An attempt to construct the individual model of daily facial skin temperature using variational autoencoder

Facial skin temperature (FST) has also gained prominence as an indicator for detecting anomalies such as fever due to the COVID-19. When FST is used for engineering applications, it is enough to be able to recognize normal. We are also focusing on research to detect some anomaly in FST. In a previou...

Full description

Saved in:
Bibliographic Details
Published inArtificial Life and Robotics Vol. 26; no. 4; pp. 488 - 493
Main Authors Masaki, Ayaka, Nagumo, Kent, Iwashita, Yuki, Oiwa, Kosuke, Nozawa, Akio
Format Journal Article
LanguageEnglish
Published Tokyo Springer Science and Business Media LLC 01.11.2021
Springer Japan
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Facial skin temperature (FST) has also gained prominence as an indicator for detecting anomalies such as fever due to the COVID-19. When FST is used for engineering applications, it is enough to be able to recognize normal. We are also focusing on research to detect some anomaly in FST. In a previous study, it was confirmed that abnormal and normal conditions could be separated based on FST by using a variational autoencoder (VAE), a deep generative model. However, the simulations so far have been a far cry from reality. In this study, normal FST with a diurnal variation component was defined as a normal state, and a model of normal FST in daily life was individually reconstructed using VAE. Using the constructed model, the anomaly detection performance was evaluated by applying the Hotelling theory. As a result, the area under the curve (AUC) value in ROC analysis was confirmed to be 0.89 to 1.00 in two subjects.
AbstractList Facial skin temperature (FST) has also gained prominence as an indicator for detecting anomalies such as fever due to the COVID-19. When FST is used for engineering applications, it is enough to be able to recognize normal. We are also focusing on research to detect some anomaly in FST. In a previous study, it was confirmed that abnormal and normal conditions could be separated based on FST by using a variational autoencoder (VAE), a deep generative model. However, the simulations so far have been a far cry from reality. In this study, normal FST with a diurnal variation component was defined as a normal state, and a model of normal FST in daily life was individually reconstructed using VAE. Using the constructed model, the anomaly detection performance was evaluated by applying the Hotelling theory. As a result, the area under the curve (AUC) value in ROC analysis was confirmed to be 0.89 to 1.00 in two subjects.
Facial skin temperature (FST) has also gained prominence as an indicator for detecting anomalies such as fever due to the COVID-19. When FST is used for engineering applications, it is enough to be able to recognize normal. We are also focusing on research to detect some anomaly in FST. In a previous study, it was confirmed that abnormal and normal conditions could be separated based on FST by using a variational autoencoder (VAE), a deep generative model. However, the simulations so far have been a far cry from reality. In this study, normal FST with a diurnal variation component was defined as a normal state, and a model of normal FST in daily life was individually reconstructed using VAE. Using the constructed model, the anomaly detection performance was evaluated by applying the Hotelling theory. As a result, the area under the curve (AUC) value in ROC analysis was confirmed to be 0.89 to 1.00 in two subjects.Facial skin temperature (FST) has also gained prominence as an indicator for detecting anomalies such as fever due to the COVID-19. When FST is used for engineering applications, it is enough to be able to recognize normal. We are also focusing on research to detect some anomaly in FST. In a previous study, it was confirmed that abnormal and normal conditions could be separated based on FST by using a variational autoencoder (VAE), a deep generative model. However, the simulations so far have been a far cry from reality. In this study, normal FST with a diurnal variation component was defined as a normal state, and a model of normal FST in daily life was individually reconstructed using VAE. Using the constructed model, the anomaly detection performance was evaluated by applying the Hotelling theory. As a result, the area under the curve (AUC) value in ROC analysis was confirmed to be 0.89 to 1.00 in two subjects.
Author Kosuke Oiwa
Kent Nagumo
Akio Nozawa
Yuki Iwashita
Ayaka Masaki
Author_xml – sequence: 1
  givenname: Ayaka
  surname: Masaki
  fullname: Masaki, Ayaka
  email: ojyarumarun@gmail.com
  organization: Aoyama Gakuin University
– sequence: 2
  givenname: Kent
  surname: Nagumo
  fullname: Nagumo, Kent
  organization: Aoyama Gakuin University
– sequence: 3
  givenname: Yuki
  surname: Iwashita
  fullname: Iwashita, Yuki
  organization: Aoyama Gakuin University
– sequence: 4
  givenname: Kosuke
  surname: Oiwa
  fullname: Oiwa, Kosuke
  organization: Aoyama Gakuin University
– sequence: 5
  givenname: Akio
  surname: Nozawa
  fullname: Nozawa, Akio
  organization: Aoyama Gakuin University
BackLink https://cir.nii.ac.jp/crid/1872272493121065344$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/34584491$$D View this record in MEDLINE/PubMed
BookMark eNp9kcluFDEURUsoiAzwAyyQJViwKfA8bJCiCAhSJDawttyuVx0n1XZju1rK38edCoFkkY2fh3Pf4HvcHcQUoeveEvyJYKw-l7YS0WNKeoylMb160R0RSXivuJAHbc8Z6wU1-rA7LuUKY66wZK-6Q8aF5tyQo-76NCJXK2y2FdWEfIql5tm3wyWgEIewC8PsJrRJA0wojWhwYbpBo_Oh3ZbrENFeDNnVOQOaS4hrtHM5uBpSbIiba4Lomzy_7l6Obirw5j6edL-_ff11dt5f_Pz-4-z0ovdCmto7NgDWgyNMYwdMKAaCcyaMoVKAHJmiI1DaouZEiBH4qFYam2Hl5GikZyfdlyXvdl5tYPAQa3aT3eawcfnGJhfs45cYLu067azmkggjW4KP9wly-jNDqXYTiodpchHSXCwVSimGtTQNff8EvUpzboPvKcOJMUSQRr37v6OHVv760AC6AD6nUjKMDwjBdm-2Xcy2zWx7Z7ZVTaSfiHyod__epgrT81K2SEurE9eQ_7X9rOrDooohtFr7lWhFqaLcMEIJloI1p24BRrDJrA
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3217904
crossref_primary_10_1007_s10015_023_00853_3
crossref_primary_10_1016_j_bspc_2022_104113
Cites_doi 10.1371/journal.pone.0090782
10.1007/s10015-020-00634-2
10.1002/tee.22876
10.1016/j.biopsycho.2011.09.018
ContentType Journal Article
Copyright The Author(s) 2021. corrected publication 2021
The Author(s) 2021, corrected publication 2021.
The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021, corrected publication 2021
Copyright_xml – notice: The Author(s) 2021. corrected publication 2021
– notice: The Author(s) 2021, corrected publication 2021.
– notice: The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021, corrected publication 2021
DBID RYH
C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s10015-021-00699-7
DatabaseName CiNii Complete
Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1614-7456
EndPage 493
ExternalDocumentID PMC8461596
34584491
10_1007_s10015_021_00699_7
Genre Journal Article
GroupedDBID -~C
.86
.VR
06D
0R~
0VY
199
1N0
203
23N
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNS
ROL
RPX
RSV
RYH
S16
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
-59
-5G
-BR
-EM
-Y2
1SB
2P1
2VQ
AARHV
ABQSL
ABULA
ACBXY
ADINQ
AEBTG
AEKMD
AFGCZ
AGGDS
AGJBK
AHSBF
AJBLW
BDATZ
C6C
CAG
COF
EJD
FINBP
FSGXE
GQ6
HZ~
IHE
N2Q
O9-
RIG
RNI
RZK
S1Z
Z7R
Z7S
Z7X
Z83
Z88
ZJWQK
AAYXX
ADHKG
AGQPQ
CITATION
NPM
ABRTQ
7X8
5PM
ID FETCH-LOGICAL-c569t-a3de08da1380ae3573e5443599265e6f372fe22f3784155fe4f7b809dba6f96c3
IEDL.DBID C6C
ISSN 1433-5298
IngestDate Thu Aug 21 18:37:01 EDT 2025
Thu Jul 10 23:41:15 EDT 2025
Fri Jul 25 11:01:29 EDT 2025
Thu Apr 03 07:02:00 EDT 2025
Tue Jul 01 04:08:39 EDT 2025
Thu Apr 24 23:05:51 EDT 2025
Fri Feb 21 02:47:59 EST 2025
Thu Jun 26 21:52:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Infrared thermography
Deep learning
Variational autoencoder
Hotelling’s theory
Facial skin temperature
Anomaly detection
Language English
License The Author(s) 2021, corrected publication 2021.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-a3de08da1380ae3573e5443599265e6f372fe22f3784155fe4f7b809dba6f96c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7508-171X
0000-0003-4088-7411
OpenAccessLink https://doi.org/10.1007/s10015-021-00699-7
PMID 34584491
PQID 2594199151
PQPubID 2043964
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8461596
proquest_miscellaneous_2577730869
proquest_journals_2594199151
pubmed_primary_34584491
crossref_primary_10_1007_s10015_021_00699_7
crossref_citationtrail_10_1007_s10015_021_00699_7
springer_journals_10_1007_s10015_021_00699_7
nii_cinii_1872272493121065344
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
– name: United States
– name: Heidelberg
PublicationTitle Artificial Life and Robotics
PublicationTitleAbbrev Artif Life Robotics
PublicationTitleAlternate Artif Life Robot
PublicationYear 2021
Publisher Springer Science and Business Media LLC
Springer Japan
Springer Nature B.V
Publisher_xml – name: Springer Science and Business Media LLC
– name: Springer Japan
– name: Springer Nature B.V
References Engert, Merla, Grant, Cardone, Tusche, Singer (CR2) 2014; 9
CR4
CR3
CR8
Adachi, Oiwa, Nozawa (CR1) 2019; 14
CR7
Masaki, Nagumo, Lamsal, Oiwa, Nozawa (CR5) 2020; 26
Ito, Bando, Oiwa, Nozawa (CR6) 2018; 138
A Masaki (699_CR5) 2020; 26
V Engert (699_CR2) 2014; 9
699_CR8
699_CR4
H Ito (699_CR6) 2018; 138
699_CR7
H Adachi (699_CR1) 2019; 14
699_CR3
References_xml – volume: 9
  start-page: 125
  issue: 3
  year: 2014
  end-page: 136
  ident: CR2
  article-title: Exploring the use of thermal infrared imaging in human stress research
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0090782
– volume: 26
  start-page: 122
  year: 2020
  end-page: 128
  ident: CR5
  article-title: Anomaly detection in facial skin temperature using variational autoencoder
  publication-title: Artif Life Robot
  doi: 10.1007/s10015-020-00634-2
– volume: 14
  start-page: 870
  issue: 6
  year: 2019
  end-page: 876
  ident: CR1
  article-title: Drowsiness level modeling based on facial skin temperature distribution using a convolutional neural network
  publication-title: IEEJ Trans Electr Electron Eng (TEEE C)
  doi: 10.1002/tee.22876
– ident: CR7
– ident: CR8
– ident: CR3
– ident: CR4
– volume: 138
  start-page: 1
  issue: 7
  year: 2018
  end-page: 10
  ident: CR6
  article-title: Evaluation of variations in autonomic nervous system’s activity during the day based on facial thermal images using independent component analysis
  publication-title: IEEJ Trans Electron Inf Syst
– ident: 699_CR8
– ident: 699_CR7
– ident: 699_CR3
  doi: 10.1016/j.biopsycho.2011.09.018
– volume: 14
  start-page: 870
  issue: 6
  year: 2019
  ident: 699_CR1
  publication-title: IEEJ Trans Electr Electron Eng (TEEE C)
  doi: 10.1002/tee.22876
– ident: 699_CR4
– volume: 9
  start-page: 125
  issue: 3
  year: 2014
  ident: 699_CR2
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0090782
– volume: 138
  start-page: 1
  issue: 7
  year: 2018
  ident: 699_CR6
  publication-title: IEEJ Trans Electron Inf Syst
– volume: 26
  start-page: 122
  year: 2020
  ident: 699_CR5
  publication-title: Artif Life Robot
  doi: 10.1007/s10015-020-00634-2
SSID ssj0047063
Score 2.2281108
Snippet Facial skin temperature (FST) has also gained prominence as an indicator for detecting anomalies such as fever due to the COVID-19. When FST is used for...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
nii
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 488
SubjectTerms Anomalies
Artificial Intelligence
Computation by Abstract Devices
Computer Science
Control
Diurnal variations
Mechatronics
Original
Original Article
Robotics
Skin temperature
Title An attempt to construct the individual model of daily facial skin temperature using variational autoencoder
URI https://cir.nii.ac.jp/crid/1872272493121065344
https://link.springer.com/article/10.1007/s10015-021-00699-7
https://www.ncbi.nlm.nih.gov/pubmed/34584491
https://www.proquest.com/docview/2594199151
https://www.proquest.com/docview/2577730869
https://pubmed.ncbi.nlm.nih.gov/PMC8461596
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfYduHC-KawTUHiBpHapEma49PTxjQEJ540TlXaJlBttNPWIfHfY_elnd4YSLukh8ZRWjuxndg_A7yzwQZUu4FXtZY8DzLlqAQDr7O6EmmTez-CJH3-oo9X-cmpOo0wOZQLc-v-nlLcUGFxCiQgUF3LzRbsqEwaKtOw1Mtp183Numoaqn-JzpUtYoLM3WNsKKGtrm3vsi__DpO8dVc6qqCjx_Ao2o5ssWb2E3jgu6ewO9VlYHGZPoOzRccINvPnxcCGntV9RIllaOyxds7AYmMVHNYH1rj2_DcLjo7P2dVZ2zEijnDLjELjv7Nf6FTHg0PmroeeADAbf_kcVkeHX5fHPBZV4LXSduBONj4tGpfJInVeKiM9QeApa4VWXgdpRPBC4LMgWyP4PJiqSG1TOR2sruUL2O76zr8CJqvKUd6rCwq9mNRZW6VGe4NETnlrEsimv1zWEXGcCl-clzdYycSZEjlTjpwpkeb9THOxxtv4b-99ZB4OTm1WGCEMupOSQNG0knmewN7E1jKuzasSHb6cAr5UlsDb-TWuKroqcZ3vr6mPMbj3Fdom8HItBfN0JF0t5xapzYZ8zB0IsXvzTdf-GJG70dhD81En8GGSpJtp_fsrX9-v-xt4KEjWx4TJPdhGCfP7aDkN1QHsLD5--3R4MC4dbFdi8QcZRQ8_
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb5VAEJ_YetCL3x9oq2viTUlgP9nji7F5attTX9IbWWBXSSs0Pmrif-8Mb6E-rSZe4MAOAWZ25zfszG8AXttgA7rdkFa1FqkMIkvRCYa0zuuKZ430fiRJOjrWy5X8eKpOY1HYesp2n7Ykx5X6l2I3dF0ppRQQva5NzQ7cRDBQkC2v-GJaf6XZ9E9DICAwzLJFLJW5_h5b7mina9vrkOafCZO_7ZqOzujgHtyJKJItNmq_Dzd89wDuTh0aWJywD-Fs0TEi0Px6MbChZ3Uf-WIZwj7WzrVYbOyHw_rAGtee_2DB0Y90tj5rO0bCkXiZUZL8Z_Ydw-v4C5G5y6EnKszGf3sEq4P3J--WaWyvkNZK2yF1ovFZ0bhcFJnzQhnhiQxPWcu18joIw4PnHM8FoY7gZTBVkdmmcjpYXYvHsNv1nX8KTFSVowpYFxTGM5mztsqM9gaFnPLWJJBPX7msI_c4tcA4L69Yk0kzJWqmHDVTosybWeZiw7zxz9H7qDy8OR3zwnBuMLAURI-mlZAygb1JrWWcpesSQz9JqV8qT-DVfBnnF22auM73lzTGGFwFC20TeLKxgvlxBG0yS4vSZss-5gHE3b19pWu_jBzeCPsQSOoE3k6WdPVYf3_LZ_83_CXcWp4cHZaHH44_PYfbnOx-LKPcg120Nr-PeGqoXozT5yfs0xPZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI_YkBCX8Q2FDYLEDaK1zVdznB48ja-JA5N2q9I2GdVG-rR1SPz32G3a7cFA4tIeEkdp7cR2Yv9MyCvjjQe161lVK86E5ykDJehZndVVnjbCuQEk6fOB2j8UH47k0ZUs_iHafbqSHHMaEKUp9Lurxu9eSXwDNcYwvAChdg3TG-QmeCoZul8LtZj2YqHHWmpgFHBwuUwR02auH2NNNW2Etr3O6vwzePK3G9RBMS3vkq1oUdK9UQTukRsu3Cd3pmoNNC7eB-RkL1AE0_y-6mnf0bqL2LEUTEDaznlZdKiNQztPG9ue_qTe4qE6PT9pA0XiCMJMMWD-mP4AVzseJ1J70XcIi9m4s4fkcPnu62KfxVILrJbK9MzyxqVFYzNepNZxqblDYDxpTK6kU57r3Ls8h3eBFoh3wuuqSE1TWeWNqvkjshm64J4QyqvKYjas9RJ8m9QaU6VaOQ1EVjqjE5JNf7msIw45lsM4LS8RlJEzJXCmHDhTAs3rmWY1onD8s_cOMA8Gx2dW6DzX4GRyhEpTkguRkO2JrWVcsecluIECw8BklpCXczOsNbxAscF1F9hHa9gRC2US8niUgnk6HC-chQFqvSYfcwfE8V5vCe23Ac8bTEAwKlVC3kySdDmtv3_l0__r_oLc-vJ2WX56f_DxGbmdo9gPGZXbZBOEze2AadVXz4fV8wuBnxf_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+attempt+to+construct+the+individual+model+of+daily+facial+skin+temperature+using+variational+autoencoder&rft.jtitle=Artificial+life+and+robotics&rft.au=Masaki%2C+Ayaka&rft.au=Nagumo%2C+Kent&rft.au=Iwashita%2C+Yuki&rft.au=Oiwa%2C+Kosuke&rft.date=2021-11-01&rft.issn=1433-5298&rft.volume=26&rft.issue=4&rft.spage=488&rft_id=info:doi/10.1007%2Fs10015-021-00699-7&rft_id=info%3Apmid%2F34584491&rft.externalDocID=34584491
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-5298&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-5298&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-5298&client=summon