Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale

Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The thermochemically converted biomasses of these production technologies have fundamentally different properties controlled by the production te...

Full description

Saved in:
Bibliographic Details
Published inBiomass & bioenergy Vol. 59; pp. 264 - 278
Main Authors Wiedner, Katja, Rumpel, Cornelia, Steiner, Christoph, Pozzi, Alessandro, Maas, Robert, Glaser, Bruno
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The thermochemically converted biomasses of these production technologies have fundamentally different properties controlled by the production technology. This is reflected by general properties such as pH or elemental composition. The 13C NMR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy and black carbon results confirmed these observations showing that hydrochars have lower proportions of aromatic compounds than biochars (less stable) but are rich in functional groups (higher cation exchange capacity) than biochars. Analyses of pollutants indicate that polycyclic aromatic hydrocarbons as well as dioxin contents of most samples were under the threshold values recommended by International Biochar Initiative and European Biochar Certificate. In conclusion, biochars and hydrochars are entirely different from each other and these materials will probably have a complementary reaction in a soil environment. •Production technologies influences fundamentally chemical properties of chars.•Carbonized materials have different behaviour in soil environment.•Environmental risk of chars is low with respect to PAH and dioxin contents.•Certification standard for biochars is not suitable for hydrochars.•Commercial scale reactors are able to produce high quality biochars according to the regulations of the EBC or IBI.
AbstractList Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The thermochemically converted biomasses of these production technologies have fundamentally different properties controlled by the production technology. This is reflected by general properties such as pH or elemental composition. The 13C NMR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy and black carbon results confirmed these observations showing that hydrochars have lower proportions of aromatic compounds than biochars (less stable) but are rich in functional groups (higher cation exchange capacity) than biochars. Analyses of pollutants indicate that polycyclic aromatic hydrocarbons as well as dioxin contents of most samples were under the threshold values recommended by International Biochar Initiative and European Biochar Certificate. In conclusion, biochars and hydrochars are entirely different from each other and these materials will probably have a complementary reaction in a soil environment. •Production technologies influences fundamentally chemical properties of chars.•Carbonized materials have different behaviour in soil environment.•Environmental risk of chars is low with respect to PAH and dioxin contents.•Certification standard for biochars is not suitable for hydrochars.•Commercial scale reactors are able to produce high quality biochars according to the regulations of the EBC or IBI.
Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The thermochemically converted biomasses of these production technologies have fundamentally different properties controlled by the production technology. This is reflected by general properties such as pH or elemental composition. The 13C NMR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy and black carbon results confirmed these observations showing that hydrochars have lower proportions of aromatic compounds than biochars (less stable) but are rich in functional groups (higher cation exchange capacity) than biochars. Analyses of pollutants indicate that polycyclic aromatic hydrocarbons as well as dioxin contents of most samples were under the threshold values recommended by International Biochar Initiative and European Biochar Certificate. In conclusion, biochars and hydrochars are entirely different from each other and these materials will probably have a complementary reaction in a soil environment.
Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The thermochemically converted biomasses of these production technologies have fundamentally different properties controlled by the production technology. This is reflected by general properties such as pH or elemental composition. The C-13 NMR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy and black carbon results confirmed these observations showing that hydrochars have lower proportions of aromatic compounds than biochars (less stable) but are rich in functional groups (higher cation exchange capacity) than biochars. Analyses of pollutants indicate that polycyclic aromatic hydrocarbons as well as dioxin contents of most samples were under the threshold values recommended by International Biochar Initiative and European Biochar Certificate. In conclusion, biochars and hydrochars are entirely different from each other and these materials will probably have a complementary reaction in a soil environment.
Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The thermochemically converted biomasses of these production technologies have fundamentally different properties controlled by the production technology. This is reflected by general properties such as pH or elemental composition. The ¹³C NMR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy and black carbon results confirmed these observations showing that hydrochars have lower proportions of aromatic compounds than biochars (less stable) but are rich in functional groups (higher cation exchange capacity) than biochars. Analyses of pollutants indicate that polycyclic aromatic hydrocarbons as well as dioxin contents of most samples were under the threshold values recommended by International Biochar Initiative and European Biochar Certificate. In conclusion, biochars and hydrochars are entirely different from each other and these materials will probably have a complementary reaction in a soil environment.
Author Steiner, Christoph
Rumpel, Cornelia
Pozzi, Alessandro
Maas, Robert
Glaser, Bruno
Wiedner, Katja
Author_xml – sequence: 1
  givenname: Katja
  surname: Wiedner
  fullname: Wiedner, Katja
  email: katja.wiedner@landw.uni-halle.de
  organization: Soil Biogeochemistry, Martin-Luther-University Halle-Wittenberg, von Seckendorff Platz 3, 06120 Halle, Germany
– sequence: 2
  givenname: Cornelia
  surname: Rumpel
  fullname: Rumpel, Cornelia
  organization: UPMC, CNRS, Laboratoire de Biogéochimie et Ecologie des Milieux Continentaux (BIOEMCO UMR 7618 UPMC-CNRS-UPEC-ENS-IRD-AgroParisTech), Centre INRA Versailles-Grignon Bâtiment EGER, 78850 Thiverval-Grignon, France
– sequence: 3
  givenname: Christoph
  surname: Steiner
  fullname: Steiner, Christoph
  organization: Biochar.org, Salzburgerstrasse 17, 5165 Berndorf, Salzburg, Austria
– sequence: 4
  givenname: Alessandro
  surname: Pozzi
  fullname: Pozzi, Alessandro
  organization: Advanced Gasification Technology S.r.l., Agriculture and Energy Farms Department, Via Trieste, 2, 22060 Arosio, CO, Italy
– sequence: 5
  givenname: Robert
  surname: Maas
  fullname: Maas, Robert
  organization: CS carbonSolutions Deutschland GmbH, Albert-Einstein-Ring 1, 14532 Kleinmachnow, Germany
– sequence: 6
  givenname: Bruno
  surname: Glaser
  fullname: Glaser, Bruno
  organization: Soil Biogeochemistry, Martin-Luther-University Halle-Wittenberg, von Seckendorff Platz 3, 06120 Halle, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28058236$$DView record in Pascal Francis
https://hal.inrae.fr/hal-02649587$$DView record in HAL
BookMark eNqFksGO0zAQhiO0SHQXXgFyQdqVSLGd2LElDruqgEWqxAH2bE3tydZVEhc7rVSeiYfEbrccuOwhcjT6fv8z4_-yuBj9iEXxlpI5JVR83MxXzg_pwzkjtJ4TOSdMvChmVLZ1xRRRF8WMKEErxevmVXEZ44YQ2pCGzoo_izUOzkBf4h76HUzOj6XvSrOGEMtt8HZn0JarQzmtMQzenHHjxz2GmPHrR4iuS9Us_lBuD8H3h-hiCaMt1wcb_FGbRRBWfnS_j-RN9oHH4Cs32l2cgktEHgViLNO1kDyGAYPJ9Zg88XXxsoM-4pun86p4-PL55-K-Wn7_-m1xt6wMF2qqWuQEjOINB6Zq00hjTWfNytSSSSk7KZjtGCorO0WEsW1T01X6kdiKhreivipuTveuodfb4AYIB-3B6fu7pc61tN9GcdnuaWKvT2za1a8dxkkPLhrsexjR76KmQoqWqpqo51FORVtLJVhC3z-hkCfvAozGxX-9MEm4ZHXu9NOJM8HHGLDTxk3H7U4BXK8p0TkjeqPPGdE5I5rIPEOSi__kZ4dnhe9Owg68Tm-Yenv4kQCegsU5ZzIRtycC00PtHQYdjcMxhckFNJO23j1n8he0ielI
CitedBy_id crossref_primary_10_1007_s42773_020_00056_0
crossref_primary_10_1088_1402_4896_ad6f61
crossref_primary_10_1007_s10533_024_01200_9
crossref_primary_10_1016_j_fuproc_2021_106782
crossref_primary_10_1016_j_scitotenv_2023_162849
crossref_primary_10_1016_j_jaap_2015_07_011
crossref_primary_10_1016_j_wasman_2020_10_025
crossref_primary_10_1021_acs_est_7b04983
crossref_primary_10_1007_s11356_018_2703_x
crossref_primary_10_3390_agriculture10050158
crossref_primary_10_1016_j_enconman_2018_07_061
crossref_primary_10_1016_j_rser_2024_114723
crossref_primary_10_1007_s13399_020_00711_3
crossref_primary_10_1016_j_biortech_2020_123674
crossref_primary_10_1016_j_biombioe_2014_10_013
crossref_primary_10_1016_j_rser_2016_12_122
crossref_primary_10_1016_j_ejbt_2017_01_004
crossref_primary_10_1016_j_fuel_2022_125566
crossref_primary_10_1016_j_materresbull_2023_112261
crossref_primary_10_1155_2024_1343256
crossref_primary_10_1371_journal_pone_0206299
crossref_primary_10_1016_j_renene_2019_09_098
crossref_primary_10_3390_agronomy14020247
crossref_primary_10_1016_j_carbon_2017_01_069
crossref_primary_10_1016_j_jwpe_2022_102801
crossref_primary_10_1111_gcbb_12158
crossref_primary_10_1016_j_jhazmat_2022_128375
crossref_primary_10_1016_j_sjbs_2018_05_017
crossref_primary_10_3390_su14073829
crossref_primary_10_3390_app10103445
crossref_primary_10_1016_j_cej_2020_126582
crossref_primary_10_1080_10643389_2018_1518860
crossref_primary_10_1007_s11368_014_0964_7
crossref_primary_10_3390_horticulturae5010014
crossref_primary_10_1134_S1064229315090069
crossref_primary_10_1016_j_biortech_2022_127467
crossref_primary_10_4236_jsbs_2015_52004
crossref_primary_10_1016_j_fuel_2017_12_054
crossref_primary_10_1080_09506608_2018_1473096
crossref_primary_10_1002_ldr_2756
crossref_primary_10_3390_su131810362
crossref_primary_10_1016_j_biortech_2020_123414
crossref_primary_10_1080_00103624_2020_1763395
crossref_primary_10_1088_1757_899X_342_1_012053
crossref_primary_10_1016_j_biombioe_2023_106962
crossref_primary_10_3390_en12091586
crossref_primary_10_1007_s13399_022_03261_y
crossref_primary_10_1016_j_jece_2018_05_009
crossref_primary_10_1007_s10163_018_0752_3
crossref_primary_10_3390_su16229749
crossref_primary_10_1007_s10311_023_01600_7
crossref_primary_10_1016_j_jhazmat_2021_126611
crossref_primary_10_1186_s40538_023_00525_1
crossref_primary_10_1016_j_rser_2021_111070
crossref_primary_10_1016_j_chemosphere_2020_127616
crossref_primary_10_1016_j_enconman_2018_09_090
crossref_primary_10_4236_jsbs_2015_51002
crossref_primary_10_1038_s41598_024_51786_1
crossref_primary_10_1007_s10570_016_1054_3
crossref_primary_10_1016_j_jclepro_2014_10_080
crossref_primary_10_1016_j_wasman_2018_08_015
crossref_primary_10_1016_j_enceco_2025_01_004
crossref_primary_10_3390_en12050858
crossref_primary_10_1016_j_cej_2021_128829
crossref_primary_10_1016_j_fuel_2023_129026
crossref_primary_10_1007_s13399_021_01346_8
crossref_primary_10_1007_s12155_016_9720_8
crossref_primary_10_1016_j_rser_2015_01_050
crossref_primary_10_3390_su16125004
crossref_primary_10_1080_10934529_2019_1682367
crossref_primary_10_3390_toxics11020117
crossref_primary_10_2134_jeq2015_09_0470
crossref_primary_10_1016_j_envres_2023_117923
crossref_primary_10_1016_j_scitotenv_2020_144480
crossref_primary_10_1016_j_jaap_2015_10_015
crossref_primary_10_1111_gcbb_12371
crossref_primary_10_1080_09593330_2017_1297851
crossref_primary_10_1071_SR15067
crossref_primary_10_1016_j_jclepro_2019_04_282
crossref_primary_10_1016_j_orggeochem_2014_02_003
crossref_primary_10_1016_j_biortech_2017_06_177
crossref_primary_10_1016_j_ecoleng_2014_11_004
crossref_primary_10_1016_j_jenvman_2023_118931
crossref_primary_10_1016_j_wasman_2019_09_010
crossref_primary_10_1016_j_enconman_2022_116101
crossref_primary_10_1016_j_wasman_2020_04_020
crossref_primary_10_1016_j_jhazmat_2020_123833
crossref_primary_10_1016_j_watres_2021_117186
crossref_primary_10_1039_D4RA03945A
crossref_primary_10_1007_s00374_020_01436_1
crossref_primary_10_1016_j_envpol_2016_08_014
crossref_primary_10_1016_j_resconrec_2022_106313
crossref_primary_10_3390_su11010277
crossref_primary_10_1016_j_jenvman_2017_03_087
crossref_primary_10_3389_fagro_2023_1214012
crossref_primary_10_2166_wst_2024_051
crossref_primary_10_1016_j_carbon_2017_09_051
crossref_primary_10_1002_jpln_201800496
crossref_primary_10_1016_j_jwpe_2024_105204
crossref_primary_10_1111_gcbb_12517
crossref_primary_10_1016_j_arabjc_2023_104993
crossref_primary_10_1016_j_chemosphere_2017_10_026
crossref_primary_10_1007_s11104_016_2935_9
crossref_primary_10_1016_S1872_5813_22_60038_0
crossref_primary_10_3390_en17081918
crossref_primary_10_1002_gch2_202400240
crossref_primary_10_1016_j_jes_2018_02_012
crossref_primary_10_2139_ssrn_4071674
crossref_primary_10_3390_su151511917
crossref_primary_10_1002_ep_13105
crossref_primary_10_1016_j_hazadv_2022_100086
crossref_primary_10_1016_j_cej_2019_122977
crossref_primary_10_1016_j_eti_2018_01_004
crossref_primary_10_1016_j_still_2025_106556
crossref_primary_10_1016_j_jclepro_2018_05_085
crossref_primary_10_1016_j_scitotenv_2018_01_145
crossref_primary_10_1016_j_scitotenv_2021_148756
crossref_primary_10_1021_acssuschemeng_9b06522
crossref_primary_10_1007_s11814_014_0376_9
crossref_primary_10_1016_j_biombioe_2023_106913
crossref_primary_10_1016_j_chemosphere_2022_135753
crossref_primary_10_1016_j_apenergy_2017_08_076
crossref_primary_10_1098_rspa_2015_0841
crossref_primary_10_1016_j_cej_2021_129300
crossref_primary_10_1016_j_jhazmat_2019_121356
crossref_primary_10_1016_j_rser_2021_111708
crossref_primary_10_1016_j_jenvman_2017_03_067
crossref_primary_10_1016_j_proenv_2016_02_012
crossref_primary_10_1016_j_biombioe_2015_11_002
crossref_primary_10_1080_23311916_2024_2307201
crossref_primary_10_1039_D0EW00763C
crossref_primary_10_1002_cben_202200031
crossref_primary_10_1007_s13593_014_0251_4
crossref_primary_10_1016_j_jaap_2024_106685
crossref_primary_10_2478_johr_2022_0018
crossref_primary_10_1016_j_biortech_2014_01_120
crossref_primary_10_1007_s11356_018_1781_0
crossref_primary_10_1016_j_scitotenv_2020_141607
crossref_primary_10_1016_j_fuproc_2015_11_022
crossref_primary_10_1016_j_cej_2024_156464
crossref_primary_10_1016_j_cesys_2024_100188
crossref_primary_10_1016_j_jenvman_2021_113128
crossref_primary_10_3389_fmicb_2019_02694
crossref_primary_10_3390_en16073259
crossref_primary_10_1016_j_fuel_2023_128898
crossref_primary_10_1016_j_biortech_2020_124023
crossref_primary_10_1007_s11356_015_4491_x
crossref_primary_10_3390_en16104175
crossref_primary_10_5194_se_5_995_2014
crossref_primary_10_1111_ejss_12256
crossref_primary_10_5194_soil_2_673_2016
crossref_primary_10_1016_j_chemosphere_2018_08_033
crossref_primary_10_1016_j_wasman_2014_12_004
crossref_primary_10_1016_j_joei_2023_101298
crossref_primary_10_1039_C7RA10353K
crossref_primary_10_1016_j_fuproc_2022_107347
crossref_primary_10_1016_j_wasman_2024_01_052
crossref_primary_10_1039_C5RA24561C
crossref_primary_10_1016_j_chemosphere_2017_05_175
crossref_primary_10_5004_dwt_2018_21737
crossref_primary_10_1016_j_biortech_2016_01_053
crossref_primary_10_1016_j_scienta_2022_111148
crossref_primary_10_3390_nano11102473
crossref_primary_10_1016_j_apsoil_2015_08_019
crossref_primary_10_1021_jf405549z
crossref_primary_10_1016_j_enconman_2014_09_058
crossref_primary_10_35534_ces_2023_10003
crossref_primary_10_1016_j_geoderma_2016_08_019
crossref_primary_10_1021_acs_jafc_5b00846
crossref_primary_10_1016_j_energy_2017_07_165
crossref_primary_10_1080_15275922_2017_1340370
crossref_primary_10_1007_s11356_017_0612_z
crossref_primary_10_1016_j_biombioe_2023_106942
crossref_primary_10_3390_en13164203
crossref_primary_10_4236_jsbs_2014_44021
crossref_primary_10_1021_acs_iecr_4c00082
crossref_primary_10_1016_j_reactfunctpolym_2025_106257
crossref_primary_10_1016_j_biombioe_2020_105754
crossref_primary_10_1016_j_cej_2022_136942
crossref_primary_10_1016_j_envint_2019_03_031
crossref_primary_10_1016_j_jphotochem_2016_04_014
crossref_primary_10_5194_soil_1_665_2015
crossref_primary_10_1016_j_biombioe_2019_01_040
Cites_doi 10.1016/j.orggeochem.2010.07.001
10.1016/S0016-7061(97)00055-4
10.1016/j.orggeochem.2012.03.007
10.1016/j.biortech.2011.06.099
10.1021/ie300565d
10.1021/jf205278v
10.1016/j.orggeochem.2005.03.011
10.1016/S0146-6380(98)00194-6
10.1021/es101337x
10.1002/jpln.201100172
10.4155/bfs.10.81
10.1016/j.apsoil.2012.02.021
10.1016/j.orggeochem.2005.06.010
10.1006/jmra.1993.1231
10.1016/j.orggeochem.2012.10.006
10.1021/ef101342v
10.1071/SR10058
10.1021/ja00420a036
10.1016/S1385-8947(01)00228-5
10.1021/es201792c
10.1002/jpln.201100143
10.1071/SR10010
10.2134/jeq2011.0132
10.1016/S0196-8904(99)00130-2
10.1016/j.soilbio.2008.10.016
10.1016/j.apsoil.2010.04.011
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
AAYXX
CITATION
IQODW
7QO
7ST
7TV
8FD
C1K
FR3
P64
SOI
7S9
L.6
1XC
DOI 10.1016/j.biombioe.2013.08.026
DatabaseName AGRIS
CrossRef
Pascal-Francis
Biotechnology Research Abstracts
Environment Abstracts
Pollution Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Pollution Abstracts
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA


Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-2909
EndPage 278
ExternalDocumentID oai_HAL_hal_02649587v1
28058236
10_1016_j_biombioe_2013_08_026
US201500155528
S0961953413003723
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSJ
SSR
SSZ
T5K
VH1
WUQ
~G-
~KM
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
IQODW
7QO
7ST
7TV
8FD
C1K
EFKBS
FR3
P64
SOI
7S9
L.6
1XC
ID FETCH-LOGICAL-c569t-7e50ac9545a293c48cdcfdcbc382888f862df2e9d8f906cd7431b06c8e7645763
IEDL.DBID .~1
ISSN 0961-9534
IngestDate Fri May 09 12:24:28 EDT 2025
Tue Aug 05 09:12:04 EDT 2025
Mon Jul 21 10:58:22 EDT 2025
Wed Apr 02 07:24:01 EDT 2025
Thu Apr 24 22:57:27 EDT 2025
Tue Jul 01 01:49:35 EDT 2025
Thu Apr 03 09:43:10 EDT 2025
Fri Feb 23 02:27:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pyrolysis
Gasification
Hydrothermal carbonization
Polycyclic aromatic hydrocarbons
13C NMR
Black carbon
Thermochemical treatment
Agricultural industry
NMR spectrometry
Biomass
Surface structure
Persistent organic pollutant
Characterization
Carbonization
Hydrothermal treatment
Chemical composition
Carbon 13
Scanning electron microscopy
Carbon black
Hydrocarbon
C NMR
Polycyclic aromatic compound
Biochar
Solid state
Energy-dispersive X-ray spectrometry
Morphology
C-13 NMR
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-7e50ac9545a293c48cdcfdcbc382888f862df2e9d8f906cd7431b06c8e7645763
Notes http://dx.doi.org/10.1016/j.biombioe.2013.08.026
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2131-9451
PQID 1516738962
PQPubID 23462
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_02649587v1
proquest_miscellaneous_1686719309
proquest_miscellaneous_1516738962
pascalfrancis_primary_28058236
crossref_citationtrail_10_1016_j_biombioe_2013_08_026
crossref_primary_10_1016_j_biombioe_2013_08_026
fao_agris_US201500155528
elsevier_sciencedirect_doi_10_1016_j_biombioe_2013_08_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Biomass & bioenergy
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Schulz, Glaser (bib2) 2012; 175
DIN 38414-24 (bib19) 2000
Kuzyakov, Subbotina, Chen, Bogomolova, Xu (bib1) 2009; 41
Kang, Li, Fan, Chang (bib10) 2012; 51
Eusterhues, Rumpel, Kögel-Knabner (bib30) 2005; 36
Lee, Kidder, Evans, Paik, Buchanan, Garten (bib9) 2010; 44
Schaefer, Stejskal (bib14) 1976; 98
Mumme, Eckervogt, Pielert, Diakité, Rupp, Kern (bib11) 2011; 102
Kögel-Knabner (bib22) 1997; 80
Cao, Ro, Chappell, Li, Mao (bib13) 2011; 25
DIN ISO 13877 (bib18) 1995
George, Wagner, Kücke, Rillig (bib32) 2012; 59
Liu, Schulz, Brandl, Miehtke, Huwe, Glaser (bib3) 2012; 175
McKay (bib25) 2002; 86
Singh, Singh, Cowie (bib26) 2010; 48
BBodSchV (bib27) 1999 Juli 12
Meyer, Glaser, Quicker (bib5) 2011; 45
Wiedner, Naissé, Rumpel, Pozzi, Wieczorek, Glaser (bib12) 2012; 54
(bib20) 1999
Demirbas (bib29) 2000; 41
Kammann, Ratering, Eckhard, Müller (bib4) 2012; 41
AbfKlär V. Klärschlammverordnung (bib24) 1992 April 15
Glaser, Haumaier, Guggenberger, Zech (bib16) 1998; 29
IBI (bib8) 2013 April 11
Brodowski, Rodionov, Haumaier, Glaser, Amelung (bib17) 2005; 36
Schmidt, Abiven, Kamman, Glaser, Bucheli, Leifield (bib7) 2012
Rillig, Wagner, Salem, Antunes, George, Ramke (bib33) 2010; 45
Hilber, Bucheli, Blum, Leifeld, Schmidt (bib28) 2012; 60
Libra, Ro, Kammann, Funke, Berge, Neubauer (bib6) 2011; 2
Fuertes, Camps Arbestain, Sevilla, Maciá-Agulló, Fiol, López (bib21) 2010; 48
Rivas, Matus, Rumpel, Knicker, Garrido (bib31) 2012; 47
Schneider, Hilf, Vogt, Schmidt (bib23) 2010; 41
Peersen, Wu, Kustanovich, Smith (bib15) 1993; 104
Kang (10.1016/j.biombioe.2013.08.026_bib10) 2012; 51
Fuertes (10.1016/j.biombioe.2013.08.026_bib21) 2010; 48
Lee (10.1016/j.biombioe.2013.08.026_bib9) 2010; 44
Glaser (10.1016/j.biombioe.2013.08.026_bib16) 1998; 29
Rillig (10.1016/j.biombioe.2013.08.026_bib33) 2010; 45
Liu (10.1016/j.biombioe.2013.08.026_bib3) 2012; 175
Schmidt (10.1016/j.biombioe.2013.08.026_bib7) 2012
Rivas (10.1016/j.biombioe.2013.08.026_bib31) 2012; 47
DIN ISO 13877 (10.1016/j.biombioe.2013.08.026_bib18) 1995
Demirbas (10.1016/j.biombioe.2013.08.026_bib29) 2000; 41
Hilber (10.1016/j.biombioe.2013.08.026_bib28) 2012; 60
Kögel-Knabner (10.1016/j.biombioe.2013.08.026_bib22) 1997; 80
George (10.1016/j.biombioe.2013.08.026_bib32) 2012; 59
Libra (10.1016/j.biombioe.2013.08.026_bib6) 2011; 2
Cao (10.1016/j.biombioe.2013.08.026_bib13) 2011; 25
Eusterhues (10.1016/j.biombioe.2013.08.026_bib30) 2005; 36
Brodowski (10.1016/j.biombioe.2013.08.026_bib17) 2005; 36
(10.1016/j.biombioe.2013.08.026_bib20) 1999
Kammann (10.1016/j.biombioe.2013.08.026_bib4) 2012; 41
IBI (10.1016/j.biombioe.2013.08.026_bib8) 2013
Meyer (10.1016/j.biombioe.2013.08.026_bib5) 2011; 45
Wiedner (10.1016/j.biombioe.2013.08.026_bib12) 2012; 54
DIN 38414-24 (10.1016/j.biombioe.2013.08.026_bib19) 2000
Mumme (10.1016/j.biombioe.2013.08.026_bib11) 2011; 102
Kuzyakov (10.1016/j.biombioe.2013.08.026_bib1) 2009; 41
Schneider (10.1016/j.biombioe.2013.08.026_bib23) 2010; 41
BBodSchV (10.1016/j.biombioe.2013.08.026_bib27) 1999
AbfKlär V. Klärschlammverordnung (10.1016/j.biombioe.2013.08.026_bib24) 1992
McKay (10.1016/j.biombioe.2013.08.026_bib25) 2002; 86
Schaefer (10.1016/j.biombioe.2013.08.026_bib14) 1976; 98
Schulz (10.1016/j.biombioe.2013.08.026_bib2) 2012; 175
Peersen (10.1016/j.biombioe.2013.08.026_bib15) 1993; 104
Singh (10.1016/j.biombioe.2013.08.026_bib26) 2010; 48
References_xml – volume: 2
  start-page: 89
  year: 2011
  end-page: 124
  ident: bib6
  article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis
  publication-title: Biofuels
– volume: 36
  start-page: 1299
  year: 2005
  end-page: 1310
  ident: bib17
  article-title: Revised black carbon assessment using benzene polycarboxylic acids
  publication-title: Org Geochem
– volume: 102
  start-page: 9255
  year: 2011
  end-page: 9260
  ident: bib11
  article-title: Hydrothermal carbonization of anaerobically digested maize silage
  publication-title: Bioresour Technol
– volume: 48
  start-page: 516
  year: 2010
  end-page: 525
  ident: bib26
  article-title: Characterisation and evaluation of biochars for their application as a soil amendment
  publication-title: Aust J Soil Res
– year: 2013 April 11
  ident: bib8
  article-title: Standardized produce definition and product testing guidelines for biochar that is used in soil. Version 1.1
– year: 2000
  ident: bib19
  article-title: Schlamm und Sedimente (Gruppe S) Teil 24: Bestimmung von polychlorierten Dibenzodioxinen (PCDD) und polychlorierten Dibenzofuranen (PCDF)
– volume: 51
  start-page: 9023
  year: 2012
  end-page: 9031
  ident: bib10
  article-title: Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal
  publication-title: Ind Eng Chem Res
– volume: 104
  start-page: 334
  year: 1993
  end-page: 339
  ident: bib15
  article-title: Variable amplitude cross-polarization MAS NMR
  publication-title: J Magn Reson
– volume: 41
  start-page: 210
  year: 2009
  end-page: 219
  ident: bib1
  article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by
  publication-title: Soil Biol Biochem
– volume: 175
  start-page: 698
  year: 2012
  end-page: 707
  ident: bib3
  article-title: Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions
  publication-title: J Plant Nutr Soil Sci
– volume: 36
  start-page: 1567
  year: 2005
  end-page: 1575
  ident: bib30
  article-title: Stabilization of soil organic matter isolated by oxidative degradation
  publication-title: Org Geochem
– volume: 54
  start-page: 91
  year: 2012
  end-page: 100
  ident: bib12
  article-title: Chemical modification of biomass residues during hydrothermal carbonization–what makes the difference, temperature or feedstock?
  publication-title: Org Geochem
– year: 1995
  ident: bib18
  article-title: Bodenbeschaffenheit–Bestimmung von polycyclischen aromatischen Kohlenwasserstoffen (PAK)–Hochleistungs-Flüssigkeitschromatographie (HPLC) Verfahren
– volume: 41
  start-page: 1082
  year: 2010
  end-page: 1088
  ident: bib23
  article-title: The benzene polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200 °C and 1000 °C
  publication-title: Org Geochem
– volume: 45
  start-page: 238
  year: 2010
  end-page: 242
  ident: bib33
  article-title: Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza
  publication-title: Appl Soil Ecol
– volume: 98
  start-page: 1031
  year: 1976
  end-page: 1032
  ident: bib14
  article-title: Carbon-13 nuclear magnetic resonance of polymers spinning at the magic-angle
  publication-title: J Am Chem Soc
– start-page: 63
  year: 1999 Juli 12
  ident: bib27
  article-title: German Bundes-Bodenschutz-und Altlastenverordnung
– start-page: 26
  year: 1992 April 15
  ident: bib24
  article-title: [Monograpgh on the Internet]
– volume: 45
  start-page: 9473
  year: 2011
  end-page: 9483
  ident: bib5
  article-title: Technical, economical and climate related aspects of biochar production technologies: a literature review
  publication-title: Environ Sci Technol
– volume: 44
  start-page: 7970
  year: 2010
  end-page: 7974
  ident: bib9
  article-title: Characterization of biochars produced from Cornstovers for soil amendment
  publication-title: Environ Sci Technol
– volume: 60
  start-page: 3042
  year: 2012
  end-page: 3050
  ident: bib28
  article-title: Quantitative determination of PAHs in biochar–a prerequisite to assure its quality and safe application
  publication-title: J Agr Food Chem
– volume: 41
  start-page: 1052
  year: 2012
  end-page: 1066
  ident: bib4
  article-title: Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils
  publication-title: J Environ Qual
– volume: 59
  start-page: 68
  year: 2012
  end-page: 72
  ident: bib32
  article-title: Divergent consequences of hydrochar in the plant–soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects
  publication-title: Appl Soil Ecol
– year: 1999
  ident: bib20
  publication-title: Cycles of soil: carbon, nitrogen, phosphorus, sulfur and micronutrients
– volume: 175
  start-page: 410
  year: 2012
  end-page: 422
  ident: bib2
  article-title: Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment
  publication-title: J Plant Nutr Soil Sci
– year: 2012
  ident: bib7
  article-title: Guidelines for biochar production: European biochar certificate version 4.2
– volume: 80
  start-page: 243
  year: 1997
  end-page: 270
  ident: bib22
  article-title: C and
  publication-title: Geoderma
– volume: 48
  start-page: 618
  year: 2010
  end-page: 626
  ident: bib21
  article-title: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover
  publication-title: Aust J Soil Res
– volume: 86
  start-page: 343
  year: 2002
  end-page: 368
  ident: bib25
  article-title: Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review
  publication-title: Chem Eng J
– volume: 29
  start-page: 811
  year: 1998
  end-page: 819
  ident: bib16
  article-title: Black carbon in soils: the use of benzenecarboxylic acids as specific markers
  publication-title: Org Geochem
– volume: 47
  start-page: 41
  year: 2012
  end-page: 50
  ident: bib31
  article-title: Black carbon contribution in volcanic soils affected by wildfire or stubble burning
  publication-title: Org Geochem
– volume: 25
  start-page: 388
  year: 2011
  end-page: 397
  ident: bib13
  article-title: Chemical structures of swine manure chars produced under different carbonization conditions investigated by advanced solid-state
  publication-title: Energ Fuel
– volume: 41
  start-page: 633
  year: 2000
  end-page: 646
  ident: bib29
  article-title: Mechanisms of liquefaction and pyrolysis reactions of biomass
  publication-title: Energ Convers Manag
– volume: 41
  start-page: 1082
  issue: 10
  year: 2010
  ident: 10.1016/j.biombioe.2013.08.026_bib23
  article-title: The benzene polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200 °C and 1000 °C
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2010.07.001
– volume: 80
  start-page: 243
  issue: 3
  year: 1997
  ident: 10.1016/j.biombioe.2013.08.026_bib22
  article-title: 13C and 15N NMR spectroscopy as a tool in soil organic matter research
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(97)00055-4
– volume: 47
  start-page: 41
  year: 2012
  ident: 10.1016/j.biombioe.2013.08.026_bib31
  article-title: Black carbon contribution in volcanic soils affected by wildfire or stubble burning
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2012.03.007
– volume: 102
  start-page: 9255
  issue: 19
  year: 2011
  ident: 10.1016/j.biombioe.2013.08.026_bib11
  article-title: Hydrothermal carbonization of anaerobically digested maize silage
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2011.06.099
– volume: 51
  start-page: 9023
  issue: 26
  year: 2012
  ident: 10.1016/j.biombioe.2013.08.026_bib10
  article-title: Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie300565d
– volume: 60
  start-page: 3042
  issue: 12
  year: 2012
  ident: 10.1016/j.biombioe.2013.08.026_bib28
  article-title: Quantitative determination of PAHs in biochar–a prerequisite to assure its quality and safe application
  publication-title: J Agr Food Chem
  doi: 10.1021/jf205278v
– volume: 36
  start-page: 1299
  year: 2005
  ident: 10.1016/j.biombioe.2013.08.026_bib17
  article-title: Revised black carbon assessment using benzene polycarboxylic acids
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2005.03.011
– volume: 29
  start-page: 811
  issue: 4
  year: 1998
  ident: 10.1016/j.biombioe.2013.08.026_bib16
  article-title: Black carbon in soils: the use of benzenecarboxylic acids as specific markers
  publication-title: Org Geochem
  doi: 10.1016/S0146-6380(98)00194-6
– year: 1995
  ident: 10.1016/j.biombioe.2013.08.026_bib18
– volume: 44
  start-page: 7970
  issue: 20
  year: 2010
  ident: 10.1016/j.biombioe.2013.08.026_bib9
  article-title: Characterization of biochars produced from Cornstovers for soil amendment
  publication-title: Environ Sci Technol
  doi: 10.1021/es101337x
– volume: 175
  start-page: 698
  issue: 5
  year: 2012
  ident: 10.1016/j.biombioe.2013.08.026_bib3
  article-title: Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201100172
– volume: 2
  start-page: 89
  issue: 1
  year: 2011
  ident: 10.1016/j.biombioe.2013.08.026_bib6
  article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis
  publication-title: Biofuels
  doi: 10.4155/bfs.10.81
– volume: 59
  start-page: 68
  year: 2012
  ident: 10.1016/j.biombioe.2013.08.026_bib32
  article-title: Divergent consequences of hydrochar in the plant–soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2012.02.021
– volume: 36
  start-page: 1567
  issue: 11
  year: 2005
  ident: 10.1016/j.biombioe.2013.08.026_bib30
  article-title: Stabilization of soil organic matter isolated by oxidative degradation
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2005.06.010
– volume: 104
  start-page: 334
  issue: 3
  year: 1993
  ident: 10.1016/j.biombioe.2013.08.026_bib15
  article-title: Variable amplitude cross-polarization MAS NMR
  publication-title: J Magn Reson
  doi: 10.1006/jmra.1993.1231
– volume: 54
  start-page: 91
  year: 2012
  ident: 10.1016/j.biombioe.2013.08.026_bib12
  article-title: Chemical modification of biomass residues during hydrothermal carbonization–what makes the difference, temperature or feedstock?
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2012.10.006
– volume: 25
  start-page: 388
  issue: 1
  year: 2011
  ident: 10.1016/j.biombioe.2013.08.026_bib13
  article-title: Chemical structures of swine manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy
  publication-title: Energ Fuel
  doi: 10.1021/ef101342v
– volume: 48
  start-page: 516
  year: 2010
  ident: 10.1016/j.biombioe.2013.08.026_bib26
  article-title: Characterisation and evaluation of biochars for their application as a soil amendment
  publication-title: Aust J Soil Res
  doi: 10.1071/SR10058
– volume: 98
  start-page: 1031
  issue: 4
  year: 1976
  ident: 10.1016/j.biombioe.2013.08.026_bib14
  article-title: Carbon-13 nuclear magnetic resonance of polymers spinning at the magic-angle
  publication-title: J Am Chem Soc
  doi: 10.1021/ja00420a036
– volume: 86
  start-page: 343
  issue: 3
  year: 2002
  ident: 10.1016/j.biombioe.2013.08.026_bib25
  article-title: Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review
  publication-title: Chem Eng J
  doi: 10.1016/S1385-8947(01)00228-5
– volume: 45
  start-page: 9473
  issue: 22
  year: 2011
  ident: 10.1016/j.biombioe.2013.08.026_bib5
  article-title: Technical, economical and climate related aspects of biochar production technologies: a literature review
  publication-title: Environ Sci Technol
  doi: 10.1021/es201792c
– volume: 175
  start-page: 410
  issue: 3
  year: 2012
  ident: 10.1016/j.biombioe.2013.08.026_bib2
  article-title: Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201100143
– start-page: 63
  year: 1999
  ident: 10.1016/j.biombioe.2013.08.026_bib27
– start-page: 26
  year: 1992
  ident: 10.1016/j.biombioe.2013.08.026_bib24
– year: 2000
  ident: 10.1016/j.biombioe.2013.08.026_bib19
– volume: 48
  start-page: 618
  issue: 7
  year: 2010
  ident: 10.1016/j.biombioe.2013.08.026_bib21
  article-title: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover
  publication-title: Aust J Soil Res
  doi: 10.1071/SR10010
– volume: 41
  start-page: 1052
  issue: 4
  year: 2012
  ident: 10.1016/j.biombioe.2013.08.026_bib4
  article-title: Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils
  publication-title: J Environ Qual
  doi: 10.2134/jeq2011.0132
– year: 2013
  ident: 10.1016/j.biombioe.2013.08.026_bib8
– volume: 41
  start-page: 633
  issue: 6
  year: 2000
  ident: 10.1016/j.biombioe.2013.08.026_bib29
  article-title: Mechanisms of liquefaction and pyrolysis reactions of biomass
  publication-title: Energ Convers Manag
  doi: 10.1016/S0196-8904(99)00130-2
– volume: 41
  start-page: 210
  issue: 2
  year: 2009
  ident: 10.1016/j.biombioe.2013.08.026_bib1
  article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2008.10.016
– volume: 45
  start-page: 238
  issue: 3
  year: 2010
  ident: 10.1016/j.biombioe.2013.08.026_bib33
  article-title: Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2010.04.011
– year: 2012
  ident: 10.1016/j.biombioe.2013.08.026_bib7
– year: 1999
  ident: 10.1016/j.biombioe.2013.08.026_bib20
SSID ssj0014041
Score 2.5131447
Snippet Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The...
SourceID hal
proquest
pascalfrancis
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 264
SubjectTerms 13C NMR
Agronomy. Soil science and plant productions
biochar
bioenergy
Biological and medical sciences
biomass
Black carbon
carbon
cation exchange capacity
edaphic factors
elemental composition
Environmental Sciences
Fundamental and applied biological sciences. Psychology
Gasification
General agronomy. Plant production
hydrochars
Hydrothermal carbonization
Life Sciences
nuclear magnetic resonance spectroscopy
pollutants
Polycyclic aromatic hydrocarbons
production technology
Pyrolysis
scanning electron microscopy
Use of agricultural and forest wastes. Biomass use, bioconversion
X-radiation
Title Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale
URI https://dx.doi.org/10.1016/j.biombioe.2013.08.026
https://www.proquest.com/docview/1516738962
https://www.proquest.com/docview/1686719309
https://hal.inrae.fr/hal-02649587
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKuYAQgkLVUFgZxAEk0s0mTmIfV1Wr5dVLWak3y_Gj3apNomRbaS_8In4kM06ybQWiBw4b7UaeTTKejD_bM98Q8h5Bfq4EC4VzuM2oWcgdS8I4d9rAGKHFBBOFvx9lszn7cpKebJD9IRcGwyp739_5dO-t-zPjXpvjerEYH2OxEpF6LxwleYyMn4zlaOV7P9dhHsge46vmQWPcqmS3soTP9zDFHT5IlzlJPJUnkiz8fYB64FQFxzOMl3xSqxZU6LraF3-4cT82HT4jT3tQSafdfT8nG7bcIo9vUQ1uke2Dm4w2aNq_0u0L8mugDKA3xN-0chTTsVpae0JYa2ixoggVL7HAVtfcx6v7xTb64VS1GHLkhT_RetVUnumEqtLQs5VpfJrXJQqppqiG3M-PeB112lThYl1AhKKyANBT-FsF18B1dVzVp6gJ-5LMDw9-7M_CvoRDqNNMLMPcppHSAmCaAlyhGddGO6MLncBMj3MH8ynjYisMdyLKtEE8U8AXbvOMwVQo2SabZVXaHUILnReCs0QbK1isM54YbRNmwCtNhCh0QNKh36Tu-c2xzMaFHALZzuXQ3xL7W2L9zTgLyHgtV3cMH_dKiMEs5B1blTAM3Su7A3YkQbeLVs6PY1xwQtiaxjwg78C41veAvN-z6TeJ50AQJrI8v54EZHTH9tbNYx6lWLw-IG8HY5TgKXD7R5W2umolYDss8Sqy-B9tMuQ7FEkkXv3HQ-6SR_iri_p5TTaXzZV9A9htWYz8yzkiD6efv86OfgMoIUaa
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa2cQA0IRhM64BhEEggkbV1nMQ-cJhgU8e6XbZKuxnHP7ZOrKmaDtQLfxE3_kHec5JuE4gd0A6tqtQvTvyc957j976PkNcY5Gda8kh6j9uMhkfC8zhimTcWfISRXSwU3j9IewP--Tg5XiC_mloYTKusbX9l04O1ro-069Fsj4fD9iGSlcgkWOFOnLGGwXrPzb7Duq38sPsJlPyGsZ3to4-9qKYWiEySymmUuaSjjYTwQYO_M1wYa7w1uYlhBSKEhzjfeuakFV52UmPRz-bwQ7gs5RCix3DeRXKHg7lA2oTNH_O8EoSrCTR9cHW4N8qvlCWfbWJNPXwQn7MbB-xQRHX4u0dc9LqA71NM0Fwe6xJ05iuyjT_8RnCGOw_JgzqKpVvVQD0iC260Qu5fwTZcIavblyV00LS2IeVj8rPBKKCXSOO08BTrv0o6Dgi0ztJ8RjE2PUdGr6p5SJAPb_fo2xNdYo5TEH5Px7NJEaBVqB5Zejqzk1BXdo5CepIXTbHpO-xHn0yKaDhnLKE4WLCCoHBaDX3gi3zcRqA4Eu4JGdyKYlfJ0qgYuTVCc5PlUvDYWCc5M6mIrXExt2AGu1LmpkWSRm_K1IDqyOvxVTWZc2eq0bdCfSsk_GRpi7TncuMKUuRGCdlMC3Xt4VDg926UXYN5pGBsh6UaHDJ8w4VxcsJEi7yCyTW_BgQa7231FR4DQVg5i-xbt0U2rs29eXMmOolgMXTwspmMCkwT7jfpkSsuSgXBJHLKypT9o02KAIsy7sj1_7jJF-Ru72i_r_q7B3tPyT38p0o5ekaWppML9xwCx2m-ER5USr7ctmX4DU2OgmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+evaluation+of+chars+produced+by+thermochemical+conversion+%28gasification%2C+pyrolysis+and+hydrothermal+carbonization%29+of+agro-industrial+biomass+on+a+commercial+scale&rft.jtitle=Biomass+%26+bioenergy&rft.au=Wiedner%2C+Katja&rft.au=Rumpel%2C+Cornelia&rft.au=Steiner%2C+Christoph&rft.au=Pozzi%2C+Alessandro&rft.date=2013-12-01&rft.issn=0961-9534&rft.volume=59&rft.spage=264&rft.epage=278&rft_id=info:doi/10.1016%2Fj.biombioe.2013.08.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biombioe_2013_08_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon