Improving Haptic Response for Contextual Human Robot Interaction
For haptic interaction, a user in a virtual environment needs to interact with proxies attached to a robot. The device must be at the exact location defined in the virtual environment in time. However, due to device limitations, delays are always unavoidable. One of the solutions to improve the devi...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 5; p. 2040 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
05.03.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22052040 |
Cover
Abstract | For haptic interaction, a user in a virtual environment needs to interact with proxies attached to a robot. The device must be at the exact location defined in the virtual environment in time. However, due to device limitations, delays are always unavoidable. One of the solutions to improve the device response is to infer human intended motion and move the robot at the earliest time possible to the desired goal. This paper presents an experimental study to improve the prediction time and reduce the robot time taken to reach the desired position. We developed motion strategies based on the hand motion and eye-gaze direction to determine the point of user interaction in a virtual environment. To assess the performance of the strategies, we conducted a subject-based experiment using an exergame for reach and grab tasks designed for upper limb rehabilitation training. The experimental results in this study revealed that eye-gaze-based prediction significantly improved the detection time by 37% and the robot time taken to reach the target by 27%. Further analysis provided more insight on the effect of the eye-gaze window and the hand threshold on the device response for the experimental task. |
---|---|
AbstractList | For haptic applications, a user in a virtual environment needs to interact with proxies attached to a robot. The device must be at the exact location defined in the virtual environment in time. However, due to device limitations, delays are always unavoidable. One of the solutions to improve device response is to infer human intended motion and move the robot at the earliest time possible to the desired goal. This paper presents an experimental study to improve prediction time and reduce the robot time to reach the desired position. We developed motion strategies based on the hand motion and eye-gaze direction to determine the point of user interaction in a virtual environment. To assess the performance of the strategies, we conducted a subject-based experiment using an exergame for reach and grab tasks designed for upper limb rehabilitation training. Experimental results in this study revealed that eye-gaze-based prediction significantly improved detection time by 37% and the robot time to reach the target by 27%. Further analysis provided more insight on the effect of eye-gaze window and the hand threshold on the device response for the experimental task. For haptic interaction, a user in a virtual environment needs to interact with proxies attached to a robot. The device must be at the exact location defined in the virtual environment in time. However, due to device limitations, delays are always unavoidable. One of the solutions to improve the device response is to infer human intended motion and move the robot at the earliest time possible to the desired goal. This paper presents an experimental study to improve the prediction time and reduce the robot time taken to reach the desired position. We developed motion strategies based on the hand motion and eye-gaze direction to determine the point of user interaction in a virtual environment. To assess the performance of the strategies, we conducted a subject-based experiment using an exergame for reach and grab tasks designed for upper limb rehabilitation training. The experimental results in this study revealed that eye-gaze-based prediction significantly improved the detection time by 37% and the robot time taken to reach the target by 27%. Further analysis provided more insight on the effect of the eye-gaze window and the hand threshold on the device response for the experimental task. For haptic interaction, a user in a virtual environment needs to interact with proxies attached to a robot. The device must be at the exact location defined in the virtual environment in time. However, due to device limitations, delays are always unavoidable. One of the solutions to improve the device response is to infer human intended motion and move the robot at the earliest time possible to the desired goal. This paper presents an experimental study to improve the prediction time and reduce the robot time taken to reach the desired position. We developed motion strategies based on the hand motion and eye-gaze direction to determine the point of user interaction in a virtual environment. To assess the performance of the strategies, we conducted a subject-based experiment using an exergame for reach and grab tasks designed for upper limb rehabilitation training. The experimental results in this study revealed that eye-gaze-based prediction significantly improved the detection time by 37% and the robot time taken to reach the target by 27%. Further analysis provided more insight on the effect of the eye-gaze window and the hand threshold on the device response for the experimental task.For haptic interaction, a user in a virtual environment needs to interact with proxies attached to a robot. The device must be at the exact location defined in the virtual environment in time. However, due to device limitations, delays are always unavoidable. One of the solutions to improve the device response is to infer human intended motion and move the robot at the earliest time possible to the desired goal. This paper presents an experimental study to improve the prediction time and reduce the robot time taken to reach the desired position. We developed motion strategies based on the hand motion and eye-gaze direction to determine the point of user interaction in a virtual environment. To assess the performance of the strategies, we conducted a subject-based experiment using an exergame for reach and grab tasks designed for upper limb rehabilitation training. The experimental results in this study revealed that eye-gaze-based prediction significantly improved the detection time by 37% and the robot time taken to reach the target by 27%. Further analysis provided more insight on the effect of the eye-gaze window and the hand threshold on the device response for the experimental task. |
Author | Mugisha, Stanley Chablat, Damien Zoppi, Matteo Guda, Vamsi Krisha Chevallereau, Christine Molfino, Rezia |
AuthorAffiliation | 2 CNRS, LS2N, UMR 6004, 1 Rue de la Noë, 44321 Nantes, France; vamsikrishna.guda@ls2n.fr (V.K.G.); christine.chevallereau@ls2n.fr (C.C.); damien.chablat@cnrs.fr (D.C.) 1 Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti, University of Genova, Via All’Opera Pia, 15, 16145 Genova, Italy; matteo.zoppi@unige.it (M.Z.); rezia.molfino@unige.it (R.M.) |
AuthorAffiliation_xml | – name: 2 CNRS, LS2N, UMR 6004, 1 Rue de la Noë, 44321 Nantes, France; vamsikrishna.guda@ls2n.fr (V.K.G.); christine.chevallereau@ls2n.fr (C.C.); damien.chablat@cnrs.fr (D.C.) – name: 1 Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti, University of Genova, Via All’Opera Pia, 15, 16145 Genova, Italy; matteo.zoppi@unige.it (M.Z.); rezia.molfino@unige.it (R.M.) |
Author_xml | – sequence: 1 givenname: Stanley orcidid: 0000-0002-0046-6850 surname: Mugisha fullname: Mugisha, Stanley – sequence: 2 givenname: Vamsi Krisha surname: Guda fullname: Guda, Vamsi Krisha – sequence: 3 givenname: Christine surname: Chevallereau fullname: Chevallereau, Christine – sequence: 4 givenname: Matteo surname: Zoppi fullname: Zoppi, Matteo – sequence: 5 givenname: Rezia surname: Molfino fullname: Molfino, Rezia – sequence: 6 givenname: Damien orcidid: 0000-0001-7847-6162 surname: Chablat fullname: Chablat, Damien |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35271188$$D View this record in MEDLINE/PubMed https://hal.science/hal-03599147$$DView record in HAL |
BookMark | eNplkk1v1DAQhiNURD_gwB9AkbjAYam_EscXRLUq7EorIVVwtibOeJtVYgc7WcG_r8O2S1tOtl4_886MZ86zE-cdZtlbSj5xrshlZIwUjAjyIjujgolFlYSTR_fT7DzGHSGMc169yk55wSSlVXWWfVn3Q_D71m3zFQxja_IbjIN3EXPrQ770bsTf4wRdvpp6cPmNr_2Yr5MawIytd6-zlxa6iG_uz4vs59frH8vVYvP923p5tVmYolTjoilLsByoBWykQgNoGTIUteKm5sZyhgTrRkiDFjhUskBVk6ouQdYCassvsvXBt_Gw00Noewh_tIdW_xV82GoIqf4OtSK2RARODSlEw0hNmRWqkgJUSoEyeX0-eA1T3WNj0I0BuiemT19ce6u3fq8rRYUSs8HHg8Hts7DV1UbPGuGFSqzc08R-uE8W_K8J46j7NhrsOnDop6hZyStJuSAkoe-foTs_BZe-daakVJRKkah3j6s_5n8YagIuD4AJPsaAVpt2hHlYqZm205ToeW30cW3-9XOMeDD9n70DA-LB4w |
CitedBy_id | crossref_primary_10_1007_s10845_024_02362_x crossref_primary_10_1016_j_birob_2023_100131 crossref_primary_10_1109_ACCESS_2024_3400604 crossref_primary_10_3934_era_2023121 crossref_primary_10_1155_ahci_8685903 crossref_primary_10_3390_s22207729 |
Cites_doi | 10.1109/THMS.2014.2303083 10.1016/j.heliyon.2018.e00526 10.1080/01621459.1972.10481232 10.1145/3290605.3300589 10.1016/j.brainresbull.2010.02.009 10.1145/3313831.3376476 10.1109/IROS40897.2019.8968559 10.1109/ICAR53236.2021.9659320 10.1109/TVCG.2020.2973060 10.1145/3379337.3415870 10.1007/978-1-4613-8122-8 10.1007/s002210100745 10.1109/IROS40897.2019.8968192 10.1145/3282894.3282898 10.1109/TSMC.2015.2468675 10.1145/3313831.3376286 10.1109/TASE.2016.2624279 10.1162/pres.1997.6.1.118 10.1109/SSCI.2017.8285207 10.1109/IROS.2017.8206572 10.1109/HRI.2016.7451747 10.1145/3003715.3005461 10.1145/3334480.3382924 10.1109/WHC.2011.5945483 10.1109/ACCESS.2020.3045994 10.1111/cgf.12603 10.1109/IROS40897.2019.8967927 10.1007/978-1-4471-6392-3 10.1145/3025453.3025753 10.1109/ROMAN.2011.6005258 10.1109/LRA.2020.3005892 10.3390/robotics10020054 10.1145/3173574.3173865 10.1109/ICRA.2011.5980248 10.1115/DETC2021-71518 10.1145/2839462.2839484 10.1109/VRAIS.1996.490509 10.3414/ME14-01-0125 10.1109/TCDS.2019.2959071 10.1145/3313831.3376523 10.1007/BF00229627 10.2307/2281326 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 1XC VOOES 5PM DOA |
DOI | 10.3390/s22052040 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_90f6eea31c054d20b12f49874a9ebde7 PMC8914947 oai_HAL_hal_03599147v1 35271188 10_3390_s22052040 |
Genre | Journal Article |
GrantInformation_xml | – fundername: LobbyBot project grantid: ANR-17-CE33 – fundername: regione liguria grantid: ARGE17-992/10/1 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c569t-d66af3a1faed79ecaef2e2e4b93cb3cf32e0ebd47cefa3a875e9b08b6a7b4abf3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:02:22 EDT 2025 Thu Aug 21 13:23:22 EDT 2025 Fri May 09 12:20:55 EDT 2025 Fri Sep 05 14:19:02 EDT 2025 Fri Jul 25 20:20:21 EDT 2025 Mon Jul 21 06:04:13 EDT 2025 Tue Jul 01 02:41:47 EDT 2025 Thu Apr 24 22:53:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | haptic devices virtual reality response time human–robot interaction eye–gaze tracking Haptic devices Human robot interaction Eye gaze prediction |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c569t-d66af3a1faed79ecaef2e2e4b93cb3cf32e0ebd47cefa3a875e9b08b6a7b4abf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7847-6162 0000-0002-0046-6850 0000-0002-1929-5211 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22052040 |
PMID | 35271188 |
PQID | 2637791174 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_90f6eea31c054d20b12f49874a9ebde7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8914947 hal_primary_oai_HAL_hal_03599147v1 proquest_miscellaneous_2638713400 proquest_journals_2637791174 pubmed_primary_35271188 crossref_citationtrail_10_3390_s22052040 crossref_primary_10_3390_s22052040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220305 |
PublicationDateYYYYMMDD | 2022-03-05 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220305 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 ref_13 ref_12 ref_51 ref_18 Callens (ref_34) 2020; 5 ref_17 Ruhland (ref_38) 2015; 34 ref_16 ref_15 Strauss (ref_19) 2020; 26 Guo (ref_11) 2021; 13 Alves (ref_14) 2016; 55 Ravichandar (ref_30) 2017; 14 Gruenbaum (ref_22) 1997; 6 ref_25 ref_24 ref_23 ref_21 ref_20 Lee (ref_3) 2016; 46 ref_29 Shapiro (ref_45) 1972; 67 ref_28 ref_27 ref_26 Zaraki (ref_10) 2014; 44 ref_36 Tukey (ref_47) 1952; 47 ref_35 ref_33 ref_31 Esfahlani (ref_39) 2018; 4 ref_37 Ernst (ref_4) 2011; 85 Pelz (ref_6) 2001; 139 ref_46 ref_44 ref_43 ref_42 ref_41 ref_40 ref_1 Li (ref_32) 2020; 8 ref_2 ref_49 ref_48 ref_9 ref_8 ref_5 Smeets (ref_7) 1996; 109 |
References_xml | – volume: 44 start-page: 157 year: 2014 ident: ref_10 article-title: Designing and Evaluating a Social Gaze-Control System for a Humanoid Robot publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2014.2303083 – volume: 4 start-page: e00526 year: 2018 ident: ref_39 article-title: ReHabgame: A non-immersive virtual reality rehabilitation system with applications in neuroscience publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00526 – ident: ref_49 – ident: ref_51 – volume: 67 start-page: 215 year: 1972 ident: ref_45 article-title: An approximate analysis of variance test for normality publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1972.10481232 – ident: ref_29 doi: 10.1145/3290605.3300589 – volume: 85 start-page: 245 year: 2011 ident: ref_4 article-title: Effects of visual-haptic asynchronies and loading-unloading movements on compliance perception publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2010.02.009 – ident: ref_25 doi: 10.1145/3313831.3376476 – ident: ref_31 doi: 10.1109/IROS40897.2019.8968559 – ident: ref_13 doi: 10.1109/ICAR53236.2021.9659320 – ident: ref_8 – volume: 26 start-page: 1955 year: 2020 ident: ref_19 article-title: A Steering Algorithm for Redirected Walking Using Reinforcement Learning publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2020.2973060 – ident: ref_2 doi: 10.1145/3379337.3415870 – ident: ref_41 – ident: ref_46 doi: 10.1007/978-1-4613-8122-8 – volume: 139 start-page: 266 year: 2001 ident: ref_6 article-title: The coordination of eye, head, and hand movements in a natural task publication-title: Exp. Brain Res. doi: 10.1007/s002210100745 – ident: ref_17 – ident: ref_35 doi: 10.1109/IROS40897.2019.8968192 – ident: ref_28 doi: 10.1145/3282894.3282898 – volume: 46 start-page: 1098 year: 2016 ident: ref_3 article-title: Impact of Visual-Haptic Spatial Discrepancy on Targeting Performance publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2015.2468675 – ident: ref_20 – ident: ref_27 doi: 10.1145/3313831.3376286 – volume: 14 start-page: 855 year: 2017 ident: ref_30 article-title: Human Intention Inference Using Expectation-Maximization Algorithm With Online Model Learning publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2016.2624279 – volume: 6 start-page: 118 year: 1997 ident: ref_22 article-title: Implementation of Dynamic Robotic Graphics for a Virtual Control Panel publication-title: Presence Teleoper. Virtual Environ. doi: 10.1162/pres.1997.6.1.118 – ident: ref_16 doi: 10.1109/SSCI.2017.8285207 – ident: ref_33 doi: 10.1109/IROS.2017.8206572 – ident: ref_43 doi: 10.1109/HRI.2016.7451747 – ident: ref_37 doi: 10.1145/3003715.3005461 – ident: ref_48 doi: 10.1145/3334480.3382924 – ident: ref_9 doi: 10.1109/WHC.2011.5945483 – volume: 8 start-page: 227690 year: 2020 ident: ref_32 article-title: Data Driven Models for Human Motion Prediction in Human-Robot Collaboration publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3045994 – ident: ref_40 – volume: 34 start-page: 299 year: 2015 ident: ref_38 article-title: A Review of Eye Gaze in Virtual Agents, Social Robotics and HCI: Behaviour Generation, User Interaction and Perception publication-title: Comput. Graph. Forum doi: 10.1111/cgf.12603 – ident: ref_15 doi: 10.1109/IROS40897.2019.8967927 – ident: ref_44 – ident: ref_21 – ident: ref_50 doi: 10.1007/978-1-4471-6392-3 – ident: ref_18 doi: 10.1145/3025453.3025753 – ident: ref_42 doi: 10.1109/ROMAN.2011.6005258 – volume: 5 start-page: 5151 year: 2020 ident: ref_34 article-title: A Framework for Recognition and Prediction of Human Motions in Human-Robot Collaboration Using Probabilistic Motion Models publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.3005892 – ident: ref_12 doi: 10.3390/robotics10020054 – ident: ref_24 doi: 10.1145/3173574.3173865 – ident: ref_36 doi: 10.1109/ICRA.2011.5980248 – ident: ref_5 doi: 10.1115/DETC2021-71518 – ident: ref_23 doi: 10.1145/2839462.2839484 – ident: ref_1 doi: 10.1109/VRAIS.1996.490509 – volume: 55 start-page: 79 year: 2016 ident: ref_14 article-title: Eye Gaze Correlates of Motor Impairment in VR Observation of Motor Actions publication-title: Methods Inf. Med. doi: 10.3414/ME14-01-0125 – volume: 13 start-page: 179 year: 2021 ident: ref_11 article-title: A Novel Robotic Guidance System With Eye-Gaze Tracking Control for Needle-Based Interventions publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2019.2959071 – ident: ref_26 doi: 10.1145/3313831.3376523 – volume: 109 start-page: 434 year: 1996 ident: ref_7 article-title: Goal-directed arm movements change eye-head coordination publication-title: Exp. Brain Res. doi: 10.1007/BF00229627 – volume: 47 start-page: 554 year: 1952 ident: ref_47 article-title: Statistical Methods for Natural Scientists, Medical Men, and Engineers publication-title: J. Am. Stat. Assoc. doi: 10.2307/2281326 |
SSID | ssj0023338 |
Score | 2.3902733 |
Snippet | For haptic interaction, a user in a virtual environment needs to interact with proxies attached to a robot. The device must be at the exact location defined in... For haptic applications, a user in a virtual environment needs to interact with proxies attached to a robot. The device must be at the exact location defined... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2040 |
SubjectTerms | Computer Science eye–gaze tracking Hand - physiology haptic devices Haptic Technology Haptics Humans human–robot interaction Motivation Neural networks Principal components analysis response time Robotics Robotics - methods Robots Upper Extremity Virtual reality |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT90wDI4Qp3GYYDBWYFNAHHapaJM0aW6wCfSEgAMCiVuVpI6YhPoQPKb9fOy0r3qPTdqFa-I2kZ00_lz7C2OHdahARWFzupMmV2Cq3NfK5q71xFzpdUwkSZdXenKrzu-qu4WrvignrKcH7hV3ZIuoAZwsAzoXrSh8KaJCoKycBd9CqiMvbDEHUwPUkoi8eh4hiaD-6JnKSUVBEY6F0yeR9OOZck8pkH_7l2_TJBfOnbN19nFwGPlJP9ENtgLdJ7a2QCO4yY7HyACfOPwEBH7dZ74CR5eUJwKqP1QnwlPInl9P_XTGUyywL2vYYrdnpzc_J_lwM0IeKm1neau1i9KV0UFrLAQHUYAA5a0MXoYoBRSoHWUCRCcdYhKwvqi9dsYr56P8zFa7aQdfGA-VawGqYJRHZ0pFi0_ooEQMBhzKZuz7XGNNGGjD6faKhwbhAym3GZWbsYNR9LHnyviX0A9S-yhA9NapAY3eDEZv_md0HAmNtvSOyclFQ21ESWhLZX6XGdub27QZNuZzIzQxLJaIwzK2P3bjlqL_JK6D6UuSqanEtsDJbvdLYBwK_VWDmKzOmFlaHEtzWe7pft0n2u4ap2WV2XkPBeyyD4LqMCgZrtpjq7OnF_iK3tHMf0sb4RUYzxBn priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gXOCAGOOjsKFs4sClWpukSXOCgXg8TcBhYtJuVZI626SpHXtviD8fO-0r7wHimrht6jiJ7dg_M_a6DhWoKGxONWlyBabKfa1s7lpPyJVexwSS9OWrnp-q47PqbHS4LcawytWemDbqtg_kIz8UmqDxSlSg315_z6lqFN2ujiU07rJ7JZ40JOf17NNkcEm0vwY0IYmm_eGCkkpFQX6OtTMoQfXjyXJBgZB_a5l_BkuunT6zR-zhqDbyo2Get9kd6B6zB2tggjvs3eQf4HOHG0HgJ0P8K3BUTHmCofpJ2SI8Oe75Se_7JU8ewSG54Qk7nX389mGej_UR8lBpu8xbrV2UrowOWmMhOIgCBChvZfAyRCmgAN8qEyA66dAyAeuL2mtnvHI-yqdsq-s7eM54qFwLUAWjPKpUKlp8QgclYjDgkDZjb1Yca8IIHk41LK4aNCKIuc3E3IwdTKTXA2LGv4jeE9snAgK5Tg39zXkzrpnGFlEDOFkG1CtbUfhSRGVro5zF3wKDX8JJ23jH_OhzQ20ETGhLZX6UGdtdzWkzLs9F81uYMrY_dePCotsS10F_m2hqSrQtcLDPBhGYPoVaq0HLrM6Y2RCOjbFs9nSXFwm8u8ZhWWVe_H9YL9l9QXkWFOxW7bKt5c0t7KH2s_Svkoj_AmVeB3U priority: 102 providerName: ProQuest |
Title | Improving Haptic Response for Contextual Human Robot Interaction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35271188 https://www.proquest.com/docview/2637791174 https://www.proquest.com/docview/2638713400 https://hal.science/hal-03599147 https://pubmed.ncbi.nlm.nih.gov/PMC8914947 https://doaj.org/article/90f6eea31c054d20b12f49874a9ebde7 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELb6uMAB8SalrALiwCWQOI4dHxC0qMsK0QqtWGlvke2MW6QqodstKv-eGScbNdADlxzsceyM7czDnm8Ye126AoTnOqGcNIkAVSS2FDoxtSXkSit9AEk6PpGzhfiyLJZbbJNjs2fg5a2mHeWTWqzO315f_P6AG_49WZxosr-7pGBRjqtxm-2iQJJkgx2L4TCB53lIaE0xXQnKw7QDGBo3HYmlgN6PwuaM7kb-q3j-fX_yhkCa3mf3ek0yPuim_gHbguYhu3sDX_AR-zi4DOKZwX-Di-fdlViIUVeNAzLVNQWQxMGXH89b267j4CTs4h0es8X06PunWdKnTEhcIfU6qaU0PjeZN1ArDc6A58BBWJ07mzufc0jB1kI58CY3aKyAtmlppVFWGOvzJ2ynaRt4xmJXmBqgcEpY1LKE19hCOsG9U2CQNmJvNhyrXI8nTmktziu0K4i51cDciL0aSH92IBq3ER0S2wcCwr0OBe3qtOq3UaVTLwFMnjlUNWue2ox7oUsljMbPAoU94aSN3jE7-FpRGWEV6kyoX1nE9jdzWm0WXMUlQS9maKBF7OVQjXuNDlBMA-1VoCkp9jbFwT7tlsDQFSqyCo21MmJqtDhGYxnXND_OAp53icPSQu39R7_P2R1O8Rd0Ca7YZzvr1RW8QK1obSdsWy0VPsvp5wnbPTw6-TafBA_DJOyGP79sEQI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAgYBA4hI1sZ04PiAojyql2x6qVtpbajtjWqlKSnfL40_xG5nJq7uAuPWaTGxnPLZnxjPfMPYydylIz3VENWkiCSqNbC51ZCpLyJU28y1I0s5uVhzIz9N0usJ-DbkwFFY57IntRl01jnzk6zwjaLwEFei3p18jqhpFt6tDCY1OLLbh53c02WZvtj7i_L7ifPPT_oci6qsKRC7N9Dyqssx4YRJvoFIanAHPgYO0WjgrnBccYrCVVA68EQb1edA2zm1mlJXGeoHtXmFXJXnGcf2o6YWBJ9De69CLhNDx-oySWHlMfpWFM68tDYAn2REFXv6t1f4ZnLlw2m3eYjd7NTXc6OTqNluB-g67sQBeeJe9G_0RYWFw43HhXhdvCyEqwmELe_WDslPC9qIg3GtsMw9bD2SXTHGPHVwK5-6z1bqp4SELXWoqgNQpaVGFk17jF5mT3DsFBmkD9nrgWOl6sHKqmXFSotFCzC1H5gbsxUh62iF0_IvoPbF9JCBQ7fZBc_al7NdoqWOfARiRONRjKx7bhHupcyWNxt8ChT3hpC21UWxMSnpGQIg6kepbErC1YU7LfjuYlRfCG7Dn42tcyHQ7Y2pozluanBJ7Yxzsg04Exq5QS1ZoCeYBU0vCsTSW5Tf18VELFp7jsLRUj_4_rGfsWrG_MyknW7vbj9l1TjkeFGiXrrHV-dk5PEHNa26ftuIessPLXl-_AVFBSPo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBQICiUu0ie3E8QFBoay2tFSootLeUtsZUySUlO6Wx1_j1zHjZNNdQNx6TZzEGc_Y39gz3zD2tHQ5SM91QjVpEgkqT2wpdWJqS8yVtvCBJOn9XjE5kO-m-XSN_VrkwlBY5WJODBN13TraIx_xgqjxMgTQI9-HRXzYGr88_ppQBSk6aV2U0-hUZAd-fkf3bfZiewvH-hnn47cf30ySvsJA4vJCz5O6KIwXJvMGaqXBGfAcOEirhbPCecEhBVtL5cAbYRDbg7ZpaQujrDTWC3zvBXZRCURVaEtqeubsCfT9OiYjIXQ6mlFCK09pj2Vp_QtlAnBVO6IgzL8R7p-Bmksr3_gau9pD1niz07HrbA2aG-zKEpHhTfZq2JuIJwYnIRfvd7G3ECMojgMF1g_KVInDoUG839p2HofdyC6x4hY7OBfJ3WbrTdvAXRa73NQAuVPSIpyTXuMThZPcOwUG20bs-UJileuJy6l-xpcKHRgSbjUIN2JPhqbHHVvHvxq9JrEPDYhgO1xoTz5Vvb1WOvUFgBGZQ0xb89Rm3EtdKmk0_hYo_BIO2so7Jpu7FV0jUkSdSfUti9jGYkyrfmqYVWeKHLHHw200ajqpMQ20p6FNSUm-KXb2TqcCw6cQMSv0CsuIqRXlWOnL6p3m81EgDi-xW1qqe__v1iN2CS2r2t3e27nPLnNK96CYu3yDrc9PTuEBgrC5fRi0PWaH521evwFB9E05 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Haptic+Response+for+Contextual+Human+Robot+Interaction&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mugisha%2C+Stanley&rft.au=Guda%2C+Vamsi+Krisha&rft.au=Chevallereau%2C+Christine&rft.au=Zoppi%2C+Matteo&rft.date=2022-03-05&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=5&rft_id=info:doi/10.3390%2Fs22052040&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |