WO3 Photocatalyst Containing Copper Inactivates SARS-CoV-2 Pango Lineage A and Omicron BA.2 Variant in Visible Light and in Darkness
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Pho...
Saved in:
Published in | Pathogens (Basel) Vol. 11; no. 8; p. 922 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
16.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Photocatalysts are attractive tools for virus inactivation and are widely used as air purifiers and coating materials. However, photocatalysts are inactive in the dark, and some of them need to be excited with light of a specific wavelength. Therefore, photocatalysts that can effectively inactivate SARS-CoV-2 in indoor environments are needed. Here, we show that a WO3 photocatalyst containing copper inactivated the SARS-CoV-2 WK-521 strain (Pango lineage A) upon irradiation with white light in a time- and concentration-dependent manner. Additionally, this photocatalyst also inactivated SARS-CoV-2 in dark conditions due to the antiviral effect of copper. Furthermore, this photocatalyst inactivated not only the WK-521 strain but also the Omicron variant BA.2. These results indicate that the WO3 photocatalyst containing copper can inactivate indoor SARS-CoV-2 regardless of the variant, in visible light or darkness, making it an effective tool for controlling the spread of SARS-CoV-2. |
---|---|
AbstractList | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Photocatalysts are attractive tools for virus inactivation and are widely used as air purifiers and coating materials. However, photocatalysts are inactive in the dark, and some of them need to be excited with light of a specific wavelength. Therefore, photocatalysts that can effectively inactivate SARS-CoV-2 in indoor environments are needed. Here, we show that a WO3 photocatalyst containing copper inactivated the SARS-CoV-2 WK-521 strain (Pango lineage A) upon irradiation with white light in a time- and concentration-dependent manner. Additionally, this photocatalyst also inactivated SARS-CoV-2 in dark conditions due to the antiviral effect of copper. Furthermore, this photocatalyst inactivated not only the WK-521 strain but also the Omicron variant BA.2. These results indicate that the WO3 photocatalyst containing copper can inactivate indoor SARS-CoV-2 regardless of the variant, in visible light or darkness, making it an effective tool for controlling the spread of SARS-CoV-2.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Photocatalysts are attractive tools for virus inactivation and are widely used as air purifiers and coating materials. However, photocatalysts are inactive in the dark, and some of them need to be excited with light of a specific wavelength. Therefore, photocatalysts that can effectively inactivate SARS-CoV-2 in indoor environments are needed. Here, we show that a WO3 photocatalyst containing copper inactivated the SARS-CoV-2 WK-521 strain (Pango lineage A) upon irradiation with white light in a time- and concentration-dependent manner. Additionally, this photocatalyst also inactivated SARS-CoV-2 in dark conditions due to the antiviral effect of copper. Furthermore, this photocatalyst inactivated not only the WK-521 strain but also the Omicron variant BA.2. These results indicate that the WO3 photocatalyst containing copper can inactivate indoor SARS-CoV-2 regardless of the variant, in visible light or darkness, making it an effective tool for controlling the spread of SARS-CoV-2. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Photocatalysts are attractive tools for virus inactivation and are widely used as air purifiers and coating materials. However, photocatalysts are inactive in the dark, and some of them need to be excited with light of a specific wavelength. Therefore, photocatalysts that can effectively inactivate SARS-CoV-2 in indoor environments are needed. Here, we show that a WO3 photocatalyst containing copper inactivated the SARS-CoV-2 WK-521 strain (Pango lineage A) upon irradiation with white light in a time- and concentration-dependent manner. Additionally, this photocatalyst also inactivated SARS-CoV-2 in dark conditions due to the antiviral effect of copper. Furthermore, this photocatalyst inactivated not only the WK-521 strain but also the Omicron variant BA.2. These results indicate that the WO3 photocatalyst containing copper can inactivate indoor SARS-CoV-2 regardless of the variant, in visible light or darkness, making it an effective tool for controlling the spread of SARS-CoV-2. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Photocatalysts are attractive tools for virus inactivation and are widely used as air purifiers and coating materials. However, photocatalysts are inactive in the dark, and some of them need to be excited with light of a specific wavelength. Therefore, photocatalysts that can effectively inactivate SARS-CoV-2 in indoor environments are needed. Here, we show that a WO₃ photocatalyst containing copper inactivated the SARS-CoV-2 WK-521 strain (Pango lineage A) upon irradiation with white light in a time- and concentration-dependent manner. Additionally, this photocatalyst also inactivated SARS-CoV-2 in dark conditions due to the antiviral effect of copper. Furthermore, this photocatalyst inactivated not only the WK-521 strain but also the Omicron variant BA.2. These results indicate that the WO₃ photocatalyst containing copper can inactivate indoor SARS-CoV-2 regardless of the variant, in visible light or darkness, making it an effective tool for controlling the spread of SARS-CoV-2. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Photocatalysts are attractive tools for virus inactivation and are widely used as air purifiers and coating materials. However, photocatalysts are inactive in the dark, and some of them need to be excited with light of a specific wavelength. Therefore, photocatalysts that can effectively inactivate SARS-CoV-2 in indoor environments are needed. Here, we show that a WO 3 photocatalyst containing copper inactivated the SARS-CoV-2 WK-521 strain (Pango lineage A) upon irradiation with white light in a time- and concentration-dependent manner. Additionally, this photocatalyst also inactivated SARS-CoV-2 in dark conditions due to the antiviral effect of copper. Furthermore, this photocatalyst inactivated not only the WK-521 strain but also the Omicron variant BA.2. These results indicate that the WO 3 photocatalyst containing copper can inactivate indoor SARS-CoV-2 regardless of the variant, in visible light or darkness, making it an effective tool for controlling the spread of SARS-CoV-2. |
Author | Hagiwara, Kyoji Matsuura, Ryosuke Mori, Yosuke Kitamura, Toru Aida, Yoko Matsumoto, Yasunobu Maeda, Ken |
AuthorAffiliation | 1 Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan 4 Centre for Advanced Materials and Energy Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei 5 Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan 2 Department of Veterinary Science, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan 3 Advintage Co., Ltd., 1-1-1-705 Ebisuminami, Shibuya-ku, Tokyo 150-0022, Japan |
AuthorAffiliation_xml | – name: 2 Department of Veterinary Science, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan – name: 3 Advintage Co., Ltd., 1-1-1-705 Ebisuminami, Shibuya-ku, Tokyo 150-0022, Japan – name: 4 Centre for Advanced Materials and Energy Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei – name: 5 Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan – name: 1 Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan |
Author_xml | – sequence: 1 givenname: Ryosuke surname: Matsuura fullname: Matsuura, Ryosuke – sequence: 2 givenname: Ken orcidid: 0000-0002-3488-5439 surname: Maeda fullname: Maeda, Ken – sequence: 3 givenname: Kyoji surname: Hagiwara fullname: Hagiwara, Kyoji – sequence: 4 givenname: Yosuke surname: Mori fullname: Mori, Yosuke – sequence: 5 givenname: Toru surname: Kitamura fullname: Kitamura, Toru – sequence: 6 givenname: Yasunobu surname: Matsumoto fullname: Matsumoto, Yasunobu – sequence: 7 givenname: Yoko orcidid: 0000-0001-7400-3587 surname: Aida fullname: Aida, Yoko |
BookMark | eNqNkk1vEzEQhleoiJbSH8DNEhcuW_yxttcXpBC-IkVKRSEcrYnXu3HZ2KntVOqdH47TFIkWIeGLx-Nn3rFn5nl15IO3VfWS4HPGFH6zhbwOg_WJENxiRemT6oRiKWrcEnn0h31cnaV0hctq8f78rDpmAhOOG3ZS_fy-YOhiHXIwkGG8TRlNg8_gvPNDMbdbG9HMg8nuBrJN6HLy5bKehmVN0QX4IaC58xYGiyYIfIcWG2di8Ojd5JyiJUQHPiPn0dIltxptoYd1viOL8z3EH96m9KJ62sOY7Nn9flp9-_jh6_RzPV98mk0n89pwoXINCneUctMw0nOmQFEQdsWFhIZxZUWvZKcENmA44T2TpDNWrpiAVjW8s4qdVrODbhfgSm-j20C81QGcvnOEOGiI2ZnRakH5qu8klqyXTSNJ2xNrGBiJG2X6ZlW03h60trvVxpZMPkcYH4g-vPFurYdwo1VDOJFtEXh9LxDD9c6mrDcuGTuO4G3YJU1LUiYFI_g_0NJrjIXkBX31CL0Ku-hLVfeUoC1t8L4Q8kCVXqUUba-Ny5Bd2D_VjZpgvZ8x_deMlUjyKPL3j_8d8wuJDdYj |
CitedBy_id | crossref_primary_10_1292_jvms_24_0055 crossref_primary_10_3390_toxics11080718 crossref_primary_10_1016_j_buildenv_2022_109800 crossref_primary_10_1016_j_cogsc_2023_100769 crossref_primary_10_1021_acsomega_3c10310 |
Cites_doi | 10.1007/s00253-011-3213-7 10.1002/hsr2.213 10.1016/j.ijfoodmicro.2016.09.025 10.4265/bio.26.119 10.3390/v13050942 10.1101/2020.08.25.265223 10.1038/s41598-022-09402-7 10.1038/s41598-021-93231-7 10.1016/S1473-3099(20)30678-2 10.3201/eid2607.200915 10.1073/pnas.2002589117 10.1016/j.scitotenv.2021.149231 10.1039/c2pp05414k 10.1016/j.jcis.2017.02.059 10.3390/v12121372 10.3390/ma14051075 10.1093/oxfordjournals.aje.a118408 10.1038/nchem.1006 10.1016/j.ajic.2020.07.031 10.1038/s41586-020-2008-3 10.1016/j.cej.2021.128788 10.1038/srep04810 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 7T7 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU COVID DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/pathogens11080922 |
DatabaseName | CrossRef Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2076-0817 |
ExternalDocumentID | oai_doaj_org_article_625bfd7073f744718f1ec3ac7049cf4b PMC9415178 10_3390_pathogens11080922 |
GrantInformation_xml | – fundername: Office for Novel Coronavirus Disease Control, Cabinet Secretariat, Government of Japan (COVID-19 AI and Simulation Project) – fundername: Advintage Co., Ltd. |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM 7T7 8FD ABUWG AZQEC C1K COVID DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c569t-a90d225c431f539a92a6eb567a4359e6f97d960cac515f371dce7b36a8945de93 |
IEDL.DBID | M48 |
ISSN | 2076-0817 |
IngestDate | Wed Aug 27 01:29:24 EDT 2025 Thu Aug 21 18:29:46 EDT 2025 Fri Jul 11 02:03:57 EDT 2025 Fri Jul 11 07:49:10 EDT 2025 Fri Jul 25 12:08:19 EDT 2025 Tue Jul 01 02:19:16 EDT 2025 Thu Apr 24 22:55:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c569t-a90d225c431f539a92a6eb567a4359e6f97d960cac515f371dce7b36a8945de93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3488-5439 0000-0001-7400-3587 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/pathogens11080922 |
PMID | 36015043 |
PQID | 2706282409 |
PQPubID | 2032351 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_625bfd7073f744718f1ec3ac7049cf4b pubmedcentral_primary_oai_pubmedcentral_nih_gov_9415178 proquest_miscellaneous_2718376310 proquest_miscellaneous_2707600675 proquest_journals_2706282409 crossref_citationtrail_10_3390_pathogens11080922 crossref_primary_10_3390_pathogens11080922 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220816 |
PublicationDateYYYYMMDD | 2022-08-16 |
PublicationDate_xml | – month: 8 year: 2022 text: 20220816 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Pathogens (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Tao (ref_17) 2011; 3 ref_12 ref_11 Park (ref_13) 2016; 238 Nakano (ref_9) 2012; 11 Tong (ref_10) 2021; 414 ref_18 Matsuyama (ref_25) 2020; 117 Mondelli (ref_23) 2021; 21 Wu (ref_1) 2020; 579 Heilingloh (ref_5) 2020; 48 Niu (ref_19) 2014; 4 Reis (ref_22) 2021; 798 Saadatpour (ref_4) 2020; 3 Syngouna (ref_15) 2017; 497 Foffa (ref_20) 2022; 20 Nakano (ref_21) 2022; 12 ref_24 Kratzel (ref_7) 2020; 26 Han (ref_14) 2004; 31 Uema (ref_16) 2021; 26 Reed (ref_26) 1938; 27 ref_3 Foster (ref_8) 2011; 90 Mukhra (ref_2) 2020; 91 ref_27 Lo (ref_6) 2021; 11 |
References_xml | – volume: 90 start-page: 1847 year: 2011 ident: ref_8 article-title: Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3213-7 – volume: 3 start-page: e213 year: 2020 ident: ref_4 article-title: Physicochemical susceptibility of SARS-CoV-2 to disinfection and physical approach of prophylaxis publication-title: Health Sci. Rep. doi: 10.1002/hsr2.213 – volume: 238 start-page: 256 year: 2016 ident: ref_13 article-title: Inactivation efficiency and mechanism of UV-TiO2 photocatalysis against murine norovirus using a solidified agar matrix publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2016.09.025 – ident: ref_24 – volume: 26 start-page: 119 year: 2021 ident: ref_16 article-title: Effect of the Photocatalyst under Visible Light Irradiation in SARS-CoV-2 Stability on an Abiotic Surface publication-title: Biocontrol. Sci. doi: 10.4265/bio.26.119 – volume: 20 start-page: 22808000221076326 year: 2022 ident: ref_20 article-title: A Copper nanoparticles-based polymeric spray coating: Nanoshield against SARS-CoV-2 publication-title: J. Appl. Biomater. Funct. Mater. – ident: ref_3 doi: 10.3390/v13050942 – ident: ref_11 doi: 10.1101/2020.08.25.265223 – volume: 12 start-page: 5804 year: 2022 ident: ref_21 article-title: Inactivation of various variant types of SARS-CoV-2 by indoor-light-sensitive TiO2-based photocatalyst publication-title: Sci. Rep. doi: 10.1038/s41598-022-09402-7 – volume: 11 start-page: 13804 year: 2021 ident: ref_6 article-title: UVC disinfects SARS-CoV-2 by induction of viral genome damage without apparent effects on viral morphology and proteins publication-title: Sci. Rep. doi: 10.1038/s41598-021-93231-7 – volume: 21 start-page: e112 year: 2021 ident: ref_23 article-title: Low risk of SARS-CoV-2 transmission by fomites in real-life conditions publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30678-2 – volume: 31 start-page: 982 year: 2004 ident: ref_14 article-title: The inactivation effect of photocatalytic titanium apatite filter on SARS virus publication-title: Prog. Biochem. Biophys. – volume: 26 start-page: 1592 year: 2020 ident: ref_7 article-title: Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 by WHO-Recommended Hand Rub Formulations and Alcohols publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2607.200915 – volume: 117 start-page: 7001 year: 2020 ident: ref_25 article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2002589117 – volume: 798 start-page: 149231 year: 2021 ident: ref_22 article-title: Surface contamination with SARS-CoV-2: A systematic review publication-title: Sci Total Environ. doi: 10.1016/j.scitotenv.2021.149231 – volume: 11 start-page: 1293 year: 2012 ident: ref_9 article-title: Photocatalytic inactivation of influenza virus by titanium dioxide thin film publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c2pp05414k – volume: 497 start-page: 117 year: 2017 ident: ref_15 article-title: Inactivation of MS2 bacteriophage by titanium dioxide nanoparticles in the presence of quartz sand with and without ambient light publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.02.059 – ident: ref_12 doi: 10.3390/v12121372 – ident: ref_18 doi: 10.3390/ma14051075 – ident: ref_27 – volume: 27 start-page: 493 year: 1938 ident: ref_26 article-title: A simple method of estimating fifty per cent endpoints publication-title: Am. J. Epidemiol. doi: 10.1093/oxfordjournals.aje.a118408 – volume: 91 start-page: e2020036 year: 2020 ident: ref_2 article-title: Possible modes of transmission of Novel coronavirus SARS-CoV-2: A review publication-title: Acta Bio Med. Atenei Parm. – volume: 3 start-page: 296 year: 2011 ident: ref_17 article-title: A two-dimensional phase of TiO2 with a reduced bandgap publication-title: Nat. Chem. doi: 10.1038/nchem.1006 – volume: 48 start-page: 1273 year: 2020 ident: ref_5 article-title: Susceptibility of SARS-CoV-2 to UV irradiation publication-title: Am. J. Infect. Control doi: 10.1016/j.ajic.2020.07.031 – volume: 579 start-page: 265 year: 2020 ident: ref_1 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 414 start-page: 128788 year: 2021 ident: ref_10 article-title: Photo-catalyzed TiO(2) inactivates pathogenic viruses by attacking viral genome publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128788 – volume: 4 start-page: 4810 year: 2014 ident: ref_19 article-title: SiH/TiO2 and GeH/TiO2 heterojunctions: Promising TiO2-based photocatalysts under visible light publication-title: Sci. Rep. doi: 10.1038/srep04810 |
SSID | ssj0000800817 |
Score | 2.22769 |
Snippet | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 922 |
SubjectTerms | air Air purification antiviral properties Copper Coronaviruses COVID-19 COVID-19 infection Darkness Deactivation Disease control Disease transmission Disinfection Disinfection & disinfectants dose-dependency Drug dosages Drug resistance etiological agents Inactivation Indoor environments Irradiation Light emitting diodes Omicron variant BA.2 Oxidation pandemic Pandemics Pango lineage A Photocatalysis Photocatalysts SARS-CoV-2 inactivation Severe acute respiratory syndrome coronavirus 2 time-dependency tungsten oxide Vaccines Viral diseases Viruses wavelengths White light WO3 photocatalyst Zinc oxides |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEBQQgYKMxAkpkNhJHB-3haqtBK0oXXqLHHvcXSjOajdF6p0fzkySrjZCKhdukT2JEs_D38TzYOyNL3KXg6FsHJBxpmoX61oWsRAmdQCl7RNpP30uDs-z44v8YqPVF8WE9eWB-4V7j_i89k6hJHqVkSX1KVhprEJoa31Wk_XFPW_Dmfo-4KAyVf0xpkS_nuKrZw3yZEVx74kWYrQRdfX6RyBzHCK5seccPGQPBrDIJ_1LPmL3IOyw7b595M1j9vvbieSns6Ztup8wN6uWU7GpvucDXi4WsORHgVIXfhGk5GeTL2fxfjONBT814bLh6IkCGhQ-4SY4fvKTovMC35u8E3yKTjSuOp8HPp2j3lwBUqMj31Hi4Aez_EFm8gk7P_j4df8wHroqxDYvdBsbnThUYovIwedSGy1MAXVeKIPISUPhtXLo1lhjEep4qVJcA4XsM6XOcgdaPmVboQnwjHFX2kTW3uCTdCZdajIPpnRgUZddAiZiye0SV3YoOU6dL64qdD2IK9VfXInY2_Uti77exl3Ee8S3NSGVyu4GUICqQYCqfwlQxHZvuV4N-ruqhKLcUkQ7OmKv19OoeXScYgI01x0NnWqix3UXDZpMNOFpEjE1kqjRS49nwnzW1fnWCK5SVT7_H1_5gt0XlLhBxXyLXbbVLq_hJcKptn7Vac4fqDchBw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbymAvY5_MWzdU2NNAm23ZlvVUkq6lHawN7Zr1zcj6aEI7OU3cQd_3h-_OdrKaQt6MfTZGpzv9ftJ9EPLJZalJrcJsHMtZIkrDZMkzFscqMtbmuk2k_XGcHZ4n3y_Si27DbdmFVa58YuOoTaVxj_xrLDDbD9YfuTu_Ydg1Ck9XuxYaj8kWuOA8H5Ct0f7x-HS9y4J4KI9Ee5zJgd9jnPW0At0sMf49lHHcW5Cauv09sNkPlby39hw8J8860EiHrZZfkEfWvyRP2jaSd6_I318nnI6nVV01mzF3y5pi0am29wNczud2QY88pjD8QWhJz4anZ2yvmrCYjpW_rCgwUguOhQ6p8oae_MYoPU9Hwy8xnQCZhtGnM08nM7CfawvSQOgbSbj5TS2u0F2-JucH-z_3DlnXXYHpNJM1UzI0YMwaEIRLuVQyVpkt00woQFDSZk4KA_RGKw2Qx3ERwRgIUKPKZZIaK_kbMvCVt28JNbkOeekUfEkm3EQqcVblxmqwaRNaFZBwNcSF7kqPYweM6wIoCGqleKCVgHxevzJv625sEh6h3taCWDK7uVEtLovOAgsgeqUzAlyaEwkuyS6ymistgCNpl5QB2V5pvejseFn8n3UB2Vk_BgvEYxXlbXXbyODpJjCvTTLgOsGVR2FARG9G9X66_8TPpk29bwkgKxL5u80_-J48jTE1A8v1ZttkUC9u7QcATHX5sbOKf3ewGcU priority: 102 providerName: ProQuest |
Title | WO3 Photocatalyst Containing Copper Inactivates SARS-CoV-2 Pango Lineage A and Omicron BA.2 Variant in Visible Light and in Darkness |
URI | https://www.proquest.com/docview/2706282409 https://www.proquest.com/docview/2707600675 https://www.proquest.com/docview/2718376310 https://pubmed.ncbi.nlm.nih.gov/PMC9415178 https://doaj.org/article/625bfd7073f744718f1ec3ac7049cf4b |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEF5CQqGXkvRBlYfZQk8FBb1XeyjFThPSQhKT1G5uYrWP2K27cmUlxPf-8M5Isqlo8E1IIyFmdma_b3dnhpD3JolVrAVm4-jQjViuXJ6HiRsEwldap7JJpL24TM5H0dfb-HaLrNpbtQpcPEntsJ_UqJwdP_5efgKH_4iMEyg7Hp2eFKDuBR5p93gAEXkHJiaGDQ0uWrT_owVHqc-avc2n3-zMTnUR_w7y7J6b_GciOtslL1oESfuNyffIlrYvybOmp-TyFfnz_Sqkw0lRFfXKzHJRUaxA1TSCgMv5XJf0i8V8hgfEmfSmf33jnhRjN6BDYe8KCvRUQ5ShfSqsole_8MiepYP-cUDHwKzBFHRq6XgKzjTTIA3svpaEm59F-RNj52syOjv9dnLutq0WXBknvHIF9xR4tgQ4YeKQCx6IROdxwgTAKa4Tw5kCriOFBPxjQuaDDhjYVKQ8ipXm4RuybQur3xKqUumFuRHwJR6FyheR0SJVWoKDK08Lh3grFWeyrUOO7TBmGfARtEr2n1Uc8mH9yrwpwrFJeIB2Wwti_ez6RlHeZa07ZsD6cqMYxDfDIpyfja9lKCQDwiRNlDvkcGX1bDUms4BhwilAIO6Qd-vH4I64xyKsLu5rGdzqBBq2SQbiKMR133MI64yozk93n9jppC7-zQFx-Szd3_yDB-R5gHkaWLs3OSTbVXmvjwA9VXmP7AxOL4fXvXr1oVd7yF8D-x-y |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWXSG4IJ6isICR4IIUSOwkjg8ItftQy-52q32UvQXHdtqKJSltFtQ7v4ffyEySFiKk3vYWJZPIysx8M2PPg5DXaRiYwCqsxrHc8UViHJnw0GFMecbaSFeFtMeDsHfhf7oMLrfI71UtDKZVrjCxBGqTa9wjf88EVvuB_ZEfZ98dnBqFp6urERqVWBza5U8I2RYf-nvA3zeMHeyf7_aceqqAo4NQFo6SrgEh1mA504BLJZkKbRKEQoHnIG2YSmHArddKg6lPufCMtgKWryLpB8Zi8yWA_G2fhy5rke3u_mB4ut7VQf8r8kR1fMq5dDGve5KDLCww396VjDUMYDknoOHcNlMz_7F1B_fI3dpJpZ1Kqu6TLZs9ILeqsZXLh-TX5xNOh5O8yMvNn-WioNjkqpo1AZezmZ3TfoYlEz_QlaVnndMzZzcfOYwOVTbOKUTAFoCMdqjKDD35hlmBGe123jE6guAduE2nGR1NQV-vLFCPJ0VJCTf31PwrwvMjcnEj__0xaWV5Zp8QaiLt8iRV8CXpc-MpP7UqMlYDhhjXqjZxV7841nWrc5y4cRVDyINcif_jSpu8Xb8yq_p8bCLuIt_WhNiiu7yRz8dxrfExBJZJagRAaCp8dAFSz2qutICYTKd-0iY7K67HNW4s4r9S3iav1o9B4_EYR2U2vy5p8DQVIr1NNADVYDo8t01EQ6Iai24-yaaTsr-4BKfOE9HTzQt8SW73zo-P4qP-4PAZucOwLARbBYc7pFXMr-1zcNaK5EWtIZR8uWml_APUulZI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqUBcEE8RKLBIcEEytdeP9R4QSppGDYU0amnozaz3kUQUOyQuKHd-Fb-OGdsJWEi59WbZY8v2vL7ZnQchL20U6tBIrMYxvhPwVDsi9SOHMelpY2JVFdJ-HEZH58H7i_Bih_xe18JgWuXaJpaGWucK18j3GcdqP_A_Yt_WaRGjXv_d_LuDE6Rwp3U9TqMSkWOz-gnh2_LtoAe8fsVY__DTwZFTTxhwVBiJwpHC1SDQCryoDX0hBZORScOIS0ARwkRWcA0QX0kFbt_63NPKcPgUGYsg1AYbMYH53-UYFbXIbvdwODrdrPAgFos9Xm2l-r5wMcd7moNcLDH33hWMNZxhOTOgAXSbaZr_-L3-HXK7Bqy0U0nYXbJjsnvkRjXCcnWf_Pp84tPRNC_yciFotSwoNryq5k7A4XxuFnSQYfnED4S19KxzeuYc5GOH0ZHMJjmFaNiAUaMdKjNNT75hhmBGu503jI4hkAfO01lGxzPQ3UsD1JNpUVLCyZ5cfEVT_YCcX8t_f0haWZ6ZR4TqWLl-aiU8SQS-9mRgjYy1UWBPtGtkm7jrX5youu05Tt-4TCD8Qa4k_3GlTV5vbplXPT-2EXeRbxtCbNddnsgXk6TW_gSCzNRqDubU8gDhgPWM8qXiEJ8pG6RtsrfmelLbkGXyV-Lb5MXmMmg_bunIzORXJQ3urELUt40GzDa4Ec9tE96QqMZLN69ks2nZa1wAwPN4_Hj7Cz4nN0EZkw-D4fETcothhQh2DY72SKtYXJmngNuK9FmtIJR8uW6d_AOLMVp9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WO3+Photocatalyst+Containing+Copper+Inactivates+SARS-CoV-2+Pango+Lineage+A+and+Omicron+BA.2+Variant+in+Visible+Light+and+in+Darkness&rft.jtitle=Pathogens+%28Basel%29&rft.au=Matsuura%2C+Ryosuke&rft.au=Maeda%2C+Ken&rft.au=Hagiwara%2C+Kyoji&rft.au=Mori%2C+Yosuke&rft.date=2022-08-16&rft.pub=MDPI+AG&rft.eissn=2076-0817&rft.volume=11&rft.issue=8&rft.spage=922&rft_id=info:doi/10.3390%2Fpathogens11080922&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0817&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0817&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0817&client=summon |