Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives

The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multi...

Full description

Saved in:
Bibliographic Details
Published inBiomedicines Vol. 11; no. 2; p. 413
Main Authors Hetta, Helal F., Ramadan, Yasmin N., Al-Harbi, Alhanouf I., A. Ahmed, Esraa, Battah, Basem, Abd Ellah, Noura H., Zanetti, Stefania, Donadu, Matthew Gavino
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 31.01.2023
MDPI
Subjects
Online AccessGet full text
ISSN2227-9059
2227-9059
DOI10.3390/biomedicines11020413

Cover

Loading…
Abstract The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles’ distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives.
AbstractList The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles’ distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives.
The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles' distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives.The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles' distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives.
Audience Academic
Author A. Ahmed, Esraa
Zanetti, Stefania
Hetta, Helal F.
Al-Harbi, Alhanouf I.
Donadu, Matthew Gavino
Ramadan, Yasmin N.
Battah, Basem
Abd Ellah, Noura H.
AuthorAffiliation 1 Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
5 Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, 36822 Damascus, Syria
4 Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
3 Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia
9 Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
6 Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
7 Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut 2014101, Egypt
2 Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
8 Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
AuthorAffiliation_xml – name: 7 Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut 2014101, Egypt
– name: 5 Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, 36822 Damascus, Syria
– name: 2 Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
– name: 6 Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
– name: 1 Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
– name: 4 Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
– name: 9 Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
– name: 3 Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia
– name: 8 Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
Author_xml – sequence: 1
  givenname: Helal F.
  orcidid: 0000-0001-8541-7304
  surname: Hetta
  fullname: Hetta, Helal F.
– sequence: 2
  givenname: Yasmin N.
  surname: Ramadan
  fullname: Ramadan, Yasmin N.
– sequence: 3
  givenname: Alhanouf I.
  orcidid: 0000-0003-0889-2886
  surname: Al-Harbi
  fullname: Al-Harbi, Alhanouf I.
– sequence: 4
  givenname: Esraa
  surname: A. Ahmed
  fullname: A. Ahmed, Esraa
– sequence: 5
  givenname: Basem
  surname: Battah
  fullname: Battah, Basem
– sequence: 6
  givenname: Noura H.
  surname: Abd Ellah
  fullname: Abd Ellah, Noura H.
– sequence: 7
  givenname: Stefania
  surname: Zanetti
  fullname: Zanetti, Stefania
– sequence: 8
  givenname: Matthew Gavino
  orcidid: 0000-0001-7681-6194
  surname: Donadu
  fullname: Donadu, Matthew Gavino
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36830949$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vEzEQhleoiJbSf4CQJS5cUvy167gHpBBRqFSgQnC2bO_sxtHGTm1vUA_8dxxSSlNV2AdbM8_7WjOe59WBDx6q6iXBp4xJ_Na4sILWWechEYIp5oQ9qY4opWIicS0P7t0Pq5OUlrgsSdiU8GfVIWumDEsuj6pfX7QPGezChyH0N0gnpNFVDCuXnO_RbL2OQdsFygHNw8rojD6PQ3ZtHHv0DZJLWfuM3mubITp9hmZbbB1hAT65DRRm4-An0r5F52MeI6AriGkNNpdselE97fSQ4OT2PK5-nH_4Pv80ufz68WI-u5zYupF5AiCobKkxnTYE10a2QC0V2tYd7UjNO2iFbk3DAGoO1HCuLfDO8k5w1jDDjquLnW8b9FKto1vpeKOCdupPIMRe6ZidHUAx0jEhQZgp5lzS2mjGu8bUxDBjDCHF693Oaz2a8gcWfI562DPdz3i3UH3YKClrRhpRDN7cGsRwPULKqjTbwjBoD2FMioopxoIJxgr6-gG6DGP0pVWFErKmrJH0H9XrUoDzXSjv2q2pmglOiWANwYU6fYQqu4WVs2W8Olfie4JX9wu9q_Dv8BSA7wAbQ0oRujuEYLUdU_XYmBbZ2QOZdVlnF7btcsP_xb8BSiTzFA
CitedBy_id crossref_primary_10_1088_2632_959X_ad437b
crossref_primary_10_2147_IJN_S418588
crossref_primary_10_18502_jovr_v19i4_14498
crossref_primary_10_1016_j_envres_2024_118632
crossref_primary_10_3390_molecules29204949
crossref_primary_10_3389_fmolb_2024_1412325
crossref_primary_10_1016_j_jksus_2024_103131
crossref_primary_10_1016_j_genrep_2025_102197
crossref_primary_10_1007_s00203_024_04205_y
crossref_primary_10_3390_pharmaceutics16030300
crossref_primary_10_3390_molecules28248041
crossref_primary_10_1007_s00284_024_03875_7
crossref_primary_10_3389_fmicb_2024_1381511
crossref_primary_10_3390_biomedicines11102860
crossref_primary_10_3390_antibiotics13020121
crossref_primary_10_1016_j_micpath_2024_106722
crossref_primary_10_1016_j_nxnano_2023_100035
crossref_primary_10_3390_pathogens13121049
crossref_primary_10_1007_s11033_024_09666_4
crossref_primary_10_1007_s11274_024_03925_z
crossref_primary_10_1051_e3sconf_202450901015
crossref_primary_10_1016_j_hybadv_2024_100335
crossref_primary_10_3390_microorganisms13030557
crossref_primary_10_1016_j_plana_2024_100130
crossref_primary_10_1016_j_eti_2025_104147
crossref_primary_10_3390_antibiotics13040305
crossref_primary_10_3390_antibiotics14030253
crossref_primary_10_3389_fmicb_2024_1455759
crossref_primary_10_1088_1758_5090_ad6b45
crossref_primary_10_4236_ojmm_2024_141007
crossref_primary_10_1080_07373937_2024_2437690
crossref_primary_10_1186_s43088_024_00514_9
crossref_primary_10_1007_s11756_025_01873_z
crossref_primary_10_1016_j_sajb_2024_01_059
crossref_primary_10_5937_sanamed19_53857
crossref_primary_10_1016_j_tiv_2024_105814
crossref_primary_10_1021_acsomega_4c02133
crossref_primary_10_3390_biomedicines11102832
crossref_primary_10_3390_molecules29112584
crossref_primary_10_3390_antibiotics14020207
crossref_primary_10_1007_s10876_024_02696_9
crossref_primary_10_1016_j_jece_2024_112637
crossref_primary_10_3390_microorganisms11081912
crossref_primary_10_1021_acsmaterialslett_4c02113
crossref_primary_10_4014_jmb_2403_03029
crossref_primary_10_1016_j_jiec_2024_09_044
crossref_primary_10_1007_s42452_024_06221_5
crossref_primary_10_3390_horticulturae9030369
crossref_primary_10_1016_j_scitotenv_2024_171675
crossref_primary_10_1007_s00203_025_04262_x
crossref_primary_10_13005_bpj_2939
crossref_primary_10_1016_j_micpath_2024_106741
crossref_primary_10_1002_admt_202400458
crossref_primary_10_1016_j_matchemphys_2024_129507
crossref_primary_10_3390_ph18030364
crossref_primary_10_1016_j_inoche_2023_111899
crossref_primary_10_1007_s00284_024_04030_y
crossref_primary_10_61186_jrums_23_4_207
crossref_primary_10_1016_j_micpath_2025_107455
crossref_primary_10_3390_ph16070920
crossref_primary_10_1016_j_addr_2024_115481
crossref_primary_10_3390_antibiotics13111042
crossref_primary_10_1007_s12668_024_01561_3
crossref_primary_10_1089_phage_2024_0011
crossref_primary_10_1186_s11671_024_04116_3
crossref_primary_10_3390_pharmaceutics16020254
crossref_primary_10_1007_s44174_023_00127_3
crossref_primary_10_1016_j_nxmate_2024_100447
crossref_primary_10_3390_gels10120800
crossref_primary_10_2174_0113816128326718240809091654
crossref_primary_10_3390_antibiotics13111071
crossref_primary_10_3390_antibiotics14030221
crossref_primary_10_3389_fbiom_2024_1360443
crossref_primary_10_3390_molecules29153466
crossref_primary_10_5902_2179460X72377
crossref_primary_10_3390_ph17111555
crossref_primary_10_1007_s44351_024_00002_6
crossref_primary_10_1016_j_nanoso_2024_101403
crossref_primary_10_1088_1748_605X_ad46d4
crossref_primary_10_2478_aoas_2024_0111
crossref_primary_10_3390_ijms251910377
crossref_primary_10_1155_ijm_8746754
crossref_primary_10_1016_j_colsurfb_2023_113572
crossref_primary_10_3390_ijms24119375
crossref_primary_10_1208_s12249_024_02968_7
crossref_primary_10_1016_j_micpath_2024_106957
crossref_primary_10_1016_j_micpath_2024_106679
crossref_primary_10_1039_D3RA05816F
crossref_primary_10_3390_pharmaceutics16091114
crossref_primary_10_1016_j_jddst_2024_105382
crossref_primary_10_1016_j_micpath_2023_106356
crossref_primary_10_1016_j_aiepr_2023_09_002
crossref_primary_10_3390_antibiotics13010109
crossref_primary_10_3389_fmicb_2024_1391345
crossref_primary_10_2174_1389200224666230731093319
crossref_primary_10_1007_s12223_023_01116_1
crossref_primary_10_2147_IJN_S453775
crossref_primary_10_1016_j_inoche_2024_113809
crossref_primary_10_3390_antibiotics13010071
crossref_primary_10_1007_s11274_023_03653_w
crossref_primary_10_1016_j_matchemphys_2024_129042
crossref_primary_10_3390_microorganisms11082084
crossref_primary_10_1021_acsomega_3c04893
crossref_primary_10_3390_molecules29112675
crossref_primary_10_3390_antibiotics14020111
crossref_primary_10_3390_biom13081182
crossref_primary_10_1002_bab_2545
crossref_primary_10_2174_0113816128337749241021084050
crossref_primary_10_3389_fmicb_2023_1272892
crossref_primary_10_3390_ijms242316939
crossref_primary_10_3390_jfb14070336
Cites_doi 10.1088/2399-1984/aa69fb
10.1186/s12951-017-0308-z
10.1038/s41579-022-00767-0
10.1021/acsabm.2c00014
10.3390/ph15030357
10.1038/nrmicro3028
10.1002/adhm.201900564
10.3389/fmicb.2018.01441
10.1007/s11274-021-03187-z
10.3390/microorganisms9112365
10.1021/acs.est.5b05734
10.3390/ani13020296
10.3390/ph15060682
10.3390/pathogens2020288
10.3389/fphar.2019.01153
10.1007/s00253-022-12150-3
10.3390/molecules25133091
10.1166/jnn.2008.274
10.3390/antibiotics9090603
10.1016/j.jddst.2021.102401
10.3390/polym14040771
10.3390/nano12010161
10.1021/acsnano.2c03170
10.1002/wnan.1860
10.1021/acsabm.0c01485
10.3390/microorganisms10040758
10.1111/j.1462-5822.2009.01368.x
10.1093/femsre/fux010
10.3390/molecules25163760
10.1073/pnas.0911674106
10.1038/nrmicro2474
10.1038/nrmicro3380
10.1016/j.nmni.2015.02.007
10.1016/B978-0-323-40016-9.00009-9
10.1002/star.202100165
10.1021/acsami.8b00181
10.1002/smll.202103348
10.3390/biom11071028
10.1021/acsami.1c04330
10.1016/j.biomaterials.2011.11.057
10.3855/jidc.14885
10.2147/IJN.S121956
10.1042/BA20090198
10.1080/23744235.2021.1916071
10.1038/s41598-021-88861-w
10.1016/j.lfs.2021.119117
10.3390/antibiotics11010107
10.2147/IDR.S377797
10.1038/nature.2017.21550
10.1016/j.scitotenv.2019.02.446
10.1080/21553769.2015.1051243
10.1016/j.mpmed.2017.07.006
10.1039/C5NR03318G
10.1039/C6MD00124F
10.1016/j.ijpharm.2018.07.030
10.1016/j.jconrel.2011.07.002
10.1016/j.yrtph.2007.07.006
10.1515/ntrev-2022-0059
10.1016/j.ebiom.2021.103653
10.3390/s22041364
10.3390/microorganisms9112384
10.1038/srep18877
10.1186/s12941-021-00459-2
10.2217/nnm-2018-0348
10.1038/nmat2442
10.1007/s11274-020-02940-0
10.1038/s41598-021-90868-2
10.1038/s41579-022-00682-4
10.1016/j.nano.2017.06.015
10.1038/s41598-021-90208-4
10.1016/j.biomaterials.2010.08.076
10.1111/j.1472-8206.2009.00692.x
10.1016/j.biotechadv.2018.05.004
10.1016/j.cell.2007.03.004
10.1007/s40265-020-01359-z
10.1016/j.jddst.2021.102435
10.3390/antibiotics9100641
10.1002/9783527648122
10.3390/nano12132183
10.1021/acsinfecdis.9b00134
10.1139/m77-249
10.1038/s41598-017-18129-9
10.1016/j.msec.2021.112318
10.1016/j.ijbiomac.2022.04.225
10.2147/IDR.S277295
10.3390/pharmaceutics14081745
10.1016/j.tim.2019.07.004
10.1016/j.ijpharm.2017.06.052
10.1155/2014/541340
10.2217/nnm-2021-0325
10.3389/fmicb.2015.00591
10.1517/17425247.2016.1134486
10.1089/mdr.2019.0243
10.1038/nrmicro1839
10.1002/adfm.202008720
10.1021/mp200394t
10.1016/j.addr.2021.04.005
10.1155/2016/1851242
10.1080/10717544.2016.1177136
10.2147/IDR.S275852
10.1016/S0966-842X(01)02012-1
10.2147/IDR.S198373
10.3389/fchem.2020.00286
10.1038/s41598-020-79479-5
10.1016/j.jphotobiol.2019.03.021
10.1016/j.tiv.2016.08.007
10.1007/s12010-022-03994-6
10.1186/s12951-021-01059-0
10.1264/jsme2.ME11126
10.3390/nano6040071
10.3389/fcimb.2022.1068000
10.3390/molecules25153479
10.1186/s13756-019-0533-3
10.1371/journal.pone.0240510
10.1007/s10876-018-1411-5
10.1111/bph.13664
10.1038/s41598-022-26338-0
10.1039/C7ME00048K
10.1038/s41579-021-00540-9
10.3855/jidc.11102
10.3389/fchem.2021.687660
10.2147/IDR.S272733
10.1021/acsami.1c24229
10.3389/fbioe.2021.696514
10.1371/journal.pone.0267396
10.1016/j.ijtb.2020.07.032
10.1039/C7CS00748E
10.1002/btm2.10003
10.2147/IJN.S165125
10.1021/acsami.1c21657
10.2147/IDR.S238811
10.1016/j.scitotenv.2016.02.191
10.1080/10715760802350904
10.1016/S1473-3099(11)70054-8
10.1016/j.colsurfb.2020.110921
10.1002/advs.201902913
10.1016/j.biortech.2021.125741
10.1097/ICO.0000000000002375
10.1111/1462-2920.12155
10.1021/acsomega.2c00508
10.3390/ijms231911348
10.1093/femsre/fux003
10.1016/j.jconrel.2021.02.031
10.1016/j.jconrel.2016.01.008
10.1097/01.blo.0000175714.68624.74
10.1016/j.msec.2019.01.026
10.1016/j.ijbiomac.2022.05.156
10.2217/nnm-2020-0247
10.1016/j.jcis.2004.02.012
10.2147/IJN.S196842
10.1016/j.jddst.2019.101465
10.3389/fchem.2019.00872
10.3390/molecules25092193
10.1016/j.jconrel.2022.09.052
10.1186/s12866-021-02287-y
10.2217/nnm-2020-0001
10.1016/j.xphs.2016.06.022
10.1016/j.cbi.2017.06.019
10.1128/AEM.06513-11
10.1186/s11671-017-2222-6
10.1039/D1BM01390D
10.3390/life11111178
10.1039/C6NR08486A
10.1021/acs.nanolett.1c04968
10.2147/IJN.S191340
10.1126/science.284.5418.1318
10.2147/IDR.S276975
10.1128/microbiolspec.VMBF-0016-2015
10.1002/cmdc.202000677
10.1016/j.carbpol.2022.119736
10.1038/nrmicro821
10.3389/fmicb.2020.00215
10.1016/j.addr.2013.07.011
10.1126/science.aay3041
10.1016/bs.acr.2017.11.003
10.1088/0957-4484/25/13/135101
10.1039/C3CS60218D
10.1002/advs.202105223
10.1007/s00289-005-0414-1
10.1186/s11671-018-2533-2
10.1038/35085034
10.1002/biot.202100432
10.1021/acsbiomaterials.1c00807
10.1016/j.msec.2015.06.033
10.3390/antibiotics10121473
10.1021/acs.jpcb.9b07732
10.1038/s41598-020-72264-4
10.1007/s11051-010-9900-y
10.1021/ja1028843
10.1038/nbt.3330
10.3390/ani10081340
10.1007/s12551-021-00795-9
10.3389/fpubh.2014.00145
10.1088/0957-4484/16/9/082
10.3390/agronomy11050957
10.3390/molecules25153432
10.1016/j.talanta.2016.09.070
10.3390/nano12142402
10.2147/IDR.S151783
10.1038/s41579-020-0385-0
10.1016/j.biotechadv.2021.107842
10.2147/IDR.S234425
10.3390/molecules27051606
10.1038/s41579-020-0420-1
10.1128/spectrum.01516-21
10.1038/nrmicro2415
10.1016/j.cmet.2015.01.008
10.3389/fchem.2022.1029056
10.1016/bs.mcb.2015.01.013
10.1038/nrmicro.2016.94
10.1016/j.tim.2014.02.001
10.1038/nrmicro2333
10.1128/AAC.50.1.55-61.2006
10.3390/molecules27082489
10.1166/jnn.2019.16757
10.2147/IDR.S201124
10.1016/j.ijbiomac.2021.02.040
10.2147/IDR.S365254
10.1038/s41598-020-75914-9
10.1186/s12866-021-02144-y
10.1021/acsnano.7b08264
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/biomedicines11020413
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
EISSN 2227-9059
ExternalDocumentID oai_doaj_org_article_31f379e7b8044925ba34f6b51b3bbb11
PMC9953167
A742173610
36830949
10_3390_biomedicines11020413
Genre Journal Article
Review
GeographicLocations Egypt
GeographicLocations_xml – name: Egypt
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ACPRK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EMOBN
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PMFND
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c569t-ee729d2bbfab105b9de2c27ac5f2f154fed7adb63ee54e2b44ace4fc4f74363b3
IEDL.DBID BENPR
ISSN 2227-9059
IngestDate Wed Aug 27 01:17:16 EDT 2025
Thu Aug 21 18:37:59 EDT 2025
Fri Jul 11 08:12:04 EDT 2025
Fri Jul 25 12:10:40 EDT 2025
Tue Jun 17 22:24:03 EDT 2025
Tue Jun 10 21:25:37 EDT 2025
Thu Jan 02 22:53:36 EST 2025
Tue Jul 01 03:17:30 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords nanotechnology
XDR bacteria
nanoantibiotics
MDR bacteria
biofilm
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-ee729d2bbfab105b9de2c27ac5f2f154fed7adb63ee54e2b44ace4fc4f74363b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0889-2886
0000-0001-8541-7304
0000-0001-7681-6194
OpenAccessLink https://www.proquest.com/docview/2779523692?pq-origsite=%requestingapplication%
PMID 36830949
PQID 2779523692
PQPubID 2032426
ParticipantIDs doaj_primary_oai_doaj_org_article_31f379e7b8044925ba34f6b51b3bbb11
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9953167
proquest_miscellaneous_2780073733
proquest_journals_2779523692
gale_infotracmisc_A742173610
gale_infotracacademiconefile_A742173610
pubmed_primary_36830949
crossref_primary_10_3390_biomedicines11020413
crossref_citationtrail_10_3390_biomedicines11020413
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230131
PublicationDateYYYYMMDD 2023-01-31
PublicationDate_xml – month: 1
  year: 2023
  text: 20230131
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomedicines
PublicationTitleAlternate Biomedicines
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ventola (ref_8) 2015; 40
Anselmo (ref_50) 2016; 1
Jiang (ref_122) 2016; 13
Merrifield (ref_60) 2017; 162
Algammal (ref_3) 2022; 15
Nel (ref_143) 2009; 8
Hoek (ref_194) 2010; 12
Russell (ref_200) 2001; 2
Abdelghany (ref_177) 2012; 7
ref_125
ref_127
Rizzello (ref_195) 2014; 43
Zhang (ref_142) 2008; 6
ref_129
Lee (ref_46) 2019; 10
ref_121
Liu (ref_185) 2021; 53
Miyazaki (ref_233) 2022; 16
Mba (ref_54) 2021; 53
Jijie (ref_149) 2017; 2
Wasef (ref_20) 2021; 11
Hetta (ref_197) 2020; 13
Chung (ref_141) 2009; 106
Ramasamy (ref_45) 2016; 2016
Rajeshkumar (ref_61) 2017; 273
Marcato (ref_123) 2008; 8
Sharma (ref_44) 2019; 8
Prucek (ref_151) 2022; 11
Costerton (ref_95) 2004; 2
Eng (ref_196) 2015; 8
Cassandra (ref_182) 2017; 543
Lebeaux (ref_93) 2013; 2
Algammal (ref_91) 2020; 10
ref_160
Kamaruzzaman (ref_199) 2017; 174
Kim (ref_148) 2018; 10
Wang (ref_113) 2022; 22
Xu (ref_186) 2021; 4
ref_83
ref_81
Gad (ref_52) 2020; 15
Gupta (ref_152) 2019; 48
ref_87
Blanco (ref_43) 2015; 33
Patel (ref_215) 2005; 437
Hashem (ref_28) 2022; 17
Bassetti (ref_103) 2020; 80
Flemming (ref_212) 2016; 14
Sim (ref_59) 2018; 36
Gilbertson (ref_120) 2016; 50
Emmanuel (ref_191) 2015; 56
Wang (ref_37) 2020; 7
Dar (ref_203) 2021; 11
(ref_128) 2022; 155
Natan (ref_157) 2017; 41
Sauer (ref_217) 2022; 20
Ellis (ref_204) 2018; 12
Tawfeek (ref_55) 2019; 14
Wang (ref_156) 2005; 55
ref_219
Banerjee (ref_224) 2020; 190
Thomas (ref_225) 2016; 105
Bardestani (ref_164) 2021; 19
Costerton (ref_210) 1999; 284
Masoud (ref_73) 2020; 13
Mamun (ref_138) 2021; 9
Blair (ref_78) 2015; 13
Shek (ref_102) 1983; 49
Cheeseman (ref_150) 2020; 7
Zazo (ref_226) 2016; 224
Usai (ref_13) 2019; 13
ref_202
Zaidi (ref_140) 2017; 13
ref_205
Salah (ref_85) 2022; 12
Geesey (ref_211) 1977; 23
Algammal (ref_70) 2020; 13
Shobha (ref_48) 2014; 3
Zhang (ref_190) 2021; 31
Menina (ref_207) 2019; 8
Borm (ref_232) 2008; 3
Abid (ref_57) 2021; 273
ref_115
Hetta (ref_25) 2021; 11
Rumbaugh (ref_180) 2020; 18
ref_119
ref_118
Yin (ref_98) 2022; 14
Sherje (ref_108) 2018; 548
Brown (ref_171) 2012; 78
Hetta (ref_41) 2020; 15
Banerjee (ref_161) 2022; 38
ref_110
ref_112
Fulaz (ref_221) 2019; 27
Tripathi (ref_23) 2022; 5
Ibrahim (ref_72) 2020; 26
Elkhawaga (ref_92) 2020; 11
Makharita (ref_68) 2020; 13
Kohanski (ref_137) 2010; 8
Yeh (ref_139) 2020; 8
ref_105
ref_107
Khalid (ref_34) 2017; 528
Khalili (ref_130) 2022; 213
Li (ref_175) 2005; 16
Chamundeeswari (ref_176) 2010; 55
Ciofu (ref_218) 2022; 20
Abdellatif (ref_19) 2021; 63
Ahmed (ref_42) 2019; 14
Algammal (ref_88) 2020; 10
Peng (ref_193) 2015; 21
Liu (ref_82) 2020; 367
Zhao (ref_144) 2010; 132
Farhan (ref_67) 2020; 56
Jafari (ref_116) 2021; 68
Hasanin (ref_29) 2021; 175
Baptista (ref_228) 2018; 9
Liu (ref_36) 2019; 123
ref_14
Liao (ref_58) 2019; 14
ref_12
Periakaruppan (ref_114) 2022; 194
Roca (ref_89) 2015; 6
Tanwar (ref_97) 2014; 2014
ref_17
Cheng (ref_47) 2018; 13
Qayyum (ref_35) 2016; 7
Ibarra (ref_198) 2009; 11
Huh (ref_227) 2011; 156
Mu (ref_208) 2016; 6
Coenye (ref_216) 2014; 22
Cui (ref_145) 2012; 33
Wang (ref_154) 2017; 12
Munita (ref_64) 2016; 4
Ghezzi (ref_109) 2021; 332
Zhang (ref_132) 2017; 9
ref_22
ref_21
Sun (ref_192) 2021; 9
Zylberberg (ref_100) 2016; 23
Teixeira (ref_10) 2018; 21
Kassem (ref_124) 2019; 668
Pelgrift (ref_9) 2013; 65
Hada (ref_179) 2022; 293
Lu (ref_99) 2021; 13
Chaithawiwat (ref_165) 2016; 565
Tawre (ref_24) 2022; 10
Li (ref_172) 2019; 5
Alekshun (ref_65) 2007; 128
Fahimmunisha (ref_162) 2020; 55
Mabrok (ref_84) 2023; 1862
Sandle (ref_76) 2019; 12
Du (ref_187) 2022; 7
Saginur (ref_94) 2006; 50
Jaworski (ref_49) 2018; 13
Jia (ref_134) 2022; 210
Michael (ref_181) 2014; 2
Elbahnasawy (ref_31) 2021; 62
Farhan (ref_69) 2019; 12
Gupta (ref_74) 2017; 1
Sandhiya (ref_229) 2009; 23
Morgan (ref_86) 2011; 11
MacGowan (ref_62) 2017; 45
Hetta (ref_63) 2018; 11
Taher (ref_201) 2022; 16
Xie (ref_206) 2017; 7
Makabenta (ref_136) 2021; 19
Lemire (ref_146) 2013; 11
Hamad (ref_4) 2022; 10
Saneja (ref_106) 2019; 98
(ref_230) 2009; 2009
Haidari (ref_111) 2021; 14
Algammal (ref_90) 2021; 11
Pathakoti (ref_163) 2019; 19
Flemming (ref_214) 2010; 8
Ang (ref_126) 2022; 8
Yang (ref_11) 2021; 9
Mousa (ref_173) 2020; 13
ref_56
ref_174
ref_51
ref_178
Arnaouteli (ref_213) 2021; 19
Hagens (ref_231) 2007; 49
Carvalho (ref_101) 2015; 128
Lin (ref_117) 2021; 17
Hashem (ref_27) 2022; 74
Hetta (ref_18) 2022; 17
Sondi (ref_188) 2004; 275
Joner (ref_166) 2011; 26
Fenoglio (ref_158) 2008; 42
Hall (ref_96) 2017; 41
Tseng (ref_80) 2013; 15
Hurdle (ref_79) 2011; 9
Li (ref_209) 2021; 340
Elhassan (ref_131) 2022; 351
ref_66
Ikuma (ref_222) 2015; 6
ref_167
He (ref_133) 2022; 9
Mba (ref_53) 2020; 36
Gupta (ref_75) 2017; 12
Ovung (ref_77) 2021; 13
ref_170
Birk (ref_223) 2021; 174
Slavin (ref_155) 2017; 15
Sutherland (ref_169) 2001; 9
Cascioferro (ref_135) 2021; 16
Algammal (ref_5) 2022; 15
Kareem (ref_71) 2021; 14
ref_30
Chatterjee (ref_168) 2014; 25
ref_39
ref_38
Muthukrishnan (ref_153) 2019; 194
Amreddy (ref_104) 2018; 137
Short (ref_189) 2021; 73
Song (ref_33) 2021; 128
Duncan (ref_234) 2011; 8
Huang (ref_183) 2011; 32
Pinna (ref_15) 2020; 39
Quinteros (ref_159) 2016; 36
ref_184
Mosallam (ref_32) 2018; 29
Wang (ref_220) 2022; 106
ref_40
ref_1
ref_2
Tarrat (ref_147) 2015; 7
Abdelraheem (ref_26) 2021; 20
ref_7
ref_6
Algammal (ref_16) 2021; 21
References_xml – volume: 1
  start-page: 015004
  year: 2017
  ident: ref_74
  article-title: Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection
  publication-title: Nano Futures
  doi: 10.1088/2399-1984/aa69fb
– volume: 15
  start-page: 65
  year: 2017
  ident: ref_155
  article-title: Metal nanoparticles: Understanding the mechanisms behind antibacterial activity
  publication-title: J. Nanobiotechnology
  doi: 10.1186/s12951-017-0308-z
– volume: 20
  start-page: 608
  year: 2022
  ident: ref_217
  article-title: The biofilm life cycle: Expanding the conceptual model of biofilm formation
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-022-00767-0
– volume: 5
  start-page: 1391
  year: 2022
  ident: ref_23
  article-title: Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles
  publication-title: ACS Appl. Bio. Mater.
  doi: 10.1021/acsabm.2c00014
– ident: ref_127
  doi: 10.3390/ph15030357
– volume: 11
  start-page: 371
  year: 2013
  ident: ref_146
  article-title: Antimicrobial activity of metals: Mechanisms, molecular targets and applications
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3028
– volume: 8
  start-page: 1900564
  year: 2019
  ident: ref_207
  article-title: Bioinspired liposomes for oral delivery of colistin to combat intracellular infections by Salmonella enterica
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201900564
– volume: 3
  start-page: 133
  year: 2008
  ident: ref_232
  article-title: Drug delivery and nanoparticles:applications and hazards
  publication-title: Int. J. Nanomed.
– volume: 9
  start-page: 1441
  year: 2018
  ident: ref_228
  article-title: Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.01441
– volume: 38
  start-page: 20
  year: 2022
  ident: ref_161
  article-title: Oxidative stress, DNA, and membranes targets as modes of antibacterial and antibiofilm activity of facile synthesized biocompatible keratin-copper nanoparticles against multidrug resistant uro-pathogens
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-021-03187-z
– ident: ref_81
  doi: 10.3390/microorganisms9112365
– volume: 50
  start-page: 3975
  year: 2016
  ident: ref_120
  article-title: Shape-Dependent Surface Reactivity and Antimicrobial Activity of Nano-Cupric Oxide
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05734
– ident: ref_83
  doi: 10.3390/ani13020296
– ident: ref_178
  doi: 10.3390/ph15060682
– volume: 2
  start-page: 288
  year: 2013
  ident: ref_93
  article-title: From in vitro to in vivo models of bacterial biofilm-related infections
  publication-title: Pathogens
  doi: 10.3390/pathogens2020288
– volume: 10
  start-page: 1153
  year: 2019
  ident: ref_46
  article-title: Nanoparticles in the treatment of infections caused by multidrug-resistant organisms
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.01153
– volume: 106
  start-page: 6365
  year: 2022
  ident: ref_220
  article-title: Biofilm formation and inhibition mediated by bacterial quorum sensing
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-022-12150-3
– ident: ref_40
  doi: 10.3390/molecules25133091
– volume: 8
  start-page: 2216
  year: 2008
  ident: ref_123
  article-title: New aspects of nanopharmaceutical delivery systems
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2008.274
– ident: ref_66
  doi: 10.3390/antibiotics9090603
– volume: 62
  start-page: 102401
  year: 2021
  ident: ref_31
  article-title: Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: Characterization and anticandidal activity
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2021.102401
– ident: ref_112
  doi: 10.3390/polym14040771
– ident: ref_160
  doi: 10.3390/nano12010161
– volume: 16
  start-page: 12290
  year: 2022
  ident: ref_233
  article-title: A Hoechst Reporter Enables Visualization of Drug Engagement In Vitro and In Vivo: Toward Safe and Effective Nanodrug Delivery
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c03170
– ident: ref_119
  doi: 10.1002/wnan.1860
– volume: 4
  start-page: 3985
  year: 2021
  ident: ref_186
  article-title: Release strategies of silver ions from materials for bacterial killing
  publication-title: ACS Appl. Bio. Mater.
  doi: 10.1021/acsabm.0c01485
– ident: ref_14
  doi: 10.3390/microorganisms10040758
– volume: 11
  start-page: 1579
  year: 2009
  ident: ref_198
  article-title: Salmonella–the ultimate insider. Salmonella virulence factors that modulate intracellular survival
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2009.01368.x
– volume: 41
  start-page: 276
  year: 2017
  ident: ref_96
  article-title: Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fux010
– ident: ref_105
  doi: 10.3390/molecules25163760
– volume: 106
  start-page: 21872
  year: 2009
  ident: ref_141
  article-title: Rapid beta-lactam-induced lysis requires successful assembly of the cell division machinery
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0911674106
– volume: 9
  start-page: 62
  year: 2011
  ident: ref_79
  article-title: Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2474
– volume: 13
  start-page: 42
  year: 2015
  ident: ref_78
  article-title: Molecular mechanisms of antibiotic resistance
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3380
– volume: 6
  start-page: 22
  year: 2015
  ident: ref_89
  article-title: The global threat of antimicrobial resistance: Science for intervention
  publication-title: New Microbes New Infect.
  doi: 10.1016/j.nmni.2015.02.007
– volume: 21
  start-page: 233
  year: 2018
  ident: ref_10
  article-title: Advances in antibiotic nanotherapy: Overcoming antimicrobial resistance
  publication-title: Emerg. Nanotechnologies Immunol.
  doi: 10.1016/B978-0-323-40016-9.00009-9
– volume: 74
  start-page: 2100165
  year: 2022
  ident: ref_27
  article-title: Synthesis of nanocapsules based on biosynthesized nickel nanoparticles and potato starch: Antimicrobial, antioxidant, and anticancer activity
  publication-title: Starch Stärke
  doi: 10.1002/star.202100165
– volume: 10
  start-page: 13317
  year: 2018
  ident: ref_148
  article-title: Selective Killing of Pathogenic Bacteria by Antimicrobial Silver Nanoparticle-Cell Wall Binding Domain Conjugates
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00181
– volume: 17
  start-page: 2103348
  year: 2021
  ident: ref_117
  article-title: Visible-Light-Driven Photocatalysis-Enhanced Nanozyme of TiO2 Nanotubes@ MoS2 Nanoflowers for Efficient Wound Healing Infected with Multidrug-Resistant Bacteria
  publication-title: Small
  doi: 10.1002/smll.202103348
– ident: ref_205
– ident: ref_30
  doi: 10.3390/biom11071028
– volume: 13
  start-page: 22225
  year: 2021
  ident: ref_99
  article-title: Magnetically Guided Nanoworms for Precise Delivery to Enhance In Situ Production of Nitric Oxide to Combat Focal Bacterial Infection In Vivo
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c04330
– volume: 33
  start-page: 2327
  year: 2012
  ident: ref_145
  article-title: The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.11.057
– volume: 16
  start-page: 125
  year: 2022
  ident: ref_201
  article-title: Pulmonary tuberculosis susceptibility and association with Toll-Like receptor 2 Arg753Gln polymorphism
  publication-title: J. Infect. Dev. Ctries.
  doi: 10.3855/jidc.14885
– volume: 12
  start-page: 1227
  year: 2017
  ident: ref_154
  article-title: The antimicrobial activity of nanoparticles: Present situation and prospects for the future
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S121956
– volume: 55
  start-page: 29
  year: 2010
  ident: ref_176
  article-title: Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity
  publication-title: Biotechnol. Appl. Biochem.
  doi: 10.1042/BA20090198
– volume: 53
  start-page: 559
  year: 2021
  ident: ref_54
  article-title: Immunobiology and nanotherapeutics of severe acute respiratory syndrome 2 (SARS-CoV-2): A current update
  publication-title: Infect. Dis.
  doi: 10.1080/23744235.2021.1916071
– volume: 49
  start-page: 37
  year: 1983
  ident: ref_102
  article-title: Comparison between multilamellar and unilamellar liposomes in enhancing antibody formation
  publication-title: Immunology
– volume: 11
  start-page: 9476
  year: 2021
  ident: ref_90
  article-title: atpD gene sequencing, multidrug resistance traits, virulence-determinants, and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-88861-w
– volume: 273
  start-page: 119117
  year: 2021
  ident: ref_57
  article-title: Biosensors as a future diagnostic approach for COVID-19
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2021.119117
– ident: ref_121
  doi: 10.3390/antibiotics11010107
– volume: 15
  start-page: 4321
  year: 2022
  ident: ref_5
  article-title: Sequence Analysis, Antibiogram Profile, Virulence and Antibiotic Resistance Genes of XDR and MDR Gallibacterium anatis Isolated from Layer Chickens in Egypt
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S377797
– volume: 543
  start-page: 15
  year: 2017
  ident: ref_182
  article-title: The drug-resistant bacteria that pose the greatest health threats
  publication-title: Nature
  doi: 10.1038/nature.2017.21550
– volume: 668
  start-page: 566
  year: 2019
  ident: ref_124
  article-title: Antibacterial activity of chitosan nano-composites and carbon nanotubes: A review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.446
– volume: 8
  start-page: 284
  year: 2015
  ident: ref_196
  article-title: Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance
  publication-title: Front. Life Sci.
  doi: 10.1080/21553769.2015.1051243
– volume: 45
  start-page: 622
  year: 2017
  ident: ref_62
  article-title: Antibiotic resistance
  publication-title: Medicine
  doi: 10.1016/j.mpmed.2017.07.006
– volume: 7
  start-page: 14515
  year: 2015
  ident: ref_147
  article-title: The gold/ampicillin interface at the atomic scale
  publication-title: Nanoscale
  doi: 10.1039/C5NR03318G
– volume: 7
  start-page: 1479
  year: 2016
  ident: ref_35
  article-title: Nanoparticles vs. biofilms: A battle against another paradigm of antibiotic resistance
  publication-title: MedChemComm
  doi: 10.1039/C6MD00124F
– volume: 548
  start-page: 707
  year: 2018
  ident: ref_108
  article-title: Dendrimers: A versatile nanocarrier for drug delivery and targeting
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.07.030
– volume: 156
  start-page: 128
  year: 2011
  ident: ref_227
  article-title: “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2011.07.002
– volume: 49
  start-page: 217
  year: 2007
  ident: ref_231
  article-title: What do we (need to) know about the kinetic properties of nanoparticles in the body?
  publication-title: Regul. Toxicol. Pharmacol.
  doi: 10.1016/j.yrtph.2007.07.006
– volume: 11
  start-page: 1115
  year: 2022
  ident: ref_151
  article-title: Antibacterial nanomaterials: Upcoming hope to overcome antibiotic resistance crisis
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2022-0059
– volume: 73
  start-page: 103653
  year: 2021
  ident: ref_189
  article-title: Benzalkonium chloride antagonises aminoglycoside antibiotics and promotes evolution of resistance
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2021.103653
– volume: 56
  start-page: 4
  year: 2020
  ident: ref_67
  article-title: Antimicrobial resistance pattern and molecular epidemiology of ESBL and MBL producing Acinetobacter baumannii isolated from hospitals in Minia, Egypt
  publication-title: Alex. J. Med.
– ident: ref_129
  doi: 10.3390/s22041364
– ident: ref_12
  doi: 10.3390/microorganisms9112384
– volume: 6
  start-page: 18877
  year: 2016
  ident: ref_208
  article-title: Potent antibacterial nanoparticles against biofilm and intracellular bacteria
  publication-title: Sci. Rep.
  doi: 10.1038/srep18877
– volume: 20
  start-page: 54
  year: 2021
  ident: ref_26
  article-title: Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates
  publication-title: Ann. Clin. Microbiol. Antimicrob.
  doi: 10.1186/s12941-021-00459-2
– volume: 14
  start-page: 1471
  year: 2019
  ident: ref_55
  article-title: Nanomedicine as a future therapeutic approach for Hepatitis C virus
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2018-0348
– volume: 8
  start-page: 543
  year: 2009
  ident: ref_143
  article-title: Understanding biophysicochemical interactions at the nano-bio interface
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2442
– volume: 36
  start-page: 163
  year: 2020
  ident: ref_53
  article-title: The use of nanoparticles as alternative therapeutic agents against Candida infections: An up-to-date overview and future perspectives
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-020-02940-0
– volume: 11
  start-page: 11197
  year: 2021
  ident: ref_203
  article-title: Designing a multi-epitope vaccine against Mycobacteroides abscessus by pangenome-reverse vaccinology
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-90868-2
– volume: 20
  start-page: 621
  year: 2022
  ident: ref_218
  article-title: Tolerance and resistance of microbial biofilms
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-022-00682-4
– volume: 13
  start-page: 2281
  year: 2017
  ident: ref_140
  article-title: Nano-therapeutics: A revolution in infection control in post antibiotic era
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2017.06.015
– volume: 11
  start-page: 10751
  year: 2021
  ident: ref_25
  article-title: Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-90208-4
– volume: 32
  start-page: 214
  year: 2011
  ident: ref_183
  article-title: Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.08.076
– volume: 23
  start-page: 263
  year: 2009
  ident: ref_229
  article-title: Emerging trends of nanomedicine--an overview
  publication-title: Fundam. Clin. Pharmacol.
  doi: 10.1111/j.1472-8206.2009.00692.x
– volume: 36
  start-page: 1391
  year: 2018
  ident: ref_59
  article-title: Silver bullets: A new lustre on an old antimicrobial agent
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2018.05.004
– volume: 128
  start-page: 1037
  year: 2007
  ident: ref_65
  article-title: Molecular mechanisms of antibacterial multidrug resistance
  publication-title: Cell
  doi: 10.1016/j.cell.2007.03.004
– volume: 80
  start-page: 1309
  year: 2020
  ident: ref_103
  article-title: Inhaled Liposomal Antimicrobial Delivery in Lung Infections
  publication-title: Drugs
  doi: 10.1007/s40265-020-01359-z
– volume: 63
  start-page: 102435
  year: 2021
  ident: ref_19
  article-title: Recent updates in COVID-19 with emphasis on inhalation therapeutics: Nanostructured and targeting systems
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2021.102435
– ident: ref_21
  doi: 10.3390/antibiotics9100641
– ident: ref_87
– ident: ref_17
  doi: 10.1002/9783527648122
– ident: ref_170
  doi: 10.3390/nano12132183
– volume: 5
  start-page: 1590
  year: 2019
  ident: ref_172
  article-title: Phytochemical-based nanocomposites for the treatment of bacterial biofilms
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.9b00134
– volume: 23
  start-page: 1733
  year: 1977
  ident: ref_211
  article-title: Microscopic examination of natural sessile bacterial populations from an alpine stream
  publication-title: Can. J. Microbiol.
  doi: 10.1139/m77-249
– volume: 7
  start-page: 18053
  year: 2017
  ident: ref_206
  article-title: Construction of engineered corpus cavernosum with primary mesenchymal stem cells in vitro
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-18129-9
– volume: 128
  start-page: 112318
  year: 2021
  ident: ref_33
  article-title: Dealing with MDR bacteria and biofilm in the post-antibiotic era: Application of antimicrobial peptides-based nano-formulation
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2021.112318
– volume: 210
  start-page: 703
  year: 2022
  ident: ref_134
  article-title: Silver nanoparticles anchored magnetic self-assembled carboxymethyl cellulose-ε-polylysine hybrids with synergetic antibacterial activity for wound infection therapy
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.04.225
– volume: 13
  start-page: 4367
  year: 2020
  ident: ref_197
  article-title: In-vitro antimicrobial activity of essential oils and spices powder of some medicinal plants against bacillus species isolated from raw and processed meat
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S277295
– ident: ref_107
  doi: 10.3390/pharmaceutics14081745
– volume: 27
  start-page: 915
  year: 2019
  ident: ref_221
  article-title: Nanoparticle–biofilm interactions: The role of the EPS matrix
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2019.07.004
– volume: 528
  start-page: 675
  year: 2017
  ident: ref_34
  article-title: Polymeric nanoparticles: Promising platform for drug delivery
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.06.052
– volume: 2014
  start-page: 541340
  year: 2014
  ident: ref_97
  article-title: Multidrug Resistance: An Emerging Crisis
  publication-title: Interdiscip. Perspect. Infect. Dis.
  doi: 10.1155/2014/541340
– volume: 17
  start-page: 353
  year: 2022
  ident: ref_18
  article-title: Antibacterial and wound-healing potential of PLGA/spidroin nanoparticles: A study on earthworms as a human skin model
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2021-0325
– volume: 6
  start-page: 591
  year: 2015
  ident: ref_222
  article-title: When nanoparticles meet biofilms—Interactions guiding the environmental fate and accumulation of nanoparticles
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00591
– volume: 13
  start-page: 547
  year: 2016
  ident: ref_122
  article-title: Progress and perspective of inorganic nanoparticle-based siRNA delivery systems
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1517/17425247.2016.1134486
– volume: 26
  start-page: 616
  year: 2020
  ident: ref_72
  article-title: Prevalence of genes involved in colistin resistance in Acinetobacter baumannii: First report from Iraq
  publication-title: Microb. Drug Resist.
  doi: 10.1089/mdr.2019.0243
– volume: 6
  start-page: 222
  year: 2008
  ident: ref_142
  article-title: Membrane lipid homeostasis in bacteria
  publication-title: Nat. Reviews. Microbiol.
  doi: 10.1038/nrmicro1839
– volume: 31
  start-page: 2008720
  year: 2021
  ident: ref_190
  article-title: Copper clusters: An effective antibacterial for eradicating multidrug-resistant bacterial infection in vitro and in vivo
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008720
– volume: 8
  start-page: 2101
  year: 2011
  ident: ref_234
  article-title: Nanomedicine(s) under the microscope
  publication-title: Mol. Pharm.
  doi: 10.1021/mp200394t
– volume: 174
  start-page: 30
  year: 2021
  ident: ref_223
  article-title: Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.04.005
– volume: 2016
  start-page: 1851242
  year: 2016
  ident: ref_45
  article-title: Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices
  publication-title: BioMed Res. Int.
  doi: 10.1155/2016/1851242
– volume: 23
  start-page: 3319
  year: 2016
  ident: ref_100
  article-title: Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2016.1177136
– volume: 14
  start-page: 555
  year: 2021
  ident: ref_71
  article-title: Detection of gyra and parc mutations and prevalence of plasmid-mediated quinolone resistance genes in Klebsiella pneumoniae
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S275852
– volume: 9
  start-page: 222
  year: 2001
  ident: ref_169
  article-title: The biofilm matrix--an immobilized but dynamic microbial environment
  publication-title: Trends Microbiol.
  doi: 10.1016/S0966-842X(01)02012-1
– volume: 12
  start-page: 2125
  year: 2019
  ident: ref_69
  article-title: Antimicrobial resistance pattern and molecular genetic distribution of metallo-β-lactamases producing Pseudomonas aeruginosa isolated from hospitals in Minia, Egypt
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S198373
– volume: 8
  start-page: 286
  year: 2020
  ident: ref_139
  article-title: Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00286
– volume: 11
  start-page: 1310
  year: 2021
  ident: ref_20
  article-title: The potential ameliorative impacts of cerium oxide nanoparticles against fipronil-induced hepatic steatosis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79479-5
– volume: 194
  start-page: 119
  year: 2019
  ident: ref_153
  article-title: Bio-engineering and cellular imaging of silver nanoparticles as weaponry against multidrug resistant human pathogens
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2019.03.021
– volume: 36
  start-page: 216
  year: 2016
  ident: ref_159
  article-title: Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity
  publication-title: Toxicol. Vitr.
  doi: 10.1016/j.tiv.2016.08.007
– volume: 194
  start-page: 5594
  year: 2022
  ident: ref_114
  article-title: Biosynthesis of Silica Nanoparticles Using the Leaf Extract of Punica granatum and Assessment of Its Antibacterial Activities Against Human Pathogens
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-022-03994-6
– volume: 19
  start-page: 327
  year: 2021
  ident: ref_164
  article-title: Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles
  publication-title: J. Nanobiotechnology
  doi: 10.1186/s12951-021-01059-0
– volume: 26
  start-page: 271
  year: 2011
  ident: ref_166
  article-title: Oxidative stress induced in microorganisms by zero-valent iron nanoparticles
  publication-title: Microbes Environ.
  doi: 10.1264/jsme2.ME11126
– ident: ref_167
  doi: 10.3390/nano6040071
– volume: 7
  start-page: 4053
  year: 2012
  ident: ref_177
  article-title: Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection
  publication-title: Int. J. Nanomed.
– volume: 1862
  start-page: 1068000
  year: 2023
  ident: ref_84
  article-title: Tenacibaculosis caused by Tenacibaculum maritimum: Updated knowledge of this marine bacterial fish pathogen
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2022.1068000
– ident: ref_38
  doi: 10.3390/molecules25153479
– volume: 8
  start-page: 76
  year: 2019
  ident: ref_44
  article-title: Antibiotics versus biofilm: An emerging battleground in microbial communities
  publication-title: Antimicrob. Resist. Infect. Control.
  doi: 10.1186/s13756-019-0533-3
– ident: ref_118
  doi: 10.1371/journal.pone.0240510
– volume: 29
  start-page: 1003
  year: 2018
  ident: ref_32
  article-title: Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes
  publication-title: J. Clust. Sci.
  doi: 10.1007/s10876-018-1411-5
– volume: 174
  start-page: 2225
  year: 2017
  ident: ref_199
  article-title: Targeting the hard to reach: Challenges and novel strategies in the treatment of intracellular bacterial infections
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.13664
– volume: 12
  start-page: 21852
  year: 2022
  ident: ref_85
  article-title: Fig latex inhibits the growth of pathogenic bacteria invading human diabetic wounds and accelerates wound closure in diabetic mice
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-26338-0
– volume: 2
  start-page: 349
  year: 2017
  ident: ref_149
  article-title: Advancements on the molecular design of nanoantibiotics: Current level of development and future challenges
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/C7ME00048K
– volume: 19
  start-page: 600
  year: 2021
  ident: ref_213
  article-title: Bacillus subtilis biofilm formation and social interactions
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-021-00540-9
– volume: 13
  start-page: 162
  year: 2019
  ident: ref_13
  article-title: Enhancement of antimicrobial activity of pump inhibitors associating drugs
  publication-title: J. Infect. Dev. Ctries
  doi: 10.3855/jidc.11102
– ident: ref_1
– volume: 9
  start-page: 687660
  year: 2021
  ident: ref_138
  article-title: Nanoantibiotics: Functions and properties at the nanoscale to combat antibiotic resistance
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2021.687660
– volume: 13
  start-page: 3255
  year: 2020
  ident: ref_70
  article-title: Methicillin-Resistant Staphylococcus aureus (MRSA): One health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S272733
– volume: 14
  start-page: 8847
  year: 2022
  ident: ref_98
  article-title: Surface-Charge-Switchable and Size-Transformable Thermosensitive Nanocomposites for Chemo-Photothermal Eradication of Bacterial Biofilms in Vitro and in Vivo
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c24229
– volume: 9
  start-page: 696514
  year: 2021
  ident: ref_11
  article-title: Overcoming Multidrug Resistance in Bacteria Through Antibiotics Delivery in Surface-Engineered Nano-Cargos: Recent Developments for Future Nano-Antibiotics
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.696514
– ident: ref_2
  doi: 10.1371/journal.pone.0267396
– volume: 68
  start-page: 195
  year: 2021
  ident: ref_116
  article-title: Evaluation of magnesium oxide and zinc oxide nanoparticles against multi-drug-resistance Mycobacterium tuberculosis
  publication-title: Indian J. Tuberc.
  doi: 10.1016/j.ijtb.2020.07.032
– volume: 48
  start-page: 415
  year: 2019
  ident: ref_152
  article-title: Combatting antibiotic-resistant bacteria using nanomaterials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00748E
– ident: ref_56
– volume: 1
  start-page: 10
  year: 2016
  ident: ref_50
  article-title: Nanoparticles in the clinic
  publication-title: Bioeng. Transl. Med.
  doi: 10.1002/btm2.10003
– volume: 13
  start-page: 3311
  year: 2018
  ident: ref_47
  article-title: Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S165125
– volume: 14
  start-page: 390
  year: 2021
  ident: ref_111
  article-title: Polycationic Silver Nanoclusters Comprising Nanoreservoirs of Ag+ Ions with High Antimicrobial and Antibiofilm Activity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c21657
– volume: 13
  start-page: 323
  year: 2020
  ident: ref_73
  article-title: Prevalence and some possible mechanisms of colistin resistance among multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S238811
– volume: 565
  start-page: 857
  year: 2016
  ident: ref_165
  article-title: Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.02.191
– volume: 42
  start-page: 437
  year: 2008
  ident: ref_158
  article-title: The oxidation of glutathione by cobalt/tungsten carbide contributes to hard metal-induced oxidative stress
  publication-title: Free. Radic. Res.
  doi: 10.1080/10715760802350904
– volume: 11
  start-page: 692
  year: 2011
  ident: ref_86
  article-title: Non-prescription antimicrobial use worldwide: A systematic review
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(11)70054-8
– volume: 190
  start-page: 110921
  year: 2020
  ident: ref_224
  article-title: Antibacterial, anti-biofilm activity and mechanism of action of pancreatin doped zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2020.110921
– volume: 7
  start-page: 1902913
  year: 2020
  ident: ref_150
  article-title: Antimicrobial metal nanomaterials: From passive to stimuli-activated applications
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902913
– volume: 340
  start-page: 125741
  year: 2021
  ident: ref_209
  article-title: Response of extracellular polymeric substances and microbial community structures on resistance genes expression in wastewater treatment containing copper oxide nanoparticles and humic acid
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125741
– volume: 39
  start-page: 1415
  year: 2020
  ident: ref_15
  article-title: In Vitro Antimicrobial Activity of a New Ophthalmic Solution Containing Hexamidine Diisethionate 0.05% (Keratosept)
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000002375
– volume: 15
  start-page: 2865
  year: 2013
  ident: ref_80
  article-title: The extracellular matrix protects P seudomonas aeruginosa biofilms by limiting the penetration of tobramycin
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12155
– volume: 7
  start-page: 18339
  year: 2022
  ident: ref_187
  article-title: Ni Nanocrystals Supported on Graphene Oxide: Antibacterial Agents for Synergistic Treatment of Bacterial Infections
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c00508
– ident: ref_184
  doi: 10.3390/ijms231911348
– volume: 41
  start-page: 302
  year: 2017
  ident: ref_157
  article-title: From nano to micro: Using nanotechnology to combat microorganisms and their multidrug resistance
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fux003
– volume: 332
  start-page: 312
  year: 2021
  ident: ref_109
  article-title: Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions
  publication-title: J. Control. Release Off. J. Control. Release Soc.
  doi: 10.1016/j.jconrel.2021.02.031
– volume: 224
  start-page: 86
  year: 2016
  ident: ref_226
  article-title: Current applications of nanoparticles in infectious diseases
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.01.008
– volume: 437
  start-page: 41
  year: 2005
  ident: ref_215
  article-title: Biofilms and antimicrobial resistance
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/01.blo.0000175714.68624.74
– volume: 98
  start-page: 764
  year: 2019
  ident: ref_106
  article-title: Gemcitabine and betulinic acid co-encapsulated PLGA− PEG polymer nanoparticles for improved efficacy of cancer chemotherapy
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.01.026
– volume: 213
  start-page: 166
  year: 2022
  ident: ref_130
  article-title: Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.05.156
– volume: 15
  start-page: 2085
  year: 2020
  ident: ref_52
  article-title: Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2020-0247
– volume: 275
  start-page: 177
  year: 2004
  ident: ref_188
  article-title: Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.02.012
– volume: 14
  start-page: 2383
  year: 2019
  ident: ref_42
  article-title: Metoclopramide nanoparticles modulate immune response in a diabetic rat model: Association with regulatory T cells and proinflammatory cytokines
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S196842
– volume: 55
  start-page: 101465
  year: 2020
  ident: ref_162
  article-title: Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using Aloe socotrina leaf extract: A novel drug delivery approach
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2019.101465
– volume: 7
  start-page: 872
  year: 2020
  ident: ref_37
  article-title: Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00872
– ident: ref_51
  doi: 10.3390/molecules25092193
– volume: 351
  start-page: 598
  year: 2022
  ident: ref_131
  article-title: Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections
  publication-title: J. Control. Release Off. J. Control. Release Soc.
  doi: 10.1016/j.jconrel.2022.09.052
– ident: ref_202
  doi: 10.1186/s12866-021-02287-y
– volume: 15
  start-page: 1375
  year: 2020
  ident: ref_41
  article-title: Modulation of rifampicin-induced hepatotoxicity using poly (lactic-co-glycolic acid) nanoparticles: A study on rat and cell culture models
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2020-0001
– volume: 105
  start-page: 3115
  year: 2016
  ident: ref_225
  article-title: Efficacy of Poly-Lactic-Co-Glycolic Acid Micro- and Nanoparticles of Ciprofloxacin Against Bacterial Biofilms
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2016.06.022
– volume: 273
  start-page: 219
  year: 2017
  ident: ref_61
  article-title: Mechanism of plant-mediated synthesis of silver nanoparticles–a review on biomolecules involved, characterisation and antibacterial activity
  publication-title: Chem. -Biol. Interact.
  doi: 10.1016/j.cbi.2017.06.019
– volume: 78
  start-page: 2768
  year: 2012
  ident: ref_171
  article-title: Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.06513-11
– volume: 12
  start-page: 454
  year: 2017
  ident: ref_75
  article-title: Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-017-2222-6
– volume: 9
  start-page: 8323
  year: 2021
  ident: ref_192
  article-title: An intrinsically thermogenic nanozyme for synergistic antibacterial therapy
  publication-title: Biomater. Sci.
  doi: 10.1039/D1BM01390D
– ident: ref_6
  doi: 10.3390/life11111178
– ident: ref_174
– volume: 2009
  start-page: 754810
  year: 2009
  ident: ref_230
  article-title: On the Toxicity of Therapeutically Used Nanoparticles: An Overview
  publication-title: J. Toxicol.
– volume: 9
  start-page: 1334
  year: 2017
  ident: ref_132
  article-title: Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks
  publication-title: Nanoscale
  doi: 10.1039/C6NR08486A
– volume: 22
  start-page: 3576
  year: 2022
  ident: ref_113
  article-title: Aminophenol-Decorated Gold Nanoparticles for Curing Bacterial Infections
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04968
– volume: 14
  start-page: 1469
  year: 2019
  ident: ref_58
  article-title: Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S191340
– volume: 284
  start-page: 1318
  year: 1999
  ident: ref_210
  article-title: Bacterial biofilms: A common cause of persistent infections
  publication-title: Science
  doi: 10.1126/science.284.5418.1318
– volume: 13
  start-page: 3991
  year: 2020
  ident: ref_68
  article-title: Antibiogram and genetic characterization of carbapenem-resistant gram-negative pathogens incriminated in healthcare-associated infections
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S276975
– volume: 4
  start-page: 15
  year: 2016
  ident: ref_64
  article-title: Mechanisms of antibiotic resistance
  publication-title: Microbiol. Spectr.
  doi: 10.1128/microbiolspec.VMBF-0016-2015
– volume: 16
  start-page: 65
  year: 2021
  ident: ref_135
  article-title: Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.202000677
– volume: 293
  start-page: 119736
  year: 2022
  ident: ref_179
  article-title: Linezolid nanoAntiobiotics and SERS-nanoTags based on polymeric cyclodextrin bimetallic core-shell nanoarchitectures
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.119736
– volume: 2
  start-page: 95
  year: 2004
  ident: ref_95
  article-title: Bacterial biofilms: From the natural environment to infectious diseases
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro821
– volume: 11
  start-page: 215
  year: 2020
  ident: ref_92
  article-title: Emergence of Cronobacter sakazakii in cases of neonatal sepsis in upper Egypt: First report in North Africa
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00215
– volume: 65
  start-page: 1803
  year: 2013
  ident: ref_9
  article-title: Nanotechnology as a therapeutic tool to combat microbial resistance
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2013.07.011
– volume: 367
  start-page: 200
  year: 2020
  ident: ref_82
  article-title: Effect of tolerance on the evolution of antibiotic resistance under drug combinations
  publication-title: Science
  doi: 10.1126/science.aay3041
– volume: 137
  start-page: 115
  year: 2018
  ident: ref_104
  article-title: Recent advances in nanoparticle-based cancer drug and gene delivery
  publication-title: Adv. Cancer Res.
  doi: 10.1016/bs.acr.2017.11.003
– volume: 25
  start-page: 135101
  year: 2014
  ident: ref_168
  article-title: Mechanism of antibacterial activity of copper nanoparticles
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/13/135101
– volume: 43
  start-page: 1501
  year: 2014
  ident: ref_195
  article-title: Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60218D
– volume: 9
  start-page: e2105223
  year: 2022
  ident: ref_133
  article-title: A Vehicle-Free Antimicrobial Polymer Hybrid Gold Nanoparticle as Synergistically Therapeutic Platforms for Staphylococcus aureus Infected Wound Healing
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202105223
– volume: 55
  start-page: 105
  year: 2005
  ident: ref_156
  article-title: Chitosan-metal complexes as antimicrobial agent: Synthesis, characterization and Structure-activity study
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-005-0414-1
– volume: 13
  start-page: 116
  year: 2018
  ident: ref_49
  article-title: Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-018-2533-2
– volume: 2
  start-page: 569
  year: 2001
  ident: ref_200
  article-title: Mycobacterium tuberculosis: Here today, and here tomorrow
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/35085034
– volume: 17
  start-page: 2100432
  year: 2022
  ident: ref_28
  article-title: Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.202100432
– volume: 8
  start-page: 4196
  year: 2022
  ident: ref_126
  article-title: Mesoporous Silica Nanoparticles Improve Oral Delivery of Antitubercular Bicyclic Nitroimidazoles
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.1c00807
– volume: 56
  start-page: 374
  year: 2015
  ident: ref_191
  article-title: Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.06.033
– ident: ref_22
  doi: 10.3390/antibiotics10121473
– volume: 123
  start-page: 8686
  year: 2019
  ident: ref_36
  article-title: Mechanism study of bacteria killed on nanostructures
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.9b07732
– volume: 10
  start-page: 15961
  year: 2020
  ident: ref_88
  article-title: Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72264-4
– volume: 12
  start-page: 1531
  year: 2010
  ident: ref_194
  article-title: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment
  publication-title: J. Nanoparticle Res.
  doi: 10.1007/s11051-010-9900-y
– volume: 155
  start-page: 654
  year: 2022
  ident: ref_128
  article-title: Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles
  publication-title: Acta Biomater.
– volume: 132
  start-page: 12349
  year: 2010
  ident: ref_144
  article-title: Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1028843
– volume: 33
  start-page: 941
  year: 2015
  ident: ref_43
  article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3330
– ident: ref_7
  doi: 10.3390/ani10081340
– volume: 13
  start-page: 259
  year: 2021
  ident: ref_77
  article-title: Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-021-00795-9
– volume: 2
  start-page: 145
  year: 2014
  ident: ref_181
  article-title: The antimicrobial resistance crisis: Causes, consequences, and management
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2014.00145
– volume: 16
  start-page: 1912
  year: 2005
  ident: ref_175
  article-title: Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/16/9/082
– ident: ref_219
  doi: 10.3390/agronomy11050957
– ident: ref_39
  doi: 10.3390/molecules25153432
– volume: 162
  start-page: 130
  year: 2017
  ident: ref_60
  article-title: Single-particle inductively coupled plasma mass spectroscopy analysis of size and number concentration in mixtures of monometallic and bimetallic (core-shell) nanoparticles
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.09.070
– ident: ref_110
  doi: 10.3390/nano12142402
– volume: 11
  start-page: 587
  year: 2018
  ident: ref_63
  article-title: Ambulance vehicles as a source of multidrug-resistant infections: A multicenter study in Assiut City, Egypt
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S151783
– volume: 18
  start-page: 571
  year: 2020
  ident: ref_180
  article-title: Biofilm dispersion
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-0385-0
– volume: 53
  start-page: 107842
  year: 2021
  ident: ref_185
  article-title: Bacterial protein acetylation and its role in cellular physiology and metabolic regulation
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2021.107842
– volume: 13
  start-page: 351
  year: 2020
  ident: ref_173
  article-title: Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S234425
– ident: ref_125
  doi: 10.3390/molecules27051606
– volume: 19
  start-page: 23
  year: 2021
  ident: ref_136
  article-title: Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-0420-1
– volume: 10
  start-page: e0151621
  year: 2022
  ident: ref_4
  article-title: Investigation of the Bacterial Contamination and Antibiotic Susceptibility Profile of Bacteria Isolated from Bottled Drinking Water
  publication-title: Microbiol. Spectr.
  doi: 10.1128/spectrum.01516-21
– volume: 8
  start-page: 623
  year: 2010
  ident: ref_214
  article-title: The biofilm matrix
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2415
– volume: 21
  start-page: 249
  year: 2015
  ident: ref_193
  article-title: Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.01.008
– volume: 10
  start-page: 1029056
  year: 2022
  ident: ref_24
  article-title: Synergistic and antibiofilm potential of Curcuma aromatica derived silver nanoparticles in combination with antibiotics against multidrug-resistant pathogens
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2022.1029056
– volume: 128
  start-page: 271
  year: 2015
  ident: ref_101
  article-title: Cell-Sized Liposomes That Mimic Cell Motility and the Cell Cortex
  publication-title: Methods in Cell Biology
  doi: 10.1016/bs.mcb.2015.01.013
– volume: 14
  start-page: 563
  year: 2016
  ident: ref_212
  article-title: Biofilms: An emergent form of bacterial life
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2016.94
– volume: 22
  start-page: 326
  year: 2014
  ident: ref_216
  article-title: Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2014.02.001
– volume: 8
  start-page: 423
  year: 2010
  ident: ref_137
  article-title: How antibiotics kill bacteria: From targets to networks
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2333
– volume: 50
  start-page: 55
  year: 2006
  ident: ref_94
  article-title: Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.50.1.55-61.2006
– ident: ref_115
  doi: 10.3390/molecules27082489
– volume: 3
  start-page: 6
  year: 2014
  ident: ref_48
  article-title: Biological synthesis of copper nanoparticles and its impact
  publication-title: Int. J. Pharm. Sci. Invent
– volume: 19
  start-page: 8172
  year: 2019
  ident: ref_163
  article-title: Effect of Size and Crystalline Phase of TiO₂ Nanoparticles on Photocatalytic Inactivation of Escherichia coli
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2019.16757
– volume: 12
  start-page: 1703
  year: 2019
  ident: ref_76
  article-title: A novel mechanism of action of ketoconazole: Inhibition of the NorA efflux pump system and biofilm formation in multidrug-resistant Staphylococcus aureus
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S201124
– volume: 175
  start-page: 294
  year: 2021
  ident: ref_29
  article-title: Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: Characterization, antibiofilm and biocompatibility
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.02.040
– volume: 15
  start-page: 2167
  year: 2022
  ident: ref_3
  article-title: Newly Emerging MDR B. cereus in Mugil seheli as the First Report Commonly Harbor nhe, hbl, cytK, and pc-plc Virulence Genes and bla1, bla2, tetA, and ermA Resistance Genes
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S365254
– volume: 10
  start-page: 19779
  year: 2020
  ident: ref_91
  article-title: Virulence-determinants and antibiotic-resistance genes of MDR-E. coli isolated from secondary infections following FMD-outbreak in cattle
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-75914-9
– volume: 21
  start-page: 1
  year: 2021
  ident: ref_16
  article-title: Molecular and HPLC-based approaches for detection of aflatoxin B1 and ochratoxin A released from toxigenic Aspergillus species in processed meat
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-021-02144-y
– volume: 12
  start-page: 5228
  year: 2018
  ident: ref_204
  article-title: Multimetallic microparticles increase the potency of rifampicin against intracellular Mycobacterium tuberculosis
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08264
– volume: 40
  start-page: 277
  year: 2015
  ident: ref_8
  article-title: The antibiotic resistance crisis: Part 1: Causes and threats
  publication-title: Pharm. Ther.
SSID ssj0000913814
Score 2.5856786
SecondaryResourceType review_article
Snippet The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 413
SubjectTerms Antibacterial activity
Antibiotic resistance
Antibiotics
Antimicrobial agents
Bacteria
biofilm
Biofilms
Drug delivery systems
Drug development
Drug resistance
Enzymes
Fourier transforms
Health aspects
Infections
MDR bacteria
Metabolism
Microbial colonies
Microorganisms
Microscopy
Multidrug resistance
Multidrug resistant organisms
nanoantibiotics
Nanoparticles
Nanotechnology
Physical characteristics
Public health
Quantum dots
Review
Reviews
Severe acute respiratory syndrome coronavirus 2
Viral infections
XDR bacteria
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yJz2I31ZXiSB4KvuapE3j7a34WARlERf2VjL5cAVpl9e-o_-7M023tijsxXdspo8mM5n5TZL5hbG3UW821tab3DharVIOp5TxJtdC4i-KoCwVJ3_-Up1dqE-X5eXiqi86E5bogdPAncgiSm2ChnqjiEgPrFSxgrIACQCpqhdj3iKZGn2wKTAUqVQrJzGvP0nV7ONudY8hT2xUIVexaKTs_9sxLyLT-tTkIgztHrD7E37k2_TdD9md0D5i9xasgo_ZL_SY3TAvmXPbc8vP9x1qFNv5dmIR50PH0RuAHfhYhev3h-_8a-gJULYDP000zvY935LY9T5cpbPuPG0ncNt6vhsZSfj5n4rN_gm72H389uEsn25ZyF1ZmSEPAfG1FwDRAoItMD4IJ7R1ZRQRAVYMXlsPlQyhVEGAQu0FFZ2KCD4qCfIpO2q7NjxnXIB3VkFZh-gVxn7A_1Ze1pULhVXCZkzejHfjJgpyugnjZ4OpCGmp-ZeWMpbPb10nCo5b5E9JlbMsEWiPD9CsmsmsmtvMKmPvyBAamub4ic5O1QrYUSLMarZaYTInEXxm7Hglicp06-YbU2om99A3QmtTClkZkbE3czO9SUfe2tAdSKambVQtsUPPkuXNXZJVLTEvNxnTK5tc9Xnd0v64GsnDjSmJ_ODF_xikl-yuQMxHK1KyOGZHw_4QXiFGG-D1OB1_A7XDPr8
  priority: 102
  providerName: Directory of Open Access Journals
Title Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives
URI https://www.ncbi.nlm.nih.gov/pubmed/36830949
https://www.proquest.com/docview/2779523692
https://www.proquest.com/docview/2780073733
https://pubmed.ncbi.nlm.nih.gov/PMC9953167
https://doaj.org/article/31f379e7b8044925ba34f6b51b3bbb11
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9QwEA9696KI6PlVPY8Igk_ltknaNL7IrtxyCB7L4cG9lXzeCdKu2-6j_7szbba3RdE-NtPSdCaT30wyvxDyPsjZTOtyliqL2SphYUgpp1LJOFyBeaGxOPnrRXF-Jb5c59cx4dbGbZU7n9g7atdYzJGfMikVBE2FYp_WP1M8NQpXV-MRGvfJIbjgEoKvw8XZxepyzLIg62WZiaFmjkN8fzpUtfer1i1MfWwmMj6Zk3rq_j8d9N4MNd09uTcdLZ-QxxFH0vmg-Kfknq-PyMM9dsEj8mhIydGh0ugZ-QWetOnGVDrVLdV0tWlA0yBP55FdnHYNBS9hdEf76ly32d7QS98i0Kw7uhjonfVHOkex9cbfDnvg6bDMQHXt6LJnKqGru0rO9jm5Wp59-3yextMXUpsXqku9B9ztmDFBGwBhRjnPLJPa5oEFAF7BO6mdKbj3ufDMCNCqF8GKAKCk4Ia_IAd1U_tXhDLjrBYmL31wAjCBgXcLx8vC-kwLphPCd_-_spGaHE_I-FFBiIJaq_6mtYSk41PrgZrjP_ILVO0oi8Ta_Y1mc1PFcVrxLHCpvDTlTCBvo9FchMLkmeHGmCxLyAc0jAqHP3yi1bGKATqKRFrVXAoI8jiA0oQcTyRBmXbavDOtKrqNtroz8oS8G5vxSdwKV_tmizIlLq9KDh16OVji2CVelBzidZUQObHRSZ-nLfX3255UXKkcSRFe__uz3pAHDFAe5qB4dkwOus3WvwVU1pmTOPRO-qzGb5C7PgI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewCEEJRXoICRQJyiJrbzMBJCu9DVlrarVdVKvaW247RIKFk2WSEO_CV-IzN5dSMQnJpTFE8iOzOeGY893xDyOos8T6nYc6XBaJUwMKVkKt2IcbgyZoXC5OSjWTg9FZ_PgrMN8qvLhcFjlZ1OrBV1WhiMke-yKJKwaAol-7D45mLVKNxd7UpoNGJxYH98hyVb-X7_E_D3DWOTvZOPU7etKuCaIJSVay34kynTOlManAstU8sMi5QJMpaBQ5HZNFKpDrm1gbBMC-itFZkRGRjbkGsO371BtuDeA0WwNd6bzY_7qA6ibMa-aHL0OJfebpNFX--Sl2BqmSd8PrCBdamAPw3CmkUcntZcM3-Te-Ru67fSUSNo98mGzbfJ7TU0w21ypwkB0iaz6QH5CZq7qPrQPVUlVXS-LECygJ6OWjRzWhUUtJJWFa2zgdPl6oIe2xId27yi4wZOWr2jIyRbLO1lc-aeNtsaVOUpndTIKHR-lTlaPiSn18KXR2QzL3L7hFCmU6OEDmKbpQJ8EA3fFimPQ2N9JZhyCO_-f2JaKHSsyPE1gSURci35G9cc4vZvLRookP_Qj5G1PS0CedcPiuVF0uqFhPsZj6SNdOwJxInUioss1IGvudba9x3yFgUjQXUDXTSqzZqAgSJwVzKKBCwqOTjBDtkZUAIzzbC5E62kVVNlcjWpHPKqb8Y38ehdbosV0sS4nRtxGNDjRhL7IfEw5p4U0iHRQEYHYx625F8uaxBzKQMEYXj67269JDenJ0eHyeH-7OAZucXAw8T4F_d3yGa1XNnn4BFW-kU7DSk5v-6Z_xu53H0M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyEQQjC-AgOMBOIpamI7cYyEUMtWbQyqamLS3jLbsTcklJQkFeKBf4y_jnOSZo1A8LQ-1pfIzn367PsdQi8tDwIpk8AX2mWrmAaVEpnwOaHws8Qw6YqTP83jgxP24TQ63UK_1rUw7lrl2iY2hjortMuRjwnnAjZNsSBj212LWOzN3i2_-a6DlDtpXbfTaEXkyPz4Dtu36u3hHvD6FSGz_c_vD_yuw4Cvo1jUvjEQW2ZEKSsVBBpKZIZowqWOLLEQXFiTcZmpmBoTMUMUg5kbZjWz4Hhjqii89xra5rArCkZoe7o_Xxz3GR6HuJmErK3Xo1QE47aivjkxr8DtkoCFdOAPm7YBfzqHDe84vLm54Qpnd9DtLobFk1bo7qItk--gmxvIhjvoVpsOxG2V0z30E6x4UfdpfCwrLPGiLEDKgB5POmRzXBcYLJSSNW4qg7NydY6PTeWC3LzG0xZaWr7BE0e2LM1Fe_8et0ccWOYZnjUoKXhxWUVa3UcnV8KXB2iUF7l5hDBRmZZMRYmxGYN4RMG7WUaTWJtQMiI9RNffP9UdLLrrzvE1he2R41r6N655yO-fWrawIP-hnzrW9rQO1Lv5oyjP085GpDS0lAvDVRIwhxmpJGU2VlGoqFIqDD302glG6kwPTFHLroICFupAvNIJZ7DBpBAQe2h3QAnM1MPhtWilncmq0ksF89CLftg96a7h5aZYOZrEHe1yCgt62EpivyQaJzQQTHiID2R0sObhSP7logE0FyJygAyP_z2t5-g6aHz68XB-9ATdIBBsulQYDXfRqC5X5ikEh7V61mkhRmdXrfi_ARL3gUE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanotechnology+as+a+Promising+Approach+to+Combat+Multidrug+Resistant+Bacteria%3A+A+Comprehensive+Review+and+Future+Perspectives&rft.jtitle=Biomedicines&rft.au=Hetta%2C+Helal+F&rft.au=Ramadan%2C+Yasmin+N&rft.au=Al-Harbi%2C+Alhanouf+I&rft.au=A.+Ahmed%2C+Esraa&rft.date=2023-01-31&rft.pub=MDPI+AG&rft.issn=2227-9059&rft.eissn=2227-9059&rft.volume=11&rft.issue=2&rft_id=info:doi/10.3390%2Fbiomedicines11020413&rft.externalDocID=A742173610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9059&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9059&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9059&client=summon