Gain-Sparsity and Symmetry-Forced Rigidity in the Plane
We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry constraint. We provide combinatorial characterizations for symmetry-forced rigidity of such structures with rotation symmetry or dihedral sym...
Saved in:
Published in | Discrete & computational geometry Vol. 55; no. 2; pp. 314 - 372 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry constraint. We provide combinatorial characterizations for symmetry-forced rigidity of such structures with rotation symmetry or dihedral symmetry of order 2
k
with odd
k
, unifying and extending previous work on this subject. We also explore the matroidal background of our results and show that the matroids induced by the row independence of the orbit matrices of the symmetric frameworks are isomorphic to gain sparsity matroids defined on the quotient graph of the framework, whose edges are labeled by elements of the corresponding symmetry group. The proofs are based on new Henneberg type inductive constructions of the gain graphs that correspond to the bases of the matroids in question, which can also be seen as symmetry preserving graph operations in the original graph. |
---|---|
AbstractList | We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry constraint. We provide combinatorial characterizations for symmetry-forced rigidity of such structures with rotation symmetry or dihedral symmetry of order 2
k
with odd
k
, unifying and extending previous work on this subject. We also explore the matroidal background of our results and show that the matroids induced by the row independence of the orbit matrices of the symmetric frameworks are isomorphic to gain sparsity matroids defined on the quotient graph of the framework, whose edges are labeled by elements of the corresponding symmetry group. The proofs are based on new Henneberg type inductive constructions of the gain graphs that correspond to the bases of the matroids in question, which can also be seen as symmetry preserving graph operations in the original graph. We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry constraint. We provide combinatorial characterizations for symmetry-forced rigidity of such structures with rotation symmetry or dihedral symmetry of order 2 with odd , unifying and extending previous work on this subject. We also explore the matroidal background of our results and show that the matroids induced by the row independence of the orbit matrices of the symmetric frameworks are isomorphic to gain sparsity matroids defined on the quotient graph of the framework, whose edges are labeled by elements of the corresponding symmetry group. The proofs are based on new Henneberg type inductive constructions of the gain graphs that correspond to the bases of the matroids in question, which can also be seen as symmetry preserving graph operations in the original graph. We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry constraint. We provide combinatorial characterizations for symmetry-forced rigidity of such structures with rotation symmetry or dihedral symmetry of order 2k with odd k, unifying and extending previous work on this subject. We also explore the matroidal background of our results and show that the matroids induced by the row independence of the orbit matrices of the symmetric frameworks are isomorphic to gain sparsity matroids defined on the quotient graph of the framework, whose edges are labeled by elements of the corresponding symmetry group. The proofs are based on new Henneberg type inductive constructions of the gain graphs that correspond to the bases of the matroids in question, which can also be seen as symmetry preserving graph operations in the original graph. |
Author | Tanigawa, Shin-ichi Kaszanitzky, Viktória E. Jordán, Tibor |
Author_xml | – sequence: 1 givenname: Tibor surname: Jordán fullname: Jordán, Tibor organization: Department of Operations Research, Eötvös University, and the MTA-ELTE Egerváry Research Group on Combinatorial Optimization – sequence: 2 givenname: Viktória E. surname: Kaszanitzky fullname: Kaszanitzky, Viktória E. organization: Department of Operations Research, Eötvös University, Department of Mathematics and Statistics, Lancaster University – sequence: 3 givenname: Shin-ichi surname: Tanigawa fullname: Tanigawa, Shin-ichi email: tanigawa@kurims.kyoto-u.ac.jp organization: Research Institute for Mathematical Sciences, Kyoto University, Centrum Wiskunde & Informatica (CWI) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26900195$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9LHDEUxYNYdLV-gL6UAV_6kvbm32TyUihSbUFo0focMpPsGplJ1mRW2G_fDLvKKig-5eH-zsm59xyh_RCDQ-gTga8EQH7LAFxwDERgJYXAZA_NCGcUA-d8H82ASIUFk_UhOsr5DgquoDlAh7RWAESJGZIXxgd8vTQp-3FdmWCr6_UwuDGt8XlMnbPVlV94Ow19qMZbV_3tTXAf0Ye56bM72b7H6Ob857-zX_jyz8Xvsx-XuBO1GrExyhJLhKwNcEedANMK6BRpWEnC50yC6RjjkpuatG1BqG3ZnNpGtLYFyo7R943vctUOznYujMn0epn8YNJaR-P180nwt3oRH3SxVJKyYvBla5Di_crlUQ8-d66floirrElD61pwKd-BSsWoIELJgp6-QO_iKoVyiULVnDYSGlKoz7vhn1I_nr8AZAN0Keac3PwJIaCnivWmYl0q1lPFejKVLzSdH83o47S_799U0o0yl1_CwqWd0K-K_gPH57g1 |
CODEN | DCGEER |
CitedBy_id | crossref_primary_10_1016_j_ifacol_2023_10_301 crossref_primary_10_1016_j_jmaa_2020_124895 crossref_primary_10_1137_20M1346961 crossref_primary_10_1016_j_ejc_2022_103639 crossref_primary_10_1016_j_jsc_2018_02_004 crossref_primary_10_1007_s00454_019_00135_5 crossref_primary_10_1016_j_ijsolstr_2023_112492 crossref_primary_10_1007_s00493_016_3469_8 crossref_primary_10_1007_s00454_020_00198_9 crossref_primary_10_1016_j_jctb_2020_09_009 crossref_primary_10_1016_j_laa_2020_08_004 crossref_primary_10_1137_17M1116088 |
Cites_doi | 10.1088/0953-8984/19/40/406218 10.1016/0095-8956(91)90005-5 10.1007/978-3-540-39658-1_10 10.1016/0020-7683(80)90087-6 10.1016/j.jctb.2004.11.002 10.1007/s00454-015-9692-z 10.1088/1478-3975/2/4/S06 10.1016/j.disc.2007.07.104 10.1016/j.aim.2012.10.007 10.1137/130947192 10.1137/090776238 10.1007/s10711-013-9878-6 10.1142/S0218195910003505 10.1007/s00454-010-9317-5 10.1098/rspa.2009.0676 10.1007/BF01177190 10.3390/sym6030516 10.1007/s00454-009-9231-x 10.1023/A:1015366416311 10.1016/0095-8956(89)90063-4 10.1090/tran/6401 |
ContentType | Journal Article |
Copyright | The Author(s) 2016 Springer Science+Business Media New York 2016 |
Copyright_xml | – notice: The Author(s) 2016 – notice: Springer Science+Business Media New York 2016 |
DBID | C6C AAYXX CITATION NPM 3V. 7SC 7TB 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M2O M2P M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 5PM |
DOI | 10.1007/s00454-015-9755-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest Research Library SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Research Library China ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Research Library Prep Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1432-0444 |
EndPage | 372 |
ExternalDocumentID | PMC4749723 3948336671 26900195 10_1007_s00454_015_9755_1 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: Országos Tudományos Kutatási Alapprogramok grantid: CK 80124 funderid: http://dx.doi.org/10.13039/501100003549 – fundername: Japan Society for the Promotion of Science grantid: 24740058 funderid: http://dx.doi.org/10.13039/501100001691 – fundername: Országos Tudományos Kutatási Alapprogramok grantid: K81472 funderid: http://dx.doi.org/10.13039/501100003549 – fundername: ; grantid: 24740058 – fundername: ; grantid: CK 80124 – fundername: ; grantid: K81472 |
GroupedDBID | -52 -5D -5G -BR -DZ -EM -Y2 -~C -~X .4S .86 .DC 06D 0R~ 0VY 199 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 88I 8AO 8FE 8FG 8FW 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIHN ACIPV ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C1A C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KQ8 L6V LAS LLZTM LO0 M0N M2O M2P M4Y M7S MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P62 P9R PADUT PF0 PKN PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YIN YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ NPM PQGLB 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c569t-aa9d1d1576a04e2e50ab50c91839084f370ac33474a61bb4e22db3f2d85bdb023 |
IEDL.DBID | U2A |
ISSN | 0179-5376 |
IngestDate | Thu Aug 21 13:46:45 EDT 2025 Fri Jul 11 02:07:26 EDT 2025 Tue Aug 05 11:04:12 EDT 2025 Sat Aug 23 13:48:30 EDT 2025 Mon Jul 21 06:03:51 EDT 2025 Tue Jul 01 01:43:56 EDT 2025 Thu Apr 24 22:56:58 EDT 2025 Fri Feb 21 02:43:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Frame matroids Infinitesimal rigidity Frameworks Primary 52C25 Group-labeled graphs Secondary 05B35 68R10 Rigidity matroids Symmetry Rigidity of graphs |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c569t-aa9d1d1576a04e2e50ab50c91839084f370ac33474a61bb4e22db3f2d85bdb023 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Editor in Charge: Günter M. Ziegler |
OpenAccessLink | https://link.springer.com/10.1007/s00454-015-9755-1 |
PMID | 26900195 |
PQID | 1764287081 |
PQPubID | 31658 |
PageCount | 59 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4749723 proquest_miscellaneous_1826654773 proquest_miscellaneous_1793251597 proquest_journals_1764287081 pubmed_primary_26900195 crossref_primary_10_1007_s00454_015_9755_1 crossref_citationtrail_10_1007_s00454_015_9755_1 springer_journals_10_1007_s00454_015_9755_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-01 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Discrete & computational geometry |
PublicationTitleAbbrev | Discrete Comput Geom |
PublicationTitleAlternate | Discrete Comput Geom |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | TarnaiTSimultaneous static and kinematic indeterminacy of space trusses with cyclic symmetryInt. J. Solids Struct.19801634735910.1016/0020-7683(80)90087-60433.73043 OwenJPowerSFrameworks, symmetry and rigidityInt. J. Comput. Geom. Appl.20102072375010.1142/S021819591000350527474331222.52022 Schulze, B.: Combinatorial and geometric rigidity with symmetry constraints. PhD Thesis, York University (2009). http://www.math.yorku.ca/Who/Faculty/Whiteley/SchulzePhDthesis.pdf MalesteinJTheranLGeneric combinatorial rigidity of periodic frameworksAdv. Math.2013233129133110.1016/j.aim.2012.10.00729956731268.52021 Berardi, M., Heeringa, B., Malestein, J., Theran, L.: Rigid components in fixed-lattice and cone frameworks. In: Proceedings of CCCG 2011, Toronto, p. 6 (2011) SchulzeBSymmetric versions of Laman’s theoremDiscrete Comput. Geom.201044494697210.1007/s00454-009-9231-x27280431211.52023 Ross, E.: Geometric and combinatorial rigidity of periodic frameworks as graphs on the torus. PhD Thesis, York University, Toronto (2011). http://www.math.yorku.ca/~ejross/RossThesis.pdf SchulzeBTanigawaSInfinitesimal rigidity of symmetric frameworksSIAM J. Discrete Math.20152931259128610.1137/1309471923374639 BorceaCStreinuIPeriodic frameworks and flexibilityProc. R. Soc. Lond. A201046621212633264910.1098/rspa.2009.067626716871211.82053 FrankAConnections in Combinatorial Optimization2011OxfordOxford University Press1228.90001 TayTSWhiteleyWGenerating isostatic graphsStruct. Topol.19851121688049770574.51025 WhiteleyWSome Matroids from Discrete Applied Geometry. Matroid Theory (Seattle, WA, 1995), 171–3111996Providence, RIAmerican Mathematical Society MalesteinJTheranLFrameworks with forced symmetry I: reflections and rotationsDiscrete Comput. Geom.20155433936710.1007/s00454-015-9692-z3372114 NixonASchulzeBSljokaAWhiteleyWSymmetry adapted Assur decompositionsSymmetry20146351655010.3390/sym60305163266577 TanigawaSMatroids of gain graphs in discrete applied geometryTrans. Am. Math. Soc.201536720158597864110.1090/tran/64013403067 Ikeshita, R., Tanigawa, S.: Count matroids of group-labeled graphs. arXiv:1507.01259 (2015) WegnerFRigid-unit modes in tetrahedral crystalsJ. Phys. Condens. Matter2007194040621810.1088/0953-8984/19/40/406218 Berg, A.R., Jordán, T.: Algorithms for graph rigidity and scene analysis. In: Proceedings of 11th Annual European Symposium on Algorithms (ESA). LNCS, vol. 2832, pp. 78–89 (2003) MalesteinJTheranLFrameworks with forced symmetry II: orientation-preserving crystallographic groupsGeom. Dedicata201417021926210.1007/s10711-013-9878-631994861292.52025 WhiteleyWCounting out to the flexibility of moleculesPhys. Biol.20052S116S12610.1088/1478-3975/2/4/S06 JacksonBJordánTConnected rigidity matroids and unique realizations of graphsJ. Comb. Theory Ser. B20059412910.1016/j.jctb.2004.11.0021076.05021 ZaslavskyTBiased graphs. I. Bias, balance, and gainsJ. Comb. Theory Ser. B1989471325210.1016/0095-8956(89)90063-410077120714.05057 Nixon, A., Schulze, B.: Symmetry-forced rigidity of frameworks on surfaces. arXiv:1312.1480 (2013) ZaslavskyTBiased graphs. II. The three matroidsJ. Comb. Theory Ser. B1991511467210.1016/0095-8956(91)90005-510886260763.05096 GrossJLTuckerTWTopological Graph Theory1987New YorkDover0621.05013 WunderlichWProjective invariance of shaky structuresActa Mech.19824217118110.1007/BF011771906607100526.51018 Ross, E.: Inductive constructions for frameworks on a two-dimensional fixed torus. Discrete Comput. Geom. 54, 78–109 (2015) Jordán, T., Kaszanitzky, V., Tanigawa, S.: Gain-sparsity and symmetry-forced rigidity in the plane. EGRES Technical Report, TR-2012-17 (2012) SchulzeBWhiteleyWThe orbit rigidity matrix of a symmetric frameworkDiscrete Comput. Geom.201146356159810.1007/s00454-010-9317-528269701235.05040 SchulzeBSymmetry as a sufficient condition for a finite flexSIAM J. Discrete Math.20102441291131210.1137/09077623827359241218.52020 KannoYOhsakiMMurotaKKatohNGroup symmetry in interior-point methods for semidefinite programOpt. Eng.2001229332010.1023/A:101536641631119802761035.90056 LeeAStreinuIPebble game algorithms and sparse graphsDiscrete Math.200830881425143710.1016/j.disc.2007.07.10423920601136.05062 9755_CR1 9755_CR2 B Schulze (9755_CR23) 2011; 46 9755_CR6 9755_CR8 A Frank (9755_CR4) 2011 W Wunderlich (9755_CR30) 1982; 42 Y Kanno (9755_CR9) 2001; 2 A Lee (9755_CR10) 2008; 308 B Schulze (9755_CR20) 2010; 44 W Whiteley (9755_CR28) 1996 J Malestein (9755_CR11) 2013; 233 W Whiteley (9755_CR29) 2005; 2 S Tanigawa (9755_CR24) 2015; 367 9755_CR14 J Malestein (9755_CR12) 2014; 170 J Malestein (9755_CR13) 2015; 54 9755_CR17 9755_CR18 9755_CR19 T Zaslavsky (9755_CR31) 1989; 47 F Wegner (9755_CR27) 2007; 19 C Borcea (9755_CR3) 2010; 466 T Tarnai (9755_CR25) 1980; 16 A Nixon (9755_CR15) 2014; 6 J Owen (9755_CR16) 2010; 20 TS Tay (9755_CR26) 1985; 11 B Jackson (9755_CR7) 2005; 94 B Schulze (9755_CR22) 2015; 29 B Schulze (9755_CR21) 2010; 24 T Zaslavsky (9755_CR32) 1991; 51 JL Gross (9755_CR5) 1987 |
References_xml | – reference: KannoYOhsakiMMurotaKKatohNGroup symmetry in interior-point methods for semidefinite programOpt. Eng.2001229332010.1023/A:101536641631119802761035.90056 – reference: SchulzeBTanigawaSInfinitesimal rigidity of symmetric frameworksSIAM J. Discrete Math.20152931259128610.1137/1309471923374639 – reference: SchulzeBWhiteleyWThe orbit rigidity matrix of a symmetric frameworkDiscrete Comput. Geom.201146356159810.1007/s00454-010-9317-528269701235.05040 – reference: TanigawaSMatroids of gain graphs in discrete applied geometryTrans. Am. Math. Soc.201536720158597864110.1090/tran/64013403067 – reference: TarnaiTSimultaneous static and kinematic indeterminacy of space trusses with cyclic symmetryInt. J. Solids Struct.19801634735910.1016/0020-7683(80)90087-60433.73043 – reference: WhiteleyWCounting out to the flexibility of moleculesPhys. Biol.20052S116S12610.1088/1478-3975/2/4/S06 – reference: MalesteinJTheranLFrameworks with forced symmetry I: reflections and rotationsDiscrete Comput. Geom.20155433936710.1007/s00454-015-9692-z3372114 – reference: Ross, E.: Inductive constructions for frameworks on a two-dimensional fixed torus. Discrete Comput. Geom. 54, 78–109 (2015) – reference: WhiteleyWSome Matroids from Discrete Applied Geometry. Matroid Theory (Seattle, WA, 1995), 171–3111996Providence, RIAmerican Mathematical Society – reference: Berg, A.R., Jordán, T.: Algorithms for graph rigidity and scene analysis. In: Proceedings of 11th Annual European Symposium on Algorithms (ESA). LNCS, vol. 2832, pp. 78–89 (2003) – reference: Schulze, B.: Combinatorial and geometric rigidity with symmetry constraints. PhD Thesis, York University (2009). http://www.math.yorku.ca/Who/Faculty/Whiteley/SchulzePhDthesis.pdf – reference: Berardi, M., Heeringa, B., Malestein, J., Theran, L.: Rigid components in fixed-lattice and cone frameworks. In: Proceedings of CCCG 2011, Toronto, p. 6 (2011) – reference: SchulzeBSymmetry as a sufficient condition for a finite flexSIAM J. Discrete Math.20102441291131210.1137/09077623827359241218.52020 – reference: Nixon, A., Schulze, B.: Symmetry-forced rigidity of frameworks on surfaces. arXiv:1312.1480 (2013) – reference: Ikeshita, R., Tanigawa, S.: Count matroids of group-labeled graphs. arXiv:1507.01259 (2015) – reference: FrankAConnections in Combinatorial Optimization2011OxfordOxford University Press1228.90001 – reference: LeeAStreinuIPebble game algorithms and sparse graphsDiscrete Math.200830881425143710.1016/j.disc.2007.07.10423920601136.05062 – reference: WegnerFRigid-unit modes in tetrahedral crystalsJ. Phys. Condens. Matter2007194040621810.1088/0953-8984/19/40/406218 – reference: MalesteinJTheranLGeneric combinatorial rigidity of periodic frameworksAdv. Math.2013233129133110.1016/j.aim.2012.10.00729956731268.52021 – reference: JacksonBJordánTConnected rigidity matroids and unique realizations of graphsJ. Comb. Theory Ser. B20059412910.1016/j.jctb.2004.11.0021076.05021 – reference: MalesteinJTheranLFrameworks with forced symmetry II: orientation-preserving crystallographic groupsGeom. Dedicata201417021926210.1007/s10711-013-9878-631994861292.52025 – reference: SchulzeBSymmetric versions of Laman’s theoremDiscrete Comput. Geom.201044494697210.1007/s00454-009-9231-x27280431211.52023 – reference: TayTSWhiteleyWGenerating isostatic graphsStruct. Topol.19851121688049770574.51025 – reference: BorceaCStreinuIPeriodic frameworks and flexibilityProc. R. Soc. Lond. A201046621212633264910.1098/rspa.2009.067626716871211.82053 – reference: Jordán, T., Kaszanitzky, V., Tanigawa, S.: Gain-sparsity and symmetry-forced rigidity in the plane. EGRES Technical Report, TR-2012-17 (2012) – reference: WunderlichWProjective invariance of shaky structuresActa Mech.19824217118110.1007/BF011771906607100526.51018 – reference: NixonASchulzeBSljokaAWhiteleyWSymmetry adapted Assur decompositionsSymmetry20146351655010.3390/sym60305163266577 – reference: GrossJLTuckerTWTopological Graph Theory1987New YorkDover0621.05013 – reference: Ross, E.: Geometric and combinatorial rigidity of periodic frameworks as graphs on the torus. PhD Thesis, York University, Toronto (2011). http://www.math.yorku.ca/~ejross/RossThesis.pdf – reference: ZaslavskyTBiased graphs. I. Bias, balance, and gainsJ. Comb. Theory Ser. B1989471325210.1016/0095-8956(89)90063-410077120714.05057 – reference: OwenJPowerSFrameworks, symmetry and rigidityInt. J. Comput. Geom. Appl.20102072375010.1142/S021819591000350527474331222.52022 – reference: ZaslavskyTBiased graphs. II. The three matroidsJ. Comb. Theory Ser. B1991511467210.1016/0095-8956(91)90005-510886260763.05096 – ident: 9755_CR18 – volume: 11 start-page: 21 year: 1985 ident: 9755_CR26 publication-title: Struct. Topol. – volume: 19 start-page: 406218 issue: 40 year: 2007 ident: 9755_CR27 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/19/40/406218 – volume-title: Connections in Combinatorial Optimization year: 2011 ident: 9755_CR4 – volume: 51 start-page: 46 issue: 1 year: 1991 ident: 9755_CR32 publication-title: J. Comb. Theory Ser. B doi: 10.1016/0095-8956(91)90005-5 – ident: 9755_CR1 – ident: 9755_CR2 doi: 10.1007/978-3-540-39658-1_10 – volume: 16 start-page: 347 year: 1980 ident: 9755_CR25 publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(80)90087-6 – volume-title: Some Matroids from Discrete Applied Geometry. Matroid Theory (Seattle, WA, 1995), 171–311 year: 1996 ident: 9755_CR28 – volume-title: Topological Graph Theory year: 1987 ident: 9755_CR5 – volume: 94 start-page: 1 year: 2005 ident: 9755_CR7 publication-title: J. Comb. Theory Ser. B doi: 10.1016/j.jctb.2004.11.002 – ident: 9755_CR19 – ident: 9755_CR17 – volume: 54 start-page: 339 year: 2015 ident: 9755_CR13 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-015-9692-z – volume: 2 start-page: S116 year: 2005 ident: 9755_CR29 publication-title: Phys. Biol. doi: 10.1088/1478-3975/2/4/S06 – volume: 308 start-page: 1425 issue: 8 year: 2008 ident: 9755_CR10 publication-title: Discrete Math. doi: 10.1016/j.disc.2007.07.104 – volume: 233 start-page: 291 issue: 1 year: 2013 ident: 9755_CR11 publication-title: Adv. Math. doi: 10.1016/j.aim.2012.10.007 – volume: 29 start-page: 1259 issue: 3 year: 2015 ident: 9755_CR22 publication-title: SIAM J. Discrete Math. doi: 10.1137/130947192 – volume: 24 start-page: 1291 issue: 4 year: 2010 ident: 9755_CR21 publication-title: SIAM J. Discrete Math. doi: 10.1137/090776238 – volume: 170 start-page: 219 year: 2014 ident: 9755_CR12 publication-title: Geom. Dedicata doi: 10.1007/s10711-013-9878-6 – volume: 20 start-page: 723 year: 2010 ident: 9755_CR16 publication-title: Int. J. Comput. Geom. Appl. doi: 10.1142/S0218195910003505 – volume: 46 start-page: 561 issue: 3 year: 2011 ident: 9755_CR23 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-010-9317-5 – volume: 466 start-page: 2633 issue: 2121 year: 2010 ident: 9755_CR3 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.2009.0676 – ident: 9755_CR8 – volume: 42 start-page: 171 year: 1982 ident: 9755_CR30 publication-title: Acta Mech. doi: 10.1007/BF01177190 – ident: 9755_CR6 – volume: 6 start-page: 516 issue: 3 year: 2014 ident: 9755_CR15 publication-title: Symmetry doi: 10.3390/sym6030516 – volume: 44 start-page: 946 issue: 4 year: 2010 ident: 9755_CR20 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-009-9231-x – volume: 2 start-page: 293 year: 2001 ident: 9755_CR9 publication-title: Opt. Eng. doi: 10.1023/A:1015366416311 – volume: 47 start-page: 32 issue: 1 year: 1989 ident: 9755_CR31 publication-title: J. Comb. Theory Ser. B doi: 10.1016/0095-8956(89)90063-4 – volume: 367 start-page: 8597 issue: 2015 year: 2015 ident: 9755_CR24 publication-title: Trans. Am. Math. Soc. doi: 10.1090/tran/6401 – ident: 9755_CR14 |
SSID | ssj0004908 |
Score | 2.2364094 |
Snippet | We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 314 |
SubjectTerms | Combinatorial analysis Combinatorics Computational geometry Computational Mathematics and Numerical Analysis Gain Geometry Graph theory Graphs Mathematics Mathematics and Statistics Planes Rigidity Symmetry |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1Be4EDlAIlUFCQOIEs7MRfOSGoulRIrVBLpd4iO_ZCpDa77G4P_fd4HCdlqdizx5I9M7bHnvF7AO-c5dY45YijShFupSeGTxnR3Gr8syd0ROA7PpFH5_zbhbhID27LVFY57Ilxo3azBt_IPzIlY1JOs0_z3wRZozC7mig07sN22IJ1uHxtfzk8-X56-zOyipx06HYEgUuGvCbtYUQFVmAIUikhCFs_me6Em3erJv9JncYTabIDj1IomX_ubf8E7vluFx4PNA15WrW78PB4hGZdPgX11bQdOZubWI2Rm87lZzdXV361uCGT2aLxLj9tf7YOG9suDz1zJDbyz-B8cvjj4Igk9gTSCFmtiDGVY46F-4Sh3BdeUGMFbSoMiajm01JR05QlV9xIZm0QKZwtp4XTwjobjvLnsNXNOv8CcmF0VcjKirJwIeCotJoKIS03TEvrqM-ADpqrmwQtjgwXl_UIihyVXQdl16jsmmXwfuwy73E1NgnvD-ao0xJb1rcOkcHbsTksDsx4BLXMrlEmhKcYsakNMuGChQzMqsxgr7fwOKIw6fijMgO1ZvtRAMG511u69lcE6Q56RUK3DD4MXvLX0P830ZebJ_oKHoR4TfYlcPuwtVpc-9chJlrZN8nx_wBCNAZ6 priority: 102 providerName: ProQuest |
Title | Gain-Sparsity and Symmetry-Forced Rigidity in the Plane |
URI | https://link.springer.com/article/10.1007/s00454-015-9755-1 https://www.ncbi.nlm.nih.gov/pubmed/26900195 https://www.proquest.com/docview/1764287081 https://www.proquest.com/docview/1793251597 https://www.proquest.com/docview/1826654773 https://pubmed.ncbi.nlm.nih.gov/PMC4749723 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-x8rI9sME-CHRVkHgCWcqHv_LYVW0RCISASvAU2bG7VRopassD_z1nNwkrMCSeIsXnyL7zxXe6u98B7BtNtTLCEBMJQajmlig6jomkWrqaPSY9At_pGT8a0eNrdl3Vcc_rbPc6JOn_1E2xm0eLQ9eXkUwwRtDlWWfOdcdDPEq6T8WQmW9D504acVgldSjztU-sXkYvLMyXiZLPoqX-Ehp8gY3Kegy7S3Fvwpott-Bz3ZkhrBR1Cz6dNmis868ghuj-k8s75RMwQlWa8PLh9tYuZg9kMJ0V1oQXk98T4wYnZYgzQ9fLyH6D0aB_1TsiVcMEUjCeLYhSmYlNjC6EiqhNLIuUZlGROSsoknScikgVaUoFVTzWGkkSo9NxYiTTRuPt_R1a5bS02xAyJbOEZ5qliUEbI5NizBjXVMWSaxPZAKKac3lRoYm7phZ_8wYH2TM7R2bnjtl5HMBBM-VuCaXxFnG7FkdeadU8jwX3gVmJw3vNMOqDC3IgW6b3jgYtUmekiTdo0KdyTZdFGsCPpYSbFeGmfRFlAGJF9g2Bw-NeHSknfzwuN_LV9XAL4LA-Jf8s_X8b3XkX9S58RIuNL5Pg2tBazO7tT7SKFroDH-Rg2IH17vDmpI_PX_2z8wt82-O9jteQR0OZBow |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAceJRXoICR4AKycBI7dg4IIWC7pd0eaCv1ltqxFyLR7LK7Fdo_xW_E4zzKUrG3nj2R7PGM8yUz_j6Al9Zwo6201DIpKTeZo5qPY6q4UXhnT6jAwDc6yIbH_MuJONmA391dGGyr7M7EcFDbSYn_yN_GMgtFORW_n_6kqBqF1dVOQqMJiz23_OU_2ebvdj_5_X2VJIPPRx-HtFUVoKXI8gXVOrexjT3O1oy7xAmmjWBljlCBKT5OJdNlmnLJdRYb400Sa9JxYpUw1gSiA3_kX-NpmmNGqcHOxT3MPCjgYZBTpEnpqqisIS0V2O8haC6FoPHqe_ASuL3co_lPoTa8_wZ34FYLXMmHJtLuwoart-B2JwpB2jNiC26OeiLY-T2QO7qq6eFUh94PomtLDpdnZ24xW9LBZFY6S75W3yqLg1VN_JMEZZTcfTi-Eq8-gM16UrtHQIRWeZLlRqSJ9fAmV3IsRGa4jlVmLHMRsM5zRdkSmaOexo-ip2AOzi68swt0dhFH8Lp_ZNqweKwz3u62o2gTel5chF8EL_phn4pYX_FumZyjjQfDiA_lGhv_OYd6zzKN4GGzw_2M_KLD_c0I5Mre9wZIBb46UlffAyW49yvKx0XwpouSv6b-v4U-Xr_Q53B9eDTaL_Z3D_aewA2PFLOm-W4bNhezc_fUo7GFeRZSgMDpVefcHwsYQYY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBgUd5BQoECS4gq05ix84BIaBdWkpXVUul3oIdOxCJZpfdrdD-NX4dHudRloq99eyJFI9nnM-Z8fcBvDCaaWWEIYYKQZhOLVGsjIhkWuKdPS49A9_BKN09YZ9O-eka_O7uwmBbZbcn-o3ajAv8R74VidQX5WS0VbZtEYfbw7eTnwQVpLDS2slpNCGybxe_3PFt9mZv2631yzge7nz5sEtahQFS8DSbE6UyE5nIYW5FmY0tp0pzWmQIG6hkZSKoKpKECabSSGtnEhudlLGRXBvtSQ_c9r8u3KmIDmD9_c7o8OjiVmbm9fAw5AmSpnQ1VdpQmHLs_uAkE5yTaPmreAnqXu7Y_Kds67-Gw9tws4Wx4bsm7u7Amq034FYnERG2O8YG3DjoaWFnd0F8VFVNjifKd4KEqjbh8eLszM6nCzIcTwtrwqPqW2VwsKpD92SIokr2HpxciV_vw6Ae1_YhhFzJLE4zzZPYOLCTSVFynmqmIplqQ20AtPNcXrS05qiu8SPvCZm9s3Pn7BydnUcBvOofmTScHquMN7vlyNv0nuUXwRjA837YJSZWW5xbxudo46AxokWxwsYd7lD9WSQBPGhWuH8jN2l_mzMAsbT2vQESgy-P1NV3TxDu_IpicgG87qLkr1f_30QfrZ7oM7jm8i3_vDfafwzXHWxMm068TRjMp-f2iYNmc_20zYEQvl512v0BrsBHGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gain-Sparsity+and+Symmetry-Forced+Rigidity+in+the+Plane&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Jord%C3%A1n%2C+Tibor&rft.au=Kaszanitzky%2C+Vikt%C3%B3ria+E.&rft.au=Tanigawa%2C+Shin-ichi&rft.date=2016-03-01&rft.pub=Springer+US&rft.issn=0179-5376&rft.eissn=1432-0444&rft.volume=55&rft.issue=2&rft.spage=314&rft.epage=372&rft_id=info:doi/10.1007%2Fs00454-015-9755-1&rft.externalDocID=10_1007_s00454_015_9755_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon |