Gain-Sparsity and Symmetry-Forced Rigidity in the Plane

We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry constraint. We provide combinatorial characterizations for symmetry-forced rigidity of such structures with rotation symmetry or dihedral sym...

Full description

Saved in:
Bibliographic Details
Published inDiscrete & computational geometry Vol. 55; no. 2; pp. 314 - 372
Main Authors Jordán, Tibor, Kaszanitzky, Viktória E., Tanigawa, Shin-ichi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry constraint. We provide combinatorial characterizations for symmetry-forced rigidity of such structures with rotation symmetry or dihedral symmetry of order 2 k with odd k , unifying and extending previous work on this subject. We also explore the matroidal background of our results and show that the matroids induced by the row independence of the orbit matrices of the symmetric frameworks are isomorphic to gain sparsity matroids defined on the quotient graph of the framework, whose edges are labeled by elements of the corresponding symmetry group. The proofs are based on new Henneberg type inductive constructions of the gain graphs that correspond to the bases of the matroids in question, which can also be seen as symmetry preserving graph operations in the original graph.
AbstractList We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry constraint. We provide combinatorial characterizations for symmetry-forced rigidity of such structures with rotation symmetry or dihedral symmetry of order 2 k with odd k , unifying and extending previous work on this subject. We also explore the matroidal background of our results and show that the matroids induced by the row independence of the orbit matrices of the symmetric frameworks are isomorphic to gain sparsity matroids defined on the quotient graph of the framework, whose edges are labeled by elements of the corresponding symmetry group. The proofs are based on new Henneberg type inductive constructions of the gain graphs that correspond to the bases of the matroids in question, which can also be seen as symmetry preserving graph operations in the original graph.
We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry constraint. We provide combinatorial characterizations for symmetry-forced rigidity of such structures with rotation symmetry or dihedral symmetry of order 2 with odd , unifying and extending previous work on this subject. We also explore the matroidal background of our results and show that the matroids induced by the row independence of the orbit matrices of the symmetric frameworks are isomorphic to gain sparsity matroids defined on the quotient graph of the framework, whose edges are labeled by elements of the corresponding symmetry group. The proofs are based on new Henneberg type inductive constructions of the gain graphs that correspond to the bases of the matroids in question, which can also be seen as symmetry preserving graph operations in the original graph.
We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry constraint. We provide combinatorial characterizations for symmetry-forced rigidity of such structures with rotation symmetry or dihedral symmetry of order 2k with odd k, unifying and extending previous work on this subject. We also explore the matroidal background of our results and show that the matroids induced by the row independence of the orbit matrices of the symmetric frameworks are isomorphic to gain sparsity matroids defined on the quotient graph of the framework, whose edges are labeled by elements of the corresponding symmetry group. The proofs are based on new Henneberg type inductive constructions of the gain graphs that correspond to the bases of the matroids in question, which can also be seen as symmetry preserving graph operations in the original graph.
Author Tanigawa, Shin-ichi
Kaszanitzky, Viktória E.
Jordán, Tibor
Author_xml – sequence: 1
  givenname: Tibor
  surname: Jordán
  fullname: Jordán, Tibor
  organization: Department of Operations Research, Eötvös University, and the MTA-ELTE Egerváry Research Group on Combinatorial Optimization
– sequence: 2
  givenname: Viktória E.
  surname: Kaszanitzky
  fullname: Kaszanitzky, Viktória E.
  organization: Department of Operations Research, Eötvös University, Department of Mathematics and Statistics, Lancaster University
– sequence: 3
  givenname: Shin-ichi
  surname: Tanigawa
  fullname: Tanigawa, Shin-ichi
  email: tanigawa@kurims.kyoto-u.ac.jp
  organization: Research Institute for Mathematical Sciences, Kyoto University, Centrum Wiskunde & Informatica (CWI)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26900195$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9LHDEUxYNYdLV-gL6UAV_6kvbm32TyUihSbUFo0focMpPsGplJ1mRW2G_fDLvKKig-5eH-zsm59xyh_RCDQ-gTga8EQH7LAFxwDERgJYXAZA_NCGcUA-d8H82ASIUFk_UhOsr5DgquoDlAh7RWAESJGZIXxgd8vTQp-3FdmWCr6_UwuDGt8XlMnbPVlV94Ow19qMZbV_3tTXAf0Ye56bM72b7H6Ob857-zX_jyz8Xvsx-XuBO1GrExyhJLhKwNcEedANMK6BRpWEnC50yC6RjjkpuatG1BqG3ZnNpGtLYFyo7R943vctUOznYujMn0epn8YNJaR-P180nwt3oRH3SxVJKyYvBla5Di_crlUQ8-d66floirrElD61pwKd-BSsWoIELJgp6-QO_iKoVyiULVnDYSGlKoz7vhn1I_nr8AZAN0Keac3PwJIaCnivWmYl0q1lPFejKVLzSdH83o47S_799U0o0yl1_CwqWd0K-K_gPH57g1
CODEN DCGEER
CitedBy_id crossref_primary_10_1016_j_ifacol_2023_10_301
crossref_primary_10_1016_j_jmaa_2020_124895
crossref_primary_10_1137_20M1346961
crossref_primary_10_1016_j_ejc_2022_103639
crossref_primary_10_1016_j_jsc_2018_02_004
crossref_primary_10_1007_s00454_019_00135_5
crossref_primary_10_1016_j_ijsolstr_2023_112492
crossref_primary_10_1007_s00493_016_3469_8
crossref_primary_10_1007_s00454_020_00198_9
crossref_primary_10_1016_j_jctb_2020_09_009
crossref_primary_10_1016_j_laa_2020_08_004
crossref_primary_10_1137_17M1116088
Cites_doi 10.1088/0953-8984/19/40/406218
10.1016/0095-8956(91)90005-5
10.1007/978-3-540-39658-1_10
10.1016/0020-7683(80)90087-6
10.1016/j.jctb.2004.11.002
10.1007/s00454-015-9692-z
10.1088/1478-3975/2/4/S06
10.1016/j.disc.2007.07.104
10.1016/j.aim.2012.10.007
10.1137/130947192
10.1137/090776238
10.1007/s10711-013-9878-6
10.1142/S0218195910003505
10.1007/s00454-010-9317-5
10.1098/rspa.2009.0676
10.1007/BF01177190
10.3390/sym6030516
10.1007/s00454-009-9231-x
10.1023/A:1015366416311
10.1016/0095-8956(89)90063-4
10.1090/tran/6401
ContentType Journal Article
Copyright The Author(s) 2016
Springer Science+Business Media New York 2016
Copyright_xml – notice: The Author(s) 2016
– notice: Springer Science+Business Media New York 2016
DBID C6C
AAYXX
CITATION
NPM
3V.
7SC
7TB
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
5PM
DOI 10.1007/s00454-015-9755-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Research Library Prep
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1432-0444
EndPage 372
ExternalDocumentID PMC4749723
3948336671
26900195
10_1007_s00454_015_9755_1
Genre Journal Article
Feature
GrantInformation_xml – fundername: Országos Tudományos Kutatási Alapprogramok
  grantid: CK 80124
  funderid: http://dx.doi.org/10.13039/501100003549
– fundername: Japan Society for the Promotion of Science
  grantid: 24740058
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Országos Tudományos Kutatási Alapprogramok
  grantid: K81472
  funderid: http://dx.doi.org/10.13039/501100003549
– fundername: ;
  grantid: 24740058
– fundername: ;
  grantid: CK 80124
– fundername: ;
  grantid: K81472
GroupedDBID -52
-5D
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.4S
.86
.DC
06D
0R~
0VY
199
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
88I
8AO
8FE
8FG
8FW
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C1A
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KQ8
L6V
LAS
LLZTM
LO0
M0N
M2O
M2P
M4Y
M7S
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P62
P9R
PADUT
PF0
PKN
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YIN
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
NPM
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c569t-aa9d1d1576a04e2e50ab50c91839084f370ac33474a61bb4e22db3f2d85bdb023
IEDL.DBID U2A
ISSN 0179-5376
IngestDate Thu Aug 21 13:46:45 EDT 2025
Fri Jul 11 02:07:26 EDT 2025
Tue Aug 05 11:04:12 EDT 2025
Sat Aug 23 13:48:30 EDT 2025
Mon Jul 21 06:03:51 EDT 2025
Tue Jul 01 01:43:56 EDT 2025
Thu Apr 24 22:56:58 EDT 2025
Fri Feb 21 02:43:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Frame matroids
Infinitesimal rigidity
Frameworks
Primary 52C25
Group-labeled graphs
Secondary 05B35
68R10
Rigidity matroids
Symmetry
Rigidity of graphs
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-aa9d1d1576a04e2e50ab50c91839084f370ac33474a61bb4e22db3f2d85bdb023
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Editor in Charge: Günter M. Ziegler
OpenAccessLink https://link.springer.com/10.1007/s00454-015-9755-1
PMID 26900195
PQID 1764287081
PQPubID 31658
PageCount 59
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4749723
proquest_miscellaneous_1826654773
proquest_miscellaneous_1793251597
proquest_journals_1764287081
pubmed_primary_26900195
crossref_primary_10_1007_s00454_015_9755_1
crossref_citationtrail_10_1007_s00454_015_9755_1
springer_journals_10_1007_s00454_015_9755_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Discrete & computational geometry
PublicationTitleAbbrev Discrete Comput Geom
PublicationTitleAlternate Discrete Comput Geom
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References TarnaiTSimultaneous static and kinematic indeterminacy of space trusses with cyclic symmetryInt. J. Solids Struct.19801634735910.1016/0020-7683(80)90087-60433.73043
OwenJPowerSFrameworks, symmetry and rigidityInt. J. Comput. Geom. Appl.20102072375010.1142/S021819591000350527474331222.52022
Schulze, B.: Combinatorial and geometric rigidity with symmetry constraints. PhD Thesis, York University (2009). http://www.math.yorku.ca/Who/Faculty/Whiteley/SchulzePhDthesis.pdf
MalesteinJTheranLGeneric combinatorial rigidity of periodic frameworksAdv. Math.2013233129133110.1016/j.aim.2012.10.00729956731268.52021
Berardi, M., Heeringa, B., Malestein, J., Theran, L.: Rigid components in fixed-lattice and cone frameworks. In: Proceedings of CCCG 2011, Toronto, p. 6 (2011)
SchulzeBSymmetric versions of Laman’s theoremDiscrete Comput. Geom.201044494697210.1007/s00454-009-9231-x27280431211.52023
Ross, E.: Geometric and combinatorial rigidity of periodic frameworks as graphs on the torus. PhD Thesis, York University, Toronto (2011). http://www.math.yorku.ca/~ejross/RossThesis.pdf
SchulzeBTanigawaSInfinitesimal rigidity of symmetric frameworksSIAM J. Discrete Math.20152931259128610.1137/1309471923374639
BorceaCStreinuIPeriodic frameworks and flexibilityProc. R. Soc. Lond. A201046621212633264910.1098/rspa.2009.067626716871211.82053
FrankAConnections in Combinatorial Optimization2011OxfordOxford University Press1228.90001
TayTSWhiteleyWGenerating isostatic graphsStruct. Topol.19851121688049770574.51025
WhiteleyWSome Matroids from Discrete Applied Geometry. Matroid Theory (Seattle, WA, 1995), 171–3111996Providence, RIAmerican Mathematical Society
MalesteinJTheranLFrameworks with forced symmetry I: reflections and rotationsDiscrete Comput. Geom.20155433936710.1007/s00454-015-9692-z3372114
NixonASchulzeBSljokaAWhiteleyWSymmetry adapted Assur decompositionsSymmetry20146351655010.3390/sym60305163266577
TanigawaSMatroids of gain graphs in discrete applied geometryTrans. Am. Math. Soc.201536720158597864110.1090/tran/64013403067
Ikeshita, R., Tanigawa, S.: Count matroids of group-labeled graphs. arXiv:1507.01259 (2015)
WegnerFRigid-unit modes in tetrahedral crystalsJ. Phys. Condens. Matter2007194040621810.1088/0953-8984/19/40/406218
Berg, A.R., Jordán, T.: Algorithms for graph rigidity and scene analysis. In: Proceedings of 11th Annual European Symposium on Algorithms (ESA). LNCS, vol. 2832, pp. 78–89 (2003)
MalesteinJTheranLFrameworks with forced symmetry II: orientation-preserving crystallographic groupsGeom. Dedicata201417021926210.1007/s10711-013-9878-631994861292.52025
WhiteleyWCounting out to the flexibility of moleculesPhys. Biol.20052S116S12610.1088/1478-3975/2/4/S06
JacksonBJordánTConnected rigidity matroids and unique realizations of graphsJ. Comb. Theory Ser. B20059412910.1016/j.jctb.2004.11.0021076.05021
ZaslavskyTBiased graphs. I. Bias, balance, and gainsJ. Comb. Theory Ser. B1989471325210.1016/0095-8956(89)90063-410077120714.05057
Nixon, A., Schulze, B.: Symmetry-forced rigidity of frameworks on surfaces. arXiv:1312.1480 (2013)
ZaslavskyTBiased graphs. II. The three matroidsJ. Comb. Theory Ser. B1991511467210.1016/0095-8956(91)90005-510886260763.05096
GrossJLTuckerTWTopological Graph Theory1987New YorkDover0621.05013
WunderlichWProjective invariance of shaky structuresActa Mech.19824217118110.1007/BF011771906607100526.51018
Ross, E.: Inductive constructions for frameworks on a two-dimensional fixed torus. Discrete Comput. Geom. 54, 78–109 (2015)
Jordán, T., Kaszanitzky, V., Tanigawa, S.: Gain-sparsity and symmetry-forced rigidity in the plane. EGRES Technical Report, TR-2012-17 (2012)
SchulzeBWhiteleyWThe orbit rigidity matrix of a symmetric frameworkDiscrete Comput. Geom.201146356159810.1007/s00454-010-9317-528269701235.05040
SchulzeBSymmetry as a sufficient condition for a finite flexSIAM J. Discrete Math.20102441291131210.1137/09077623827359241218.52020
KannoYOhsakiMMurotaKKatohNGroup symmetry in interior-point methods for semidefinite programOpt. Eng.2001229332010.1023/A:101536641631119802761035.90056
LeeAStreinuIPebble game algorithms and sparse graphsDiscrete Math.200830881425143710.1016/j.disc.2007.07.10423920601136.05062
9755_CR1
9755_CR2
B Schulze (9755_CR23) 2011; 46
9755_CR6
9755_CR8
A Frank (9755_CR4) 2011
W Wunderlich (9755_CR30) 1982; 42
Y Kanno (9755_CR9) 2001; 2
A Lee (9755_CR10) 2008; 308
B Schulze (9755_CR20) 2010; 44
W Whiteley (9755_CR28) 1996
J Malestein (9755_CR11) 2013; 233
W Whiteley (9755_CR29) 2005; 2
S Tanigawa (9755_CR24) 2015; 367
9755_CR14
J Malestein (9755_CR12) 2014; 170
J Malestein (9755_CR13) 2015; 54
9755_CR17
9755_CR18
9755_CR19
T Zaslavsky (9755_CR31) 1989; 47
F Wegner (9755_CR27) 2007; 19
C Borcea (9755_CR3) 2010; 466
T Tarnai (9755_CR25) 1980; 16
A Nixon (9755_CR15) 2014; 6
J Owen (9755_CR16) 2010; 20
TS Tay (9755_CR26) 1985; 11
B Jackson (9755_CR7) 2005; 94
B Schulze (9755_CR22) 2015; 29
B Schulze (9755_CR21) 2010; 24
T Zaslavsky (9755_CR32) 1991; 51
JL Gross (9755_CR5) 1987
References_xml – reference: KannoYOhsakiMMurotaKKatohNGroup symmetry in interior-point methods for semidefinite programOpt. Eng.2001229332010.1023/A:101536641631119802761035.90056
– reference: SchulzeBTanigawaSInfinitesimal rigidity of symmetric frameworksSIAM J. Discrete Math.20152931259128610.1137/1309471923374639
– reference: SchulzeBWhiteleyWThe orbit rigidity matrix of a symmetric frameworkDiscrete Comput. Geom.201146356159810.1007/s00454-010-9317-528269701235.05040
– reference: TanigawaSMatroids of gain graphs in discrete applied geometryTrans. Am. Math. Soc.201536720158597864110.1090/tran/64013403067
– reference: TarnaiTSimultaneous static and kinematic indeterminacy of space trusses with cyclic symmetryInt. J. Solids Struct.19801634735910.1016/0020-7683(80)90087-60433.73043
– reference: WhiteleyWCounting out to the flexibility of moleculesPhys. Biol.20052S116S12610.1088/1478-3975/2/4/S06
– reference: MalesteinJTheranLFrameworks with forced symmetry I: reflections and rotationsDiscrete Comput. Geom.20155433936710.1007/s00454-015-9692-z3372114
– reference: Ross, E.: Inductive constructions for frameworks on a two-dimensional fixed torus. Discrete Comput. Geom. 54, 78–109 (2015)
– reference: WhiteleyWSome Matroids from Discrete Applied Geometry. Matroid Theory (Seattle, WA, 1995), 171–3111996Providence, RIAmerican Mathematical Society
– reference: Berg, A.R., Jordán, T.: Algorithms for graph rigidity and scene analysis. In: Proceedings of 11th Annual European Symposium on Algorithms (ESA). LNCS, vol. 2832, pp. 78–89 (2003)
– reference: Schulze, B.: Combinatorial and geometric rigidity with symmetry constraints. PhD Thesis, York University (2009). http://www.math.yorku.ca/Who/Faculty/Whiteley/SchulzePhDthesis.pdf
– reference: Berardi, M., Heeringa, B., Malestein, J., Theran, L.: Rigid components in fixed-lattice and cone frameworks. In: Proceedings of CCCG 2011, Toronto, p. 6 (2011)
– reference: SchulzeBSymmetry as a sufficient condition for a finite flexSIAM J. Discrete Math.20102441291131210.1137/09077623827359241218.52020
– reference: Nixon, A., Schulze, B.: Symmetry-forced rigidity of frameworks on surfaces. arXiv:1312.1480 (2013)
– reference: Ikeshita, R., Tanigawa, S.: Count matroids of group-labeled graphs. arXiv:1507.01259 (2015)
– reference: FrankAConnections in Combinatorial Optimization2011OxfordOxford University Press1228.90001
– reference: LeeAStreinuIPebble game algorithms and sparse graphsDiscrete Math.200830881425143710.1016/j.disc.2007.07.10423920601136.05062
– reference: WegnerFRigid-unit modes in tetrahedral crystalsJ. Phys. Condens. Matter2007194040621810.1088/0953-8984/19/40/406218
– reference: MalesteinJTheranLGeneric combinatorial rigidity of periodic frameworksAdv. Math.2013233129133110.1016/j.aim.2012.10.00729956731268.52021
– reference: JacksonBJordánTConnected rigidity matroids and unique realizations of graphsJ. Comb. Theory Ser. B20059412910.1016/j.jctb.2004.11.0021076.05021
– reference: MalesteinJTheranLFrameworks with forced symmetry II: orientation-preserving crystallographic groupsGeom. Dedicata201417021926210.1007/s10711-013-9878-631994861292.52025
– reference: SchulzeBSymmetric versions of Laman’s theoremDiscrete Comput. Geom.201044494697210.1007/s00454-009-9231-x27280431211.52023
– reference: TayTSWhiteleyWGenerating isostatic graphsStruct. Topol.19851121688049770574.51025
– reference: BorceaCStreinuIPeriodic frameworks and flexibilityProc. R. Soc. Lond. A201046621212633264910.1098/rspa.2009.067626716871211.82053
– reference: Jordán, T., Kaszanitzky, V., Tanigawa, S.: Gain-sparsity and symmetry-forced rigidity in the plane. EGRES Technical Report, TR-2012-17 (2012)
– reference: WunderlichWProjective invariance of shaky structuresActa Mech.19824217118110.1007/BF011771906607100526.51018
– reference: NixonASchulzeBSljokaAWhiteleyWSymmetry adapted Assur decompositionsSymmetry20146351655010.3390/sym60305163266577
– reference: GrossJLTuckerTWTopological Graph Theory1987New YorkDover0621.05013
– reference: Ross, E.: Geometric and combinatorial rigidity of periodic frameworks as graphs on the torus. PhD Thesis, York University, Toronto (2011). http://www.math.yorku.ca/~ejross/RossThesis.pdf
– reference: ZaslavskyTBiased graphs. I. Bias, balance, and gainsJ. Comb. Theory Ser. B1989471325210.1016/0095-8956(89)90063-410077120714.05057
– reference: OwenJPowerSFrameworks, symmetry and rigidityInt. J. Comput. Geom. Appl.20102072375010.1142/S021819591000350527474331222.52022
– reference: ZaslavskyTBiased graphs. II. The three matroidsJ. Comb. Theory Ser. B1991511467210.1016/0095-8956(91)90005-510886260763.05096
– ident: 9755_CR18
– volume: 11
  start-page: 21
  year: 1985
  ident: 9755_CR26
  publication-title: Struct. Topol.
– volume: 19
  start-page: 406218
  issue: 40
  year: 2007
  ident: 9755_CR27
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/19/40/406218
– volume-title: Connections in Combinatorial Optimization
  year: 2011
  ident: 9755_CR4
– volume: 51
  start-page: 46
  issue: 1
  year: 1991
  ident: 9755_CR32
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/0095-8956(91)90005-5
– ident: 9755_CR1
– ident: 9755_CR2
  doi: 10.1007/978-3-540-39658-1_10
– volume: 16
  start-page: 347
  year: 1980
  ident: 9755_CR25
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(80)90087-6
– volume-title: Some Matroids from Discrete Applied Geometry. Matroid Theory (Seattle, WA, 1995), 171–311
  year: 1996
  ident: 9755_CR28
– volume-title: Topological Graph Theory
  year: 1987
  ident: 9755_CR5
– volume: 94
  start-page: 1
  year: 2005
  ident: 9755_CR7
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/j.jctb.2004.11.002
– ident: 9755_CR19
– ident: 9755_CR17
– volume: 54
  start-page: 339
  year: 2015
  ident: 9755_CR13
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-015-9692-z
– volume: 2
  start-page: S116
  year: 2005
  ident: 9755_CR29
  publication-title: Phys. Biol.
  doi: 10.1088/1478-3975/2/4/S06
– volume: 308
  start-page: 1425
  issue: 8
  year: 2008
  ident: 9755_CR10
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2007.07.104
– volume: 233
  start-page: 291
  issue: 1
  year: 2013
  ident: 9755_CR11
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2012.10.007
– volume: 29
  start-page: 1259
  issue: 3
  year: 2015
  ident: 9755_CR22
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/130947192
– volume: 24
  start-page: 1291
  issue: 4
  year: 2010
  ident: 9755_CR21
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/090776238
– volume: 170
  start-page: 219
  year: 2014
  ident: 9755_CR12
  publication-title: Geom. Dedicata
  doi: 10.1007/s10711-013-9878-6
– volume: 20
  start-page: 723
  year: 2010
  ident: 9755_CR16
  publication-title: Int. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195910003505
– volume: 46
  start-page: 561
  issue: 3
  year: 2011
  ident: 9755_CR23
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-010-9317-5
– volume: 466
  start-page: 2633
  issue: 2121
  year: 2010
  ident: 9755_CR3
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.2009.0676
– ident: 9755_CR8
– volume: 42
  start-page: 171
  year: 1982
  ident: 9755_CR30
  publication-title: Acta Mech.
  doi: 10.1007/BF01177190
– ident: 9755_CR6
– volume: 6
  start-page: 516
  issue: 3
  year: 2014
  ident: 9755_CR15
  publication-title: Symmetry
  doi: 10.3390/sym6030516
– volume: 44
  start-page: 946
  issue: 4
  year: 2010
  ident: 9755_CR20
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-009-9231-x
– volume: 2
  start-page: 293
  year: 2001
  ident: 9755_CR9
  publication-title: Opt. Eng.
  doi: 10.1023/A:1015366416311
– volume: 47
  start-page: 32
  issue: 1
  year: 1989
  ident: 9755_CR31
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/0095-8956(89)90063-4
– volume: 367
  start-page: 8597
  issue: 2015
  year: 2015
  ident: 9755_CR24
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/6401
– ident: 9755_CR14
SSID ssj0004908
Score 2.2364094
Snippet We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 314
SubjectTerms Combinatorial analysis
Combinatorics
Computational geometry
Computational Mathematics and Numerical Analysis
Gain
Geometry
Graph theory
Graphs
Mathematics
Mathematics and Statistics
Planes
Rigidity
Symmetry
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1Be4EDlAIlUFCQOIEs7MRfOSGoulRIrVBLpd4iO_ZCpDa77G4P_fd4HCdlqdizx5I9M7bHnvF7AO-c5dY45YijShFupSeGTxnR3Gr8syd0ROA7PpFH5_zbhbhID27LVFY57Ilxo3azBt_IPzIlY1JOs0_z3wRZozC7mig07sN22IJ1uHxtfzk8-X56-zOyipx06HYEgUuGvCbtYUQFVmAIUikhCFs_me6Em3erJv9JncYTabIDj1IomX_ubf8E7vluFx4PNA15WrW78PB4hGZdPgX11bQdOZubWI2Rm87lZzdXV361uCGT2aLxLj9tf7YOG9suDz1zJDbyz-B8cvjj4Igk9gTSCFmtiDGVY46F-4Sh3BdeUGMFbSoMiajm01JR05QlV9xIZm0QKZwtp4XTwjobjvLnsNXNOv8CcmF0VcjKirJwIeCotJoKIS03TEvrqM-ADpqrmwQtjgwXl_UIihyVXQdl16jsmmXwfuwy73E1NgnvD-ao0xJb1rcOkcHbsTksDsx4BLXMrlEmhKcYsakNMuGChQzMqsxgr7fwOKIw6fijMgO1ZvtRAMG511u69lcE6Q56RUK3DD4MXvLX0P830ZebJ_oKHoR4TfYlcPuwtVpc-9chJlrZN8nx_wBCNAZ6
  priority: 102
  providerName: ProQuest
Title Gain-Sparsity and Symmetry-Forced Rigidity in the Plane
URI https://link.springer.com/article/10.1007/s00454-015-9755-1
https://www.ncbi.nlm.nih.gov/pubmed/26900195
https://www.proquest.com/docview/1764287081
https://www.proquest.com/docview/1793251597
https://www.proquest.com/docview/1826654773
https://pubmed.ncbi.nlm.nih.gov/PMC4749723
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-x8rI9sME-CHRVkHgCWcqHv_LYVW0RCISASvAU2bG7VRopassD_z1nNwkrMCSeIsXnyL7zxXe6u98B7BtNtTLCEBMJQajmlig6jomkWrqaPSY9At_pGT8a0eNrdl3Vcc_rbPc6JOn_1E2xm0eLQ9eXkUwwRtDlWWfOdcdDPEq6T8WQmW9D504acVgldSjztU-sXkYvLMyXiZLPoqX-Ehp8gY3Kegy7S3Fvwpott-Bz3ZkhrBR1Cz6dNmis868ghuj-k8s75RMwQlWa8PLh9tYuZg9kMJ0V1oQXk98T4wYnZYgzQ9fLyH6D0aB_1TsiVcMEUjCeLYhSmYlNjC6EiqhNLIuUZlGROSsoknScikgVaUoFVTzWGkkSo9NxYiTTRuPt_R1a5bS02xAyJbOEZ5qliUEbI5NizBjXVMWSaxPZAKKac3lRoYm7phZ_8wYH2TM7R2bnjtl5HMBBM-VuCaXxFnG7FkdeadU8jwX3gVmJw3vNMOqDC3IgW6b3jgYtUmekiTdo0KdyTZdFGsCPpYSbFeGmfRFlAGJF9g2Bw-NeHSknfzwuN_LV9XAL4LA-Jf8s_X8b3XkX9S58RIuNL5Pg2tBazO7tT7SKFroDH-Rg2IH17vDmpI_PX_2z8wt82-O9jteQR0OZBow
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAceJRXoICR4AKycBI7dg4IIWC7pd0eaCv1ltqxFyLR7LK7Fdo_xW_E4zzKUrG3nj2R7PGM8yUz_j6Al9Zwo6201DIpKTeZo5qPY6q4UXhnT6jAwDc6yIbH_MuJONmA391dGGyr7M7EcFDbSYn_yN_GMgtFORW_n_6kqBqF1dVOQqMJiz23_OU_2ebvdj_5_X2VJIPPRx-HtFUVoKXI8gXVOrexjT3O1oy7xAmmjWBljlCBKT5OJdNlmnLJdRYb400Sa9JxYpUw1gSiA3_kX-NpmmNGqcHOxT3MPCjgYZBTpEnpqqisIS0V2O8haC6FoPHqe_ASuL3co_lPoTa8_wZ34FYLXMmHJtLuwoart-B2JwpB2jNiC26OeiLY-T2QO7qq6eFUh94PomtLDpdnZ24xW9LBZFY6S75W3yqLg1VN_JMEZZTcfTi-Eq8-gM16UrtHQIRWeZLlRqSJ9fAmV3IsRGa4jlVmLHMRsM5zRdkSmaOexo-ip2AOzi68swt0dhFH8Lp_ZNqweKwz3u62o2gTel5chF8EL_phn4pYX_FumZyjjQfDiA_lGhv_OYd6zzKN4GGzw_2M_KLD_c0I5Mre9wZIBb46UlffAyW49yvKx0XwpouSv6b-v4U-Xr_Q53B9eDTaL_Z3D_aewA2PFLOm-W4bNhezc_fUo7GFeRZSgMDpVefcHwsYQYY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBgUd5BQoECS4gq05ix84BIaBdWkpXVUul3oIdOxCJZpfdrdD-NX4dHudRloq99eyJFI9nnM-Z8fcBvDCaaWWEIYYKQZhOLVGsjIhkWuKdPS49A9_BKN09YZ9O-eka_O7uwmBbZbcn-o3ajAv8R74VidQX5WS0VbZtEYfbw7eTnwQVpLDS2slpNCGybxe_3PFt9mZv2631yzge7nz5sEtahQFS8DSbE6UyE5nIYW5FmY0tp0pzWmQIG6hkZSKoKpKECabSSGtnEhudlLGRXBvtSQ_c9r8u3KmIDmD9_c7o8OjiVmbm9fAw5AmSpnQ1VdpQmHLs_uAkE5yTaPmreAnqXu7Y_Kds67-Gw9tws4Wx4bsm7u7Amq034FYnERG2O8YG3DjoaWFnd0F8VFVNjifKd4KEqjbh8eLszM6nCzIcTwtrwqPqW2VwsKpD92SIokr2HpxciV_vw6Ae1_YhhFzJLE4zzZPYOLCTSVFynmqmIplqQ20AtPNcXrS05qiu8SPvCZm9s3Pn7BydnUcBvOofmTScHquMN7vlyNv0nuUXwRjA837YJSZWW5xbxudo46AxokWxwsYd7lD9WSQBPGhWuH8jN2l_mzMAsbT2vQESgy-P1NV3TxDu_IpicgG87qLkr1f_30QfrZ7oM7jm8i3_vDfafwzXHWxMm068TRjMp-f2iYNmc_20zYEQvl512v0BrsBHGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gain-Sparsity+and+Symmetry-Forced+Rigidity+in+the+Plane&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Jord%C3%A1n%2C+Tibor&rft.au=Kaszanitzky%2C+Vikt%C3%B3ria+E.&rft.au=Tanigawa%2C+Shin-ichi&rft.date=2016-03-01&rft.pub=Springer+US&rft.issn=0179-5376&rft.eissn=1432-0444&rft.volume=55&rft.issue=2&rft.spage=314&rft.epage=372&rft_id=info:doi/10.1007%2Fs00454-015-9755-1&rft.externalDocID=10_1007_s00454_015_9755_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon