconrel.2021.02.031 10.1016/j.jconrel.2016.01.008 10.1097/01.blo.0000175714.68624.74 10.1016/j.msec.2019.01.026 10.1016/j.ijbiomac.2022.05.156 10.2217/nnm-2020-0247 10.1016/j.jcis.2004.02.012 10.2147/IJN.S196842 10.1016/j.jddst.2019.101465 10.3389/fchem.2019.00872 10.3390/molecules25092193 10.1016/j.jconrel.2022.09.052 10.1186/s12866-021-02287-y 10.2217/nnm-2020-0001 10.1016/j.xphs.2016.06.022 10.1016/j.cbi.2017.06.019 10.1128/AEM.06513-11 10.1186/s11671-017-2222-6 10.1039/D1BM01390D 10.3390/life11111178 10.1039/C6NR08486A 10.1021/acs.nanolett.1c04968 10.2147/IJN.S191340 10.1126/science.284.5418.1318 10.2147/IDR.S276975 10.1128/microbiolspec.VMBF-0016-2015 10.1002/cmdc.202000677 10.1016/j.carbpol.2022.119736 10.1038/nrmicro821 10.3389/fmicb.2020.00215 10.1016/j.addr.2013.07.011 10.1126/science.aay3041 10.1016/bs.acr.2017.11.003 10.1088/0957-4484/25/13/135101 10.1039/C3CS60218D 10.1002/advs.202105223 10.1007/s00289-005-0414-1 10.1186/s11671-018-2533-2 10.1038/35085034 10.1002/biot.202100432 10.1021/acsbiomaterials.1c00807 10.1016/j.msec.2015.06.033 10.3390/antibiotics10121473 10.1021/acs.jpcb.9b07732 10.1038/s41598-020-72264-4 10.1007/s11051-010-9900-y 10.1021/ja1028843 10.1038/nbt.3330 10.3390/ani10081340 10.1007/s12551-021-00795-9 10.3389/fpubh.2014.00145 10.1088/0957-4484/16/9/082 10.3390/agronomy11050957 10.3390/molecules25153432 10.1016/j.talanta.2016.09.070 10.3390/nano12142402 10.2147/IDR.S151783 10.1038/s41579-020-0385-0 10.1016/j.biotechadv.2021.107842 10.2147/IDR.S234425 10.3390/molecules27051606 10.1038/s41579-020-0420-1 10.1128/spectrum.01516-21 10.1038/nrmicro2415 10.1016/j.cmet.2015.01.008 10.3389/fchem.2022.1029056 10.1016/bs.mcb.2015.01.013 10.1038/nrmicro.2016.94 10.1016/j.tim.2014.02.001 10.1038/nrmicro2333 10.1128/AAC.50.1.55-61.2006 10.3390/molecules27082489 10.1166/jnn.2019.16757 10.2147/IDR.S201124 10.1016/j.ijbiomac.2021.02.040 10.2147/IDR.S365254 10.1038/s41598-020-75914-9 10.1186/s12866-021-02144-y 10.1021/acsnano.7b08264 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/biomedicines11020413 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Public Health |
EISSN | 2227-9059 |
ExternalDocumentID | oai_doaj_org_article_31f379e7b8044925ba34f6b51b3bbb11 PMC9953167 A742173610 36830949 10_3390_biomedicines11020413 |
Genre | Journal Article Review |
GeographicLocations | Egypt |
GeographicLocations_xml | – name: Egypt |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ACPRK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EMOBN GROUPED_DOAJ GX1 HCIFZ HYE IAO IHR INH ITC KQ8 LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PMFND ABUWG AZQEC COVID DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c569t-ee729d2bbfab105b9de2c27ac5f2f154fed7adb63ee54e2b44ace4fc4f74363b3 |
IEDL.DBID | BENPR |
ISSN | 2227-9059 |
IngestDate | Wed Aug 27 01:17:16 EDT 2025 Thu Aug 21 18:37:59 EDT 2025 Fri Jul 11 08:12:04 EDT 2025 Fri Jul 25 12:10:40 EDT 2025 Tue Jun 17 22:24:03 EDT 2025 Tue Jun 10 21:25:37 EDT 2025 Thu Jan 02 22:53:36 EST 2025 Tue Jul 01 03:17:30 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | nanotechnology XDR bacteria nanoantibiotics MDR bacteria biofilm |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c569t-ee729d2bbfab105b9de2c27ac5f2f154fed7adb63ee54e2b44ace4fc4f74363b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0889-2886 0000-0001-8541-7304 0000-0001-7681-6194 |
OpenAccessLink | https://www.proquest.com/docview/2779523692?pq-origsite=%requestingapplication% |
PMID | 36830949 |
PQID | 2779523692 |
PQPubID | 2032426 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_31f379e7b8044925ba34f6b51b3bbb11 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9953167 proquest_miscellaneous_2780073733 proquest_journals_2779523692 gale_infotracmisc_A742173610 gale_infotracacademiconefile_A742173610 pubmed_primary_36830949 crossref_primary_10_3390_biomedicines11020413 crossref_citationtrail_10_3390_biomedicines11020413 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230131 |
PublicationDateYYYYMMDD | 2023-01-31 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230131 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biomedicines |
PublicationTitleAlternate | Biomedicines |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ventola (ref_8) 2015; 40 Anselmo (ref_50) 2016; 1 Jiang (ref_122) 2016; 13 Merrifield (ref_60) 2017; 162 Algammal (ref_3) 2022; 15 Nel (ref_143) 2009; 8 Hoek (ref_194) 2010; 12 Russell (ref_200) 2001; 2 Abdelghany (ref_177) 2012; 7 ref_125 ref_127 Rizzello (ref_195) 2014; 43 Zhang (ref_142) 2008; 6 ref_129 Lee (ref_46) 2019; 10 ref_121 Liu (ref_185) 2021; 53 Miyazaki (ref_233) 2022; 16 Mba (ref_54) 2021; 53 Jijie (ref_149) 2017; 2 Wasef (ref_20) 2021; 11 Hetta (ref_197) 2020; 13 Chung (ref_141) 2009; 106 Ramasamy (ref_45) 2016; 2016 Rajeshkumar (ref_61) 2017; 273 Marcato (ref_123) 2008; 8 Sharma (ref_44) 2019; 8 Prucek (ref_151) 2022; 11 Costerton (ref_95) 2004; 2 Eng (ref_196) 2015; 8 Cassandra (ref_182) 2017; 543 Lebeaux (ref_93) 2013; 2 Algammal (ref_91) 2020; 10 ref_160 Kamaruzzaman (ref_199) 2017; 174 Kim (ref_148) 2018; 10 Wang (ref_113) 2022; 22 Xu (ref_186) 2021; 4 ref_83 ref_81 Gad (ref_52) 2020; 15 Gupta (ref_152) 2019; 48 ref_87 Blanco (ref_43) 2015; 33 Patel (ref_215) 2005; 437 Hashem (ref_28) 2022; 17 Bassetti (ref_103) 2020; 80 Flemming (ref_212) 2016; 14 Sim (ref_59) 2018; 36 Gilbertson (ref_120) 2016; 50 Emmanuel (ref_191) 2015; 56 Wang (ref_37) 2020; 7 Dar (ref_203) 2021; 11 (ref_128) 2022; 155 Natan (ref_157) 2017; 41 Sauer (ref_217) 2022; 20 Ellis (ref_204) 2018; 12 Tawfeek (ref_55) 2019; 14 Wang (ref_156) 2005; 55 ref_219 Banerjee (ref_224) 2020; 190 Thomas (ref_225) 2016; 105 Bardestani (ref_164) 2021; 19 Costerton (ref_210) 1999; 284 Masoud (ref_73) 2020; 13 Mamun (ref_138) 2021; 9 Blair (ref_78) 2015; 13 Shek (ref_102) 1983; 49 Cheeseman (ref_150) 2020; 7 Zazo (ref_226) 2016; 224 Usai (ref_13) 2019; 13 ref_202 Zaidi (ref_140) 2017; 13 ref_205 Salah (ref_85) 2022; 12 Geesey (ref_211) 1977; 23 Algammal (ref_70) 2020; 13 Shobha (ref_48) 2014; 3 Zhang (ref_190) 2021; 31 Menina (ref_207) 2019; 8 Borm (ref_232) 2008; 3 Abid (ref_57) 2021; 273 ref_115 Hetta (ref_25) 2021; 11 Rumbaugh (ref_180) 2020; 18 ref_119 ref_118 Yin (ref_98) 2022; 14 Sherje (ref_108) 2018; 548 Brown (ref_171) 2012; 78 Hetta (ref_41) 2020; 15 Banerjee (ref_161) 2022; 38 ref_110 ref_112 Fulaz (ref_221) 2019; 27 Tripathi (ref_23) 2022; 5 Ibrahim (ref_72) 2020; 26 Elkhawaga (ref_92) 2020; 11 Makharita (ref_68) 2020; 13 Kohanski (ref_137) 2010; 8 Yeh (ref_139) 2020; 8 ref_105 ref_107 Khalid (ref_34) 2017; 528 Khalili (ref_130) 2022; 213 Li (ref_175) 2005; 16 Chamundeeswari (ref_176) 2010; 55 Ciofu (ref_218) 2022; 20 Abdellatif (ref_19) 2021; 63 Ahmed (ref_42) 2019; 14 Algammal (ref_88) 2020; 10 Peng (ref_193) 2015; 21 Liu (ref_82) 2020; 367 Zhao (ref_144) 2010; 132 Farhan (ref_67) 2020; 56 Jafari (ref_116) 2021; 68 Hasanin (ref_29) 2021; 175 Baptista (ref_228) 2018; 9 Liu (ref_36) 2019; 123 ref_14 Liao (ref_58) 2019; 14 ref_12 Periakaruppan (ref_114) 2022; 194 Roca (ref_89) 2015; 6 Tanwar (ref_97) 2014; 2014 ref_17 Cheng (ref_47) 2018; 13 Qayyum (ref_35) 2016; 7 Ibarra (ref_198) 2009; 11 Huh (ref_227) 2011; 156 Mu (ref_208) 2016; 6 Coenye (ref_216) 2014; 22 Cui (ref_145) 2012; 33 Wang (ref_154) 2017; 12 Munita (ref_64) 2016; 4 Ghezzi (ref_109) 2021; 332 Zhang (ref_132) 2017; 9 ref_22 ref_21 Sun (ref_192) 2021; 9 Zylberberg (ref_100) 2016; 23 Teixeira (ref_10) 2018; 21 Kassem (ref_124) 2019; 668 Pelgrift (ref_9) 2013; 65 Hada (ref_179) 2022; 293 Lu (ref_99) 2021; 13 Chaithawiwat (ref_165) 2016; 565 Tawre (ref_24) 2022; 10 Li (ref_172) 2019; 5 Alekshun (ref_65) 2007; 128 Fahimmunisha (ref_162) 2020; 55 Mabrok (ref_84) 2023; 1862 Sandle (ref_76) 2019; 12 Du (ref_187) 2022; 7 Saginur (ref_94) 2006; 50 Jaworski (ref_49) 2018; 13 Jia (ref_134) 2022; 210 Michael (ref_181) 2014; 2 Elbahnasawy (ref_31) 2021; 62 Farhan (ref_69) 2019; 12 Gupta (ref_74) 2017; 1 Sandhiya (ref_229) 2009; 23 Morgan (ref_86) 2011; 11 MacGowan (ref_62) 2017; 45 Hetta (ref_63) 2018; 11 Taher (ref_201) 2022; 16 Xie (ref_206) 2017; 7 Makabenta (ref_136) 2021; 19 Lemire (ref_146) 2013; 11 Hamad (ref_4) 2022; 10 Saneja (ref_106) 2019; 98 (ref_230) 2009; 2009 Haidari (ref_111) 2021; 14 Algammal (ref_90) 2021; 11 Pathakoti (ref_163) 2019; 19 Flemming (ref_214) 2010; 8 Ang (ref_126) 2022; 8 Yang (ref_11) 2021; 9 Mousa (ref_173) 2020; 13 ref_56 ref_174 ref_51 ref_178 Arnaouteli (ref_213) 2021; 19 Hagens (ref_231) 2007; 49 Carvalho (ref_101) 2015; 128 Lin (ref_117) 2021; 17 Hashem (ref_27) 2022; 74 Hetta (ref_18) 2022; 17 Sondi (ref_188) 2004; 275 Joner (ref_166) 2011; 26 Fenoglio (ref_158) 2008; 42 Hall (ref_96) 2017; 41 Tseng (ref_80) 2013; 15 Hurdle (ref_79) 2011; 9 Li (ref_209) 2021; 340 Elhassan (ref_131) 2022; 351 ref_66 Ikuma (ref_222) 2015; 6 ref_167 He (ref_133) 2022; 9 Mba (ref_53) 2020; 36 Gupta (ref_75) 2017; 12 Ovung (ref_77) 2021; 13 ref_170 Birk (ref_223) 2021; 174 Slavin (ref_155) 2017; 15 Sutherland (ref_169) 2001; 9 Cascioferro (ref_135) 2021; 16 Algammal (ref_5) 2022; 15 Kareem (ref_71) 2021; 14 ref_30 Chatterjee (ref_168) 2014; 25 ref_39 ref_38 Muthukrishnan (ref_153) 2019; 194 Amreddy (ref_104) 2018; 137 Short (ref_189) 2021; 73 Song (ref_33) 2021; 128 Duncan (ref_234) 2011; 8 Huang (ref_183) 2011; 32 Pinna (ref_15) 2020; 39 Quinteros (ref_159) 2016; 36 ref_184 Mosallam (ref_32) 2018; 29 Wang (ref_220) 2022; 106 ref_40 ref_1 ref_2 Tarrat (ref_147) 2015; 7 Abdelraheem (ref_26) 2021; 20 ref_7 ref_6 Algammal (ref_16) 2021; 21 |
References_xml | – volume: 1 start-page: 015004 year: 2017 ident: ref_74 article-title: Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection publication-title: Nano Futures doi: 10.1088/2399-1984/aa69fb – volume: 15 start-page: 65 year: 2017 ident: ref_155 article-title: Metal nanoparticles: Understanding the mechanisms behind antibacterial activity publication-title: J. Nanobiotechnology doi: 10.1186/s12951-017-0308-z – volume: 20 start-page: 608 year: 2022 ident: ref_217 article-title: The biofilm life cycle: Expanding the conceptual model of biofilm formation publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-022-00767-0 – volume: 5 start-page: 1391 year: 2022 ident: ref_23 article-title: Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles publication-title: ACS Appl. Bio. Mater. doi: 10.1021/acsabm.2c00014 – ident: ref_127 doi: 10.3390/ph15030357 – volume: 11 start-page: 371 year: 2013 ident: ref_146 article-title: Antimicrobial activity of metals: Mechanisms, molecular targets and applications publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3028 – volume: 8 start-page: 1900564 year: 2019 ident: ref_207 article-title: Bioinspired liposomes for oral delivery of colistin to combat intracellular infections by Salmonella enterica publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201900564 – volume: 3 start-page: 133 year: 2008 ident: ref_232 article-title: Drug delivery and nanoparticles:applications and hazards publication-title: Int. J. Nanomed. – volume: 9 start-page: 1441 year: 2018 ident: ref_228 article-title: Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans” publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01441 – volume: 38 start-page: 20 year: 2022 ident: ref_161 article-title: Oxidative stress, DNA, and membranes targets as modes of antibacterial and antibiofilm activity of facile synthesized biocompatible keratin-copper nanoparticles against multidrug resistant uro-pathogens publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-021-03187-z – ident: ref_81 doi: 10.3390/microorganisms9112365 – volume: 50 start-page: 3975 year: 2016 ident: ref_120 article-title: Shape-Dependent Surface Reactivity and Antimicrobial Activity of Nano-Cupric Oxide publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05734 – ident: ref_83 doi: 10.3390/ani13020296 – ident: ref_178 doi: 10.3390/ph15060682 – volume: 2 start-page: 288 year: 2013 ident: ref_93 article-title: From in vitro to in vivo models of bacterial biofilm-related infections publication-title: Pathogens doi: 10.3390/pathogens2020288 – volume: 10 start-page: 1153 year: 2019 ident: ref_46 article-title: Nanoparticles in the treatment of infections caused by multidrug-resistant organisms publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.01153 – volume: 106 start-page: 6365 year: 2022 ident: ref_220 article-title: Biofilm formation and inhibition mediated by bacterial quorum sensing publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-022-12150-3 – ident: ref_40 doi: 10.3390/molecules25133091 – volume: 8 start-page: 2216 year: 2008 ident: ref_123 article-title: New aspects of nanopharmaceutical delivery systems publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2008.274 – ident: ref_66 doi: 10.3390/antibiotics9090603 – volume: 62 start-page: 102401 year: 2021 ident: ref_31 article-title: Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: Characterization and anticandidal activity publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2021.102401 – ident: ref_112 doi: 10.3390/polym14040771 – ident: ref_160 doi: 10.3390/nano12010161 – volume: 16 start-page: 12290 year: 2022 ident: ref_233 article-title: A Hoechst Reporter Enables Visualization of Drug Engagement In Vitro and In Vivo: Toward Safe and Effective Nanodrug Delivery publication-title: ACS Nano doi: 10.1021/acsnano.2c03170 – ident: ref_119 doi: 10.1002/wnan.1860 – volume: 4 start-page: 3985 year: 2021 ident: ref_186 article-title: Release strategies of silver ions from materials for bacterial killing publication-title: ACS Appl. Bio. Mater. doi: 10.1021/acsabm.0c01485 – ident: ref_14 doi: 10.3390/microorganisms10040758 – volume: 11 start-page: 1579 year: 2009 ident: ref_198 article-title: Salmonella–the ultimate insider. Salmonella virulence factors that modulate intracellular survival publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2009.01368.x – volume: 41 start-page: 276 year: 2017 ident: ref_96 article-title: Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fux010 – ident: ref_105 doi: 10.3390/molecules25163760 – volume: 106 start-page: 21872 year: 2009 ident: ref_141 article-title: Rapid beta-lactam-induced lysis requires successful assembly of the cell division machinery publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0911674106 – volume: 9 start-page: 62 year: 2011 ident: ref_79 article-title: Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2474 – volume: 13 start-page: 42 year: 2015 ident: ref_78 article-title: Molecular mechanisms of antibiotic resistance publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3380 – volume: 6 start-page: 22 year: 2015 ident: ref_89 article-title: The global threat of antimicrobial resistance: Science for intervention publication-title: New Microbes New Infect. doi: 10.1016/j.nmni.2015.02.007 – volume: 21 start-page: 233 year: 2018 ident: ref_10 article-title: Advances in antibiotic nanotherapy: Overcoming antimicrobial resistance publication-title: Emerg. Nanotechnologies Immunol. doi: 10.1016/B978-0-323-40016-9.00009-9 – volume: 74 start-page: 2100165 year: 2022 ident: ref_27 article-title: Synthesis of nanocapsules based on biosynthesized nickel nanoparticles and potato starch: Antimicrobial, antioxidant, and anticancer activity publication-title: Starch Stärke doi: 10.1002/star.202100165 – volume: 10 start-page: 13317 year: 2018 ident: ref_148 article-title: Selective Killing of Pathogenic Bacteria by Antimicrobial Silver Nanoparticle-Cell Wall Binding Domain Conjugates publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00181 – volume: 17 start-page: 2103348 year: 2021 ident: ref_117 article-title: Visible-Light-Driven Photocatalysis-Enhanced Nanozyme of TiO2 Nanotubes@ MoS2 Nanoflowers for Efficient Wound Healing Infected with Multidrug-Resistant Bacteria publication-title: Small doi: 10.1002/smll.202103348 – ident: ref_205 – ident: ref_30 doi: 10.3390/biom11071028 – volume: 13 start-page: 22225 year: 2021 ident: ref_99 article-title: Magnetically Guided Nanoworms for Precise Delivery to Enhance In Situ Production of Nitric Oxide to Combat Focal Bacterial Infection In Vivo publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c04330 – volume: 33 start-page: 2327 year: 2012 ident: ref_145 article-title: The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.11.057 – volume: 16 start-page: 125 year: 2022 ident: ref_201 article-title: Pulmonary tuberculosis susceptibility and association with Toll-Like receptor 2 Arg753Gln polymorphism publication-title: J. Infect. Dev. Ctries. doi: 10.3855/jidc.14885 – volume: 12 start-page: 1227 year: 2017 ident: ref_154 article-title: The antimicrobial activity of nanoparticles: Present situation and prospects for the future publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S121956 – volume: 55 start-page: 29 year: 2010 ident: ref_176 article-title: Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity publication-title: Biotechnol. Appl. Biochem. doi: 10.1042/BA20090198 – volume: 53 start-page: 559 year: 2021 ident: ref_54 article-title: Immunobiology and nanotherapeutics of severe acute respiratory syndrome 2 (SARS-CoV-2): A current update publication-title: Infect. Dis. doi: 10.1080/23744235.2021.1916071 – volume: 49 start-page: 37 year: 1983 ident: ref_102 article-title: Comparison between multilamellar and unilamellar liposomes in enhancing antibody formation publication-title: Immunology – volume: 11 start-page: 9476 year: 2021 ident: ref_90 article-title: atpD gene sequencing, multidrug resistance traits, virulence-determinants, and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis publication-title: Sci. Rep. doi: 10.1038/s41598-021-88861-w – volume: 273 start-page: 119117 year: 2021 ident: ref_57 article-title: Biosensors as a future diagnostic approach for COVID-19 publication-title: Life Sci. doi: 10.1016/j.lfs.2021.119117 – ident: ref_121 doi: 10.3390/antibiotics11010107 – volume: 15 start-page: 4321 year: 2022 ident: ref_5 article-title: Sequence Analysis, Antibiogram Profile, Virulence and Antibiotic Resistance Genes of XDR and MDR Gallibacterium anatis Isolated from Layer Chickens in Egypt publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S377797 – volume: 543 start-page: 15 year: 2017 ident: ref_182 article-title: The drug-resistant bacteria that pose the greatest health threats publication-title: Nature doi: 10.1038/nature.2017.21550 – volume: 668 start-page: 566 year: 2019 ident: ref_124 article-title: Antibacterial activity of chitosan nano-composites and carbon nanotubes: A review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.446 – volume: 8 start-page: 284 year: 2015 ident: ref_196 article-title: Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance publication-title: Front. Life Sci. doi: 10.1080/21553769.2015.1051243 – volume: 45 start-page: 622 year: 2017 ident: ref_62 article-title: Antibiotic resistance publication-title: Medicine doi: 10.1016/j.mpmed.2017.07.006 – volume: 7 start-page: 14515 year: 2015 ident: ref_147 article-title: The gold/ampicillin interface at the atomic scale publication-title: Nanoscale doi: 10.1039/C5NR03318G – volume: 7 start-page: 1479 year: 2016 ident: ref_35 article-title: Nanoparticles vs. biofilms: A battle against another paradigm of antibiotic resistance publication-title: MedChemComm doi: 10.1039/C6MD00124F – volume: 548 start-page: 707 year: 2018 ident: ref_108 article-title: Dendrimers: A versatile nanocarrier for drug delivery and targeting publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.07.030 – volume: 156 start-page: 128 year: 2011 ident: ref_227 article-title: “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era publication-title: J. Control. Release doi: 10.1016/j.jconrel.2011.07.002 – volume: 49 start-page: 217 year: 2007 ident: ref_231 article-title: What do we (need to) know about the kinetic properties of nanoparticles in the body? publication-title: Regul. Toxicol. Pharmacol. doi: 10.1016/j.yrtph.2007.07.006 – volume: 11 start-page: 1115 year: 2022 ident: ref_151 article-title: Antibacterial nanomaterials: Upcoming hope to overcome antibiotic resistance crisis publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2022-0059 – volume: 73 start-page: 103653 year: 2021 ident: ref_189 article-title: Benzalkonium chloride antagonises aminoglycoside antibiotics and promotes evolution of resistance publication-title: EBioMedicine doi: 10.1016/j.ebiom.2021.103653 – volume: 56 start-page: 4 year: 2020 ident: ref_67 article-title: Antimicrobial resistance pattern and molecular epidemiology of ESBL and MBL producing Acinetobacter baumannii isolated from hospitals in Minia, Egypt publication-title: Alex. J. Med. – ident: ref_129 doi: 10.3390/s22041364 – ident: ref_12 doi: 10.3390/microorganisms9112384 – volume: 6 start-page: 18877 year: 2016 ident: ref_208 article-title: Potent antibacterial nanoparticles against biofilm and intracellular bacteria publication-title: Sci. Rep. doi: 10.1038/srep18877 – volume: 20 start-page: 54 year: 2021 ident: ref_26 article-title: Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates publication-title: Ann. Clin. Microbiol. Antimicrob. doi: 10.1186/s12941-021-00459-2 – volume: 14 start-page: 1471 year: 2019 ident: ref_55 article-title: Nanomedicine as a future therapeutic approach for Hepatitis C virus publication-title: Nanomedicine doi: 10.2217/nnm-2018-0348 – volume: 8 start-page: 543 year: 2009 ident: ref_143 article-title: Understanding biophysicochemical interactions at the nano-bio interface publication-title: Nat. Mater. doi: 10.1038/nmat2442 – volume: 36 start-page: 163 year: 2020 ident: ref_53 article-title: The use of nanoparticles as alternative therapeutic agents against Candida infections: An up-to-date overview and future perspectives publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-020-02940-0 – volume: 11 start-page: 11197 year: 2021 ident: ref_203 article-title: Designing a multi-epitope vaccine against Mycobacteroides abscessus by pangenome-reverse vaccinology publication-title: Sci. Rep. doi: 10.1038/s41598-021-90868-2 – volume: 20 start-page: 621 year: 2022 ident: ref_218 article-title: Tolerance and resistance of microbial biofilms publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-022-00682-4 – volume: 13 start-page: 2281 year: 2017 ident: ref_140 article-title: Nano-therapeutics: A revolution in infection control in post antibiotic era publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2017.06.015 – volume: 11 start-page: 10751 year: 2021 ident: ref_25 article-title: Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii publication-title: Sci. Rep. doi: 10.1038/s41598-021-90208-4 – volume: 32 start-page: 214 year: 2011 ident: ref_183 article-title: Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.08.076 – volume: 23 start-page: 263 year: 2009 ident: ref_229 article-title: Emerging trends of nanomedicine--an overview publication-title: Fundam. Clin. Pharmacol. doi: 10.1111/j.1472-8206.2009.00692.x – volume: 36 start-page: 1391 year: 2018 ident: ref_59 article-title: Silver bullets: A new lustre on an old antimicrobial agent publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2018.05.004 – volume: 128 start-page: 1037 year: 2007 ident: ref_65 article-title: Molecular mechanisms of antibacterial multidrug resistance publication-title: Cell doi: 10.1016/j.cell.2007.03.004 – volume: 80 start-page: 1309 year: 2020 ident: ref_103 article-title: Inhaled Liposomal Antimicrobial Delivery in Lung Infections publication-title: Drugs doi: 10.1007/s40265-020-01359-z – volume: 63 start-page: 102435 year: 2021 ident: ref_19 article-title: Recent updates in COVID-19 with emphasis on inhalation therapeutics: Nanostructured and targeting systems publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2021.102435 – ident: ref_21 doi: 10.3390/antibiotics9100641 – ident: ref_87 – ident: ref_17 doi: 10.1002/9783527648122 – ident: ref_170 doi: 10.3390/nano12132183 – volume: 5 start-page: 1590 year: 2019 ident: ref_172 article-title: Phytochemical-based nanocomposites for the treatment of bacterial biofilms publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.9b00134 – volume: 23 start-page: 1733 year: 1977 ident: ref_211 article-title: Microscopic examination of natural sessile bacterial populations from an alpine stream publication-title: Can. J. Microbiol. doi: 10.1139/m77-249 – volume: 7 start-page: 18053 year: 2017 ident: ref_206 article-title: Construction of engineered corpus cavernosum with primary mesenchymal stem cells in vitro publication-title: Sci. Rep. doi: 10.1038/s41598-017-18129-9 – volume: 128 start-page: 112318 year: 2021 ident: ref_33 article-title: Dealing with MDR bacteria and biofilm in the post-antibiotic era: Application of antimicrobial peptides-based nano-formulation publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2021.112318 – volume: 210 start-page: 703 year: 2022 ident: ref_134 article-title: Silver nanoparticles anchored magnetic self-assembled carboxymethyl cellulose-ε-polylysine hybrids with synergetic antibacterial activity for wound infection therapy publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.04.225 – volume: 13 start-page: 4367 year: 2020 ident: ref_197 article-title: In-vitro antimicrobial activity of essential oils and spices powder of some medicinal plants against bacillus species isolated from raw and processed meat publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S277295 – ident: ref_107 doi: 10.3390/pharmaceutics14081745 – volume: 27 start-page: 915 year: 2019 ident: ref_221 article-title: Nanoparticle–biofilm interactions: The role of the EPS matrix publication-title: Trends Microbiol. doi: 10.1016/j.tim.2019.07.004 – volume: 528 start-page: 675 year: 2017 ident: ref_34 article-title: Polymeric nanoparticles: Promising platform for drug delivery publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.06.052 – volume: 2014 start-page: 541340 year: 2014 ident: ref_97 article-title: Multidrug Resistance: An Emerging Crisis publication-title: Interdiscip. Perspect. Infect. Dis. doi: 10.1155/2014/541340 – volume: 17 start-page: 353 year: 2022 ident: ref_18 article-title: Antibacterial and wound-healing potential of PLGA/spidroin nanoparticles: A study on earthworms as a human skin model publication-title: Nanomedicine doi: 10.2217/nnm-2021-0325 – volume: 6 start-page: 591 year: 2015 ident: ref_222 article-title: When nanoparticles meet biofilms—Interactions guiding the environmental fate and accumulation of nanoparticles publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00591 – volume: 13 start-page: 547 year: 2016 ident: ref_122 article-title: Progress and perspective of inorganic nanoparticle-based siRNA delivery systems publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425247.2016.1134486 – volume: 26 start-page: 616 year: 2020 ident: ref_72 article-title: Prevalence of genes involved in colistin resistance in Acinetobacter baumannii: First report from Iraq publication-title: Microb. Drug Resist. doi: 10.1089/mdr.2019.0243 – volume: 6 start-page: 222 year: 2008 ident: ref_142 article-title: Membrane lipid homeostasis in bacteria publication-title: Nat. Reviews. Microbiol. doi: 10.1038/nrmicro1839 – volume: 31 start-page: 2008720 year: 2021 ident: ref_190 article-title: Copper clusters: An effective antibacterial for eradicating multidrug-resistant bacterial infection in vitro and in vivo publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008720 – volume: 8 start-page: 2101 year: 2011 ident: ref_234 article-title: Nanomedicine(s) under the microscope publication-title: Mol. Pharm. doi: 10.1021/mp200394t – volume: 174 start-page: 30 year: 2021 ident: ref_223 article-title: Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.04.005 – volume: 2016 start-page: 1851242 year: 2016 ident: ref_45 article-title: Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices publication-title: BioMed Res. Int. doi: 10.1155/2016/1851242 – volume: 23 start-page: 3319 year: 2016 ident: ref_100 article-title: Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape publication-title: Drug Deliv. doi: 10.1080/10717544.2016.1177136 – volume: 14 start-page: 555 year: 2021 ident: ref_71 article-title: Detection of gyra and parc mutations and prevalence of plasmid-mediated quinolone resistance genes in Klebsiella pneumoniae publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S275852 – volume: 9 start-page: 222 year: 2001 ident: ref_169 article-title: The biofilm matrix--an immobilized but dynamic microbial environment publication-title: Trends Microbiol. doi: 10.1016/S0966-842X(01)02012-1 – volume: 12 start-page: 2125 year: 2019 ident: ref_69 article-title: Antimicrobial resistance pattern and molecular genetic distribution of metallo-β-lactamases producing Pseudomonas aeruginosa isolated from hospitals in Minia, Egypt publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S198373 – volume: 8 start-page: 286 year: 2020 ident: ref_139 article-title: Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances publication-title: Front. Chem. doi: 10.3389/fchem.2020.00286 – volume: 11 start-page: 1310 year: 2021 ident: ref_20 article-title: The potential ameliorative impacts of cerium oxide nanoparticles against fipronil-induced hepatic steatosis publication-title: Sci. Rep. doi: 10.1038/s41598-020-79479-5 – volume: 194 start-page: 119 year: 2019 ident: ref_153 article-title: Bio-engineering and cellular imaging of silver nanoparticles as weaponry against multidrug resistant human pathogens publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2019.03.021 – volume: 36 start-page: 216 year: 2016 ident: ref_159 article-title: Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity publication-title: Toxicol. Vitr. doi: 10.1016/j.tiv.2016.08.007 – volume: 194 start-page: 5594 year: 2022 ident: ref_114 article-title: Biosynthesis of Silica Nanoparticles Using the Leaf Extract of Punica granatum and Assessment of Its Antibacterial Activities Against Human Pathogens publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-022-03994-6 – volume: 19 start-page: 327 year: 2021 ident: ref_164 article-title: Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles publication-title: J. Nanobiotechnology doi: 10.1186/s12951-021-01059-0 – volume: 26 start-page: 271 year: 2011 ident: ref_166 article-title: Oxidative stress induced in microorganisms by zero-valent iron nanoparticles publication-title: Microbes Environ. doi: 10.1264/jsme2.ME11126 – ident: ref_167 doi: 10.3390/nano6040071 – volume: 7 start-page: 4053 year: 2012 ident: ref_177 article-title: Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection publication-title: Int. J. Nanomed. – volume: 1862 start-page: 1068000 year: 2023 ident: ref_84 article-title: Tenacibaculosis caused by Tenacibaculum maritimum: Updated knowledge of this marine bacterial fish pathogen publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2022.1068000 – ident: ref_38 doi: 10.3390/molecules25153479 – volume: 8 start-page: 76 year: 2019 ident: ref_44 article-title: Antibiotics versus biofilm: An emerging battleground in microbial communities publication-title: Antimicrob. Resist. Infect. Control. doi: 10.1186/s13756-019-0533-3 – ident: ref_118 doi: 10.1371/journal.pone.0240510 – volume: 29 start-page: 1003 year: 2018 ident: ref_32 article-title: Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes publication-title: J. Clust. Sci. doi: 10.1007/s10876-018-1411-5 – volume: 174 start-page: 2225 year: 2017 ident: ref_199 article-title: Targeting the hard to reach: Challenges and novel strategies in the treatment of intracellular bacterial infections publication-title: Br. J. Pharmacol. doi: 10.1111/bph.13664 – volume: 12 start-page: 21852 year: 2022 ident: ref_85 article-title: Fig latex inhibits the growth of pathogenic bacteria invading human diabetic wounds and accelerates wound closure in diabetic mice publication-title: Sci. Rep. doi: 10.1038/s41598-022-26338-0 – volume: 2 start-page: 349 year: 2017 ident: ref_149 article-title: Advancements on the molecular design of nanoantibiotics: Current level of development and future challenges publication-title: Mol. Syst. Des. Eng. doi: 10.1039/C7ME00048K – volume: 19 start-page: 600 year: 2021 ident: ref_213 article-title: Bacillus subtilis biofilm formation and social interactions publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-021-00540-9 – volume: 13 start-page: 162 year: 2019 ident: ref_13 article-title: Enhancement of antimicrobial activity of pump inhibitors associating drugs publication-title: J. Infect. Dev. Ctries doi: 10.3855/jidc.11102 – ident: ref_1 – volume: 9 start-page: 687660 year: 2021 ident: ref_138 article-title: Nanoantibiotics: Functions and properties at the nanoscale to combat antibiotic resistance publication-title: Front. Chem. doi: 10.3389/fchem.2021.687660 – volume: 13 start-page: 3255 year: 2020 ident: ref_70 article-title: Methicillin-Resistant Staphylococcus aureus (MRSA): One health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S272733 – volume: 14 start-page: 8847 year: 2022 ident: ref_98 article-title: Surface-Charge-Switchable and Size-Transformable Thermosensitive Nanocomposites for Chemo-Photothermal Eradication of Bacterial Biofilms in Vitro and in Vivo publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c24229 – volume: 9 start-page: 696514 year: 2021 ident: ref_11 article-title: Overcoming Multidrug Resistance in Bacteria Through Antibiotics Delivery in Surface-Engineered Nano-Cargos: Recent Developments for Future Nano-Antibiotics publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.696514 – ident: ref_2 doi: 10.1371/journal.pone.0267396 – volume: 68 start-page: 195 year: 2021 ident: ref_116 article-title: Evaluation of magnesium oxide and zinc oxide nanoparticles against multi-drug-resistance Mycobacterium tuberculosis publication-title: Indian J. Tuberc. doi: 10.1016/j.ijtb.2020.07.032 – volume: 48 start-page: 415 year: 2019 ident: ref_152 article-title: Combatting antibiotic-resistant bacteria using nanomaterials publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00748E – ident: ref_56 – volume: 1 start-page: 10 year: 2016 ident: ref_50 article-title: Nanoparticles in the clinic publication-title: Bioeng. Transl. Med. doi: 10.1002/btm2.10003 – volume: 13 start-page: 3311 year: 2018 ident: ref_47 article-title: Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S165125 – volume: 14 start-page: 390 year: 2021 ident: ref_111 article-title: Polycationic Silver Nanoclusters Comprising Nanoreservoirs of Ag+ Ions with High Antimicrobial and Antibiofilm Activity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c21657 – volume: 13 start-page: 323 year: 2020 ident: ref_73 article-title: Prevalence and some possible mechanisms of colistin resistance among multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S238811 – volume: 565 start-page: 857 year: 2016 ident: ref_165 article-title: Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.02.191 – volume: 42 start-page: 437 year: 2008 ident: ref_158 article-title: The oxidation of glutathione by cobalt/tungsten carbide contributes to hard metal-induced oxidative stress publication-title: Free. Radic. Res. doi: 10.1080/10715760802350904 – volume: 11 start-page: 692 year: 2011 ident: ref_86 article-title: Non-prescription antimicrobial use worldwide: A systematic review publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(11)70054-8 – volume: 190 start-page: 110921 year: 2020 ident: ref_224 article-title: Antibacterial, anti-biofilm activity and mechanism of action of pancreatin doped zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2020.110921 – volume: 7 start-page: 1902913 year: 2020 ident: ref_150 article-title: Antimicrobial metal nanomaterials: From passive to stimuli-activated applications publication-title: Adv. Sci. doi: 10.1002/advs.201902913 – volume: 340 start-page: 125741 year: 2021 ident: ref_209 article-title: Response of extracellular polymeric substances and microbial community structures on resistance genes expression in wastewater treatment containing copper oxide nanoparticles and humic acid publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125741 – volume: 39 start-page: 1415 year: 2020 ident: ref_15 article-title: In Vitro Antimicrobial Activity of a New Ophthalmic Solution Containing Hexamidine Diisethionate 0.05% (Keratosept) publication-title: Cornea doi: 10.1097/ICO.0000000000002375 – volume: 15 start-page: 2865 year: 2013 ident: ref_80 article-title: The extracellular matrix protects P seudomonas aeruginosa biofilms by limiting the penetration of tobramycin publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12155 – volume: 7 start-page: 18339 year: 2022 ident: ref_187 article-title: Ni Nanocrystals Supported on Graphene Oxide: Antibacterial Agents for Synergistic Treatment of Bacterial Infections publication-title: ACS Omega doi: 10.1021/acsomega.2c00508 – ident: ref_184 doi: 10.3390/ijms231911348 – volume: 41 start-page: 302 year: 2017 ident: ref_157 article-title: From nano to micro: Using nanotechnology to combat microorganisms and their multidrug resistance publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fux003 – volume: 332 start-page: 312 year: 2021 ident: ref_109 article-title: Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions publication-title: J. Control. Release Off. J. Control. Release Soc. doi: 10.1016/j.jconrel.2021.02.031 – volume: 224 start-page: 86 year: 2016 ident: ref_226 article-title: Current applications of nanoparticles in infectious diseases publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.01.008 – volume: 437 start-page: 41 year: 2005 ident: ref_215 article-title: Biofilms and antimicrobial resistance publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/01.blo.0000175714.68624.74 – volume: 98 start-page: 764 year: 2019 ident: ref_106 article-title: Gemcitabine and betulinic acid co-encapsulated PLGA− PEG polymer nanoparticles for improved efficacy of cancer chemotherapy publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.01.026 – volume: 213 start-page: 166 year: 2022 ident: ref_130 article-title: Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.05.156 – volume: 15 start-page: 2085 year: 2020 ident: ref_52 article-title: Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19 publication-title: Nanomedicine doi: 10.2217/nnm-2020-0247 – volume: 275 start-page: 177 year: 2004 ident: ref_188 article-title: Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.02.012 – volume: 14 start-page: 2383 year: 2019 ident: ref_42 article-title: Metoclopramide nanoparticles modulate immune response in a diabetic rat model: Association with regulatory T cells and proinflammatory cytokines publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S196842 – volume: 55 start-page: 101465 year: 2020 ident: ref_162 article-title: Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using Aloe socotrina leaf extract: A novel drug delivery approach publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2019.101465 – volume: 7 start-page: 872 year: 2020 ident: ref_37 article-title: Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections publication-title: Front. Chem. doi: 10.3389/fchem.2019.00872 – ident: ref_51 doi: 10.3390/molecules25092193 – volume: 351 start-page: 598 year: 2022 ident: ref_131 article-title: Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections publication-title: J. Control. Release Off. J. Control. Release Soc. doi: 10.1016/j.jconrel.2022.09.052 – ident: ref_202 doi: 10.1186/s12866-021-02287-y – volume: 15 start-page: 1375 year: 2020 ident: ref_41 article-title: Modulation of rifampicin-induced hepatotoxicity using poly (lactic-co-glycolic acid) nanoparticles: A study on rat and cell culture models publication-title: Nanomedicine doi: 10.2217/nnm-2020-0001 – volume: 105 start-page: 3115 year: 2016 ident: ref_225 article-title: Efficacy of Poly-Lactic-Co-Glycolic Acid Micro- and Nanoparticles of Ciprofloxacin Against Bacterial Biofilms publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2016.06.022 – volume: 273 start-page: 219 year: 2017 ident: ref_61 article-title: Mechanism of plant-mediated synthesis of silver nanoparticles–a review on biomolecules involved, characterisation and antibacterial activity publication-title: Chem. -Biol. Interact. doi: 10.1016/j.cbi.2017.06.019 – volume: 78 start-page: 2768 year: 2012 ident: ref_171 article-title: Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.06513-11 – volume: 12 start-page: 454 year: 2017 ident: ref_75 article-title: Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-2222-6 – volume: 9 start-page: 8323 year: 2021 ident: ref_192 article-title: An intrinsically thermogenic nanozyme for synergistic antibacterial therapy publication-title: Biomater. Sci. doi: 10.1039/D1BM01390D – ident: ref_6 doi: 10.3390/life11111178 – ident: ref_174 – volume: 2009 start-page: 754810 year: 2009 ident: ref_230 article-title: On the Toxicity of Therapeutically Used Nanoparticles: An Overview publication-title: J. Toxicol. – volume: 9 start-page: 1334 year: 2017 ident: ref_132 article-title: Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks publication-title: Nanoscale doi: 10.1039/C6NR08486A – volume: 22 start-page: 3576 year: 2022 ident: ref_113 article-title: Aminophenol-Decorated Gold Nanoparticles for Curing Bacterial Infections publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04968 – volume: 14 start-page: 1469 year: 2019 ident: ref_58 article-title: Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S191340 – volume: 284 start-page: 1318 year: 1999 ident: ref_210 article-title: Bacterial biofilms: A common cause of persistent infections publication-title: Science doi: 10.1126/science.284.5418.1318 – volume: 13 start-page: 3991 year: 2020 ident: ref_68 article-title: Antibiogram and genetic characterization of carbapenem-resistant gram-negative pathogens incriminated in healthcare-associated infections publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S276975 – volume: 4 start-page: 15 year: 2016 ident: ref_64 article-title: Mechanisms of antibiotic resistance publication-title: Microbiol. Spectr. doi: 10.1128/microbiolspec.VMBF-0016-2015 – volume: 16 start-page: 65 year: 2021 ident: ref_135 article-title: Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections publication-title: ChemMedChem doi: 10.1002/cmdc.202000677 – volume: 293 start-page: 119736 year: 2022 ident: ref_179 article-title: Linezolid nanoAntiobiotics and SERS-nanoTags based on polymeric cyclodextrin bimetallic core-shell nanoarchitectures publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.119736 – volume: 2 start-page: 95 year: 2004 ident: ref_95 article-title: Bacterial biofilms: From the natural environment to infectious diseases publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro821 – volume: 11 start-page: 215 year: 2020 ident: ref_92 article-title: Emergence of Cronobacter sakazakii in cases of neonatal sepsis in upper Egypt: First report in North Africa publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00215 – volume: 65 start-page: 1803 year: 2013 ident: ref_9 article-title: Nanotechnology as a therapeutic tool to combat microbial resistance publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2013.07.011 – volume: 367 start-page: 200 year: 2020 ident: ref_82 article-title: Effect of tolerance on the evolution of antibiotic resistance under drug combinations publication-title: Science doi: 10.1126/science.aay3041 – volume: 137 start-page: 115 year: 2018 ident: ref_104 article-title: Recent advances in nanoparticle-based cancer drug and gene delivery publication-title: Adv. Cancer Res. doi: 10.1016/bs.acr.2017.11.003 – volume: 25 start-page: 135101 year: 2014 ident: ref_168 article-title: Mechanism of antibacterial activity of copper nanoparticles publication-title: Nanotechnology doi: 10.1088/0957-4484/25/13/135101 – volume: 43 start-page: 1501 year: 2014 ident: ref_195 article-title: Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60218D – volume: 9 start-page: e2105223 year: 2022 ident: ref_133 article-title: A Vehicle-Free Antimicrobial Polymer Hybrid Gold Nanoparticle as Synergistically Therapeutic Platforms for Staphylococcus aureus Infected Wound Healing publication-title: Adv. Sci. doi: 10.1002/advs.202105223 – volume: 55 start-page: 105 year: 2005 ident: ref_156 article-title: Chitosan-metal complexes as antimicrobial agent: Synthesis, characterization and Structure-activity study publication-title: Polym. Bull. doi: 10.1007/s00289-005-0414-1 – volume: 13 start-page: 116 year: 2018 ident: ref_49 article-title: Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-018-2533-2 – volume: 2 start-page: 569 year: 2001 ident: ref_200 article-title: Mycobacterium tuberculosis: Here today, and here tomorrow publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/35085034 – volume: 17 start-page: 2100432 year: 2022 ident: ref_28 article-title: Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity publication-title: Biotechnol. J. doi: 10.1002/biot.202100432 – volume: 8 start-page: 4196 year: 2022 ident: ref_126 article-title: Mesoporous Silica Nanoparticles Improve Oral Delivery of Antitubercular Bicyclic Nitroimidazoles publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.1c00807 – volume: 56 start-page: 374 year: 2015 ident: ref_191 article-title: Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.06.033 – ident: ref_22 doi: 10.3390/antibiotics10121473 – volume: 123 start-page: 8686 year: 2019 ident: ref_36 article-title: Mechanism study of bacteria killed on nanostructures publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.9b07732 – volume: 10 start-page: 15961 year: 2020 ident: ref_88 article-title: Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes publication-title: Sci. Rep. doi: 10.1038/s41598-020-72264-4 – volume: 12 start-page: 1531 year: 2010 ident: ref_194 article-title: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-010-9900-y – volume: 155 start-page: 654 year: 2022 ident: ref_128 article-title: Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles publication-title: Acta Biomater. – volume: 132 start-page: 12349 year: 2010 ident: ref_144 article-title: Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1028843 – volume: 33 start-page: 941 year: 2015 ident: ref_43 article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3330 – ident: ref_7 doi: 10.3390/ani10081340 – volume: 13 start-page: 259 year: 2021 ident: ref_77 article-title: Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions publication-title: Biophys. Rev. doi: 10.1007/s12551-021-00795-9 – volume: 2 start-page: 145 year: 2014 ident: ref_181 article-title: The antimicrobial resistance crisis: Causes, consequences, and management publication-title: Front. Public Health doi: 10.3389/fpubh.2014.00145 – volume: 16 start-page: 1912 year: 2005 ident: ref_175 article-title: Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles publication-title: Nanotechnology doi: 10.1088/0957-4484/16/9/082 – ident: ref_219 doi: 10.3390/agronomy11050957 – ident: ref_39 doi: 10.3390/molecules25153432 – volume: 162 start-page: 130 year: 2017 ident: ref_60 article-title: Single-particle inductively coupled plasma mass spectroscopy analysis of size and number concentration in mixtures of monometallic and bimetallic (core-shell) nanoparticles publication-title: Talanta doi: 10.1016/j.talanta.2016.09.070 – ident: ref_110 doi: 10.3390/nano12142402 – volume: 11 start-page: 587 year: 2018 ident: ref_63 article-title: Ambulance vehicles as a source of multidrug-resistant infections: A multicenter study in Assiut City, Egypt publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S151783 – volume: 18 start-page: 571 year: 2020 ident: ref_180 article-title: Biofilm dispersion publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-0385-0 – volume: 53 start-page: 107842 year: 2021 ident: ref_185 article-title: Bacterial protein acetylation and its role in cellular physiology and metabolic regulation publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2021.107842 – volume: 13 start-page: 351 year: 2020 ident: ref_173 article-title: Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S234425 – ident: ref_125 doi: 10.3390/molecules27051606 – volume: 19 start-page: 23 year: 2021 ident: ref_136 article-title: Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-0420-1 – volume: 10 start-page: e0151621 year: 2022 ident: ref_4 article-title: Investigation of the Bacterial Contamination and Antibiotic Susceptibility Profile of Bacteria Isolated from Bottled Drinking Water publication-title: Microbiol. Spectr. doi: 10.1128/spectrum.01516-21 – volume: 8 start-page: 623 year: 2010 ident: ref_214 article-title: The biofilm matrix publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2415 – volume: 21 start-page: 249 year: 2015 ident: ref_193 article-title: Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.01.008 – volume: 10 start-page: 1029056 year: 2022 ident: ref_24 article-title: Synergistic and antibiofilm potential of Curcuma aromatica derived silver nanoparticles in combination with antibiotics against multidrug-resistant pathogens publication-title: Front. Chem. doi: 10.3389/fchem.2022.1029056 – volume: 128 start-page: 271 year: 2015 ident: ref_101 article-title: Cell-Sized Liposomes That Mimic Cell Motility and the Cell Cortex publication-title: Methods in Cell Biology doi: 10.1016/bs.mcb.2015.01.013 – volume: 14 start-page: 563 year: 2016 ident: ref_212 article-title: Biofilms: An emergent form of bacterial life publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.94 – volume: 22 start-page: 326 year: 2014 ident: ref_216 article-title: Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms publication-title: Trends Microbiol. doi: 10.1016/j.tim.2014.02.001 – volume: 8 start-page: 423 year: 2010 ident: ref_137 article-title: How antibiotics kill bacteria: From targets to networks publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2333 – volume: 50 start-page: 55 year: 2006 ident: ref_94 article-title: Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.50.1.55-61.2006 – ident: ref_115 doi: 10.3390/molecules27082489 – volume: 3 start-page: 6 year: 2014 ident: ref_48 article-title: Biological synthesis of copper nanoparticles and its impact publication-title: Int. J. Pharm. Sci. Invent – volume: 19 start-page: 8172 year: 2019 ident: ref_163 article-title: Effect of Size and Crystalline Phase of TiO₂ Nanoparticles on Photocatalytic Inactivation of Escherichia coli publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2019.16757 – volume: 12 start-page: 1703 year: 2019 ident: ref_76 article-title: A novel mechanism of action of ketoconazole: Inhibition of the NorA efflux pump system and biofilm formation in multidrug-resistant Staphylococcus aureus publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S201124 – volume: 175 start-page: 294 year: 2021 ident: ref_29 article-title: Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: Characterization, antibiofilm and biocompatibility publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.02.040 – volume: 15 start-page: 2167 year: 2022 ident: ref_3 article-title: Newly Emerging MDR B. cereus in Mugil seheli as the First Report Commonly Harbor nhe, hbl, cytK, and pc-plc Virulence Genes and bla1, bla2, tetA, and ermA Resistance Genes publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S365254 – volume: 10 start-page: 19779 year: 2020 ident: ref_91 article-title: Virulence-determinants and antibiotic-resistance genes of MDR-E. coli isolated from secondary infections following FMD-outbreak in cattle publication-title: Sci. Rep. doi: 10.1038/s41598-020-75914-9 – volume: 21 start-page: 1 year: 2021 ident: ref_16 article-title: Molecular and HPLC-based approaches for detection of aflatoxin B1 and ochratoxin A released from toxigenic Aspergillus species in processed meat publication-title: BMC Microbiol. doi: 10.1186/s12866-021-02144-y – volume: 12 start-page: 5228 year: 2018 ident: ref_204 article-title: Multimetallic microparticles increase the potency of rifampicin against intracellular Mycobacterium tuberculosis publication-title: ACS Nano doi: 10.1021/acsnano.7b08264 – volume: 40 start-page: 277 year: 2015 ident: ref_8 article-title: The antibiotic resistance crisis: Part 1: Causes and threats publication-title: Pharm. Ther. |
SSID | ssj0000913814 |
Score | 2.5856786 |
SecondaryResourceType | review_article |
Snippet | The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 413 |
SubjectTerms | Antibacterial activity Antibiotic resistance Antibiotics Antimicrobial agents Bacteria biofilm Biofilms Drug delivery systems Drug development Drug resistance Enzymes Fourier transforms Health aspects Infections MDR bacteria Metabolism Microbial colonies Microorganisms Microscopy Multidrug resistance Multidrug resistant organisms nanoantibiotics Nanoparticles Nanotechnology Physical characteristics Public health Quantum dots Review Reviews Severe acute respiratory syndrome coronavirus 2 Viral infections XDR bacteria |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yJz2I31ZXiSB4KvuapE3j7a34WARlERf2VjL5cAVpl9e-o_-7M023tijsxXdspo8mM5n5TZL5hbG3UW821tab3DharVIOp5TxJtdC4i-KoCwVJ3_-Up1dqE-X5eXiqi86E5bogdPAncgiSm2ChnqjiEgPrFSxgrIACQCpqhdj3iKZGn2wKTAUqVQrJzGvP0nV7ONudY8hT2xUIVexaKTs_9sxLyLT-tTkIgztHrD7E37k2_TdD9md0D5i9xasgo_ZL_SY3TAvmXPbc8vP9x1qFNv5dmIR50PH0RuAHfhYhev3h-_8a-gJULYDP000zvY935LY9T5cpbPuPG0ncNt6vhsZSfj5n4rN_gm72H389uEsn25ZyF1ZmSEPAfG1FwDRAoItMD4IJ7R1ZRQRAVYMXlsPlQyhVEGAQu0FFZ2KCD4qCfIpO2q7NjxnXIB3VkFZh-gVxn7A_1Ze1pULhVXCZkzejHfjJgpyugnjZ4OpCGmp-ZeWMpbPb10nCo5b5E9JlbMsEWiPD9CsmsmsmtvMKmPvyBAamub4ic5O1QrYUSLMarZaYTInEXxm7Hglicp06-YbU2om99A3QmtTClkZkbE3czO9SUfe2tAdSKambVQtsUPPkuXNXZJVLTEvNxnTK5tc9Xnd0v64GsnDjSmJ_ODF_xikl-yuQMxHK1KyOGZHw_4QXiFGG-D1OB1_A7XDPr8 priority: 102 providerName: Directory of Open Access Journals |
Title | Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36830949 https://www.proquest.com/docview/2779523692 https://www.proquest.com/docview/2780073733 https://pubmed.ncbi.nlm.nih.gov/PMC9953167 https://doaj.org/article/31f379e7b8044925ba34f6b51b3bbb11 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9QwEA9696KI6PlVPY8Igk_ltknaNL7IrtxyCB7L4cG9lXzeCdKu2-6j_7szbba3RdE-NtPSdCaT30wyvxDyPsjZTOtyliqL2SphYUgpp1LJOFyBeaGxOPnrRXF-Jb5c59cx4dbGbZU7n9g7atdYzJGfMikVBE2FYp_WP1M8NQpXV-MRGvfJIbjgEoKvw8XZxepyzLIg62WZiaFmjkN8fzpUtfer1i1MfWwmMj6Zk3rq_j8d9N4MNd09uTcdLZ-QxxFH0vmg-Kfknq-PyMM9dsEj8mhIydGh0ugZ-QWetOnGVDrVLdV0tWlA0yBP55FdnHYNBS9hdEf76ly32d7QS98i0Kw7uhjonfVHOkex9cbfDnvg6bDMQHXt6LJnKqGru0rO9jm5Wp59-3yextMXUpsXqku9B9ztmDFBGwBhRjnPLJPa5oEFAF7BO6mdKbj3ufDMCNCqF8GKAKCk4Ia_IAd1U_tXhDLjrBYmL31wAjCBgXcLx8vC-kwLphPCd_-_spGaHE_I-FFBiIJaq_6mtYSk41PrgZrjP_ILVO0oi8Ta_Y1mc1PFcVrxLHCpvDTlTCBvo9FchMLkmeHGmCxLyAc0jAqHP3yi1bGKATqKRFrVXAoI8jiA0oQcTyRBmXbavDOtKrqNtroz8oS8G5vxSdwKV_tmizIlLq9KDh16OVji2CVelBzidZUQObHRSZ-nLfX3255UXKkcSRFe__uz3pAHDFAe5qB4dkwOus3WvwVU1pmTOPRO-qzGb5C7PgI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewCEEJRXoICRQJyiJrbzMBJCu9DVlrarVdVKvaW247RIKFk2WSEO_CV-IzN5dSMQnJpTFE8iOzOeGY893xDyOos8T6nYc6XBaJUwMKVkKt2IcbgyZoXC5OSjWTg9FZ_PgrMN8qvLhcFjlZ1OrBV1WhiMke-yKJKwaAol-7D45mLVKNxd7UpoNGJxYH98hyVb-X7_E_D3DWOTvZOPU7etKuCaIJSVay34kynTOlManAstU8sMi5QJMpaBQ5HZNFKpDrm1gbBMC-itFZkRGRjbkGsO371BtuDeA0WwNd6bzY_7qA6ibMa-aHL0OJfebpNFX--Sl2BqmSd8PrCBdamAPw3CmkUcntZcM3-Te-Ru67fSUSNo98mGzbfJ7TU0w21ypwkB0iaz6QH5CZq7qPrQPVUlVXS-LECygJ6OWjRzWhUUtJJWFa2zgdPl6oIe2xId27yi4wZOWr2jIyRbLO1lc-aeNtsaVOUpndTIKHR-lTlaPiSn18KXR2QzL3L7hFCmU6OEDmKbpQJ8EA3fFimPQ2N9JZhyCO_-f2JaKHSsyPE1gSURci35G9cc4vZvLRookP_Qj5G1PS0CedcPiuVF0uqFhPsZj6SNdOwJxInUioss1IGvudba9x3yFgUjQXUDXTSqzZqAgSJwVzKKBCwqOTjBDtkZUAIzzbC5E62kVVNlcjWpHPKqb8Y38ehdbosV0sS4nRtxGNDjRhL7IfEw5p4U0iHRQEYHYx625F8uaxBzKQMEYXj67269JDenJ0eHyeH-7OAZucXAw8T4F_d3yGa1XNnn4BFW-kU7DSk5v-6Z_xu53H0M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyEQQjC-AgOMBOIpamI7cYyEUMtWbQyqamLS3jLbsTcklJQkFeKBf4y_jnOSZo1A8LQ-1pfIzn367PsdQi8tDwIpk8AX2mWrmAaVEpnwOaHws8Qw6YqTP83jgxP24TQ63UK_1rUw7lrl2iY2hjortMuRjwnnAjZNsSBj212LWOzN3i2_-a6DlDtpXbfTaEXkyPz4Dtu36u3hHvD6FSGz_c_vD_yuw4Cvo1jUvjEQW2ZEKSsVBBpKZIZowqWOLLEQXFiTcZmpmBoTMUMUg5kbZjWz4Hhjqii89xra5rArCkZoe7o_Xxz3GR6HuJmErK3Xo1QE47aivjkxr8DtkoCFdOAPm7YBfzqHDe84vLm54Qpnd9DtLobFk1bo7qItk--gmxvIhjvoVpsOxG2V0z30E6x4UfdpfCwrLPGiLEDKgB5POmRzXBcYLJSSNW4qg7NydY6PTeWC3LzG0xZaWr7BE0e2LM1Fe_8et0ccWOYZnjUoKXhxWUVa3UcnV8KXB2iUF7l5hDBRmZZMRYmxGYN4RMG7WUaTWJtQMiI9RNffP9UdLLrrzvE1he2R41r6N655yO-fWrawIP-hnzrW9rQO1Lv5oyjP085GpDS0lAvDVRIwhxmpJGU2VlGoqFIqDD302glG6kwPTFHLroICFupAvNIJZ7DBpBAQe2h3QAnM1MPhtWilncmq0ksF89CLftg96a7h5aZYOZrEHe1yCgt62EpivyQaJzQQTHiID2R0sObhSP7logE0FyJygAyP_z2t5-g6aHz68XB-9ATdIBBsulQYDXfRqC5X5ikEh7V61mkhRmdXrfi_ARL3gUE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanotechnology+as+a+Promising+Approach+to+Combat+Multidrug+Resistant+Bacteria%3A+A+Comprehensive+Review+and+Future+Perspectives&rft.jtitle=Biomedicines&rft.au=Hetta%2C+Helal+F&rft.au=Ramadan%2C+Yasmin+N&rft.au=Al-Harbi%2C+Alhanouf+I&rft.au=A.+Ahmed%2C+Esraa&rft.date=2023-01-31&rft.pub=MDPI+AG&rft.issn=2227-9059&rft.eissn=2227-9059&rft.volume=11&rft.issue=2&rft_id=info:doi/10.3390%2Fbiomedicines11020413&rft.externalDocID=A742173610 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9059&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9059&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9059&client=summon |