WO3 Photocatalyst Containing Copper Inactivates SARS-CoV-2 Pango Lineage A and Omicron BA.2 Variant in Visible Light and in Darkness

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Pho...

Full description

Saved in:
Bibliographic Details
Published inPathogens (Basel) Vol. 11; no. 8; p. 922
Main Authors Matsuura, Ryosuke, Maeda, Ken, Hagiwara, Kyoji, Mori, Yosuke, Kitamura, Toru, Matsumoto, Yasunobu, Aida, Yoko
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 16.08.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Photocatalysts are attractive tools for virus inactivation and are widely used as air purifiers and coating materials. However, photocatalysts are inactive in the dark, and some of them need to be excited with light of a specific wavelength. Therefore, photocatalysts that can effectively inactivate SARS-CoV-2 in indoor environments are needed. Here, we show that a WO3 photocatalyst containing copper inactivated the SARS-CoV-2 WK-521 strain (Pango lineage A) upon irradiation with white light in a time- and concentration-dependent manner. Additionally, this photocatalyst also inactivated SARS-CoV-2 in dark conditions due to the antiviral effect of copper. Furthermore, this photocatalyst inactivated not only the WK-521 strain but also the Omicron variant BA.2. These results indicate that the WO3 photocatalyst containing copper can inactivate indoor SARS-CoV-2 regardless of the variant, in visible light or darkness, making it an effective tool for controlling the spread of SARS-CoV-2.
AbstractList Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Photocatalysts are attractive tools for virus inactivation and are widely used as air purifiers and coating materials. However, photocatalysts are inactive in the dark, and some of them need to be excited with light of a specific wavelength. Therefore, photocatalysts that can effectively inactivate SARS-CoV-2 in indoor environments are needed. Here, we show that a WO3 photocatalyst containing copper inactivated the SARS-CoV-2 WK-521 strain (Pango lineage A) upon irradiation with white light in a time- and concentration-dependent manner. Additionally, this photocatalyst also inactivated SARS-CoV-2 in dark conditions due to the antiviral effect of copper. Furthermore, this photocatalyst inactivated not only the WK-521 strain but also the Omicron variant BA.2. These results indicate that the WO3 photocatalyst containing copper can inactivate indoor SARS-CoV-2 regardless of the variant, in visible light or darkness, making it an effective tool for controlling the spread of SARS-CoV-2.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Photocatalysts are attractive tools for virus inactivation and are widely used as air purifiers and coating materials. However, photocatalysts are inactive in the dark, and some of them need to be excited with light of a specific wavelength. Therefore, photocatalysts that can effectively inactivate SARS-CoV-2 in indoor environments are needed. Here, we show that a WO3 photocatalyst containing copper inactivated the SARS-CoV-2 WK-521 strain (Pango lineage A) upon irradiation with white light in a time- and concentration-dependent manner. Additionally, this photocatalyst also inactivated SARS-CoV-2 in dark conditions due to the antiviral effect of copper. Furthermore, this photocatalyst inactivated not only the WK-521 strain but also the Omicron variant BA.2. These results indicate that the WO3 photocatalyst containing copper can inactivate indoor SARS-CoV-2 regardless of the variant, in visible light or darkness, making it an effective tool for controlling the spread of SARS-CoV-2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Photocatalysts are attractive tools for virus inactivation and are widely used as air purifiers and coating materials. However, photocatalysts are inactive in the dark, and some of them need to be excited with light of a specific wavelength. Therefore, photocatalysts that can effectively inactivate SARS-CoV-2 in indoor environments are needed. Here, we show that a WO3 photocatalyst containing copper inactivated the SARS-CoV-2 WK-521 strain (Pango lineage A) upon irradiation with white light in a time- and concentration-dependent manner. Additionally, this photocatalyst also inactivated SARS-CoV-2 in dark conditions due to the antiviral effect of copper. Furthermore, this photocatalyst inactivated not only the WK-521 strain but also the Omicron variant BA.2. These results indicate that the WO3 photocatalyst containing copper can inactivate indoor SARS-CoV-2 regardless of the variant, in visible light or darkness, making it an effective tool for controlling the spread of SARS-CoV-2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Photocatalysts are attractive tools for virus inactivation and are widely used as air purifiers and coating materials. However, photocatalysts are inactive in the dark, and some of them need to be excited with light of a specific wavelength. Therefore, photocatalysts that can effectively inactivate SARS-CoV-2 in indoor environments are needed. Here, we show that a WO₃ photocatalyst containing copper inactivated the SARS-CoV-2 WK-521 strain (Pango lineage A) upon irradiation with white light in a time- and concentration-dependent manner. Additionally, this photocatalyst also inactivated SARS-CoV-2 in dark conditions due to the antiviral effect of copper. Furthermore, this photocatalyst inactivated not only the WK-521 strain but also the Omicron variant BA.2. These results indicate that the WO₃ photocatalyst containing copper can inactivate indoor SARS-CoV-2 regardless of the variant, in visible light or darkness, making it an effective tool for controlling the spread of SARS-CoV-2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Photocatalysts are attractive tools for virus inactivation and are widely used as air purifiers and coating materials. However, photocatalysts are inactive in the dark, and some of them need to be excited with light of a specific wavelength. Therefore, photocatalysts that can effectively inactivate SARS-CoV-2 in indoor environments are needed. Here, we show that a WO 3 photocatalyst containing copper inactivated the SARS-CoV-2 WK-521 strain (Pango lineage A) upon irradiation with white light in a time- and concentration-dependent manner. Additionally, this photocatalyst also inactivated SARS-CoV-2 in dark conditions due to the antiviral effect of copper. Furthermore, this photocatalyst inactivated not only the WK-521 strain but also the Omicron variant BA.2. These results indicate that the WO 3 photocatalyst containing copper can inactivate indoor SARS-CoV-2 regardless of the variant, in visible light or darkness, making it an effective tool for controlling the spread of SARS-CoV-2.
Author Hagiwara, Kyoji
Matsuura, Ryosuke
Mori, Yosuke
Kitamura, Toru
Aida, Yoko
Matsumoto, Yasunobu
Maeda, Ken
AuthorAffiliation 1 Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
4 Centre for Advanced Materials and Energy Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
5 Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
2 Department of Veterinary Science, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
3 Advintage Co., Ltd., 1-1-1-705 Ebisuminami, Shibuya-ku, Tokyo 150-0022, Japan
AuthorAffiliation_xml – name: 2 Department of Veterinary Science, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
– name: 3 Advintage Co., Ltd., 1-1-1-705 Ebisuminami, Shibuya-ku, Tokyo 150-0022, Japan
– name: 4 Centre for Advanced Materials and Energy Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
– name: 5 Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
– name: 1 Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
Author_xml – sequence: 1
  givenname: Ryosuke
  surname: Matsuura
  fullname: Matsuura, Ryosuke
– sequence: 2
  givenname: Ken
  orcidid: 0000-0002-3488-5439
  surname: Maeda
  fullname: Maeda, Ken
– sequence: 3
  givenname: Kyoji
  surname: Hagiwara
  fullname: Hagiwara, Kyoji
– sequence: 4
  givenname: Yosuke
  surname: Mori
  fullname: Mori, Yosuke
– sequence: 5
  givenname: Toru
  surname: Kitamura
  fullname: Kitamura, Toru
– sequence: 6
  givenname: Yasunobu
  surname: Matsumoto
  fullname: Matsumoto, Yasunobu
– sequence: 7
  givenname: Yoko
  orcidid: 0000-0001-7400-3587
  surname: Aida
  fullname: Aida, Yoko
BookMark eNqNkk1vEzEQhleoiJbSH8DNEhcuW_yxttcXpBC-IkVKRSEcrYnXu3HZ2KntVOqdH47TFIkWIeGLx-Nn3rFn5nl15IO3VfWS4HPGFH6zhbwOg_WJENxiRemT6oRiKWrcEnn0h31cnaV0hctq8f78rDpmAhOOG3ZS_fy-YOhiHXIwkGG8TRlNg8_gvPNDMbdbG9HMg8nuBrJN6HLy5bKehmVN0QX4IaC58xYGiyYIfIcWG2di8Ojd5JyiJUQHPiPn0dIltxptoYd1viOL8z3EH96m9KJ62sOY7Nn9flp9-_jh6_RzPV98mk0n89pwoXINCneUctMw0nOmQFEQdsWFhIZxZUWvZKcENmA44T2TpDNWrpiAVjW8s4qdVrODbhfgSm-j20C81QGcvnOEOGiI2ZnRakH5qu8klqyXTSNJ2xNrGBiJG2X6ZlW03h60trvVxpZMPkcYH4g-vPFurYdwo1VDOJFtEXh9LxDD9c6mrDcuGTuO4G3YJU1LUiYFI_g_0NJrjIXkBX31CL0Ku-hLVfeUoC1t8L4Q8kCVXqUUba-Ny5Bd2D_VjZpgvZ8x_deMlUjyKPL3j_8d8wuJDdYj
CitedBy_id crossref_primary_10_1292_jvms_24_0055
crossref_primary_10_3390_toxics11080718
crossref_primary_10_1016_j_buildenv_2022_109800
crossref_primary_10_1016_j_cogsc_2023_100769
crossref_primary_10_1021_acsomega_3c10310
Cites_doi 10.1007/s00253-011-3213-7
10.1002/hsr2.213
10.1016/j.ijfoodmicro.2016.09.025
10.4265/bio.26.119
10.3390/v13050942
10.1101/2020.08.25.265223
10.1038/s41598-022-09402-7
10.1038/s41598-021-93231-7
10.1016/S1473-3099(20)30678-2
10.3201/eid2607.200915
10.1073/pnas.2002589117
10.1016/j.scitotenv.2021.149231
10.1039/c2pp05414k
10.1016/j.jcis.2017.02.059
10.3390/v12121372
10.3390/ma14051075
10.1093/oxfordjournals.aje.a118408
10.1038/nchem.1006
10.1016/j.ajic.2020.07.031
10.1038/s41586-020-2008-3
10.1016/j.cej.2021.128788
10.1038/srep04810
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
7T7
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/pathogens11080922
DatabaseName CrossRef
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database

AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2076-0817
ExternalDocumentID oai_doaj_org_article_625bfd7073f744718f1ec3ac7049cf4b
PMC9415178
10_3390_pathogens11080922
GrantInformation_xml – fundername: Office for Novel Coronavirus Disease Control, Cabinet Secretariat, Government of Japan (COVID-19 AI and Simulation Project)
– fundername: Advintage Co., Ltd.
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAHBH
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
7T7
8FD
ABUWG
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c569t-a90d225c431f539a92a6eb567a4359e6f97d960cac515f371dce7b36a8945de93
IEDL.DBID M48
ISSN 2076-0817
IngestDate Wed Aug 27 01:29:24 EDT 2025
Thu Aug 21 18:29:46 EDT 2025
Fri Jul 11 02:03:57 EDT 2025
Fri Jul 11 07:49:10 EDT 2025
Fri Jul 25 12:08:19 EDT 2025
Tue Jul 01 02:19:16 EDT 2025
Thu Apr 24 22:55:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-a90d225c431f539a92a6eb567a4359e6f97d960cac515f371dce7b36a8945de93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3488-5439
0000-0001-7400-3587
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/pathogens11080922
PMID 36015043
PQID 2706282409
PQPubID 2032351
ParticipantIDs doaj_primary_oai_doaj_org_article_625bfd7073f744718f1ec3ac7049cf4b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9415178
proquest_miscellaneous_2718376310
proquest_miscellaneous_2707600675
proquest_journals_2706282409
crossref_citationtrail_10_3390_pathogens11080922
crossref_primary_10_3390_pathogens11080922
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220816
PublicationDateYYYYMMDD 2022-08-16
PublicationDate_xml – month: 8
  year: 2022
  text: 20220816
  day: 16
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Pathogens (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tao (ref_17) 2011; 3
ref_12
ref_11
Park (ref_13) 2016; 238
Nakano (ref_9) 2012; 11
Tong (ref_10) 2021; 414
ref_18
Matsuyama (ref_25) 2020; 117
Mondelli (ref_23) 2021; 21
Wu (ref_1) 2020; 579
Heilingloh (ref_5) 2020; 48
Niu (ref_19) 2014; 4
Reis (ref_22) 2021; 798
Saadatpour (ref_4) 2020; 3
Syngouna (ref_15) 2017; 497
Foffa (ref_20) 2022; 20
Nakano (ref_21) 2022; 12
ref_24
Kratzel (ref_7) 2020; 26
Han (ref_14) 2004; 31
Uema (ref_16) 2021; 26
Reed (ref_26) 1938; 27
ref_3
Foster (ref_8) 2011; 90
Mukhra (ref_2) 2020; 91
ref_27
Lo (ref_6) 2021; 11
References_xml – volume: 90
  start-page: 1847
  year: 2011
  ident: ref_8
  article-title: Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3213-7
– volume: 3
  start-page: e213
  year: 2020
  ident: ref_4
  article-title: Physicochemical susceptibility of SARS-CoV-2 to disinfection and physical approach of prophylaxis
  publication-title: Health Sci. Rep.
  doi: 10.1002/hsr2.213
– volume: 238
  start-page: 256
  year: 2016
  ident: ref_13
  article-title: Inactivation efficiency and mechanism of UV-TiO2 photocatalysis against murine norovirus using a solidified agar matrix
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2016.09.025
– ident: ref_24
– volume: 26
  start-page: 119
  year: 2021
  ident: ref_16
  article-title: Effect of the Photocatalyst under Visible Light Irradiation in SARS-CoV-2 Stability on an Abiotic Surface
  publication-title: Biocontrol. Sci.
  doi: 10.4265/bio.26.119
– volume: 20
  start-page: 22808000221076326
  year: 2022
  ident: ref_20
  article-title: A Copper nanoparticles-based polymeric spray coating: Nanoshield against SARS-CoV-2
  publication-title: J. Appl. Biomater. Funct. Mater.
– ident: ref_3
  doi: 10.3390/v13050942
– ident: ref_11
  doi: 10.1101/2020.08.25.265223
– volume: 12
  start-page: 5804
  year: 2022
  ident: ref_21
  article-title: Inactivation of various variant types of SARS-CoV-2 by indoor-light-sensitive TiO2-based photocatalyst
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-09402-7
– volume: 11
  start-page: 13804
  year: 2021
  ident: ref_6
  article-title: UVC disinfects SARS-CoV-2 by induction of viral genome damage without apparent effects on viral morphology and proteins
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-93231-7
– volume: 21
  start-page: e112
  year: 2021
  ident: ref_23
  article-title: Low risk of SARS-CoV-2 transmission by fomites in real-life conditions
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30678-2
– volume: 31
  start-page: 982
  year: 2004
  ident: ref_14
  article-title: The inactivation effect of photocatalytic titanium apatite filter on SARS virus
  publication-title: Prog. Biochem. Biophys.
– volume: 26
  start-page: 1592
  year: 2020
  ident: ref_7
  article-title: Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 by WHO-Recommended Hand Rub Formulations and Alcohols
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2607.200915
– volume: 117
  start-page: 7001
  year: 2020
  ident: ref_25
  article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2002589117
– volume: 798
  start-page: 149231
  year: 2021
  ident: ref_22
  article-title: Surface contamination with SARS-CoV-2: A systematic review
  publication-title: Sci Total Environ.
  doi: 10.1016/j.scitotenv.2021.149231
– volume: 11
  start-page: 1293
  year: 2012
  ident: ref_9
  article-title: Photocatalytic inactivation of influenza virus by titanium dioxide thin film
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/c2pp05414k
– volume: 497
  start-page: 117
  year: 2017
  ident: ref_15
  article-title: Inactivation of MS2 bacteriophage by titanium dioxide nanoparticles in the presence of quartz sand with and without ambient light
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.02.059
– ident: ref_12
  doi: 10.3390/v12121372
– ident: ref_18
  doi: 10.3390/ma14051075
– ident: ref_27
– volume: 27
  start-page: 493
  year: 1938
  ident: ref_26
  article-title: A simple method of estimating fifty per cent endpoints
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/oxfordjournals.aje.a118408
– volume: 91
  start-page: e2020036
  year: 2020
  ident: ref_2
  article-title: Possible modes of transmission of Novel coronavirus SARS-CoV-2: A review
  publication-title: Acta Bio Med. Atenei Parm.
– volume: 3
  start-page: 296
  year: 2011
  ident: ref_17
  article-title: A two-dimensional phase of TiO2 with a reduced bandgap
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1006
– volume: 48
  start-page: 1273
  year: 2020
  ident: ref_5
  article-title: Susceptibility of SARS-CoV-2 to UV irradiation
  publication-title: Am. J. Infect. Control
  doi: 10.1016/j.ajic.2020.07.031
– volume: 579
  start-page: 265
  year: 2020
  ident: ref_1
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– volume: 414
  start-page: 128788
  year: 2021
  ident: ref_10
  article-title: Photo-catalyzed TiO(2) inactivates pathogenic viruses by attacking viral genome
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128788
– volume: 4
  start-page: 4810
  year: 2014
  ident: ref_19
  article-title: SiH/TiO2 and GeH/TiO2 heterojunctions: Promising TiO2-based photocatalysts under visible light
  publication-title: Sci. Rep.
  doi: 10.1038/srep04810
SSID ssj0000800817
Score 2.22769
Snippet Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 922
SubjectTerms air
Air purification
antiviral properties
Copper
Coronaviruses
COVID-19
COVID-19 infection
Darkness
Deactivation
Disease control
Disease transmission
Disinfection
Disinfection & disinfectants
dose-dependency
Drug dosages
Drug resistance
etiological agents
Inactivation
Indoor environments
Irradiation
Light emitting diodes
Omicron variant BA.2
Oxidation
pandemic
Pandemics
Pango lineage A
Photocatalysis
Photocatalysts
SARS-CoV-2 inactivation
Severe acute respiratory syndrome coronavirus 2
time-dependency
tungsten oxide
Vaccines
Viral diseases
Viruses
wavelengths
White light
WO3 photocatalyst
Zinc oxides
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEBQQgYKMxAkpkNhJHB-3haqtBK0oXXqLHHvcXSjOajdF6p0fzkySrjZCKhdukT2JEs_D38TzYOyNL3KXg6FsHJBxpmoX61oWsRAmdQCl7RNpP30uDs-z44v8YqPVF8WE9eWB-4V7j_i89k6hJHqVkSX1KVhprEJoa31Wk_XFPW_Dmfo-4KAyVf0xpkS_nuKrZw3yZEVx74kWYrQRdfX6RyBzHCK5seccPGQPBrDIJ_1LPmL3IOyw7b595M1j9vvbieSns6Ztup8wN6uWU7GpvucDXi4WsORHgVIXfhGk5GeTL2fxfjONBT814bLh6IkCGhQ-4SY4fvKTovMC35u8E3yKTjSuOp8HPp2j3lwBUqMj31Hi4Aez_EFm8gk7P_j4df8wHroqxDYvdBsbnThUYovIwedSGy1MAXVeKIPISUPhtXLo1lhjEep4qVJcA4XsM6XOcgdaPmVboQnwjHFX2kTW3uCTdCZdajIPpnRgUZddAiZiye0SV3YoOU6dL64qdD2IK9VfXInY2_Uti77exl3Ee8S3NSGVyu4GUICqQYCqfwlQxHZvuV4N-ruqhKLcUkQ7OmKv19OoeXScYgI01x0NnWqix3UXDZpMNOFpEjE1kqjRS49nwnzW1fnWCK5SVT7_H1_5gt0XlLhBxXyLXbbVLq_hJcKptn7Vac4fqDchBw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbymAvY5_MWzdU2NNAm23ZlvVUkq6lHawN7Zr1zcj6aEI7OU3cQd_3h-_OdrKaQt6MfTZGpzv9ftJ9EPLJZalJrcJsHMtZIkrDZMkzFscqMtbmuk2k_XGcHZ4n3y_Si27DbdmFVa58YuOoTaVxj_xrLDDbD9YfuTu_Ydg1Ck9XuxYaj8kWuOA8H5Ct0f7x-HS9y4J4KI9Ee5zJgd9jnPW0At0sMf49lHHcW5Cauv09sNkPlby39hw8J8860EiHrZZfkEfWvyRP2jaSd6_I318nnI6nVV01mzF3y5pi0am29wNczud2QY88pjD8QWhJz4anZ2yvmrCYjpW_rCgwUguOhQ6p8oae_MYoPU9Hwy8xnQCZhtGnM08nM7CfawvSQOgbSbj5TS2u0F2-JucH-z_3DlnXXYHpNJM1UzI0YMwaEIRLuVQyVpkt00woQFDSZk4KA_RGKw2Qx3ERwRgIUKPKZZIaK_kbMvCVt28JNbkOeekUfEkm3EQqcVblxmqwaRNaFZBwNcSF7kqPYweM6wIoCGqleKCVgHxevzJv625sEh6h3taCWDK7uVEtLovOAgsgeqUzAlyaEwkuyS6ymistgCNpl5QB2V5pvejseFn8n3UB2Vk_BgvEYxXlbXXbyODpJjCvTTLgOsGVR2FARG9G9X66_8TPpk29bwkgKxL5u80_-J48jTE1A8v1ZttkUC9u7QcATHX5sbOKf3ewGcU
  priority: 102
  providerName: ProQuest
Title WO3 Photocatalyst Containing Copper Inactivates SARS-CoV-2 Pango Lineage A and Omicron BA.2 Variant in Visible Light and in Darkness
URI https://www.proquest.com/docview/2706282409
https://www.proquest.com/docview/2707600675
https://www.proquest.com/docview/2718376310
https://pubmed.ncbi.nlm.nih.gov/PMC9415178
https://doaj.org/article/625bfd7073f744718f1ec3ac7049cf4b
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEF5CQqGXkvRBlYfZQk8FBb1XeyjFThPSQhKT1G5uYrWP2K27cmUlxPf-8M5Isqlo8E1IIyFmdma_b3dnhpD3JolVrAVm4-jQjViuXJ6HiRsEwldap7JJpL24TM5H0dfb-HaLrNpbtQpcPEntsJ_UqJwdP_5efgKH_4iMEyg7Hp2eFKDuBR5p93gAEXkHJiaGDQ0uWrT_owVHqc-avc2n3-zMTnUR_w7y7J6b_GciOtslL1oESfuNyffIlrYvybOmp-TyFfnz_Sqkw0lRFfXKzHJRUaxA1TSCgMv5XJf0i8V8hgfEmfSmf33jnhRjN6BDYe8KCvRUQ5ShfSqsole_8MiepYP-cUDHwKzBFHRq6XgKzjTTIA3svpaEm59F-RNj52syOjv9dnLutq0WXBknvHIF9xR4tgQ4YeKQCx6IROdxwgTAKa4Tw5kCriOFBPxjQuaDDhjYVKQ8ipXm4RuybQur3xKqUumFuRHwJR6FyheR0SJVWoKDK08Lh3grFWeyrUOO7TBmGfARtEr2n1Uc8mH9yrwpwrFJeIB2Wwti_ez6RlHeZa07ZsD6cqMYxDfDIpyfja9lKCQDwiRNlDvkcGX1bDUms4BhwilAIO6Qd-vH4I64xyKsLu5rGdzqBBq2SQbiKMR133MI64yozk93n9jppC7-zQFx-Szd3_yDB-R5gHkaWLs3OSTbVXmvjwA9VXmP7AxOL4fXvXr1oVd7yF8D-x-y
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWXSG4IJ6isICR4IIUSOwkjg8ItftQy-52q32UvQXHdtqKJSltFtQ7v4ffyEySFiKk3vYWJZPIysx8M2PPg5DXaRiYwCqsxrHc8UViHJnw0GFMecbaSFeFtMeDsHfhf7oMLrfI71UtDKZVrjCxBGqTa9wjf88EVvuB_ZEfZ98dnBqFp6urERqVWBza5U8I2RYf-nvA3zeMHeyf7_aceqqAo4NQFo6SrgEh1mA504BLJZkKbRKEQoHnIG2YSmHArddKg6lPufCMtgKWryLpB8Zi8yWA_G2fhy5rke3u_mB4ut7VQf8r8kR1fMq5dDGve5KDLCww396VjDUMYDknoOHcNlMz_7F1B_fI3dpJpZ1Kqu6TLZs9ILeqsZXLh-TX5xNOh5O8yMvNn-WioNjkqpo1AZezmZ3TfoYlEz_QlaVnndMzZzcfOYwOVTbOKUTAFoCMdqjKDD35hlmBGe123jE6guAduE2nGR1NQV-vLFCPJ0VJCTf31PwrwvMjcnEj__0xaWV5Zp8QaiLt8iRV8CXpc-MpP7UqMlYDhhjXqjZxV7841nWrc5y4cRVDyINcif_jSpu8Xb8yq_p8bCLuIt_WhNiiu7yRz8dxrfExBJZJagRAaCp8dAFSz2qutICYTKd-0iY7K67HNW4s4r9S3iav1o9B4_EYR2U2vy5p8DQVIr1NNADVYDo8t01EQ6Iai24-yaaTsr-4BKfOE9HTzQt8SW73zo-P4qP-4PAZucOwLARbBYc7pFXMr-1zcNaK5EWtIZR8uWml_APUulZI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqUBcEE8RKLBIcEEytdeP9R4QSppGDYU0amnozaz3kUQUOyQuKHd-Fb-OGdsJWEi59WbZY8v2vL7ZnQchL20U6tBIrMYxvhPwVDsi9SOHMelpY2JVFdJ-HEZH58H7i_Bih_xe18JgWuXaJpaGWucK18j3GcdqP_A_Yt_WaRGjXv_d_LuDE6Rwp3U9TqMSkWOz-gnh2_LtoAe8fsVY__DTwZFTTxhwVBiJwpHC1SDQCryoDX0hBZORScOIS0ARwkRWcA0QX0kFbt_63NPKcPgUGYsg1AYbMYH53-UYFbXIbvdwODrdrPAgFos9Xm2l-r5wMcd7moNcLDH33hWMNZxhOTOgAXSbaZr_-L3-HXK7Bqy0U0nYXbJjsnvkRjXCcnWf_Pp84tPRNC_yciFotSwoNryq5k7A4XxuFnSQYfnED4S19KxzeuYc5GOH0ZHMJjmFaNiAUaMdKjNNT75hhmBGu503jI4hkAfO01lGxzPQ3UsD1JNpUVLCyZ5cfEVT_YCcX8t_f0haWZ6ZR4TqWLl-aiU8SQS-9mRgjYy1UWBPtGtkm7jrX5youu05Tt-4TCD8Qa4k_3GlTV5vbplXPT-2EXeRbxtCbNddnsgXk6TW_gSCzNRqDubU8gDhgPWM8qXiEJ8pG6RtsrfmelLbkGXyV-Lb5MXmMmg_bunIzORXJQ3urELUt40GzDa4Ec9tE96QqMZLN69ks2nZa1wAwPN4_Hj7Cz4nN0EZkw-D4fETcothhQh2DY72SKtYXJmngNuK9FmtIJR8uW6d_AOLMVp9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WO3+Photocatalyst+Containing+Copper+Inactivates+SARS-CoV-2+Pango+Lineage+A+and+Omicron+BA.2+Variant+in+Visible+Light+and+in+Darkness&rft.jtitle=Pathogens+%28Basel%29&rft.au=Matsuura%2C+Ryosuke&rft.au=Maeda%2C+Ken&rft.au=Hagiwara%2C+Kyoji&rft.au=Mori%2C+Yosuke&rft.date=2022-08-16&rft.pub=MDPI+AG&rft.eissn=2076-0817&rft.volume=11&rft.issue=8&rft.spage=922&rft_id=info:doi/10.3390%2Fpathogens11080922&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0817&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0817&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0817&client=summon