Compound facial expressions of emotion
Understanding the different categories of facial expressions of emotion regularly used by us is essential to gain insights into human cognition and affect as well as for the design of computational models and perceptual interfaces. Past research on facial expressions of emotion has focused on the st...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 15; pp. E1454 - E1462 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
15.04.2014
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding the different categories of facial expressions of emotion regularly used by us is essential to gain insights into human cognition and affect as well as for the design of computational models and perceptual interfaces. Past research on facial expressions of emotion has focused on the study of six basic categories—happiness, surprise, anger, sadness, fear, and disgust. However, many more facial expressions of emotion exist and are used regularly by humans. This paper describes an important group of expressions, which we call compound emotion categories. Compound emotions are those that can be constructed by combining basic component categories to create new ones. For instance, happily surprised and angrily surprised are two distinct compound emotion categories. The present work defines 21 distinct emotion categories. Sample images of their facial expressions were collected from 230 human subjects. A Facial Action Coding System analysis shows the production of these 21 categories is different but consistent with the subordinate categories they represent (e.g., a happily surprised expression combines muscle movements observed in happiness and surprised). We show that these differences are sufficient to distinguish between the 21 defined categories. We then use a computational model of face perception to demonstrate that most of these categories are also visually discriminable from one another. |
---|---|
AbstractList | Though people regularly recognize many distinct emotions, for the most part, research studies have been limited to six basic categories—happiness, surprise, sadness, anger, fear, and disgust; the reason for this is grounded in the assumption that only these six categories are differentially represented by our cognitive and social systems. The results reported herein propound otherwise, suggesting that a larger number of categories is used by humans.
Understanding the different categories of facial expressions of emotion regularly used by us is essential to gain insights into human cognition and affect as well as for the design of computational models and perceptual interfaces. Past research on facial expressions of emotion has focused on the study of six basic categories—happiness, surprise, anger, sadness, fear, and disgust. However, many more facial expressions of emotion exist and are used regularly by humans. This paper describes an important group of expressions, which we call compound emotion categories. Compound emotions are those that can be constructed by combining basic component categories to create new ones. For instance, happily surprised and angrily surprised are two distinct compound emotion categories. The present work defines 21 distinct emotion categories. Sample images of their facial expressions were collected from 230 human subjects. A Facial Action Coding System analysis shows the production of these 21 categories is different but consistent with the subordinate categories they represent (e.g., a happily surprised expression combines muscle movements observed in happiness and surprised). We show that these differences are sufficient to distinguish between the 21 defined categories. We then use a computational model of face perception to demonstrate that most of these categories are also visually discriminable from one another. Understanding the different categories of facial expressions of emotion regularly used by us is essential to gain insights into human cognition and affect as well as for the design of computational models and perceptual interfaces. Past research on facial expressions of emotion has focused on the study of six basic categories -- happiness, surprise, anger, sadness, fear, and disgust. However, many more facial expressions of emotion exist and are used regularly by humans. This paper describes an important group of expressions, which we call compound emotion categories. Compound emotions are those that can be constructed by combining basic component categories to create new ones. For instance, happily surprised and angrily surprised are two distinct compound emotion categories. The present work defines 21 distinct emotion categories. Sample images of their facial expressions were collected from 230 human subjects. A Facial Action Coding System analysis shows the production of these 21 categories is different but consistent with the subordinate categories they represent (e.g., a happily surprised expression combines muscle movements observed in happiness and surprised). We show that these differences are sufficient to distinguish between the 21 defined categories. We then use a computational model of face perception to demonstrate that most of these categories are also visually discriminable from one another. [PUBLICATION ABSTRACT] Understanding the different categories of facial expressions of emotion regularly used by us is essential to gain insights into human cognition and affect as well as for the design of computational models and perceptual interfaces. Past research on facial expressions of emotion has focused on the study of six basic categories--happiness, surprise, anger, sadness, fear, and disgust. However, many more facial expressions of emotion exist and are used regularly by humans. This paper describes an important group of expressions, which we call compound emotion categories. Compound emotions are those that can be constructed by combining basic component categories to create new ones. For instance, happily surprised and angrily surprised are two distinct compound emotion categories. The present work defines 21 distinct emotion categories. Sample images of their facial expressions were collected from 230 human subjects. A Facial Action Coding System analysis shows the production of these 21 categories is different but consistent with the subordinate categories they represent (e.g., a happily surprised expression combines muscle movements observed in happiness and surprised). We show that these differences are sufficient to distinguish between the 21 defined categories. We then use a computational model of face perception to demonstrate that most of these categories are also visually discriminable from one another.Understanding the different categories of facial expressions of emotion regularly used by us is essential to gain insights into human cognition and affect as well as for the design of computational models and perceptual interfaces. Past research on facial expressions of emotion has focused on the study of six basic categories--happiness, surprise, anger, sadness, fear, and disgust. However, many more facial expressions of emotion exist and are used regularly by humans. This paper describes an important group of expressions, which we call compound emotion categories. Compound emotions are those that can be constructed by combining basic component categories to create new ones. For instance, happily surprised and angrily surprised are two distinct compound emotion categories. The present work defines 21 distinct emotion categories. Sample images of their facial expressions were collected from 230 human subjects. A Facial Action Coding System analysis shows the production of these 21 categories is different but consistent with the subordinate categories they represent (e.g., a happily surprised expression combines muscle movements observed in happiness and surprised). We show that these differences are sufficient to distinguish between the 21 defined categories. We then use a computational model of face perception to demonstrate that most of these categories are also visually discriminable from one another. Understanding the different categories of facial expressions of emotion regularly used by us is essential to gain insights into human cognition and affect as well as for the design of computational models and perceptual interfaces. Past research on facial expressions of emotion has focused on the study of six basic categories—happiness, surprise, anger, sadness, fear, and disgust. However, many more facial expressions of emotion exist and are used regularly by humans. This paper describes an important group of expressions, which we call compound emotion categories. Compound emotions are those that can be constructed by combining basic component categories to create new ones. For instance, happily surprised and angrily surprised are two distinct compound emotion categories. The present work defines 21 distinct emotion categories. Sample images of their facial expressions were collected from 230 human subjects. A Facial Action Coding System analysis shows the production of these 21 categories is different but consistent with the subordinate categories they represent (e.g., a happily surprised expression combines muscle movements observed in happiness and surprised). We show that these differences are sufficient to distinguish between the 21 defined categories. We then use a computational model of face perception to demonstrate that most of these categories are also visually discriminable from one another. |
Author | Aleix M. Martinez Yong Tao Shichuan Du |
Author_xml | – sequence: 1 givenname: Shichuan surname: Du fullname: Du, Shichuan organization: Department of Electrical and Computer Engineering, and Center for Cognitive and Brain Sciences, The Ohio State University, Columbus, OH 43210 – sequence: 2 givenname: Yong surname: Tao fullname: Tao, Yong organization: Department of Electrical and Computer Engineering, and Center for Cognitive and Brain Sciences, The Ohio State University, Columbus, OH 43210 – sequence: 3 givenname: Aleix M. surname: Martinez fullname: Martinez, Aleix M. organization: Department of Electrical and Computer Engineering, and Center for Cognitive and Brain Sciences, The Ohio State University, Columbus, OH 43210 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24706770$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFMzeIhIS4pJ3xR2xfkNCqfEiVOEDPlpO1i6vEDnGC4L_H0S4L9AAnjzS_N34z74ycxBQdIU8RLhAkuxyjzRfIKGVCIOIDskHQWDdcwwnZAFBZK075KTnL-Q4AtFDwiJxSLqGREjbk5TYNY1rirvK2C7av3PdxcjmHFHOVfOWGNJf6MXnobZ_dk8N7Tm7eXn3evq-vP777sH1zXXei0XPdtqp1XaMFdkJy3XrGFOcCmNJOKaUl96W3YwLB7ToPWlkBXqhGunZHEdg5eb2fOy7tUBAX58n2ZpzCYKcfJtlg_u7E8MXcpm-GaU0bqsuAV4cBU_q6uDybIeTO9b2NLi3ZoAIGWguO_0cFSqYVV6ygL-6hd2mZYrlEoSgAUg2r-Wd_mj-6_nXtAlzugW5KOU_OHxEEs-Zp1jzN7zyLQtxTdGG2ayJl-9D_Q1cdrKyN4y-Ixa-5Qi54QZ7vEW-TsbdTyObmEwVsyjq85KbYT3DutZY |
CitedBy_id | crossref_primary_10_3390_s24082450 crossref_primary_10_1016_j_cub_2021_10_035 crossref_primary_10_1016_j_eswa_2024_125358 crossref_primary_10_1016_j_chb_2019_02_001 crossref_primary_10_1016_j_neucom_2019_05_018 crossref_primary_10_1109_TMM_2021_3116434 crossref_primary_10_1007_s12046_022_01943_x crossref_primary_10_1109_TAFFC_2022_3176135 crossref_primary_10_1142_S0219467822500498 crossref_primary_10_1049_el_2018_6932 crossref_primary_10_1016_j_bspc_2024_106339 crossref_primary_10_1145_2661229_2661287 crossref_primary_10_1007_s11229_019_02110_2 crossref_primary_10_1145_3631133 crossref_primary_10_1177_1754073914554775 crossref_primary_10_3390_electronics13142791 crossref_primary_10_1016_j_tics_2020_02_001 crossref_primary_10_1109_TAFFC_2018_2822303 crossref_primary_10_1111_cgf_13647 crossref_primary_10_1016_j_procs_2016_04_071 crossref_primary_10_1371_journal_pone_0177239 crossref_primary_10_1145_3534597 crossref_primary_10_1007_s12626_024_00177_z crossref_primary_10_1109_TAFFC_2023_3280530 crossref_primary_10_1109_TAFFC_2021_3135516 crossref_primary_10_1590_1982_7849rac2018170223 crossref_primary_10_3389_fpsyg_2021_638398 crossref_primary_10_1186_s13673_020_0208_3 crossref_primary_10_1016_j_actpsy_2024_104569 crossref_primary_10_1016_j_copsyc_2017_06_009 crossref_primary_10_1109_TIP_2024_3374116 crossref_primary_10_1177_1754073914554783 crossref_primary_10_1109_TAFFC_2023_3266808 crossref_primary_10_1080_09540261_2023_2174413 crossref_primary_10_1109_JPROC_2023_3309299 crossref_primary_10_3366_cor_2019_0167 crossref_primary_10_1016_j_cag_2023_07_014 crossref_primary_10_1109_TMM_2019_2933338 crossref_primary_10_3389_fpsyg_2021_605928 crossref_primary_10_1007_s11031_024_10076_z crossref_primary_10_1109_TMM_2022_3172548 crossref_primary_10_1007_s10044_021_00988_8 crossref_primary_10_1016_j_cortex_2019_11_021 crossref_primary_10_1016_j_isci_2024_111401 crossref_primary_10_9728_dcs_2022_23_1_117 crossref_primary_10_1007_s10919_019_00294_2 crossref_primary_10_1109_TNNLS_2017_2752003 crossref_primary_10_1016_j_jvcir_2020_102949 crossref_primary_10_3389_fpsyg_2020_00446 crossref_primary_10_7202_1039262ar crossref_primary_10_1007_s11042_022_14102_5 crossref_primary_10_1080_02699931_2015_1133401 crossref_primary_10_1109_TIP_2016_2570550 crossref_primary_10_3389_fpsyg_2019_01606 crossref_primary_10_3390_s19245553 crossref_primary_10_1109_TNNLS_2015_2477321 crossref_primary_10_1145_3593238 crossref_primary_10_1038_s41559_019_0865_7 crossref_primary_10_1093_cercor_bhab307 crossref_primary_10_1109_TCSVT_2021_3103760 crossref_primary_10_1126_sciadv_abq8421 crossref_primary_10_1080_1047840X_2017_1256129 crossref_primary_10_1038_s41598_023_45779_9 crossref_primary_10_1109_TCYB_2020_3036935 crossref_primary_10_1007_s11760_025_03822_4 crossref_primary_10_1016_j_jvcir_2024_104260 crossref_primary_10_1145_3272127_3275075 crossref_primary_10_1016_j_foodqual_2019_05_011 crossref_primary_10_1145_3355089_3356568 crossref_primary_10_1016_j_jvcir_2024_104264 crossref_primary_10_1155_2016_5182768 crossref_primary_10_1109_TIFS_2020_3007327 crossref_primary_10_1038_s41598_021_95510_9 crossref_primary_10_1109_TAFFC_2022_3182342 crossref_primary_10_1007_s10489_021_02254_0 crossref_primary_10_1017_S0954579419000312 crossref_primary_10_1080_02699931_2016_1152231 crossref_primary_10_1108_EJM_11_2021_0892 crossref_primary_10_1007_s11042_020_09405_4 crossref_primary_10_1007_s10044_021_01024_5 crossref_primary_10_1109_TAFFC_2021_3063387 crossref_primary_10_3390_f13081192 crossref_primary_10_1016_j_socec_2024_102312 crossref_primary_10_1007_s11042_018_6402_x crossref_primary_10_1073_pnas_1716084115 crossref_primary_10_1109_TMM_2024_3374573 crossref_primary_10_3390_diagnostics12051138 crossref_primary_10_3389_fcomp_2019_00011 crossref_primary_10_1097_PRS_0000000000005164 crossref_primary_10_1007_s42154_023_00270_z crossref_primary_10_1109_TAFFC_2014_2370044 crossref_primary_10_1145_3012941 crossref_primary_10_1007_s11042_022_14289_7 crossref_primary_10_1007_s11263_017_1010_1 crossref_primary_10_1167_tvst_9_8_31 crossref_primary_10_1016_j_ymeth_2016_01_017 crossref_primary_10_1007_s10919_019_00293_3 crossref_primary_10_1080_10508406_2021_1964506 crossref_primary_10_29038_eejpl_2020_7_1_miz crossref_primary_10_59763_mam_aeq_v5i_55 crossref_primary_10_3390_s22041524 crossref_primary_10_1017_BrImp_2016_29 crossref_primary_10_3758_s13414_021_02281_6 crossref_primary_10_1007_s00138_023_01490_3 crossref_primary_10_1038_s41467_021_25352_6 crossref_primary_10_1007_s11263_019_01210_3 crossref_primary_10_1145_3478085 crossref_primary_10_1016_j_jksuci_2021_06_012 crossref_primary_10_1080_03772063_2020_1756471 crossref_primary_10_1145_3341198 crossref_primary_10_1002_aur_1468 crossref_primary_10_1109_TAFFC_2018_2887267 crossref_primary_10_1016_j_actpsy_2025_104782 crossref_primary_10_1038_s41597_023_02701_2 crossref_primary_10_1016_j_ijhcs_2017_06_001 crossref_primary_10_35193_bseufbd_645138 crossref_primary_10_1016_j_imavis_2018_09_007 crossref_primary_10_1109_TAFFC_2021_3077248 crossref_primary_10_1371_journal_pone_0227877 crossref_primary_10_1109_TIM_2021_3060564 crossref_primary_10_2139_ssrn_2354758 crossref_primary_10_4236_sn_2016_51004 crossref_primary_10_3390_sym14122492 crossref_primary_10_3389_fpsyg_2023_1158136 crossref_primary_10_1007_s12193_020_00363_7 crossref_primary_10_1109_TMM_2019_2916063 crossref_primary_10_1016_j_aej_2020_10_061 crossref_primary_10_1109_TNSRE_2023_3305351 crossref_primary_10_1177_1529100619850176 crossref_primary_10_1016_j_imavis_2018_09_014 crossref_primary_10_1016_j_jphysparis_2015_12_003 crossref_primary_10_1109_ACCESS_2022_3172297 crossref_primary_10_1016_j_neucom_2020_10_082 crossref_primary_10_1007_s11042_024_20138_6 crossref_primary_10_1111_cogs_12548 crossref_primary_10_1109_TAFFC_2022_3201290 crossref_primary_10_1016_j_chb_2025_108638 crossref_primary_10_1371_journal_pone_0167991 crossref_primary_10_1177_03010066221077573 crossref_primary_10_3390_s24248133 crossref_primary_10_1007_s42979_020_00263_3 crossref_primary_10_1016_j_biopsycho_2019_107723 crossref_primary_10_1016_j_psyneuen_2018_11_038 crossref_primary_10_1007_s11760_020_01759_4 crossref_primary_10_1177_00220221221095208 crossref_primary_10_1162_ARTL_a_00238 crossref_primary_10_1007_s00266_020_02045_x crossref_primary_10_1007_s10339_019_00923_0 crossref_primary_10_3390_app13137638 crossref_primary_10_1109_ACCESS_2020_3015917 crossref_primary_10_1523_JNEUROSCI_1704_15_2016 crossref_primary_10_1109_TAFFC_2022_3215918 crossref_primary_10_1016_j_cobme_2018_12_002 crossref_primary_10_1109_TPAMI_2018_2868952 crossref_primary_10_1080_21548455_2022_2048119 crossref_primary_10_3389_fpsyg_2023_1221081 crossref_primary_10_3390_s22103729 crossref_primary_10_1007_s41233_023_00054_7 crossref_primary_10_1038_s41598_023_32659_5 crossref_primary_10_1016_j_neucom_2024_128536 crossref_primary_10_1109_TPAMI_2015_2481404 crossref_primary_10_1109_TAFFC_2018_2874986 crossref_primary_10_1108_JWL_04_2021_0043 crossref_primary_10_2196_26760 crossref_primary_10_3390_app122412852 crossref_primary_10_1007_s11245_022_09816_y crossref_primary_10_3390_s18113993 crossref_primary_10_1109_TAFFC_2017_2753235 crossref_primary_10_3390_math10030406 crossref_primary_10_1371_journal_pone_0245777 crossref_primary_10_1109_LSP_2024_3364055 crossref_primary_10_1145_3392866 crossref_primary_10_1007_s13042_021_01413_6 crossref_primary_10_1111_sltb_12194 crossref_primary_10_1177_13623613211068221 crossref_primary_10_1016_j_inffus_2024_102753 crossref_primary_10_1038_s41746_021_00502_8 crossref_primary_10_3390_app142311235 crossref_primary_10_1109_TCSVT_2023_3255243 crossref_primary_10_1371_journal_pone_0230039 crossref_primary_10_38124_ijisrt_IJISRT24MAY1322 crossref_primary_10_1007_s12559_021_09936_4 crossref_primary_10_1109_TCSVT_2024_3491098 crossref_primary_10_1109_ACCESS_2023_3264268 crossref_primary_10_3389_fpain_2024_1372814 crossref_primary_10_1007_s11554_023_01310_x crossref_primary_10_1038_s41598_023_43716_4 crossref_primary_10_1109_TMC_2020_3001989 crossref_primary_10_1177_01461672211065923 crossref_primary_10_3389_fpsyg_2022_963666 crossref_primary_10_1002_hrdq_21425 crossref_primary_10_1007_s11263_018_1131_1 crossref_primary_10_1080_13218719_2017_1260619 crossref_primary_10_1371_journal_pone_0260814 crossref_primary_10_1007_s12193_021_00364_0 crossref_primary_10_1007_s12646_020_00574_8 crossref_primary_10_1007_s11042_023_16822_8 crossref_primary_10_1016_j_cognition_2016_02_004 crossref_primary_10_1057_s41599_024_02869_x crossref_primary_10_1117_1_JEI_32_4_040901 crossref_primary_10_3390_su14073817 crossref_primary_10_1093_chemse_bjy029 crossref_primary_10_1109_ACCESS_2021_3091289 crossref_primary_10_3390_s19092140 crossref_primary_10_1016_j_neubiorev_2024_105684 crossref_primary_10_1111_pala_12582 crossref_primary_10_1109_ACCESS_2019_2945423 crossref_primary_10_1109_TIP_2018_2868382 crossref_primary_10_3390_app13063839 crossref_primary_10_1016_j_neubiorev_2017_03_006 crossref_primary_10_1002_aur_2642 crossref_primary_10_1007_s00213_024_06725_3 crossref_primary_10_1038_s41598_018_20567_y crossref_primary_10_1016_j_patrec_2023_01_001 crossref_primary_10_1016_j_scitotenv_2022_160607 crossref_primary_10_37052_jb24_2_no5 crossref_primary_10_1073_pnas_1908964116 crossref_primary_10_3389_fpsyg_2018_00938 crossref_primary_10_1007_s00426_022_01669_9 crossref_primary_10_1016_j_physbeh_2024_114561 crossref_primary_10_1109_TAFFC_2024_3370103 crossref_primary_10_1016_j_jare_2022_04_009 crossref_primary_10_1109_TIP_2016_2594486 crossref_primary_10_1007_s11042_020_09451_y crossref_primary_10_1080_13682199_2023_2176735 crossref_primary_10_1371_journal_pone_0211735 crossref_primary_10_1007_s10044_024_01369_7 crossref_primary_10_1109_TCYB_2020_3003502 crossref_primary_10_2466_27_24_PMS_120v12x5 crossref_primary_10_3389_fphy_2021_664948 crossref_primary_10_1016_j_visres_2016_07_002 crossref_primary_10_1371_journal_pone_0118211 crossref_primary_10_1016_j_bspc_2022_104209 crossref_primary_10_1109_ACCESS_2019_2907271 crossref_primary_10_3390_app10196659 crossref_primary_10_12968_eyed_2017_19_4_38 crossref_primary_10_1016_j_patrec_2022_02_010 crossref_primary_10_1007_s10880_022_09856_x crossref_primary_10_1016_j_cag_2023_08_021 crossref_primary_10_1109_TAFFC_2019_2914654 crossref_primary_10_1111_exsy_13724 crossref_primary_10_3389_fnhum_2015_00112 crossref_primary_10_1371_journal_pone_0105144 crossref_primary_10_54047_bibted_1206885 crossref_primary_10_1016_j_eswa_2018_08_047 crossref_primary_10_1109_ACCESS_2024_3383143 crossref_primary_10_1109_TAFFC_2020_2988455 crossref_primary_10_1109_TAFFC_2017_2740923 crossref_primary_10_1177_0963721417698535 crossref_primary_10_1109_TPAMI_2019_2916866 crossref_primary_10_1111_bdi_12312 crossref_primary_10_1007_s11042_023_16156_5 crossref_primary_10_1155_2021_9116502 crossref_primary_10_1007_s11023_019_09497_4 crossref_primary_10_1016_j_jbusres_2025_115193 crossref_primary_10_1016_j_schres_2023_01_016 crossref_primary_10_1016_j_cub_2023_12_001 crossref_primary_10_1109_TAFFC_2020_2981446 crossref_primary_10_1007_s11042_017_5436_9 crossref_primary_10_1109_ACCESS_2017_2752176 crossref_primary_10_1155_2023_7850140 crossref_primary_10_1016_j_patrec_2022_10_020 crossref_primary_10_2174_2352096516666230403091253 crossref_primary_10_1177_0301006618816631 crossref_primary_10_1016_j_displa_2022_102330 crossref_primary_10_1111_pcn_12799 crossref_primary_10_1371_journal_pone_0134790 crossref_primary_10_3390_app12115493 crossref_primary_10_1080_2331186X_2024_2378271 crossref_primary_10_1007_s11042_023_15268_2 crossref_primary_10_2139_ssrn_3060047 crossref_primary_10_1016_j_specom_2022_03_002 crossref_primary_10_1007_s11263_017_0989_7 crossref_primary_10_1007_s10919_023_00426_9 crossref_primary_10_1038_s41467_024_53682_8 crossref_primary_10_3758_s13428_017_0996_1 crossref_primary_10_1016_j_cviu_2024_103927 crossref_primary_10_3917_geco1_126_0003 crossref_primary_10_1016_j_patcog_2023_110173 crossref_primary_10_1088_1741_2552_ac6d7d crossref_primary_10_1016_j_ijleo_2019_01_020 crossref_primary_10_1016_j_patrec_2022_10_018 crossref_primary_10_1109_ACCESS_2020_2986654 crossref_primary_10_37467_revvisual_v9_3531 crossref_primary_10_1109_ACCESS_2023_3325034 crossref_primary_10_1007_s42761_023_00195_0 crossref_primary_10_1145_3477605 crossref_primary_10_1016_j_cortex_2016_01_001 crossref_primary_10_1109_ACCESS_2019_2921914 crossref_primary_10_3390_su10040973 crossref_primary_10_1109_TAFFC_2020_3014171 crossref_primary_10_1155_2022_9037010 crossref_primary_10_1016_j_knosys_2023_110451 crossref_primary_10_1080_13682199_2023_2172526 crossref_primary_10_1021_acsami_5c01936 crossref_primary_10_1177_1747021817740275 crossref_primary_10_1109_TIP_2023_3293775 crossref_primary_10_1016_j_chb_2017_07_040 crossref_primary_10_1109_JPROC_2023_3275192 crossref_primary_10_1016_j_ijhcs_2015_05_010 crossref_primary_10_3390_s19163465 crossref_primary_10_1109_TIP_2022_3186536 crossref_primary_10_3389_fnbeh_2022_951974 crossref_primary_10_1145_3161414 crossref_primary_10_1002_aur_3145 crossref_primary_10_1016_j_procs_2022_09_493 crossref_primary_10_1016_j_jveb_2019_07_007 crossref_primary_10_1038_s41598_024_62423_2 crossref_primary_10_1049_iet_ipr_2018_5728 crossref_primary_10_3390_s20174847 crossref_primary_10_1007_s00530_024_01552_0 crossref_primary_10_3390_s20174727 crossref_primary_10_1109_ACCESS_2018_2831927 crossref_primary_10_1109_TAFFC_2021_3096922 crossref_primary_10_1007_s42979_024_02792_7 crossref_primary_10_1177_02646196211070927 crossref_primary_10_1007_s00521_022_07157_w crossref_primary_10_1016_j_jvcir_2021_103395 crossref_primary_10_1007_s11042_020_09373_9 crossref_primary_10_1177_1745691617693393 crossref_primary_10_1016_j_tics_2020_06_006 crossref_primary_10_1523_JNEUROSCI_1375_17_2017 crossref_primary_10_1109_TCSVT_2021_3096061 crossref_primary_10_1109_TIM_2023_3243661 crossref_primary_10_3390_su13168687 crossref_primary_10_1007_s11760_023_02563_6 crossref_primary_10_3390_app9183904 crossref_primary_10_1016_j_joep_2015_08_006 crossref_primary_10_1109_ACCESS_2020_2980893 crossref_primary_10_3390_s22228704 crossref_primary_10_1109_TCYB_2018_2868194 crossref_primary_10_1109_TAFFC_2023_3333874 crossref_primary_10_1111_jan_16063 crossref_primary_10_3389_frai_2024_1386753 crossref_primary_10_1080_02699931_2015_1049124 crossref_primary_10_1016_j_cub_2015_06_009 crossref_primary_10_17759_exppsy_2022150402 crossref_primary_10_3390_sym11101189 crossref_primary_10_1016_j_paid_2020_110350 crossref_primary_10_1109_ACCESS_2023_3286547 |
Cites_doi | 10.1037/0033-2909.115.1.102 10.1016/j.neuron.2013.10.038 10.1023/A:1015469627679 10.1016/j.psychres.2004.07.003 10.1167/9.1.5 10.1016/0042-6989(80)90065-6 10.1038/nrn2920 10.1109/CVPR.2010.5539998 10.1017/S0140525X11000446 10.1109/34.817413 10.1146/annurev.psych.60.110707.163539 10.1093/scan/nsq069 10.1109/TPAMI.2010.28 10.1016/j.patcog.2011.09.023 10.1016/0010-0277(92)90002-Y 10.1037/0033-295X.110.1.145 10.1109/TPAMI.2005.250 10.1016/S0042-6989(03)00079-8 10.1109/34.824823 10.1137/1.9781611970128 10.1198/016214504000000098 10.1080/02699939208411068 10.3758/BRM.42.1.351 10.1109/TPAMI.2002.1008382 10.1016/j.tics.2012.09.006 10.1016/j.jneumeth.2011.06.023 10.1109/JPROC.2006.884093 10.1109/ICCV.2009.5459365 10.1007/978-0-85729-997-0_19 10.7208/chicago/9780226220802.001.0001 10.1109/TPAMI.2005.90 10.1167/11.13.24 10.1109/TPAMI.2010.173 10.1016/j.patcog.2013.06.013 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Apr 15, 2014 |
Copyright_xml | – notice: Copyright National Academy of Sciences Apr 15, 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1322355111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic AGRICOLA CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Compound facial expressions of emotion |
EISSN | 1091-6490 |
EndPage | E1462 |
ExternalDocumentID | PMC3992629 3289823301 24706770 10_1073_pnas_1322355111 111_15_E1454 US201600143388 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GeographicLocations | Ohio |
GeographicLocations_xml | – name: Ohio |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01-EY-020834 – fundername: NEI NIH HHS grantid: R01 EY020834 – fundername: NIDCD NIH HHS grantid: R21 DC011081 – fundername: NIDCD NIH HHS grantid: R21-DC-011081 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ H13 KM PQEST X XHC AAYXX ABXSQ ACHIC ADQXQ ADXHL AQVQM CITATION IPSME CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c569t-bb8bec6951c5749bf3384450389e888974f951d3510edcf098a50f5867ebd2103 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:10:51 EDT 2025 Fri Jul 11 05:01:58 EDT 2025 Fri Jul 11 02:39:15 EDT 2025 Mon Jun 30 07:59:59 EDT 2025 Mon Jul 21 06:01:37 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Tue Jul 01 01:53:04 EDT 2025 Wed Nov 11 00:30:25 EST 2020 Wed Dec 27 18:57:38 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | categorization face recognition action units |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c569t-bb8bec6951c5749bf3384450389e888974f951d3510edcf098a50f5867ebd2103 |
Notes | http://dx.doi.org/10.1073/pnas.1322355111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: A.M.M. designed research; S.D. and Y.T. performed research; S.D. and A.M.M. analyzed data; and S.D. and A.M.M. wrote the paper. Edited by David J. Heeger, New York University, New York, NY, and approved February 28, 2014 (received for review December 1, 2013) |
OpenAccessLink | https://www.pnas.org/content/pnas/111/15/E1454.full.pdf |
PMID | 24706770 |
PQID | 1520012900 |
PQPubID | 42026 |
ParticipantIDs | pubmed_primary_24706770 proquest_miscellaneous_1517398483 pnas_primary_111_15_E1454 crossref_primary_10_1073_pnas_1322355111 proquest_miscellaneous_1803099541 fao_agris_US201600143388 crossref_citationtrail_10_1073_pnas_1322355111 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3992629 proquest_journals_1520012900 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-15 |
PublicationDateYYYYMMDD | 2014-04-15 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Ekman P (e_1_3_3_12_2) 1978 Martinez AM (e_1_3_3_5_2) 2012; 13 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Borod JC (e_1_3_3_4_2) 2000 cr-split#-e_1_3_3_3_2.2 e_1_3_3_6_2 Ekman P (e_1_3_3_7_2) 1976 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 cr-split#-e_1_3_3_3_2.1 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 Vapnik V (e_1_3_3_44_2) 1999 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_21_2 Fisher RA (e_1_3_3_33_2) 1938; 8 e_1_3_3_42_2 7467139 - Vision Res. 1980;20(10):847-56 22617651 - Behav Brain Sci. 2012 Jun;35(3):121-43 12676247 - Vision Res. 2003 Apr;43(9):1047-60 16358412 - IEEE Trans Pattern Anal Mach Intell. 2005 Dec;27(12):1934-44 19271875 - J Vis. 2009;9(1):5.1-11 20160315 - Behav Res Methods. 2010 Feb;42(1):351-62 23950695 - J Mach Learn Res. 2012 May 1;13:1589-1608 20959860 - Nat Rev Neurosci. 2010 Nov;11(11):773-83 20847391 - IEEE Trans Pattern Anal Mach Intell. 2010 Nov;32(11):2022-38 8202574 - Psychol Bull. 1994 Jan;115(1):102-41 18729725 - Annu Rev Psychol. 2009;60:1-25 20820072 - IEEE Trans Pattern Anal Mach Intell. 2011 Mar;33(3):631-8 24187386 - Pattern Recognit. 2014 Jan 1;47(1):null 12529060 - Psychol Rev. 2003 Jan;110(1):145-72 22308002 - Pattern Recognit. 2012 Apr;45(4):1792-1801 15875802 - IEEE Trans Pattern Anal Mach Intell. 2005 May;27(5):812-6 22131445 - J Vis. 2011;11(13):24 23047070 - Trends Cogn Sci. 2012 Nov;16(11):559-72 15541780 - Psychiatry Res. 2004 Oct 30;128(3):235-44 20650943 - Soc Cogn Affect Neurosci. 2011 Apr;6(2):186-94 24183030 - Neuron. 2013 Oct 30;80(3):816-26 1424493 - Cognition. 1992 Sep;44(3):227-40 21741407 - J Neurosci Methods. 2011 Sep 15;200(2):237-56 |
References_xml | – ident: e_1_3_3_2_2 doi: 10.1037/0033-2909.115.1.102 – ident: e_1_3_3_40_2 doi: 10.1016/j.neuron.2013.10.038 – volume-title: Pictures of Facial Affect year: 1976 ident: e_1_3_3_7_2 – ident: e_1_3_3_45_2 doi: 10.1023/A:1015469627679 – ident: e_1_3_3_13_2 doi: 10.1016/j.psychres.2004.07.003 – ident: e_1_3_3_28_2 doi: 10.1167/9.1.5 – ident: e_1_3_3_30_2 doi: 10.1016/0042-6989(80)90065-6 – ident: #cr-split#-e_1_3_3_3_2.2 – ident: e_1_3_3_1_2 – volume-title: The Nature of Statistical Learning Theory year: 1999 ident: e_1_3_3_44_2 – ident: e_1_3_3_29_2 doi: 10.1038/nrn2920 – ident: e_1_3_3_25_2 doi: 10.1109/CVPR.2010.5539998 – ident: e_1_3_3_11_2 doi: 10.1017/S0140525X11000446 – volume: 8 start-page: 376 year: 1938 ident: e_1_3_3_33_2 article-title: The statistical utilization of multiple measurements publication-title: Ann Hum Genet – ident: e_1_3_3_17_2 – ident: e_1_3_3_31_2 doi: 10.1109/34.817413 – ident: e_1_3_3_9_2 doi: 10.1146/annurev.psych.60.110707.163539 – ident: e_1_3_3_15_2 doi: 10.1093/scan/nsq069 – ident: e_1_3_3_18_2 doi: 10.1109/TPAMI.2010.28 – volume: 13 start-page: 1589 year: 2012 ident: e_1_3_3_5_2 article-title: A model of the perception of facial expressions of emotion by humans: Research overview and perspectives publication-title: J Mach Learn Res – ident: e_1_3_3_22_2 doi: 10.1016/j.patcog.2011.09.023 – ident: e_1_3_3_27_2 doi: 10.1016/0010-0277(92)90002-Y – ident: e_1_3_3_8_2 doi: 10.1037/0033-295X.110.1.145 – ident: e_1_3_3_32_2 doi: 10.1109/TPAMI.2005.250 – ident: e_1_3_3_26_2 doi: 10.1016/S0042-6989(03)00079-8 – ident: e_1_3_3_42_2 doi: 10.1109/34.824823 – ident: #cr-split#-e_1_3_3_3_2.1 – ident: e_1_3_3_35_2 doi: 10.1137/1.9781611970128 – ident: e_1_3_3_36_2 doi: 10.1198/016214504000000098 – ident: e_1_3_3_10_2 doi: 10.1080/02699939208411068 – ident: e_1_3_3_43_2 doi: 10.3758/BRM.42.1.351 – ident: e_1_3_3_38_2 doi: 10.1109/TPAMI.2002.1008382 – ident: e_1_3_3_41_2 doi: 10.1016/j.tics.2012.09.006 – volume-title: Facial Action Coding System: A Technique for the Measurement of Facial Movement year: 1978 ident: e_1_3_3_12_2 – ident: e_1_3_3_14_2 doi: 10.1016/j.jneumeth.2011.06.023 – ident: e_1_3_3_20_2 doi: 10.1109/JPROC.2006.884093 – ident: e_1_3_3_21_2 doi: 10.1109/ICCV.2009.5459365 – ident: e_1_3_3_23_2 doi: 10.1007/978-0-85729-997-0_19 – volume-title: The Neuropsychology of Emotion year: 2000 ident: e_1_3_3_4_2 – ident: e_1_3_3_24_2 – ident: e_1_3_3_6_2 doi: 10.7208/chicago/9780226220802.001.0001 – ident: e_1_3_3_39_2 doi: 10.1109/TPAMI.2005.90 – ident: e_1_3_3_37_2 doi: 10.1167/11.13.24 – ident: e_1_3_3_34_2 doi: 10.1109/TPAMI.2010.173 – ident: e_1_3_3_16_2 – ident: e_1_3_3_19_2 doi: 10.1016/j.patcog.2013.06.013 – reference: 24187386 - Pattern Recognit. 2014 Jan 1;47(1):null – reference: 1424493 - Cognition. 1992 Sep;44(3):227-40 – reference: 8202574 - Psychol Bull. 1994 Jan;115(1):102-41 – reference: 20160315 - Behav Res Methods. 2010 Feb;42(1):351-62 – reference: 23047070 - Trends Cogn Sci. 2012 Nov;16(11):559-72 – reference: 7467139 - Vision Res. 1980;20(10):847-56 – reference: 12529060 - Psychol Rev. 2003 Jan;110(1):145-72 – reference: 21741407 - J Neurosci Methods. 2011 Sep 15;200(2):237-56 – reference: 19271875 - J Vis. 2009;9(1):5.1-11 – reference: 20959860 - Nat Rev Neurosci. 2010 Nov;11(11):773-83 – reference: 22308002 - Pattern Recognit. 2012 Apr;45(4):1792-1801 – reference: 24183030 - Neuron. 2013 Oct 30;80(3):816-26 – reference: 23950695 - J Mach Learn Res. 2012 May 1;13:1589-1608 – reference: 20847391 - IEEE Trans Pattern Anal Mach Intell. 2010 Nov;32(11):2022-38 – reference: 15541780 - Psychiatry Res. 2004 Oct 30;128(3):235-44 – reference: 16358412 - IEEE Trans Pattern Anal Mach Intell. 2005 Dec;27(12):1934-44 – reference: 20650943 - Soc Cogn Affect Neurosci. 2011 Apr;6(2):186-94 – reference: 12676247 - Vision Res. 2003 Apr;43(9):1047-60 – reference: 22131445 - J Vis. 2011;11(13):24 – reference: 22617651 - Behav Brain Sci. 2012 Jun;35(3):121-43 – reference: 20820072 - IEEE Trans Pattern Anal Mach Intell. 2011 Mar;33(3):631-8 – reference: 15875802 - IEEE Trans Pattern Anal Mach Intell. 2005 May;27(5):812-6 – reference: 18729725 - Annu Rev Psychol. 2009;60:1-25 |
SSID | ssj0009580 |
Score | 2.628679 |
Snippet | Understanding the different categories of facial expressions of emotion regularly used by us is essential to gain insights into human cognition and affect as... Though people regularly recognize many distinct emotions, for the most part, research studies have been limited to six basic categories—happiness, surprise,... |
SourceID | pubmedcentral proquest pubmed crossref pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E1454 |
SubjectTerms | Adult Biological Sciences cognition Cognition & reasoning Discrimination (Psychology) - physiology Emotions Emotions - classification Emotions - physiology Face Facial Expression Facial Muscles - physiology fearfulness Female Humans Male Models, Biological muscles Ohio Photography Physical Sciences PNAS Plus Sensory perception |
Title | Compound facial expressions of emotion |
URI | http://www.pnas.org/content/111/15/E1454.abstract https://www.ncbi.nlm.nih.gov/pubmed/24706770 https://www.proquest.com/docview/1520012900 https://www.proquest.com/docview/1517398483 https://www.proquest.com/docview/1803099541 https://pubmed.ncbi.nlm.nih.gov/PMC3992629 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYeOEFMb4WNlCQEBqaUvJlx3msoNOERplEKpWnyE5tWmlK0NpKE389d7GdtKOgwUtU2VfX9Z3Pd5fz7wh5E87yRGhRBbHgOkgjSQOuWB5kcax5EkV6pvCC8-cxO5-kn6Z06gpt29slKzmofu68V_I_XIU24Cvekv0HznaDQgN8Bv7CEzgMzzvxGDczlkXCqjkY-VY3Nq3V5LYpU6Jn0_687M6rpcsOGLtw4LC_XGJ3_PI0OL0c96WKP67bYOl8Uc3XvVQVog23fmvsIdiBE5jg9PBKLW5s0NWGF6I2K8VcsLQaEQyKgKWmpudA7WhzatQqTSsvdEMrjqLUIEX_pq9BwWCR4VosB-gWg_HjhtlCxh5_Kc8mFxdlMZoWe-R-DC5B7CIzHcAyN8gTdmoOxilL3t8afssC2dOiQVxbINnlY9xOld2wPYpH5KF1GvyhkYADck_Vj8mBY5J_YrHD3z0hb51I-EYk_A2R8BvtW5F4SiZno-LDeWBLYQQVZfkqkJLDZmNgDlc0S3Opk4SnaYuOqDjn4BRq6JsloGFhrjrMuaChppxlSs7Aq0-ekf26qdUh8YWUFHRtFXOmUrC_JVOM0hnY3ZUIqZYeGbjlKSuLE4_lSq7KNl8hS0pcrLJfT4-cdF_4YSBS_kx6COtdiu9wgJWTrzHCGyLAZMK5R7yWuBsBHNOIlq3oeOTYcaa02w9GRcAwjKKGHnnddYNyxDdeolbNGmmiLMk5_M2_0HB8y5jTFGb33DC7m0ScZoiwCL-QbYlBR4Dg7Ns99WLegrQj4DOL8xd3mNsRedDvvGOyv7peq5dg6q7kq1bGfwGXNaP5 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compound+facial+expressions+of+emotion&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Du%2C+Shichuan&rft.au=Tao%2C+Yong&rft.au=Martinez%2C+Aleix+M&rft.date=2014-04-15&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=111&rft.issue=15&rft.spage=E1454&rft_id=info:doi/10.1073%2Fpnas.1322355111&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F15.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F15.cover.gif |