An attempt to construct the individual model of daily facial skin temperature using variational autoencoder
Facial skin temperature (FST) has also gained prominence as an indicator for detecting anomalies such as fever due to the COVID-19. When FST is used for engineering applications, it is enough to be able to recognize normal. We are also focusing on research to detect some anomaly in FST. In a previou...
Saved in:
Published in | Artificial Life and Robotics Vol. 26; no. 4; pp. 488 - 493 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Springer Science and Business Media LLC
01.11.2021
Springer Japan Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Facial skin temperature (FST) has also gained prominence as an indicator for detecting anomalies such as fever due to the COVID-19. When FST is used for engineering applications, it is enough to be able to recognize normal. We are also focusing on research to detect some anomaly in FST. In a previous study, it was confirmed that abnormal and normal conditions could be separated based on FST by using a variational autoencoder (VAE), a deep generative model. However, the simulations so far have been a far cry from reality. In this study, normal FST with a diurnal variation component was defined as a normal state, and a model of normal FST in daily life was individually reconstructed using VAE. Using the constructed model, the anomaly detection performance was evaluated by applying the Hotelling theory. As a result, the area under the curve (AUC) value in ROC analysis was confirmed to be 0.89 to 1.00 in two subjects. |
---|---|
AbstractList | Facial skin temperature (FST) has also gained prominence as an indicator for detecting anomalies such as fever due to the COVID-19. When FST is used for engineering applications, it is enough to be able to recognize normal. We are also focusing on research to detect some anomaly in FST. In a previous study, it was confirmed that abnormal and normal conditions could be separated based on FST by using a variational autoencoder (VAE), a deep generative model. However, the simulations so far have been a far cry from reality. In this study, normal FST with a diurnal variation component was defined as a normal state, and a model of normal FST in daily life was individually reconstructed using VAE. Using the constructed model, the anomaly detection performance was evaluated by applying the Hotelling theory. As a result, the area under the curve (AUC) value in ROC analysis was confirmed to be 0.89 to 1.00 in two subjects. Facial skin temperature (FST) has also gained prominence as an indicator for detecting anomalies such as fever due to the COVID-19. When FST is used for engineering applications, it is enough to be able to recognize normal. We are also focusing on research to detect some anomaly in FST. In a previous study, it was confirmed that abnormal and normal conditions could be separated based on FST by using a variational autoencoder (VAE), a deep generative model. However, the simulations so far have been a far cry from reality. In this study, normal FST with a diurnal variation component was defined as a normal state, and a model of normal FST in daily life was individually reconstructed using VAE. Using the constructed model, the anomaly detection performance was evaluated by applying the Hotelling theory. As a result, the area under the curve (AUC) value in ROC analysis was confirmed to be 0.89 to 1.00 in two subjects.Facial skin temperature (FST) has also gained prominence as an indicator for detecting anomalies such as fever due to the COVID-19. When FST is used for engineering applications, it is enough to be able to recognize normal. We are also focusing on research to detect some anomaly in FST. In a previous study, it was confirmed that abnormal and normal conditions could be separated based on FST by using a variational autoencoder (VAE), a deep generative model. However, the simulations so far have been a far cry from reality. In this study, normal FST with a diurnal variation component was defined as a normal state, and a model of normal FST in daily life was individually reconstructed using VAE. Using the constructed model, the anomaly detection performance was evaluated by applying the Hotelling theory. As a result, the area under the curve (AUC) value in ROC analysis was confirmed to be 0.89 to 1.00 in two subjects. |
Author | Kosuke Oiwa Kent Nagumo Akio Nozawa Yuki Iwashita Ayaka Masaki |
Author_xml | – sequence: 1 givenname: Ayaka surname: Masaki fullname: Masaki, Ayaka email: ojyarumarun@gmail.com organization: Aoyama Gakuin University – sequence: 2 givenname: Kent surname: Nagumo fullname: Nagumo, Kent organization: Aoyama Gakuin University – sequence: 3 givenname: Yuki surname: Iwashita fullname: Iwashita, Yuki organization: Aoyama Gakuin University – sequence: 4 givenname: Kosuke surname: Oiwa fullname: Oiwa, Kosuke organization: Aoyama Gakuin University – sequence: 5 givenname: Akio surname: Nozawa fullname: Nozawa, Akio organization: Aoyama Gakuin University |
BackLink | https://cir.nii.ac.jp/crid/1872272493121065344$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/34584491$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcluFDEURUsoiAzwAyyQJViwKfA8bJCiCAhSJDawttyuVx0n1XZju1rK38edCoFkkY2fh3Pf4HvcHcQUoeveEvyJYKw-l7YS0WNKeoylMb160R0RSXivuJAHbc8Z6wU1-rA7LuUKY66wZK-6Q8aF5tyQo-76NCJXK2y2FdWEfIql5tm3wyWgEIewC8PsJrRJA0wojWhwYbpBo_Oh3ZbrENFeDNnVOQOaS4hrtHM5uBpSbIiba4Lomzy_7l6Obirw5j6edL-_ff11dt5f_Pz-4-z0ovdCmto7NgDWgyNMYwdMKAaCcyaMoVKAHJmiI1DaouZEiBH4qFYam2Hl5GikZyfdlyXvdl5tYPAQa3aT3eawcfnGJhfs45cYLu067azmkggjW4KP9wly-jNDqXYTiodpchHSXCwVSimGtTQNff8EvUpzboPvKcOJMUSQRr37v6OHVv760AC6AD6nUjKMDwjBdm-2Xcy2zWx7Z7ZVTaSfiHyod__epgrT81K2SEurE9eQ_7X9rOrDooohtFr7lWhFqaLcMEIJloI1p24BRrDJrA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3217904 crossref_primary_10_1007_s10015_023_00853_3 crossref_primary_10_1016_j_bspc_2022_104113 |
Cites_doi | 10.1371/journal.pone.0090782 10.1007/s10015-020-00634-2 10.1002/tee.22876 10.1016/j.biopsycho.2011.09.018 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. corrected publication 2021 The Author(s) 2021, corrected publication 2021. The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021, corrected publication 2021 |
Copyright_xml | – notice: The Author(s) 2021. corrected publication 2021 – notice: The Author(s) 2021, corrected publication 2021. – notice: The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021, corrected publication 2021 |
DBID | RYH C6C AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1007/s10015-021-00699-7 |
DatabaseName | CiNii Complete Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1614-7456 |
EndPage | 493 |
ExternalDocumentID | PMC8461596 34584491 10_1007_s10015_021_00699_7 |
Genre | Journal Article |
GroupedDBID | -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 23N 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV RYH S16 S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR -59 -5G -BR -EM -Y2 1SB 2P1 2VQ AARHV ABQSL ABULA ACBXY ADINQ AEBTG AEKMD AFGCZ AGGDS AGJBK AHSBF AJBLW BDATZ C6C CAG COF EJD FINBP FSGXE GQ6 HZ~ IHE N2Q O9- RIG RNI RZK S1Z Z7R Z7S Z7X Z83 Z88 ZJWQK AAYXX ADHKG AGQPQ CITATION NPM ABRTQ 7X8 5PM |
ID | FETCH-LOGICAL-c569t-a3de08da1380ae3573e5443599265e6f372fe22f3784155fe4f7b809dba6f96c3 |
IEDL.DBID | C6C |
ISSN | 1433-5298 |
IngestDate | Thu Aug 21 18:37:01 EDT 2025 Thu Jul 10 23:41:15 EDT 2025 Fri Jul 25 11:01:29 EDT 2025 Thu Apr 03 07:02:00 EDT 2025 Tue Jul 01 04:08:39 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 Fri Feb 21 02:47:59 EST 2025 Thu Jun 26 21:52:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Infrared thermography Deep learning Variational autoencoder Hotelling’s theory Facial skin temperature Anomaly detection |
Language | English |
License | The Author(s) 2021, corrected publication 2021. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c569t-a3de08da1380ae3573e5443599265e6f372fe22f3784155fe4f7b809dba6f96c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7508-171X 0000-0003-4088-7411 |
OpenAccessLink | https://doi.org/10.1007/s10015-021-00699-7 |
PMID | 34584491 |
PQID | 2594199151 |
PQPubID | 2043964 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8461596 proquest_miscellaneous_2577730869 proquest_journals_2594199151 pubmed_primary_34584491 crossref_primary_10_1007_s10015_021_00699_7 crossref_citationtrail_10_1007_s10015_021_00699_7 springer_journals_10_1007_s10015_021_00699_7 nii_cinii_1872272493121065344 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo – name: United States – name: Heidelberg |
PublicationTitle | Artificial Life and Robotics |
PublicationTitleAbbrev | Artif Life Robotics |
PublicationTitleAlternate | Artif Life Robot |
PublicationYear | 2021 |
Publisher | Springer Science and Business Media LLC Springer Japan Springer Nature B.V |
Publisher_xml | – name: Springer Science and Business Media LLC – name: Springer Japan – name: Springer Nature B.V |
References | Engert, Merla, Grant, Cardone, Tusche, Singer (CR2) 2014; 9 CR4 CR3 CR8 Adachi, Oiwa, Nozawa (CR1) 2019; 14 CR7 Masaki, Nagumo, Lamsal, Oiwa, Nozawa (CR5) 2020; 26 Ito, Bando, Oiwa, Nozawa (CR6) 2018; 138 A Masaki (699_CR5) 2020; 26 V Engert (699_CR2) 2014; 9 699_CR8 699_CR4 H Ito (699_CR6) 2018; 138 699_CR7 H Adachi (699_CR1) 2019; 14 699_CR3 |
References_xml | – volume: 9 start-page: 125 issue: 3 year: 2014 end-page: 136 ident: CR2 article-title: Exploring the use of thermal infrared imaging in human stress research publication-title: PLoS ONE doi: 10.1371/journal.pone.0090782 – volume: 26 start-page: 122 year: 2020 end-page: 128 ident: CR5 article-title: Anomaly detection in facial skin temperature using variational autoencoder publication-title: Artif Life Robot doi: 10.1007/s10015-020-00634-2 – volume: 14 start-page: 870 issue: 6 year: 2019 end-page: 876 ident: CR1 article-title: Drowsiness level modeling based on facial skin temperature distribution using a convolutional neural network publication-title: IEEJ Trans Electr Electron Eng (TEEE C) doi: 10.1002/tee.22876 – ident: CR7 – ident: CR8 – ident: CR3 – ident: CR4 – volume: 138 start-page: 1 issue: 7 year: 2018 end-page: 10 ident: CR6 article-title: Evaluation of variations in autonomic nervous system’s activity during the day based on facial thermal images using independent component analysis publication-title: IEEJ Trans Electron Inf Syst – ident: 699_CR8 – ident: 699_CR7 – ident: 699_CR3 doi: 10.1016/j.biopsycho.2011.09.018 – volume: 14 start-page: 870 issue: 6 year: 2019 ident: 699_CR1 publication-title: IEEJ Trans Electr Electron Eng (TEEE C) doi: 10.1002/tee.22876 – ident: 699_CR4 – volume: 9 start-page: 125 issue: 3 year: 2014 ident: 699_CR2 publication-title: PLoS ONE doi: 10.1371/journal.pone.0090782 – volume: 138 start-page: 1 issue: 7 year: 2018 ident: 699_CR6 publication-title: IEEJ Trans Electron Inf Syst – volume: 26 start-page: 122 year: 2020 ident: 699_CR5 publication-title: Artif Life Robot doi: 10.1007/s10015-020-00634-2 |
SSID | ssj0047063 |
Score | 2.2281108 |
Snippet | Facial skin temperature (FST) has also gained prominence as an indicator for detecting anomalies such as fever due to the COVID-19. When FST is used for... |
SourceID | pubmedcentral proquest pubmed crossref springer nii |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 488 |
SubjectTerms | Anomalies Artificial Intelligence Computation by Abstract Devices Computer Science Control Diurnal variations Mechatronics Original Original Article Robotics Skin temperature |
Title | An attempt to construct the individual model of daily facial skin temperature using variational autoencoder |
URI | https://cir.nii.ac.jp/crid/1872272493121065344 https://link.springer.com/article/10.1007/s10015-021-00699-7 https://www.ncbi.nlm.nih.gov/pubmed/34584491 https://www.proquest.com/docview/2594199151 https://www.proquest.com/docview/2577730869 https://pubmed.ncbi.nlm.nih.gov/PMC8461596 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfYduHC-KawTUHiBpHapEma49PTxjQEJ540TlXaJlBttNPWIfHfY_elnd4YSLukh8ZRWjuxndg_A7yzwQZUu4FXtZY8DzLlqAQDr7O6EmmTez-CJH3-oo9X-cmpOo0wOZQLc-v-nlLcUGFxCiQgUF3LzRbsqEwaKtOw1Mtp183Numoaqn-JzpUtYoLM3WNsKKGtrm3vsi__DpO8dVc6qqCjx_Ao2o5ssWb2E3jgu6ewO9VlYHGZPoOzRccINvPnxcCGntV9RIllaOyxds7AYmMVHNYH1rj2_DcLjo7P2dVZ2zEijnDLjELjv7Nf6FTHg0PmroeeADAbf_kcVkeHX5fHPBZV4LXSduBONj4tGpfJInVeKiM9QeApa4VWXgdpRPBC4LMgWyP4PJiqSG1TOR2sruUL2O76zr8CJqvKUd6rCwq9mNRZW6VGe4NETnlrEsimv1zWEXGcCl-clzdYycSZEjlTjpwpkeb9THOxxtv4b-99ZB4OTm1WGCEMupOSQNG0knmewN7E1jKuzasSHb6cAr5UlsDb-TWuKroqcZ3vr6mPMbj3Fdom8HItBfN0JF0t5xapzYZ8zB0IsXvzTdf-GJG70dhD81En8GGSpJtp_fsrX9-v-xt4KEjWx4TJPdhGCfP7aDkN1QHsLD5--3R4MC4dbFdi8QcZRQ8_ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb5VAEJ_YetCL3x9oq2viTUlgP9nji7F5attTX9IbWWBXSSs0Pmrif-8Mb6E-rSZe4MAOAWZ25zfszG8AXttgA7rdkFa1FqkMIkvRCYa0zuuKZ430fiRJOjrWy5X8eKpOY1HYesp2n7Ykx5X6l2I3dF0ppRQQva5NzQ7cRDBQkC2v-GJaf6XZ9E9DICAwzLJFLJW5_h5b7mina9vrkOafCZO_7ZqOzujgHtyJKJItNmq_Dzd89wDuTh0aWJywD-Fs0TEi0Px6MbChZ3Uf-WIZwj7WzrVYbOyHw_rAGtee_2DB0Y90tj5rO0bCkXiZUZL8Z_Ydw-v4C5G5y6EnKszGf3sEq4P3J--WaWyvkNZK2yF1ovFZ0bhcFJnzQhnhiQxPWcu18joIw4PnHM8FoY7gZTBVkdmmcjpYXYvHsNv1nX8KTFSVowpYFxTGM5mztsqM9gaFnPLWJJBPX7msI_c4tcA4L69Yk0kzJWqmHDVTosybWeZiw7zxz9H7qDy8OR3zwnBuMLAURI-mlZAygb1JrWWcpesSQz9JqV8qT-DVfBnnF22auM73lzTGGFwFC20TeLKxgvlxBG0yS4vSZss-5gHE3b19pWu_jBzeCPsQSOoE3k6WdPVYf3_LZ_83_CXcWp4cHZaHH44_PYfbnOx-LKPcg120Nr-PeGqoXozT5yfs0xPZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI_YkBCX8Q2FDYLEDaK1zVdznB48ja-JA5N2q9I2GdVG-rR1SPz32G3a7cFA4tIeEkdp7cR2Yv9MyCvjjQe161lVK86E5ykDJehZndVVnjbCuQEk6fOB2j8UH47k0ZUs_iHafbqSHHMaEKUp9Lurxu9eSXwDNcYwvAChdg3TG-QmeCoZul8LtZj2YqHHWmpgFHBwuUwR02auH2NNNW2Etr3O6vwzePK3G9RBMS3vkq1oUdK9UQTukRsu3Cd3pmoNNC7eB-RkL1AE0_y-6mnf0bqL2LEUTEDaznlZdKiNQztPG9ue_qTe4qE6PT9pA0XiCMJMMWD-mP4AVzseJ1J70XcIi9m4s4fkcPnu62KfxVILrJbK9MzyxqVFYzNepNZxqblDYDxpTK6kU57r3Ls8h3eBFoh3wuuqSE1TWeWNqvkjshm64J4QyqvKYjas9RJ8m9QaU6VaOQ1EVjqjE5JNf7msIw45lsM4LS8RlJEzJXCmHDhTAs3rmWY1onD8s_cOMA8Gx2dW6DzX4GRyhEpTkguRkO2JrWVcsecluIECw8BklpCXczOsNbxAscF1F9hHa9gRC2US8niUgnk6HC-chQFqvSYfcwfE8V5vCe23Ac8bTEAwKlVC3kySdDmtv3_l0__r_oLc-vJ2WX56f_DxGbmdo9gPGZXbZBOEze2AadVXz4fV8wuBnxf_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+attempt+to+construct+the+individual+model+of+daily+facial+skin+temperature+using+variational+autoencoder&rft.jtitle=Artificial+life+and+robotics&rft.au=Masaki%2C+Ayaka&rft.au=Nagumo%2C+Kent&rft.au=Iwashita%2C+Yuki&rft.au=Oiwa%2C+Kosuke&rft.date=2021-11-01&rft.issn=1433-5298&rft.volume=26&rft.issue=4&rft.spage=488&rft_id=info:doi/10.1007%2Fs10015-021-00699-7&rft_id=info%3Apmid%2F34584491&rft.externalDocID=34584491 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-5298&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-5298&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-5298&client=summon |