Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins

Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways conver...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 24; pp. E3403 - E3412
Main Authors Zhao, Baoyu, Shu, Chang, Gao, Xinsheng, Sankaran, Banumathi, Du, Fenglei, Shelton, Catherine L., Herr, Andrew B., Ji, Jun-Yuan, Li, Pingwei
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 14.06.2016
National Academy of Sciences, Washington, DC (United States)
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.
AbstractList Type I IFNs are key cytokines involved in antiviral immunity. A number of innate sensing pathways regulate the induction of type I IFNs. These pathways converge at the activation of the transcription factor IRF-3 (IFN regulatory factor 3). Three different adaptors mediate the recruitment of IRF-3 using a conserved structural motif. In this study, we determined the molecular mechanisms by which these adaptors recruit IRF-3 upon phosphorylation, the mechanism of IRF-3 activation, and how rotavirus subverts these signaling mechanisms to evade innate immune surveillance. These results provide critical insights into the molecular basis of innate immunity against microbial and viral infections. Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved p L x IS motif. Here we show that the p L x IS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the p L x IS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a p L x IS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.
Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.
Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN- beta ) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.
Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.
Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here in this paper, we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.
Author Li, Pingwei
Shu, Chang
Zhao, Baoyu
Du, Fenglei
Shelton, Catherine L.
Gao, Xinsheng
Herr, Andrew B.
Ji, Jun-Yuan
Sankaran, Banumathi
Author_xml – sequence: 1
  givenname: Baoyu
  surname: Zhao
  fullname: Zhao, Baoyu
  organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
– sequence: 2
  givenname: Chang
  surname: Shu
  fullname: Shu, Chang
  organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
– sequence: 3
  givenname: Xinsheng
  surname: Gao
  fullname: Gao, Xinsheng
  organization: Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843
– sequence: 4
  givenname: Banumathi
  surname: Sankaran
  fullname: Sankaran, Banumathi
  organization: Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
– sequence: 5
  givenname: Fenglei
  surname: Du
  fullname: Du, Fenglei
  organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
– sequence: 6
  givenname: Catherine L.
  surname: Shelton
  fullname: Shelton, Catherine L.
  organization: Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
– sequence: 7
  givenname: Andrew B.
  surname: Herr
  fullname: Herr, Andrew B.
  organization: Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
– sequence: 8
  givenname: Jun-Yuan
  surname: Ji
  fullname: Ji, Jun-Yuan
  organization: Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843
– sequence: 9
  givenname: Pingwei
  surname: Li
  fullname: Li, Pingwei
  organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27302953$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1379399$$D View this record in Osti.gov
BookMark eNqFks1rFTEUxYNU7OvTtSsl2I2bafM1yWQjSGm1UBD8WIdM5o7NYyZ5JplC_3vzfK3VgrjKIr9zknPPPUIHIQZA6CUlJ5QofroNNp9QSTiTmlL-BK0o0bSRQpMDtCKEqaYTTByio5w3hBDdduQZOmSKE6ZbvkLDl5IWV5ZkJ9zb7DMeY8IuBgepwIATuLT4MkMo2IYBW1f8jS0-BhxHfPn5ouG4v8U-BFsA-3leAmA72G2pNtsUC_iQn6Ono50yvLg71-jbxfnXs4_N1acPl2fvrxrXSl0aKykRzhEnQMpBDCNrZUdb0KSXvQMxwKDUqPu-lRL0yCzvOiXHXlM5KMJ6vkbv9r7bpZ9hcPXTNZfZJj_bdGui9ebvm-Cvzfd4Y4SmgkpdDd7sDWIu3mTnC7jrOowArhjKleZ6B729eyXFHwvkYmafHUyTDRCXbGjHGROtkuL_qNKqFYxzVtHjR-gmLinUce0oXR27Wtgavf4z4e9o94VWoN0DLsWcE4ymhvjVVw3sJ0OJ2S2O2S2OeVicqjt9pLu3_rfi1V6xybXrh59IoQgnHf8J5HHPtQ
CitedBy_id crossref_primary_10_1002_eji_202350386
crossref_primary_10_1016_j_celrep_2023_112306
crossref_primary_10_4155_fmc_2017_0322
crossref_primary_10_1002_ajoc_202200597
crossref_primary_10_1038_s41420_023_01735_0
crossref_primary_10_1038_s41586_022_05354_0
crossref_primary_10_2147_JIR_S465978
crossref_primary_10_3389_fimmu_2022_808607
crossref_primary_10_1038_s41586_019_1000_2
crossref_primary_10_1111_febs_16137
crossref_primary_10_1128_mBio_01213_17
crossref_primary_10_1186_s13567_025_01474_3
crossref_primary_10_1146_annurev_biochem_040320_101629
crossref_primary_10_1093_jmcb_mjac042
crossref_primary_10_1002_med_22016
crossref_primary_10_1128_mbio_01308_22
crossref_primary_10_1016_j_bcp_2020_113831
crossref_primary_10_3389_fimmu_2020_624597
crossref_primary_10_4049_jimmunol_2000026
crossref_primary_10_1073_pnas_2100383118
crossref_primary_10_1038_s41594_023_00933_9
crossref_primary_10_3390_biom13091344
crossref_primary_10_3390_antiox11122485
crossref_primary_10_1021_acschembio_9b00307
crossref_primary_10_15252_embj_2022112907
crossref_primary_10_1016_j_apsb_2025_03_011
crossref_primary_10_1038_s41423_022_00967_x
crossref_primary_10_1016_j_immuni_2024_12_002
crossref_primary_10_1016_j_it_2022_04_011
crossref_primary_10_1038_s41586_019_1228_x
crossref_primary_10_1038_s41586_018_0135_x
crossref_primary_10_1002_bies_202300042
crossref_primary_10_1038_s41586_022_05452_z
crossref_primary_10_1016_j_jad_2024_10_126
crossref_primary_10_1038_s41392_022_01224_3
crossref_primary_10_3389_fimmu_2022_812774
crossref_primary_10_1016_j_tcb_2022_11_001
crossref_primary_10_1016_j_apsb_2021_05_011
crossref_primary_10_3389_fphar_2024_1383000
crossref_primary_10_1073_pnas_1718426115
crossref_primary_10_3389_fimmu_2023_1231057
crossref_primary_10_3390_biomedicines13030571
crossref_primary_10_1038_s41586_020_2282_0
crossref_primary_10_1093_nar_gkaa873
crossref_primary_10_1093_nar_gkab689
crossref_primary_10_1073_pnas_2305420120
crossref_primary_10_1073_pnas_1618424114
crossref_primary_10_1016_j_coi_2020_04_002
crossref_primary_10_1126_scisignal_aaw4673
crossref_primary_10_1371_journal_pntd_0011001
crossref_primary_10_3390_v12070733
crossref_primary_10_1016_j_cbi_2020_109031
crossref_primary_10_1111_cns_14671
crossref_primary_10_1016_j_bcp_2022_115026
crossref_primary_10_1016_j_celrep_2019_03_098
crossref_primary_10_1371_journal_ppat_1012609
crossref_primary_10_1021_acschembio_1c00912
crossref_primary_10_1021_acs_jcim_2c00595
crossref_primary_10_1016_j_celrep_2024_114678
crossref_primary_10_1002_wcms_1397
crossref_primary_10_1016_j_molcel_2017_10_032
crossref_primary_10_1016_j_ejmech_2020_113113
crossref_primary_10_1002_iub_1566
crossref_primary_10_1038_s41556_021_00659_0
crossref_primary_10_3390_v13040589
crossref_primary_10_1080_15592294_2023_2276371
crossref_primary_10_1080_17568919_2024_2383164
crossref_primary_10_1073_pnas_2105465118
crossref_primary_10_1093_nar_gkx1077
crossref_primary_10_1016_j_celrep_2023_112185
crossref_primary_10_1016_j_molimm_2017_12_007
crossref_primary_10_1073_pnas_2200285119
crossref_primary_10_1097_QAD_0000000000003111
crossref_primary_10_3390_v13122369
crossref_primary_10_1016_j_ejmech_2023_115941
crossref_primary_10_1111_febs_70023
crossref_primary_10_1080_08820139_2024_2392587
crossref_primary_10_1073_pnas_2200230119
crossref_primary_10_1128_spectrum_01883_21
crossref_primary_10_1371_journal_ppat_1011742
crossref_primary_10_1111_ejn_15967
crossref_primary_10_1016_j_drudis_2023_103694
crossref_primary_10_1038_s41392_022_01252_z
crossref_primary_10_1007_s11684_023_1026_6
crossref_primary_10_3390_ani13162573
crossref_primary_10_1074_jbc_RA120_015283
crossref_primary_10_3389_fcvm_2022_965726
crossref_primary_10_1016_j_bcp_2022_115246
crossref_primary_10_1038_s41580_020_0244_x
crossref_primary_10_1016_j_bbrc_2024_149945
crossref_primary_10_1016_j_bbrc_2024_150326
crossref_primary_10_3389_fimmu_2020_02064
crossref_primary_10_1096_fj_202000600RR
crossref_primary_10_2147_OTT_S298958
crossref_primary_10_1093_nar_gkab550
crossref_primary_10_1002_1873_3468_12762
crossref_primary_10_3389_fimmu_2023_1200245
crossref_primary_10_1016_j_molcel_2024_05_030
crossref_primary_10_1016_j_smim_2021_101580
crossref_primary_10_1038_s41467_023_39410_8
crossref_primary_10_12677_hjbm_2024_143056
crossref_primary_10_1016_j_heliyon_2024_e33093
crossref_primary_10_1016_j_jmb_2021_167320
crossref_primary_10_1038_s41594_023_00988_8
crossref_primary_10_1631_jzus_B2000808
crossref_primary_10_1186_s12985_021_01548_6
crossref_primary_10_1021_acs_jcim_2c00026
crossref_primary_10_1038_s41586_018_0621_1
crossref_primary_10_1080_22221751_2020_1870414
crossref_primary_10_1038_s41421_022_00481_4
crossref_primary_10_3389_fimmu_2017_01431
crossref_primary_10_1016_j_xjidi_2022_100176
crossref_primary_10_1146_annurev_biochem_061516_044813
crossref_primary_10_1111_liv_70063
crossref_primary_10_1016_S1875_5364_23_60381_4
crossref_primary_10_1016_j_heliyon_2024_e29338
crossref_primary_10_1016_j_tcb_2020_01_010
crossref_primary_10_3390_vaccines8030369
crossref_primary_10_2222_jsv_67_99
crossref_primary_10_1038_s12276_023_00965_7
crossref_primary_10_1002_mco2_511
crossref_primary_10_1016_j_bbcan_2021_188661
crossref_primary_10_3390_vetsci7010014
Cites_doi 10.1016/j.cell.2010.01.022
10.1128/JVI.01146-13
10.1038/nri2079
10.1126/scisignal.2002521
10.1016/j.coi.2014.12.012
10.3390/v1031035
10.1111/j.1365-2443.2010.01427.x
10.1126/science.1087262
10.1016/j.immuni.2007.08.012
10.1038/nsb1002
10.1016/j.str.2013.04.025
10.1016/S0076-6879(97)76066-X
10.1016/j.immuni.2013.10.019
10.1126/science.1229963
10.4049/jimmunol.169.12.6668
10.1126/science.1232458
10.1016/j.immuni.2006.08.007
10.1016/j.cytogfr.2014.06.006
10.1074/jbc.M703019200
10.1016/j.cell.2007.05.019
10.1107/S0907444910007493
10.1016/j.jmb.2008.03.050
10.1107/S0907444910045749
10.1146/annurev-immunol-032713-120231
10.1038/nsmb.1496
10.1016/j.molcel.2013.05.022
10.1073/pnas.0408376102
10.1038/nature12306
10.1084/jem.20142274
10.1111/j.1600-065X.2011.01052.x
10.1126/science.aaa2630
10.1016/j.immuni.2006.08.009
10.1038/nature10429
10.1016/j.cell.2005.08.012
10.1107/S0907444909052925
10.1016/j.cell.2013.04.046
10.1016/j.cell.2013.07.023
10.1016/j.it.2013.10.010
10.1146/annurev-immunol-032713-120156
10.1016/j.molcel.2007.04.022
10.1016/j.str.2005.06.011
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jun 14, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jun 14, 2016
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOI 10.1073/pnas.1603269113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
AIDS and Cancer Research Abstracts

MEDLINE
CrossRef
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Structural basis of IRF-3 recruitment
EISSN 1091-6490
EndPage E3412
ExternalDocumentID PMC4914169
1379399
4099154961
27302953
10_1073_pnas_1603269113
26470308
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI087741
– fundername: NIDDK NIH HHS
  grantid: R01 DK095013
– fundername: Cancer Prevention and Research Institute of Texas (CPRIT)
  grantid: RP150454
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: AI087741
– fundername: Welch Foundation
  grantid: A-1816
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
AFOSN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
79B
AAPBV
ABPTK
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
JSODD
OIOZB
OTOTI
PQEST
RHF
VQA
ZA5
5PM
ID FETCH-LOGICAL-c569t-a6104cc0c4e66d4df256815e90b6bce4ded77f9bb566e9f2a38876fb916d702b3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:02:16 EDT 2025
Mon Jul 03 03:56:41 EDT 2023
Thu Jul 10 17:28:54 EDT 2025
Fri Jul 11 16:06:31 EDT 2025
Mon Jun 30 07:50:50 EDT 2025
Thu Apr 03 07:00:33 EDT 2025
Tue Jul 01 03:19:15 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Sun Aug 24 12:10:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords type I interferon
crystal structure
transcription factor
signaling
innate immunity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c569t-a6104cc0c4e66d4df256815e90b6bce4ded77f9bb566e9f2a38876fb916d702b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
AC02-05CH11231
USDOE Office of Science (SC), Basic Energy Sciences (BES)
1B.Z. and C.S. contributed equally to this work.
Edited by Pamela J. Bjorkman, California Institute of Technology, Pasadena, CA, and approved April 27, 2016 (received for review February 29, 2016)
Author contributions: B.Z., C.S, and P.L. designed research; B.Z., C.S., X.G., B.S., F.D., C.L.S., A.B.H., and P.L. performed research; B.Z., C.S., A.B.H., and P.L. analyzed data; and B.Z., C.S., X.G., F.D., A.B.H., J.-Y.J., and P.L. wrote the paper.
OpenAccessLink https://www.osti.gov/servlets/purl/1379399
PMID 27302953
PQID 1799224895
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4914169
osti_scitechconnect_1379399
proquest_miscellaneous_1832245764
proquest_miscellaneous_1797542332
proquest_journals_1799224895
pubmed_primary_27302953
crossref_citationtrail_10_1073_pnas_1603269113
crossref_primary_10_1073_pnas_1603269113
jstor_primary_26470308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-14
PublicationDateYYYYMMDD 2016-06-14
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
National Academy of Sciences, Washington, DC (United States)
Publisher_xml – name: National Academy of Sciences
– name: National Academy of Sciences, Washington, DC (United States)
References Sun L (e_1_3_4_12_2) 2013; 339
Takeuchi O (e_1_3_4_1_2) 2010; 140
Panne D (e_1_3_4_30_2) 2007; 282
Qin BY (e_1_3_4_41_2) 2005; 13
Chen W (e_1_3_4_29_2) 2008; 379
Wu J (e_1_3_4_15_2) 2013; 339
Escalante CR (e_1_3_4_36_2) 2007; 26
Takahasi K (e_1_3_4_33_2) 2010; 15
Ablasser A (e_1_3_4_9_2) 2013; 498
Tanaka Y (e_1_3_4_16_2) 2012; 5
Qin BY (e_1_3_4_27_2) 2003; 10
Burdette DL (e_1_3_4_28_2) 2011; 478
Pichlmair A (e_1_3_4_4_2) 2007; 27
Barber GN (e_1_3_4_7_2) 2014; 35
Yoneyama M (e_1_3_4_19_2) 2015; 32
Liu S (e_1_3_4_23_2) 2015; 347
Andersen LL (e_1_3_4_31_2) 2015; 212
Arnold MM (e_1_3_4_25_2) 2009; 1
Barro M (e_1_3_4_24_2) 2005; 102
Shu C (e_1_3_4_34_2) 2013; 21
Shu C (e_1_3_4_8_2) 2014; 25
Yamamoto M (e_1_3_4_21_2) 2003; 301
Seth RB (e_1_3_4_18_2) 2005; 122
O’Neill LA (e_1_3_4_22_2) 2007; 7
Emsley P (e_1_3_4_40_2) 2010; 66
Honda K (e_1_3_4_17_2) 2006; 25
Chen W (e_1_3_4_32_2) 2008; 15
Gao P (e_1_3_4_10_2) 2013; 153
Yamamoto M (e_1_3_4_20_2) 2002; 169
Arnold MM (e_1_3_4_26_2) 2013; 87
Adams PD (e_1_3_4_39_2) 2010; 66
Stetson DB (e_1_3_4_5_2) 2006; 25
Panne D (e_1_3_4_35_2) 2007; 129
Winn MD (e_1_3_4_38_2) 2011; 67
Zhang X (e_1_3_4_11_2) 2013; 51
Gao P (e_1_3_4_14_2) 2013; 154
e_1_3_4_37_2
Schneider WM (e_1_3_4_6_2) 2014; 32
Li X (e_1_3_4_13_2) 2013; 39
Wu J (e_1_3_4_2_2) 2014; 32
Kato H (e_1_3_4_3_2) 2011; 243
References_xml – volume: 140
  start-page: 805
  year: 2010
  ident: e_1_3_4_1_2
  article-title: Pattern recognition receptors and inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.022
– volume: 87
  start-page: 9813
  year: 2013
  ident: e_1_3_4_26_2
  article-title: Rotavirus NSP1 mediates degradation of interferon regulatory factors through targeting of the dimerization domain
  publication-title: J Virol
  doi: 10.1128/JVI.01146-13
– volume: 7
  start-page: 353
  year: 2007
  ident: e_1_3_4_22_2
  article-title: The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2079
– volume: 5
  start-page: ra20
  year: 2012
  ident: e_1_3_4_16_2
  article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2002521
– volume: 32
  start-page: 48
  year: 2015
  ident: e_1_3_4_19_2
  article-title: Viral RNA detection by RIG-I-like receptors
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2014.12.012
– volume: 1
  start-page: 1035
  year: 2009
  ident: e_1_3_4_25_2
  article-title: Rotavirus antagonism of the innate immune response
  publication-title: Viruses
  doi: 10.3390/v1031035
– volume: 15
  start-page: 901
  year: 2010
  ident: e_1_3_4_33_2
  article-title: Ser386 phosphorylation of transcription factor IRF-3 induces dimerization and association with CBP/p300 without overall conformational change
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2010.01427.x
– volume: 301
  start-page: 640
  year: 2003
  ident: e_1_3_4_21_2
  article-title: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway
  publication-title: Science
  doi: 10.1126/science.1087262
– volume: 27
  start-page: 370
  year: 2007
  ident: e_1_3_4_4_2
  article-title: Innate recognition of viruses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.08.012
– volume: 10
  start-page: 913
  year: 2003
  ident: e_1_3_4_27_2
  article-title: Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation
  publication-title: Nat Struct Biol
  doi: 10.1038/nsb1002
– volume: 21
  start-page: 1137
  year: 2013
  ident: e_1_3_4_34_2
  article-title: Structural insights into the functions of TBK1 in innate antimicrobial immunity
  publication-title: Structure
  doi: 10.1016/j.str.2013.04.025
– ident: e_1_3_4_37_2
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 39
  start-page: 1019
  year: 2013
  ident: e_1_3_4_13_2
  article-title: Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.10.019
– volume: 339
  start-page: 826
  year: 2013
  ident: e_1_3_4_15_2
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science
  doi: 10.1126/science.1229963
– volume: 169
  start-page: 6668
  year: 2002
  ident: e_1_3_4_20_2
  article-title: Cutting edge: A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling
  publication-title: J Immunol
  doi: 10.4049/jimmunol.169.12.6668
– volume: 339
  start-page: 786
  year: 2013
  ident: e_1_3_4_12_2
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 25
  start-page: 373
  year: 2006
  ident: e_1_3_4_5_2
  article-title: Type I interferons in host defense
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.007
– volume: 25
  start-page: 641
  year: 2014
  ident: e_1_3_4_8_2
  article-title: The mechanism of double-stranded DNA sensing through the cGAS-STING pathway
  publication-title: Cytokine Growth Factor Rev
  doi: 10.1016/j.cytogfr.2014.06.006
– volume: 282
  start-page: 22816
  year: 2007
  ident: e_1_3_4_30_2
  article-title: Interferon regulatory factor 3 is regulated by a dual phosphorylation-dependent switch
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M703019200
– volume: 129
  start-page: 1111
  year: 2007
  ident: e_1_3_4_35_2
  article-title: An atomic model of the interferon-beta enhanceosome
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.019
– volume: 66
  start-page: 486
  year: 2010
  ident: e_1_3_4_40_2
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444910007493
– volume: 379
  start-page: 251
  year: 2008
  ident: e_1_3_4_29_2
  article-title: Contribution of Ser386 and Ser396 to activation of interferon regulatory factor 3
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2008.03.050
– volume: 67
  start-page: 235
  year: 2011
  ident: e_1_3_4_38_2
  article-title: Overview of the CCP4 suite and current developments
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444910045749
– volume: 32
  start-page: 513
  year: 2014
  ident: e_1_3_4_6_2
  article-title: Interferon-stimulated genes: A complex web of host defenses
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-032713-120231
– volume: 15
  start-page: 1213
  year: 2008
  ident: e_1_3_4_32_2
  article-title: Insights into interferon regulatory factor activation from the crystal structure of dimeric IRF5
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1496
– volume: 51
  start-page: 226
  year: 2013
  ident: e_1_3_4_11_2
  article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.05.022
– volume: 102
  start-page: 4114
  year: 2005
  ident: e_1_3_4_24_2
  article-title: Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0408376102
– volume: 498
  start-page: 380
  year: 2013
  ident: e_1_3_4_9_2
  article-title: cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING
  publication-title: Nature
  doi: 10.1038/nature12306
– volume: 212
  start-page: 1371
  year: 2015
  ident: e_1_3_4_31_2
  article-title: Functional IRF3 deficiency in a patient with herpes simplex encephalitis
  publication-title: J Exp Med
  doi: 10.1084/jem.20142274
– volume: 243
  start-page: 91
  year: 2011
  ident: e_1_3_4_3_2
  article-title: RIG-I-like receptors: Cytoplasmic sensors for non-self RNA
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.2011.01052.x
– volume: 347
  start-page: aaa2630
  year: 2015
  ident: e_1_3_4_23_2
  article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
  publication-title: Science
  doi: 10.1126/science.aaa2630
– volume: 25
  start-page: 349
  year: 2006
  ident: e_1_3_4_17_2
  article-title: Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.009
– volume: 478
  start-page: 515
  year: 2011
  ident: e_1_3_4_28_2
  article-title: STING is a direct innate immune sensor of cyclic di-GMP
  publication-title: Nature
  doi: 10.1038/nature10429
– volume: 122
  start-page: 669
  year: 2005
  ident: e_1_3_4_18_2
  article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.012
– volume: 66
  start-page: 213
  year: 2010
  ident: e_1_3_4_39_2
  article-title: PHENIX: A comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909052925
– volume: 153
  start-page: 1094
  year: 2013
  ident: e_1_3_4_10_2
  article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.046
– volume: 154
  start-page: 748
  year: 2013
  ident: e_1_3_4_14_2
  article-title: Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.023
– volume: 35
  start-page: 88
  year: 2014
  ident: e_1_3_4_7_2
  article-title: STING-dependent cytosolic DNA sensing pathways
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2013.10.010
– volume: 32
  start-page: 461
  year: 2014
  ident: e_1_3_4_2_2
  article-title: Innate immune sensing and signaling of cytosolic nucleic acids
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-032713-120156
– volume: 26
  start-page: 703
  year: 2007
  ident: e_1_3_4_36_2
  article-title: Structure of IRF-3 bound to the PRDIII-I regulatory element of the human interferon-beta enhancer
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.04.022
– volume: 13
  start-page: 1269
  year: 2005
  ident: e_1_3_4_41_2
  article-title: Crystal structure of IRF-3 in complex with CBP
  publication-title: Structure
  doi: 10.1016/j.str.2005.06.011
SSID ssj0009580
Score 2.5503862
Snippet Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like...
Type I IFNs are key cytokines involved in antiviral immunity. A number of innate sensing pathways regulate the induction of type I IFNs. These pathways...
Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E3403
SubjectTerms 60 APPLIED LIFE SCIENCES
Adaptor Proteins, Signal Transducing - chemistry
Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - immunology
Adaptor Proteins, Vesicular Transport - chemistry
Adaptor Proteins, Vesicular Transport - genetics
Adaptor Proteins, Vesicular Transport - immunology
Amino Acid Motifs
BASIC BIOLOGICAL SCIENCES
Binding sites
Biological Sciences
CREB-Binding Protein - chemistry
CREB-Binding Protein - genetics
CREB-Binding Protein - immunology
crystal structure
Cytokines
Gene expression
Humans
Immune Evasion
Immunity, Innate
innate immunity
Interferon Regulatory Factor-3 - chemistry
Interferon Regulatory Factor-3 - genetics
Interferon Regulatory Factor-3 - immunology
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - immunology
Phosphorylation
PNAS Plus
Protein Domains
Proteins
Reoviridae
Rotavirus - chemistry
Rotavirus - genetics
Rotavirus - immunology
Rotavirus Infections - genetics
Rotavirus Infections - immunology
Signal transduction
signaling
transcription factor
type I interferon
Viral Nonstructural Proteins - chemistry
Viral Nonstructural Proteins - genetics
Viral Nonstructural Proteins - immunology
Title Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins
URI https://www.jstor.org/stable/26470308
https://www.ncbi.nlm.nih.gov/pubmed/27302953
https://www.proquest.com/docview/1799224895
https://www.proquest.com/docview/1797542332
https://www.proquest.com/docview/1832245764
https://www.osti.gov/servlets/purl/1379399
https://pubmed.ncbi.nlm.nih.gov/PMC4914169
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBiEDWQkDkNVSps4cXwciKlwmCa2SRWXyHYcNRokU9sgjb-DP5jnjzht2dDgElWJ47h5v7wP-72fEXqTZZrzLk7DaELKkPA0C3kRyzDLmEgypsalNAmyJ-n0gnyeJbPB4Nda1lK7EiP588a6kv-RKpwDueoq2X-QrO8UTsBvkC8cQcJwvJOMzwz5qyHOAGtUGWoFnUcu1UI7kqDMFm3Vp5HrGoYf3kX89OU4jLX3WdU1OJzDSleKqCEv-BXE4UND4FC5uTznvZ56a7fscgtOusnEo740xemL5TAcnp70Gx1_nfPGLnE0162f2Zm3btXfmVCdC2TbzeDpc9WfPuP1JV_YCdv3vG6_68TJ9VmLSaqzq2y1qK8iAOtIbP30SFnlC75LmBK7fajXzrZU1cHQtv9D7YOe0nsV13ypZ8vAI2XdbRsE21uGz6cjmoV4Gue6g7zv4B66H0HwYdJFp-tUzpktbHL_oCOMovG7rRFs-Do23RUsfwO6-6Z4Zjstd83POX-EHroABR9ZtO2igaofo91OpPjQ8ZS_fYKKHn7YwA8D_LCHH16DHwb44R5-uCmxgR8W19jCD1v4YQc_3MHvKbo4_nj-YRq6TTtCmaRsFXLwx4mUY0lUmhakKCNNcZcoNhapkIoUqqC0ZEJAHKFYGfEYzFxaCghTCjqORLyHduqmVs8RlpOYqkKVQnLokhYipqBxaJEUkcjGqgzQqHu9uXSM9npjlW_5LQIN0KG_4cqSudzedM_Iy7eDwEEbxyxA-1qAOTiommVZ6nQ0ucphqAx8_QAddHLNnaKAXqkmfyYZSwL02l8GNa7X5nitmta00XtRx3H0lzba-pKEpiRAzyxU-uGBpY5YAuOmGyDyDTSN_OaVupobOnnCJhCVsRd3fzn76EH_TR-gHUCbegm--Uq8Mp_Kb9Mk5lY
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+for+concerted+recruitment+and+activation+of+IRF-3+by+innate+immune+adaptor+proteins&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhao%2C+Baoyu&rft.au=Shu%2C+Chang&rft.au=Gao%2C+Xinsheng&rft.au=Sankaran%2C+Banumathi&rft.date=2016-06-14&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=24&rft_id=info:doi/10.1073%2Fpnas.1603269113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1603269113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon