Emotion recognition based on physiological changes in music listening
Little attention has been paid so far to physiological signals for emotion recognition compared to audiovisual emotion channels such as facial expression or speech. This paper investigates the potential of physiological signals as reliable channels for emotion recognition. All essential stages of an...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 30; no. 12; pp. 2067 - 2083 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Los Alamitos, CA
IEEE
01.12.2008
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Little attention has been paid so far to physiological signals for emotion recognition compared to audiovisual emotion channels such as facial expression or speech. This paper investigates the potential of physiological signals as reliable channels for emotion recognition. All essential stages of an automatic recognition system are discussed, from the recording of a physiological data set to a feature-based multiclass classification. In order to collect a physiological data set from multiple subjects over many weeks, we used a musical induction method that spontaneously leads subjects to real emotional states, without any deliberate laboratory setting. Four-channel biosensors were used to measure electromyogram, electrocardiogram, skin conductivity, and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to find the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by classification results. Classification of four musical emotions (positive/high arousal, negative/high arousal, negative/low arousal, and positive/low arousal) is performed by using an extended linear discriminant analysis (pLDA). Furthermore, by exploiting a dichotomic property of the 2D emotion model, we develop a novel scheme of emotion-specific multilevel dichotomous classification (EMDC) and compare its performance with direct multiclass classification using the pLDA. An improved recognition accuracy of 95 percent and 70 percent for subject-dependent and subject-independent classification, respectively, is achieved by using the EMDC scheme. |
---|---|
AbstractList | Little attention has been paid so far to physiological signals for emotion recognition compared to audiovisual emotion channels such as facial expression or speech. This paper investigates the potential of physiological signals as reliable channels [abstract truncated by publisher]. Little attention has been paid so far to physiological signals for emotion recognition compared to audiovisual emotion channels such as facial expression or speech. This paper investigates the potential of physiological signals as reliable channels for emotion recognition. All essential stages of an automatic recognition system are discussed, from the recording of a physiological dataset to a feature-based multiclass classification. In order to collect a physiological dataset from multiple subjects over many weeks, we used a musical induction method which spontaneously leads subjects to real emotional states, without any deliberate lab setting. Four-channel biosensors were used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to find the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by classification results. Classification of four musical emotions (positive/high arousal, negative/high arousal, negative/low arousal, positive/low arousal) is performed by using an extended linear discriminant analysis (pLDA). Furthermore, by exploiting a dichotomic property of the 2D emotion model, we develop a novel scheme of emotion-specific multilevel dichotomous classification (EMDC) and compare its performance with direct multiclass classification using the pLDA. Improved recognition accuracy of 95\% and 70\% for subject-dependent and subject-independent classification, respectively, is achieved by using the EMDC scheme. Little attention has been paid so far to physiological signals for emotion recognition compared to audiovisual emotion channels such as facial expression or speech. This paper investigates the potential of physiological signals as reliable channels for emotion recognition. All essential stages of an automatic recognition system are discussed, from the recording of a physiological data set to a feature-based multiclass classification. In order to collect a physiological data set from multiple subjects over many weeks, we used a musical induction method that spontaneously leads subjects to real emotional states, without any deliberate laboratory setting. Four-channel biosensors were used to measure electromyogram, electrocardiogram, skin conductivity, and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to find the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by classification results. Classification of four musical emotions (positive/high arousal, negative/high arousal, negative/low arousal, and positive/low arousal) is performed by using an extended linear discriminant analysis (pLDA). Furthermore, by exploiting a dichotomic property of the 2D emotion model, we develop a novel scheme of emotion-specific multilevel dichotomous classification (EMDC) and compare its performance with direct multiclass classification using the pLDA. An improved recognition accuracy of 95 percent and 70 percent for subject-dependent and subject-independent classification, respectively, is achieved by using the EMDC scheme. Little attention has been paid so far to physiological signals for emotion recognition compared to audiovisual emotion channels such as facial expression or speech. This paper investigates the potential of physiological signals as reliable channels for emotion recognition. All essential stages of an automatic recognition system are discussed, from the recording of a physiological dataset to a feature-based multiclass classification. In order to collect a physiological dataset from multiple subjects over many weeks, we used a musical induction method which spontaneously leads subjects to real emotional states, without any deliberate lab setting. Four-channel biosensors were used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to find the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by classification results. Classification of four musical emotions (positive/high arousal, negative/high arousal, negative/low arousal, positive/low arousal) is performed by using an extended linear discriminant analysis (pLDA). Furthermore, by exploiting a dichotomic property of the 2D emotion model, we develop a novel scheme of emotion-specific multilevel dichotomous classification (EMDC) and compare its performance with direct multiclass classification using the pLDA. Improved recognition accuracy of 95\% and 70\% for subject-dependent and subject-independent classification, respectively, is achieved by using the EMDC scheme.Little attention has been paid so far to physiological signals for emotion recognition compared to audiovisual emotion channels such as facial expression or speech. This paper investigates the potential of physiological signals as reliable channels for emotion recognition. All essential stages of an automatic recognition system are discussed, from the recording of a physiological dataset to a feature-based multiclass classification. In order to collect a physiological dataset from multiple subjects over many weeks, we used a musical induction method which spontaneously leads subjects to real emotional states, without any deliberate lab setting. Four-channel biosensors were used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to find the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by classification results. Classification of four musical emotions (positive/high arousal, negative/high arousal, negative/low arousal, positive/low arousal) is performed by using an extended linear discriminant analysis (pLDA). Furthermore, by exploiting a dichotomic property of the 2D emotion model, we develop a novel scheme of emotion-specific multilevel dichotomous classification (EMDC) and compare its performance with direct multiclass classification using the pLDA. Improved recognition accuracy of 95\% and 70\% for subject-dependent and subject-independent classification, respectively, is achieved by using the EMDC scheme. In order to collect a physiological data set from multiple subjects over many weeks, we used a musical induction method that spontaneously leads subjects to real emotional states, without any deliberate laboratory setting. |
Author | Jonghwa Kim Andre, Elisabeth |
Author_xml | – sequence: 1 surname: Jonghwa Kim fullname: Jonghwa Kim email: kim@informatik.uni-augsburg.de organization: Inst. fur Inf., Univ. of Augsburg, Augsburg, Germany – sequence: 2 givenname: Elisabeth surname: Andre fullname: Andre, Elisabeth email: andre@informatik.uni-augsburg.de organization: Inst. fur Inf., Univ. of Augsburg, Augsburg, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20841939$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18988943$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0kFPHCEUAGDSaOq67bGnJs3EpLaX2fKAYeBozGpNbNqDPROGgRUzA9th5uC_L-NubWKinniH7z3gvXeMDkIMFqEPgFcAWH67-XX242pFMBYrwt-gBQGOS0kkOUALDJyUQhBxhI5TusMYWIXpW3QEQgohGV2g9bqPo4-hGKyJm-Af4kYn2xY52N7eJx-7uPFGd4W51WFjU-FD0U_Jm6LzabTBh807dOh0l-z7_blEvy_WN-ffy-ufl1fnZ9elqbgcSwFcCKbBuBawkY1xtHICQGoQNYGWG1nhhtS6BtdSV7mGM9M67AwwUVNCl-jLru52iH8mm0bV-2Rs1-lg45SUxJTnrwue5emLksuaQyWrVyFljFYcRIZfX4TAayAceH7DEp08oXdxGkLujBKckAqAyYw-7dHU9LZV28H3erhX_2aTwec90Cm33w06GJ8eHcGCgaRzoXLnzBBTGqz7XwqreUfUw46oeUcUmVtDn3jjRz0Pfhy0757N-rjL8tbaxxsYY1ATTP8CGxXFSw |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3303311 crossref_primary_10_3390_app15052742 crossref_primary_10_1016_j_neucom_2013_02_041 crossref_primary_10_1142_S1793351X09000744 crossref_primary_10_3389_fpsyg_2022_895929 crossref_primary_10_1016_j_bspc_2014_07_008 crossref_primary_10_1109_TPAMI_2019_2944808 crossref_primary_10_1145_2764921 crossref_primary_10_3389_fnins_2022_884475 crossref_primary_10_1109_JBHI_2019_2893222 crossref_primary_10_1007_s11042_023_14489_9 crossref_primary_10_1007_s12652_021_03367_7 crossref_primary_10_1109_JSEN_2024_3380749 crossref_primary_10_1145_3384394 crossref_primary_10_3390_app15052850 crossref_primary_10_1109_JIOT_2022_3146942 crossref_primary_10_1016_j_bspc_2023_104661 crossref_primary_10_4015_S1016237216500241 crossref_primary_10_1016_j_bspc_2017_05_003 crossref_primary_10_1109_JSEN_2016_2623677 crossref_primary_10_3389_fnins_2019_00437 crossref_primary_10_1109_TAFFC_2017_2712143 crossref_primary_10_1007_s11760_017_1092_9 crossref_primary_10_1145_3699724 crossref_primary_10_3390_s21165554 crossref_primary_10_1016_j_procs_2024_04_124 crossref_primary_10_1145_3490686 crossref_primary_10_1109_ACCESS_2019_2940378 crossref_primary_10_1007_s13042_016_0601_4 crossref_primary_10_1016_j_ijhcs_2018_10_003 crossref_primary_10_1080_21681015_2017_1324528 crossref_primary_10_3390_s19204495 crossref_primary_10_1109_TAFFC_2016_2535291 crossref_primary_10_1016_j_entcs_2019_04_009 crossref_primary_10_1527_tjsai_40_2_B_O72 crossref_primary_10_1016_j_irbm_2024_100849 crossref_primary_10_1016_j_bspc_2023_104890 crossref_primary_10_1016_j_bspc_2023_105744 crossref_primary_10_1002_ecj_11627 crossref_primary_10_1016_j_trf_2020_09_005 crossref_primary_10_26634_jpr_7_2_18127 crossref_primary_10_3390_bios8020030 crossref_primary_10_3389_fpsyg_2022_1066317 crossref_primary_10_3390_s18072074 crossref_primary_10_1109_TAFFC_2022_3163609 crossref_primary_10_1109_TCE_2013_6689687 crossref_primary_10_1109_TAFFC_2017_2723011 crossref_primary_10_1109_ACCESS_2022_3186318 crossref_primary_10_1007_s00530_013_0303_7 crossref_primary_10_26637_MJM0804_0123 crossref_primary_10_1109_TNSRE_2023_3253866 crossref_primary_10_3109_17518423_2013_834997 crossref_primary_10_3389_fnbot_2017_00019 crossref_primary_10_1109_TNSRE_2010_2078516 crossref_primary_10_1016_j_future_2021_01_010 crossref_primary_10_1016_j_bspc_2013_06_014 crossref_primary_10_1016_j_bspc_2018_08_024 crossref_primary_10_1109_TAFFC_2014_2327617 crossref_primary_10_1007_s10772_012_9175_z crossref_primary_10_12688_wellcomeopenres_16856_1 crossref_primary_10_1016_j_inffus_2022_03_009 crossref_primary_10_12688_wellcomeopenres_16856_2 crossref_primary_10_1038_s41597_024_03729_8 crossref_primary_10_12688_wellcomeopenres_16856_3 crossref_primary_10_1109_TAFFC_2022_3173403 crossref_primary_10_1007_s00521_021_06516_3 crossref_primary_10_1016_j_inffus_2020_08_007 crossref_primary_10_3390_s22020547 crossref_primary_10_3390_mti6050035 crossref_primary_10_3390_app9163355 crossref_primary_10_1007_s11334_022_00520_z crossref_primary_10_1109_TAFFC_2018_2820049 crossref_primary_10_1007_s12652_018_1065_z crossref_primary_10_1016_j_bbe_2017_05_004 crossref_primary_10_1007_s12193_019_00302_1 crossref_primary_10_1016_j_bj_2017_11_001 crossref_primary_10_5370_KIEE_2013_62_11_1598 crossref_primary_10_1109_TAFFC_2015_2392932 crossref_primary_10_1109_TCE_2011_6131173 crossref_primary_10_1016_j_bandc_2015_08_003 crossref_primary_10_1109_TAFFC_2019_2892090 crossref_primary_10_3390_s24248130 crossref_primary_10_1016_j_patcog_2024_111249 crossref_primary_10_1109_TNNLS_2013_2280271 crossref_primary_10_3390_aerospace11010030 crossref_primary_10_1016_j_gaitpost_2014_06_016 crossref_primary_10_3390_brainsci10100687 crossref_primary_10_3390_app10207239 crossref_primary_10_3390_s20144037 crossref_primary_10_1007_s10803_012_1587_8 crossref_primary_10_1007_s11760_021_01942_1 crossref_primary_10_1016_j_neuroscience_2020_01_045 crossref_primary_10_1007_s11042_015_3202_4 crossref_primary_10_1109_ACCESS_2023_3236814 crossref_primary_10_3389_fnhum_2023_1180533 crossref_primary_10_1109_ACCESS_2019_2907479 crossref_primary_10_1111_j_1469_8986_2010_01170_x crossref_primary_10_1145_2723575 crossref_primary_10_3390_e21070646 crossref_primary_10_1038_s41598_022_27361_x crossref_primary_10_1109_ACCESS_2018_2878144 crossref_primary_10_1109_TBME_2017_2771518 crossref_primary_10_12677_Design_2024_91011 crossref_primary_10_1007_s11760_023_02606_y crossref_primary_10_3389_fpsyg_2018_00467 crossref_primary_10_1080_07370024_2012_755421 crossref_primary_10_1016_j_apergo_2013_03_028 crossref_primary_10_3390_electronics5030046 crossref_primary_10_1145_2133366_2133373 crossref_primary_10_1007_s11432_010_4001_1 crossref_primary_10_1109_ACCESS_2019_2893202 crossref_primary_10_1016_j_bspc_2022_103580 crossref_primary_10_1016_j_cmpb_2015_07_006 crossref_primary_10_1016_j_cmpb_2012_10_021 crossref_primary_10_3390_s23031608 crossref_primary_10_1145_3301498 crossref_primary_10_7717_peerj_cs_2649 crossref_primary_10_3389_fpsyg_2021_772642 crossref_primary_10_4015_S101623721650040X crossref_primary_10_1155_2018_5296523 crossref_primary_10_1177_03611981211041594 crossref_primary_10_1109_JIOT_2023_3265768 crossref_primary_10_1007_s12193_012_0093_9 crossref_primary_10_1109_JBHI_2021_3092412 crossref_primary_10_1109_JIOT_2021_3122015 crossref_primary_10_1524_itit_2009_0557 crossref_primary_10_1016_j_ins_2019_09_005 crossref_primary_10_3390_bioengineering10111308 crossref_primary_10_3758_s13428_020_01435_y crossref_primary_10_3390_brainsci12121680 crossref_primary_10_3389_fncom_2019_00053 crossref_primary_10_1007_s00779_011_0479_9 crossref_primary_10_1007_s42486_020_00043_1 crossref_primary_10_1109_ACCESS_2024_3436556 crossref_primary_10_1109_TSMC_2020_2970905 crossref_primary_10_3389_fnhum_2018_00267 crossref_primary_10_1007_s13218_011_0115_x crossref_primary_10_3389_fpsyg_2017_02239 crossref_primary_10_1038_s41598_022_07517_5 crossref_primary_10_1541_ieejeiss_133_706 crossref_primary_10_1109_TSMCA_2012_2216869 crossref_primary_10_3390_e24020259 crossref_primary_10_1007_s42600_023_00293_9 crossref_primary_10_1109_T_AFFC_2012_4 crossref_primary_10_1007_s00287_012_0618_3 crossref_primary_10_1007_s11042_020_10341_6 crossref_primary_10_12677_HJBM_2021_112011 crossref_primary_10_1109_TBME_2010_2048568 crossref_primary_10_1186_1687_5281_2013_26 crossref_primary_10_1109_TAFFC_2022_3155604 crossref_primary_10_1109_TAFFC_2016_2582490 crossref_primary_10_1016_j_irbm_2021_06_002 crossref_primary_10_1016_j_ymssp_2022_109675 crossref_primary_10_1007_s00500_020_05338_0 crossref_primary_10_1016_j_neucom_2014_02_057 crossref_primary_10_3389_fict_2018_00017 crossref_primary_10_1007_s11036_024_02393_x crossref_primary_10_1098_rstb_2009_0139 crossref_primary_10_4258_hir_2018_24_4_309 crossref_primary_10_1109_TAFFC_2015_2444371 crossref_primary_10_1109_TITS_2021_3104827 crossref_primary_10_3390_s19071659 crossref_primary_10_1109_TAFFC_2018_2878029 crossref_primary_10_3390_app13020807 crossref_primary_10_1016_j_intcom_2012_04_003 crossref_primary_10_1109_TMM_2013_2265078 crossref_primary_10_1016_j_eswa_2020_114011 crossref_primary_10_1186_s12911_020_01299_4 crossref_primary_10_1016_j_compbiomed_2017_12_025 crossref_primary_10_1038_s41598_023_36915_6 crossref_primary_10_1177_1729881418806433 crossref_primary_10_1145_2382577_2382582 crossref_primary_10_3390_app12094236 crossref_primary_10_18178_joig_4_2_116_121 crossref_primary_10_1177_0305735620928422 crossref_primary_10_3182_20120215_3_AT_3016_00055 crossref_primary_10_1007_s12652_021_03437_w crossref_primary_10_1111_exsy_12014 crossref_primary_10_3389_fpsyg_2022_781448 crossref_primary_10_1016_j_eswa_2020_114382 crossref_primary_10_1007_s13246_019_00825_7 crossref_primary_10_1007_s40846_018_0458_y crossref_primary_10_26599_TST_2022_9010038 crossref_primary_10_1007_s11042_018_6907_3 crossref_primary_10_1007_s43545_022_00335_6 crossref_primary_10_1016_j_cmpb_2013_05_022 crossref_primary_10_1371_journal_pone_0140330 crossref_primary_10_1007_s00426_022_01661_3 crossref_primary_10_3390_s22072538 crossref_primary_10_1145_3719211 crossref_primary_10_3390_s21051777 crossref_primary_10_1109_ACCESS_2021_3055551 crossref_primary_10_1016_j_apacoust_2021_108389 crossref_primary_10_1016_j_ins_2017_11_045 crossref_primary_10_3390_electronics13122324 crossref_primary_10_1631_FITEE_1800101 crossref_primary_10_1109_JSEN_2023_3314718 crossref_primary_10_3389_fncom_2017_00064 crossref_primary_10_3390_s24144721 crossref_primary_10_1155_2014_851796 crossref_primary_10_1109_TAFFC_2017_2764896 crossref_primary_10_3389_fnbot_2019_00046 crossref_primary_10_4316_aece_2012_02008 crossref_primary_10_1109_TIE_2010_2103538 crossref_primary_10_3390_app10103501 crossref_primary_10_1109_ACCESS_2019_2891579 crossref_primary_10_1016_j_cmpb_2014_06_014 crossref_primary_10_1007_s13735_017_0128_9 crossref_primary_10_1016_j_bspc_2020_101902 crossref_primary_10_4218_etrij_2020_0446 crossref_primary_10_3389_fpsyg_2019_01138 crossref_primary_10_21541_apjes_601235 crossref_primary_10_1371_journal_pone_0150584 crossref_primary_10_1371_journal_pone_0223881 crossref_primary_10_1016_j_heliyon_2024_e31485 crossref_primary_10_3390_s19194079 crossref_primary_10_1016_j_chb_2021_106797 crossref_primary_10_1016_j_asoc_2012_01_015 crossref_primary_10_1186_s12911_017_0562_x crossref_primary_10_1093_scan_nsy076 crossref_primary_10_1109_T_AFFC_2011_30 crossref_primary_10_1007_s41060_024_00649_z crossref_primary_10_1111_anec_12919 crossref_primary_10_1016_j_eswa_2014_03_050 crossref_primary_10_1016_j_jnca_2019_102423 crossref_primary_10_1145_2168752_2168754 crossref_primary_10_1109_ACCESS_2020_3035540 crossref_primary_10_1016_j_procs_2015_12_222 crossref_primary_10_1109_TMI_2023_3246220 crossref_primary_10_3390_s22155611 crossref_primary_10_1162_leon_a_01344 crossref_primary_10_1080_2326263X_2014_912882 crossref_primary_10_1007_s13246_017_0571_1 crossref_primary_10_1109_T_AFFC_2011_37 crossref_primary_10_1109_ACCESS_2022_3201342 crossref_primary_10_1007_s11042_016_3608_7 crossref_primary_10_1007_s12193_012_0097_5 crossref_primary_10_3390_s18124253 crossref_primary_10_1007_s11042_022_14091_5 crossref_primary_10_1016_j_compbiomed_2020_103875 crossref_primary_10_1109_TAFFC_2015_2496310 crossref_primary_10_1109_TAFFC_2017_2781732 crossref_primary_10_1016_j_compbiomed_2022_106463 crossref_primary_10_1109_TMM_2010_2052592 crossref_primary_10_1016_j_neucom_2022_09_061 crossref_primary_10_1155_2013_937163 crossref_primary_10_3233_THC_213522 crossref_primary_10_1016_j_ijhcs_2012_10_016 crossref_primary_10_1109_TCDS_2024_3383296 crossref_primary_10_3390_jmse10101438 crossref_primary_10_1109_T_AFFC_2012_14 crossref_primary_10_1109_TITB_2011_2169804 crossref_primary_10_1080_10510974_2021_1975139 crossref_primary_10_1186_s12993_018_0149_4 crossref_primary_10_1007_s12530_014_9123_z crossref_primary_10_1016_j_measurement_2021_109966 crossref_primary_10_3389_fnins_2024_1293962 crossref_primary_10_1109_ACCESS_2023_3265898 crossref_primary_10_1007_s10489_025_06245_3 crossref_primary_10_1007_s11694_018_9754_z crossref_primary_10_1016_j_csl_2010_10_001 crossref_primary_10_1088_0967_3334_34_1_35 crossref_primary_10_1109_T_AFFC_2011_15 crossref_primary_10_1515_bmt_2013_0118 crossref_primary_10_1109_TCSS_2024_3392569 crossref_primary_10_1109_ACCESS_2019_2904977 crossref_primary_10_1016_j_cmpb_2016_12_005 crossref_primary_10_1007_s00521_024_09426_2 crossref_primary_10_1038_s41598_022_06993_z crossref_primary_10_1142_S021963521450006X crossref_primary_10_1145_3332374 crossref_primary_10_5370_KIEE_2014_63_5_696 crossref_primary_10_1016_j_inffus_2024_102338 crossref_primary_10_1109_TMM_2016_2614880 crossref_primary_10_1109_T_AFFC_2011_28 crossref_primary_10_3389_fnhum_2017_00577 crossref_primary_10_1109_TAFFC_2021_3094894 crossref_primary_10_1109_ACCESS_2018_2885279 crossref_primary_10_1109_T_AFFC_2011_25 crossref_primary_10_1109_TAFFC_2018_2884461 crossref_primary_10_1109_ACCESS_2019_2945059 crossref_primary_10_1109_JSEN_2021_3107429 crossref_primary_10_1109_THMS_2024_3430327 crossref_primary_10_3389_fict_2017_00001 crossref_primary_10_1007_s10489_024_05976_z crossref_primary_10_1080_09298215_2017_1337158 crossref_primary_10_1109_T_AFFC_2011_4 crossref_primary_10_3390_s23198078 crossref_primary_10_1016_j_jneumeth_2024_110348 crossref_primary_10_3389_fnhum_2023_1286621 crossref_primary_10_1109_TAFFC_2019_2901673 crossref_primary_10_1109_TAFFC_2019_2954118 crossref_primary_10_1016_j_compeleceng_2019_106544 crossref_primary_10_1109_TVCG_2024_3372101 crossref_primary_10_1109_TAFFC_2020_2981610 crossref_primary_10_3389_fphys_2018_00525 crossref_primary_10_1109_ACCESS_2023_3279720 crossref_primary_10_1109_TNSRE_2021_3078460 crossref_primary_10_1142_S0129065716500131 crossref_primary_10_3389_frobt_2024_1463477 crossref_primary_10_1007_s10462_023_10690_2 crossref_primary_10_1007_s11517_012_0921_9 crossref_primary_10_1016_j_neucom_2015_07_112 crossref_primary_10_1007_s12559_013_9239_7 crossref_primary_10_1109_ACCESS_2024_3463746 crossref_primary_10_1016_j_future_2021_05_034 crossref_primary_10_1016_j_cmpb_2019_03_015 crossref_primary_10_1109_TAFFC_2022_3220484 crossref_primary_10_35272_jaet_2017_10_4_479 crossref_primary_10_1109_JIOT_2022_3204779 crossref_primary_10_3390_s22208047 crossref_primary_10_1016_j_ijhcs_2014_05_006 crossref_primary_10_4188_jte_66_109 crossref_primary_10_1109_TIM_2016_2640458 crossref_primary_10_3390_s21155015 crossref_primary_10_1016_j_measurement_2014_09_010 crossref_primary_10_32628_CSEIT2410612392 crossref_primary_10_5937_telfor2202073S crossref_primary_10_3390_s19245524 crossref_primary_10_3390_e24070859 crossref_primary_10_3389_fpsyg_2020_01111 crossref_primary_10_1016_j_bspc_2025_107749 crossref_primary_10_1007_s11760_013_0591_6 crossref_primary_10_1007_s11042_022_12711_8 crossref_primary_10_1016_j_compedu_2023_104784 crossref_primary_10_1038_srep23384 crossref_primary_10_1109_JSEN_2018_2867221 crossref_primary_10_1587_transinf_2017EDL8264 crossref_primary_10_1016_j_eswa_2024_124305 crossref_primary_10_3390_a16030130 crossref_primary_10_1051_matecconf_20166103012 crossref_primary_10_1589_jpts_25_753 crossref_primary_10_1016_j_bspc_2020_102251 crossref_primary_10_1093_iwc_iwu014 crossref_primary_10_2478_jaiscr_2021_0001 crossref_primary_10_3390_electronics6020044 crossref_primary_10_1007_s11280_019_00713_w crossref_primary_10_1109_JBHI_2018_2878846 crossref_primary_10_3390_s18113886 crossref_primary_10_1587_transinf_2017EDP7067 crossref_primary_10_1016_j_bica_2018_04_012 crossref_primary_10_1109_JBHI_2024_3419043 crossref_primary_10_1016_j_ijhcs_2015_05_002 crossref_primary_10_3390_s19030460 crossref_primary_10_1080_13467581_2019_1687090 crossref_primary_10_1109_TAFFC_2024_3409357 crossref_primary_10_1109_THMS_2017_2681434 crossref_primary_10_1007_s00500_016_2110_5 crossref_primary_10_1093_iwc_iwt039 crossref_primary_10_1016_j_artres_2017_02_003 crossref_primary_10_1109_TAFFC_2017_2702749 crossref_primary_10_1109_TAFFC_2017_2737984 crossref_primary_10_1145_3236621 crossref_primary_10_1016_j_jth_2017_11_001 crossref_primary_10_1016_j_eswa_2020_114516 crossref_primary_10_1038_s41598_022_10459_7 crossref_primary_10_1145_3524499 crossref_primary_10_1109_TCSS_2022_3219825 crossref_primary_10_1109_TAFFC_2016_2625250 crossref_primary_10_1109_TAFFC_2019_2901456 crossref_primary_10_3390_s18061905 crossref_primary_10_1109_TCDS_2021_3071170 crossref_primary_10_1007_s13246_017_0530_x crossref_primary_10_1145_3550307 crossref_primary_10_1007_s12193_013_0133_0 crossref_primary_10_1109_JSTSP_2016_2638538 crossref_primary_10_3389_fnhum_2022_813684 crossref_primary_10_1017_S1351324922000535 crossref_primary_10_1080_14626268_2017_1407344 crossref_primary_10_1016_j_eswa_2019_112890 crossref_primary_10_1088_1757_899X_782_3_032005 crossref_primary_10_1111_psyp_14350 crossref_primary_10_1007_s10209_016_0469_9 crossref_primary_10_1016_j_bbe_2018_07_001 crossref_primary_10_1016_j_chb_2018_05_015 crossref_primary_10_1007_s11042_022_14051_z crossref_primary_10_1109_ACCESS_2019_2944001 crossref_primary_10_1007_s12559_016_9383_y crossref_primary_10_3233_AIC_201576 crossref_primary_10_1002_widm_1328 crossref_primary_10_1145_3478121 crossref_primary_10_1016_j_ipm_2019_102185 crossref_primary_10_1007_s11257_011_9107_7 crossref_primary_10_1088_1742_6596_1950_1_012047 crossref_primary_10_3390_e24091281 crossref_primary_10_1007_s42979_022_01116_x crossref_primary_10_1093_comjnl_bxaa125 crossref_primary_10_1109_TAFFC_2018_2801811 crossref_primary_10_1145_3652149 crossref_primary_10_1162_NECO_a_00523 crossref_primary_10_4018_jgcms_2010100102 crossref_primary_10_1016_j_bspc_2014_12_006 crossref_primary_10_15290_cr_2020_31_4_03 crossref_primary_10_3390_sym8090086 crossref_primary_10_1109_TBME_2009_2035926 crossref_primary_10_1109_TAFFC_2015_2432810 crossref_primary_10_3390_s20020365 crossref_primary_10_1186_s40708_021_00141_5 crossref_primary_10_1016_j_ijhcs_2022_102791 crossref_primary_10_1109_ACCESS_2021_3121543 crossref_primary_10_1145_3635712 crossref_primary_10_1016_j_neunet_2020_08_009 crossref_primary_10_3390_jfmk4040071 crossref_primary_10_1016_j_bspc_2021_102863 crossref_primary_10_1145_3233184 crossref_primary_10_1145_3491208 crossref_primary_10_1007_s10111_017_0450_2 crossref_primary_10_3390_s20020496 crossref_primary_10_1007_s10055_024_00989_y crossref_primary_10_1016_j_inffus_2023_102129 crossref_primary_10_1109_T_AFFC_2012_28 crossref_primary_10_3390_brainsci11111392 crossref_primary_10_3390_brainsci11030378 crossref_primary_10_1109_TAFFC_2015_2404352 crossref_primary_10_1145_3505560 crossref_primary_10_1080_02533839_2013_799946 crossref_primary_10_1016_j_imavis_2012_06_016 crossref_primary_10_1016_j_inffus_2017_05_005 crossref_primary_10_1016_j_neucom_2014_10_008 crossref_primary_10_1016_j_neuroimage_2013_11_007 crossref_primary_10_1016_j_inffus_2020_01_011 crossref_primary_10_1016_j_neucom_2019_05_061 crossref_primary_10_1109_TBME_2024_3508097 crossref_primary_10_3390_s21031018 crossref_primary_10_1002_hfm_20627 crossref_primary_10_20965_jaciii_2011_p0582 |
Cites_doi | 10.1109/34.824819 10.1037/0022-3514.62.6.972 10.1007/BF02344719 10.2307/40285496 10.1007/978-3-540-24842-2_4 10.1002/0471660264 10.1109/TBME.1985.325532 10.1214/aos/1028144844 10.1111/1469-8986.3820275 10.7208/chicago/9780226521374.001.0001 10.1111/j.1469-8986.1989.tb03163.x 10.1109/34.531802 10.1007/s10111-003-0143-x 10.1103/PhysRevE.71.021906 10.1109/ICASSP.1998.679699 10.1111/j.1469-8986.1990.tb02330.x 10.1037/h0057490 10.1016/j.brat.2003.08.006 10.1080/02699939508408966 10.1109/34.954607 10.1016/0162-3095(90)90017-Z 10.1152/physiologyonline.1999.14.3.111 10.1093/jmt/26.4.168 10.1080/08839519508945477 10.2307/1415404 10.1109/34.574797 10.1037/h0046234 10.1042/cs0910201 10.1037/0003-066X.50.5.372 10.1037/1196-1961.51.4.336 10.1080/026999398379718 10.1152/ajpheart.2000.278.6.h2039 10.1109/79.911197 10.1037/h0054570 |
ContentType | Journal Article |
Copyright | 2009 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
Copyright_xml | – notice: 2009 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
DOI | 10.1109/TPAMI.2008.26 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE Technology Research Database Technology Research Database MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences Music |
EISSN | 2160-9292 1939-3539 |
EndPage | 2083 |
ExternalDocumentID | 2322675031 18988943 20841939 10_1109_TPAMI_2008_26 4441720 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYOK AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
ID | FETCH-LOGICAL-c569t-816884a1cfd10c9bcf35f8119a18721d6c950b27a71fd3f5fb64cdf0fc1487323 |
IEDL.DBID | RIE |
ISSN | 0162-8828 |
IngestDate | Fri Jul 11 08:29:26 EDT 2025 Thu Jul 10 22:49:53 EDT 2025 Thu Jul 10 22:08:50 EDT 2025 Fri Jul 11 00:03:39 EDT 2025 Sun Jun 29 12:46:27 EDT 2025 Mon Jul 21 06:02:21 EDT 2025 Mon Jul 21 09:15:07 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Sun Jul 06 05:07:15 EDT 2025 Wed Aug 27 02:47:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | synthesis and processing Human-centered computing Feature evaluation and selection User/Machine Systems Theory and methods Classifier design and evaluation Robotics Signal processing Methodologies and techniques Interaction styles Signal analysis Pattern analysis Autonomous system Time frequency domain method Man machine system affective computing respiration Modeling electromyogram Audiovisual Induction method electrocardiogram User interface Musical acoustics Classification Facies Electrocardiography Audiovisual equipment Time analysis Pattern extraction physiological signal Emotion recognition Discriminant analysis autonomic nervous system skin conductance biosignal Frequency domain method Emotion emotionality valence human-computer interaction Multiscale method Biosensor Music musical emotion Skin Automatic recognition Artificial intelligence Multiclass Facial expression arousal |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c569t-816884a1cfd10c9bcf35f8119a18721d6c950b27a71fd3f5fb64cdf0fc1487323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://opus.bibliothek.uni-augsburg.de/opus4/files/46592/46592.pdf |
PMID | 18988943 |
PQID | 862251149 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | ieee_primary_4441720 proquest_miscellaneous_1671261690 crossref_primary_10_1109_TPAMI_2008_26 proquest_journals_862251149 proquest_miscellaneous_903629286 pubmed_primary_18988943 proquest_miscellaneous_34435618 proquest_miscellaneous_69761595 pascalfrancis_primary_20841939 crossref_citationtrail_10_1109_TPAMI_2008_26 |
PublicationCentury | 2000 |
PublicationDate | 2008-12-01 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Los Alamitos, CA |
PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2008 |
Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Guzzetta (ref17) 1989; 18 ref34 ref37 ref14 ref36 ref30 ref11 ref33 ref10 (ref23) 1995 ref32 ref2 ref39 ref16 ref38 ref19 ref18 Ferri (ref43) 1994 James (ref1) 1890 Mcllory (ref35) 1990 ref24 ref45 Kivy (ref12) 1989 ref26 ref25 ref47 ref20 ref42 LeDoux (ref29) 1992 ref41 ref22 ref44 ref21 Ekman (ref4) 1989 Melin (ref31) 1997; 11 ref28 ref27 Vaitl (ref15) 1993 ref8 ref7 ref9 Thuraisingham (ref40) 2005 ref3 ref5 Friedman (ref46) 1996 Cacioppo (ref6) 1993 |
References_xml | – ident: ref33 doi: 10.1109/34.824819 – start-page: 119 volume-title: Handbook of Emotions year: 1993 ident: ref6 article-title: The Psychophysiology of Emotion – volume: 11 start-page: 238 issue: 3 year: 1997 ident: ref31 article-title: A Biopsychosocial Approach to Work-Stress and Musculoskeletal Disorders publication-title: J. Psychophysiology – ident: ref5 doi: 10.1037/0022-3514.62.6.972 – ident: ref24 doi: 10.1007/BF02344719 – ident: ref11 doi: 10.2307/40285496 – start-page: 339 volume-title: The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction year: 1992 ident: ref29 – ident: ref22 doi: 10.1007/978-3-540-24842-2_4 – ident: ref47 doi: 10.1002/0471660264 – ident: ref36 doi: 10.1109/TBME.1985.325532 – ident: ref45 doi: 10.1214/aos/1028144844 – ident: ref8 doi: 10.1111/1469-8986.3820275 – ident: ref14 doi: 10.7208/chicago/9780226521374.001.0001 – ident: ref10 doi: 10.1111/j.1469-8986.1989.tb03163.x – ident: ref44 doi: 10.1109/34.531802 – ident: ref20 doi: 10.1007/s10111-003-0143-x – ident: ref39 doi: 10.1103/PhysRevE.71.021906 – start-page: 143 volume-title: Handbook of Social Psychophysiology year: 1989 ident: ref4 article-title: The Argument and Evidence about Universals in Facial Expressions of Emotion – start-page: 403 volume-title: Pattern Recognition in Practice IV: Multiple Paradigms, Comparative Studies, and Hybrid Systems year: 1994 ident: ref43 article-title: Comparative Study of Techniques for Large-Scale Feature Selection – year: 2005 ident: ref40 article-title: On Multiscale Entropy Analysis for Physiological Data publication-title: Physica A – ident: ref18 doi: 10.1109/ICASSP.1998.679699 – ident: ref7 doi: 10.1111/j.1469-8986.1990.tb02330.x – volume-title: Sound Sentiment: An Essay on the Musical Emotions year: 1989 ident: ref12 – ident: ref32 doi: 10.1037/h0057490 – ident: ref30 doi: 10.1016/j.brat.2003.08.006 – ident: ref21 doi: 10.1080/02699939508408966 – volume: 18 start-page: 609 issue: 6 year: 1989 ident: ref17 article-title: Effects of Relaxation and Music Therapy on Patients in a Coronary Care Unit with Presumptive Acute Myocardial Infarction publication-title: Heart and Lung: J. Critical Care – ident: ref19 doi: 10.1109/34.954607 – ident: ref26 doi: 10.1016/0162-3095(90)90017-Z – ident: ref41 doi: 10.1152/physiologyonline.1999.14.3.111 – ident: ref16 doi: 10.1093/jmt/26.4.168 – volume-title: Clinical Cardiology year: 1990 ident: ref35 – ident: ref34 doi: 10.1080/08839519508945477 – ident: ref2 doi: 10.2307/1415404 – ident: ref42 doi: 10.1109/34.574797 – ident: ref9 doi: 10.1037/h0046234 – volume-title: technical report, Dept. of Statistics, Stanford Univ., year: 1996 ident: ref46 article-title: Another Approach to Polychotomous Classification – ident: ref37 doi: 10.1042/cs0910201 – ident: ref25 doi: 10.1037/0003-066X.50.5.372 – ident: ref13 doi: 10.1037/1196-1961.51.4.336 – ident: ref28 doi: 10.1080/026999398379718 – ident: ref38 doi: 10.1152/ajpheart.2000.278.6.h2039 – volume-title: The Principles of Psychology year: 1890 ident: ref1 – ident: ref3 doi: 10.1109/79.911197 – ident: ref27 doi: 10.1037/h0054570 – start-page: 169 volume-title: The Structure of Emotion: Psychophysiological, Cognitive, and Clinical Aspects year: 1993 ident: ref15 article-title: Prompts-Leitmotif-Emotion: Play It Again, Richard Wagner – volume-title: The International Affective Picture System: Digitized Photographs year: 1995 ident: ref23 |
SSID | ssj0014503 |
Score | 2.5217464 |
Snippet | Little attention has been paid so far to physiological signals for emotion recognition compared to audiovisual emotion channels such as facial expression or... In order to collect a physiological data set from multiple subjects over many weeks, we used a musical induction method that spontaneously leads subjects to... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2067 |
SubjectTerms | Adaptation, Physiological - physiology Algorithms and processing Applied sciences Arousal Arousal - physiology Artificial Intelligence Auditory Perception - physiology Biosensors Channels Classification Classifier design and evaluation Computer science; control theory; systems Computer systems and distributed systems. User interface Conductivity measurement Discriminant analysis Disk recording Emotion recognition Emotions Emotions - physiology Entropy Exact sciences and technology Feature evaluation and selection Frequency Human-centered computing Humans Intelligence Interaction styles Laboratories Methodologies and techniques Monitoring, Physiologic - methods Music Pattern analysis Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Recognition Robotics Signal analysis Signal processing Skin Software Speech Studies synthesis Theory and methods User/Machine Systems |
Title | Emotion recognition based on physiological changes in music listening |
URI | https://ieeexplore.ieee.org/document/4441720 https://www.ncbi.nlm.nih.gov/pubmed/18988943 https://www.proquest.com/docview/862251149 https://www.proquest.com/docview/1671261690 https://www.proquest.com/docview/34435618 https://www.proquest.com/docview/69761595 https://www.proquest.com/docview/903629286 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SnNpD8-rDSZuqUHqKN37IsnQMZUNa2NJDArkZWQ8oTbylu3vpr8-MZDtJqSE3gcbYGs1Y80mj-QA-eS6MLjRVuMxcyi13qeStTTNNWQ2traWlC86L7-Liin-7rq634GS8C-OcC8lnbkbNcJZvl2ZDW2WnnPiyCgTozxC4xbta44kBrwILMkYw6OEII-7raZ5e_jhbfI1pk0WgLJJKUtnxR0tR4FahzEi9QuX4yGoxHXaG5ed8BxbDh8esk1-zzbqdmb__1HR86sh24WUfh7KzaDh7sOW6fdgZOB5Y7_L78OJBwcIDmM8j6w8b846wTQuhZdgIuyTDz5TFK8Ur9rNjt0QmzW7Iomgb5hVcnc8vv1ykPRFDaiqh1ilxc0iuc-NtnhnVGl9WXua50rlEBGmFUVXWFrWuc29LX_lWcGN95g2Crbosytew3S079xZYyVv8i0gjPAIZW1Xa4Mh1KfEJKpRoEjgZ5qQxfZVyIsu4aQJayVQTZjOyZxYigc-j-O9YnmNK8IC0Pgr1Ck_g-NGEj_1FJjnGtiqBo8ECmt67Vw2iQEJmHHs_jr3olnTWoju33KyaXNQ5glOh8BUfJmRKjrGqyOW0hMBgEePNKgE2IaEoAlGFxAG-ifZ5r4fezA__P_QjeB5yX0JqzjvYXv_ZuPcYYK3b4-BZd4WUIJ0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcKLQ8lkJrJMSp2caJ7djHCm21hW7FYSv1Fjl-SIiSRezuhV_P2E5SiojEzZInSjyeieezx_MBvPdMGF3oUOEydxmzzGWSNTbLdchqaGwlbbjgvLgS82v26Ybf7MDJcBfGOReTz9w0NONZvl2ZbdgqO2WBL6tAgP4A131O022t4cyA8ciDjDEM-jgCibuKmqfLL2eLi5Q4WUTSIqlkKDx-bzGK7CohN1KvUT0-8VqMB55xATrfg0X_6Snv5Nt0u2mm5tdfVR3_d2xP4UkXiZKzZDrPYMe1-7DXszyQzun34fEfJQsPYDZLvD9kyDzCdlgKLcFG3Cfpf6ckXSpek68t-R7opMltsKmwEfMcrs9ny4_zrKNiyAwXapMFdg7JNDXe0tyoxviSe0mp0lQihrTCKJ43RaUr6m3puW8EM9bn3iDcqsqifAG77ap1r4CUrMH_iDTCI5SxnGuDI9elxCdCqUQzgZN-TmrT1SkPdBm3dcQruarjbCb-zEJM4MMg_iMV6BgTPAhaH4Q6hU_g6N6ED_1FLhlGt2oCh70F1J1_r2vEgQGbMex9N_SiY4bTFt261XZdU1FRhKdC4SuOR2RKhtGqoHJcQmC4iBEnnwAZkVAhBlGFxAG-TPZ5p4fOzF__e-jH8HC-XFzWlxdXnw_hUcyEiYk6b2B383Pr3mK4tWmOopf9Bq2FI-Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+recognition+based+on+physiological+changes+in+music+listening&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Kim%2C+Jonghwa&rft.au=Andr%C3%A9%2C+Elisabeth&rft.date=2008-12-01&rft.issn=0162-8828&rft.volume=30&rft.issue=12&rft.spage=2067&rft_id=info:doi/10.1109%2FTPAMI.2008.26&rft_id=info%3Apmid%2F18988943&rft.externalDocID=18988943 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |