Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale
Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The thermochemically converted biomasses of these production technologies have fundamentally different properties controlled by the production te...
Saved in:
Published in | Biomass & bioenergy Vol. 59; pp. 264 - 278 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The thermochemically converted biomasses of these production technologies have fundamentally different properties controlled by the production technology. This is reflected by general properties such as pH or elemental composition. The 13C NMR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy and black carbon results confirmed these observations showing that hydrochars have lower proportions of aromatic compounds than biochars (less stable) but are rich in functional groups (higher cation exchange capacity) than biochars. Analyses of pollutants indicate that polycyclic aromatic hydrocarbons as well as dioxin contents of most samples were under the threshold values recommended by International Biochar Initiative and European Biochar Certificate. In conclusion, biochars and hydrochars are entirely different from each other and these materials will probably have a complementary reaction in a soil environment.
•Production technologies influences fundamentally chemical properties of chars.•Carbonized materials have different behaviour in soil environment.•Environmental risk of chars is low with respect to PAH and dioxin contents.•Certification standard for biochars is not suitable for hydrochars.•Commercial scale reactors are able to produce high quality biochars according to the regulations of the EBC or IBI. |
---|---|
AbstractList | Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The thermochemically converted biomasses of these production technologies have fundamentally different properties controlled by the production technology. This is reflected by general properties such as pH or elemental composition. The 13C NMR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy and black carbon results confirmed these observations showing that hydrochars have lower proportions of aromatic compounds than biochars (less stable) but are rich in functional groups (higher cation exchange capacity) than biochars. Analyses of pollutants indicate that polycyclic aromatic hydrocarbons as well as dioxin contents of most samples were under the threshold values recommended by International Biochar Initiative and European Biochar Certificate. In conclusion, biochars and hydrochars are entirely different from each other and these materials will probably have a complementary reaction in a soil environment.
•Production technologies influences fundamentally chemical properties of chars.•Carbonized materials have different behaviour in soil environment.•Environmental risk of chars is low with respect to PAH and dioxin contents.•Certification standard for biochars is not suitable for hydrochars.•Commercial scale reactors are able to produce high quality biochars according to the regulations of the EBC or IBI. Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The thermochemically converted biomasses of these production technologies have fundamentally different properties controlled by the production technology. This is reflected by general properties such as pH or elemental composition. The 13C NMR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy and black carbon results confirmed these observations showing that hydrochars have lower proportions of aromatic compounds than biochars (less stable) but are rich in functional groups (higher cation exchange capacity) than biochars. Analyses of pollutants indicate that polycyclic aromatic hydrocarbons as well as dioxin contents of most samples were under the threshold values recommended by International Biochar Initiative and European Biochar Certificate. In conclusion, biochars and hydrochars are entirely different from each other and these materials will probably have a complementary reaction in a soil environment. Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The thermochemically converted biomasses of these production technologies have fundamentally different properties controlled by the production technology. This is reflected by general properties such as pH or elemental composition. The C-13 NMR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy and black carbon results confirmed these observations showing that hydrochars have lower proportions of aromatic compounds than biochars (less stable) but are rich in functional groups (higher cation exchange capacity) than biochars. Analyses of pollutants indicate that polycyclic aromatic hydrocarbons as well as dioxin contents of most samples were under the threshold values recommended by International Biochar Initiative and European Biochar Certificate. In conclusion, biochars and hydrochars are entirely different from each other and these materials will probably have a complementary reaction in a soil environment. Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The thermochemically converted biomasses of these production technologies have fundamentally different properties controlled by the production technology. This is reflected by general properties such as pH or elemental composition. The ¹³C NMR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy and black carbon results confirmed these observations showing that hydrochars have lower proportions of aromatic compounds than biochars (less stable) but are rich in functional groups (higher cation exchange capacity) than biochars. Analyses of pollutants indicate that polycyclic aromatic hydrocarbons as well as dioxin contents of most samples were under the threshold values recommended by International Biochar Initiative and European Biochar Certificate. In conclusion, biochars and hydrochars are entirely different from each other and these materials will probably have a complementary reaction in a soil environment. |
Author | Steiner, Christoph Rumpel, Cornelia Pozzi, Alessandro Maas, Robert Glaser, Bruno Wiedner, Katja |
Author_xml | – sequence: 1 givenname: Katja surname: Wiedner fullname: Wiedner, Katja email: katja.wiedner@landw.uni-halle.de organization: Soil Biogeochemistry, Martin-Luther-University Halle-Wittenberg, von Seckendorff Platz 3, 06120 Halle, Germany – sequence: 2 givenname: Cornelia surname: Rumpel fullname: Rumpel, Cornelia organization: UPMC, CNRS, Laboratoire de Biogéochimie et Ecologie des Milieux Continentaux (BIOEMCO UMR 7618 UPMC-CNRS-UPEC-ENS-IRD-AgroParisTech), Centre INRA Versailles-Grignon Bâtiment EGER, 78850 Thiverval-Grignon, France – sequence: 3 givenname: Christoph surname: Steiner fullname: Steiner, Christoph organization: Biochar.org, Salzburgerstrasse 17, 5165 Berndorf, Salzburg, Austria – sequence: 4 givenname: Alessandro surname: Pozzi fullname: Pozzi, Alessandro organization: Advanced Gasification Technology S.r.l., Agriculture and Energy Farms Department, Via Trieste, 2, 22060 Arosio, CO, Italy – sequence: 5 givenname: Robert surname: Maas fullname: Maas, Robert organization: CS carbonSolutions Deutschland GmbH, Albert-Einstein-Ring 1, 14532 Kleinmachnow, Germany – sequence: 6 givenname: Bruno surname: Glaser fullname: Glaser, Bruno organization: Soil Biogeochemistry, Martin-Luther-University Halle-Wittenberg, von Seckendorff Platz 3, 06120 Halle, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28058236$$DView record in Pascal Francis https://hal.inrae.fr/hal-02649587$$DView record in HAL |
BookMark | eNqFksGO0zAQhiO0SHQXXgFyQdqVSLGd2LElDruqgEWqxAH2bE3tydZVEhc7rVSeiYfEbrccuOwhcjT6fv8z4_-yuBj9iEXxlpI5JVR83MxXzg_pwzkjtJ4TOSdMvChmVLZ1xRRRF8WMKEErxevmVXEZ44YQ2pCGzoo_izUOzkBf4h76HUzOj6XvSrOGEMtt8HZn0JarQzmtMQzenHHjxz2GmPHrR4iuS9Us_lBuD8H3h-hiCaMt1wcb_FGbRRBWfnS_j-RN9oHH4Cs32l2cgktEHgViLNO1kDyGAYPJ9Zg88XXxsoM-4pun86p4-PL55-K-Wn7_-m1xt6wMF2qqWuQEjOINB6Zq00hjTWfNytSSSSk7KZjtGCorO0WEsW1T01X6kdiKhreivipuTveuodfb4AYIB-3B6fu7pc61tN9GcdnuaWKvT2za1a8dxkkPLhrsexjR76KmQoqWqpqo51FORVtLJVhC3z-hkCfvAozGxX-9MEm4ZHXu9NOJM8HHGLDTxk3H7U4BXK8p0TkjeqPPGdE5I5rIPEOSi__kZ4dnhe9Owg68Tm-Yenv4kQCegsU5ZzIRtycC00PtHQYdjcMxhckFNJO23j1n8he0ielI |
CitedBy_id | crossref_primary_10_1007_s42773_020_00056_0 crossref_primary_10_1088_1402_4896_ad6f61 crossref_primary_10_1007_s10533_024_01200_9 crossref_primary_10_1016_j_fuproc_2021_106782 crossref_primary_10_1016_j_scitotenv_2023_162849 crossref_primary_10_1016_j_jaap_2015_07_011 crossref_primary_10_1016_j_wasman_2020_10_025 crossref_primary_10_1021_acs_est_7b04983 crossref_primary_10_1007_s11356_018_2703_x crossref_primary_10_3390_agriculture10050158 crossref_primary_10_1016_j_enconman_2018_07_061 crossref_primary_10_1016_j_rser_2024_114723 crossref_primary_10_1007_s13399_020_00711_3 crossref_primary_10_1016_j_biortech_2020_123674 crossref_primary_10_1016_j_biombioe_2014_10_013 crossref_primary_10_1016_j_rser_2016_12_122 crossref_primary_10_1016_j_ejbt_2017_01_004 crossref_primary_10_1016_j_fuel_2022_125566 crossref_primary_10_1016_j_materresbull_2023_112261 crossref_primary_10_1155_2024_1343256 crossref_primary_10_1371_journal_pone_0206299 crossref_primary_10_1016_j_renene_2019_09_098 crossref_primary_10_3390_agronomy14020247 crossref_primary_10_1016_j_carbon_2017_01_069 crossref_primary_10_1016_j_jwpe_2022_102801 crossref_primary_10_1111_gcbb_12158 crossref_primary_10_1016_j_jhazmat_2022_128375 crossref_primary_10_1016_j_sjbs_2018_05_017 crossref_primary_10_3390_su14073829 crossref_primary_10_3390_app10103445 crossref_primary_10_1016_j_cej_2020_126582 crossref_primary_10_1080_10643389_2018_1518860 crossref_primary_10_1007_s11368_014_0964_7 crossref_primary_10_3390_horticulturae5010014 crossref_primary_10_1134_S1064229315090069 crossref_primary_10_1016_j_biortech_2022_127467 crossref_primary_10_4236_jsbs_2015_52004 crossref_primary_10_1016_j_fuel_2017_12_054 crossref_primary_10_1080_09506608_2018_1473096 crossref_primary_10_1002_ldr_2756 crossref_primary_10_3390_su131810362 crossref_primary_10_1016_j_biortech_2020_123414 crossref_primary_10_1080_00103624_2020_1763395 crossref_primary_10_1088_1757_899X_342_1_012053 crossref_primary_10_1016_j_biombioe_2023_106962 crossref_primary_10_3390_en12091586 crossref_primary_10_1007_s13399_022_03261_y crossref_primary_10_1016_j_jece_2018_05_009 crossref_primary_10_1007_s10163_018_0752_3 crossref_primary_10_3390_su16229749 crossref_primary_10_1007_s10311_023_01600_7 crossref_primary_10_1016_j_jhazmat_2021_126611 crossref_primary_10_1186_s40538_023_00525_1 crossref_primary_10_1016_j_rser_2021_111070 crossref_primary_10_1016_j_chemosphere_2020_127616 crossref_primary_10_1016_j_enconman_2018_09_090 crossref_primary_10_4236_jsbs_2015_51002 crossref_primary_10_1038_s41598_024_51786_1 crossref_primary_10_1007_s10570_016_1054_3 crossref_primary_10_1016_j_jclepro_2014_10_080 crossref_primary_10_1016_j_wasman_2018_08_015 crossref_primary_10_1016_j_enceco_2025_01_004 crossref_primary_10_3390_en12050858 crossref_primary_10_1016_j_cej_2021_128829 crossref_primary_10_1016_j_fuel_2023_129026 crossref_primary_10_1007_s13399_021_01346_8 crossref_primary_10_1007_s12155_016_9720_8 crossref_primary_10_1016_j_rser_2015_01_050 crossref_primary_10_3390_su16125004 crossref_primary_10_1080_10934529_2019_1682367 crossref_primary_10_3390_toxics11020117 crossref_primary_10_2134_jeq2015_09_0470 crossref_primary_10_1016_j_envres_2023_117923 crossref_primary_10_1016_j_scitotenv_2020_144480 crossref_primary_10_1016_j_jaap_2015_10_015 crossref_primary_10_1111_gcbb_12371 crossref_primary_10_1080_09593330_2017_1297851 crossref_primary_10_1071_SR15067 crossref_primary_10_1016_j_jclepro_2019_04_282 crossref_primary_10_1016_j_orggeochem_2014_02_003 crossref_primary_10_1016_j_biortech_2017_06_177 crossref_primary_10_1016_j_ecoleng_2014_11_004 crossref_primary_10_1016_j_jenvman_2023_118931 crossref_primary_10_1016_j_wasman_2019_09_010 crossref_primary_10_1016_j_enconman_2022_116101 crossref_primary_10_1016_j_wasman_2020_04_020 crossref_primary_10_1016_j_jhazmat_2020_123833 crossref_primary_10_1016_j_watres_2021_117186 crossref_primary_10_1039_D4RA03945A crossref_primary_10_1007_s00374_020_01436_1 crossref_primary_10_1016_j_envpol_2016_08_014 crossref_primary_10_1016_j_resconrec_2022_106313 crossref_primary_10_3390_su11010277 crossref_primary_10_1016_j_jenvman_2017_03_087 crossref_primary_10_3389_fagro_2023_1214012 crossref_primary_10_2166_wst_2024_051 crossref_primary_10_1016_j_carbon_2017_09_051 crossref_primary_10_1002_jpln_201800496 crossref_primary_10_1016_j_jwpe_2024_105204 crossref_primary_10_1111_gcbb_12517 crossref_primary_10_1016_j_arabjc_2023_104993 crossref_primary_10_1016_j_chemosphere_2017_10_026 crossref_primary_10_1007_s11104_016_2935_9 crossref_primary_10_1016_S1872_5813_22_60038_0 crossref_primary_10_3390_en17081918 crossref_primary_10_1002_gch2_202400240 crossref_primary_10_1016_j_jes_2018_02_012 crossref_primary_10_2139_ssrn_4071674 crossref_primary_10_3390_su151511917 crossref_primary_10_1002_ep_13105 crossref_primary_10_1016_j_hazadv_2022_100086 crossref_primary_10_1016_j_cej_2019_122977 crossref_primary_10_1016_j_eti_2018_01_004 crossref_primary_10_1016_j_still_2025_106556 crossref_primary_10_1016_j_jclepro_2018_05_085 crossref_primary_10_1016_j_scitotenv_2018_01_145 crossref_primary_10_1016_j_scitotenv_2021_148756 crossref_primary_10_1021_acssuschemeng_9b06522 crossref_primary_10_1007_s11814_014_0376_9 crossref_primary_10_1016_j_biombioe_2023_106913 crossref_primary_10_1016_j_chemosphere_2022_135753 crossref_primary_10_1016_j_apenergy_2017_08_076 crossref_primary_10_1098_rspa_2015_0841 crossref_primary_10_1016_j_cej_2021_129300 crossref_primary_10_1016_j_jhazmat_2019_121356 crossref_primary_10_1016_j_rser_2021_111708 crossref_primary_10_1016_j_jenvman_2017_03_067 crossref_primary_10_1016_j_proenv_2016_02_012 crossref_primary_10_1016_j_biombioe_2015_11_002 crossref_primary_10_1080_23311916_2024_2307201 crossref_primary_10_1039_D0EW00763C crossref_primary_10_1002_cben_202200031 crossref_primary_10_1007_s13593_014_0251_4 crossref_primary_10_1016_j_jaap_2024_106685 crossref_primary_10_2478_johr_2022_0018 crossref_primary_10_1016_j_biortech_2014_01_120 crossref_primary_10_1007_s11356_018_1781_0 crossref_primary_10_1016_j_scitotenv_2020_141607 crossref_primary_10_1016_j_fuproc_2015_11_022 crossref_primary_10_1016_j_cej_2024_156464 crossref_primary_10_1016_j_cesys_2024_100188 crossref_primary_10_1016_j_jenvman_2021_113128 crossref_primary_10_3389_fmicb_2019_02694 crossref_primary_10_3390_en16073259 crossref_primary_10_1016_j_fuel_2023_128898 crossref_primary_10_1016_j_biortech_2020_124023 crossref_primary_10_1007_s11356_015_4491_x crossref_primary_10_3390_en16104175 crossref_primary_10_5194_se_5_995_2014 crossref_primary_10_1111_ejss_12256 crossref_primary_10_5194_soil_2_673_2016 crossref_primary_10_1016_j_chemosphere_2018_08_033 crossref_primary_10_1016_j_wasman_2014_12_004 crossref_primary_10_1016_j_joei_2023_101298 crossref_primary_10_1039_C7RA10353K crossref_primary_10_1016_j_fuproc_2022_107347 crossref_primary_10_1016_j_wasman_2024_01_052 crossref_primary_10_1039_C5RA24561C crossref_primary_10_1016_j_chemosphere_2017_05_175 crossref_primary_10_5004_dwt_2018_21737 crossref_primary_10_1016_j_biortech_2016_01_053 crossref_primary_10_1016_j_scienta_2022_111148 crossref_primary_10_3390_nano11102473 crossref_primary_10_1016_j_apsoil_2015_08_019 crossref_primary_10_1021_jf405549z crossref_primary_10_1016_j_enconman_2014_09_058 crossref_primary_10_35534_ces_2023_10003 crossref_primary_10_1016_j_geoderma_2016_08_019 crossref_primary_10_1021_acs_jafc_5b00846 crossref_primary_10_1016_j_energy_2017_07_165 crossref_primary_10_1080_15275922_2017_1340370 crossref_primary_10_1007_s11356_017_0612_z crossref_primary_10_1016_j_biombioe_2023_106942 crossref_primary_10_3390_en13164203 crossref_primary_10_4236_jsbs_2014_44021 crossref_primary_10_1021_acs_iecr_4c00082 crossref_primary_10_1016_j_reactfunctpolym_2025_106257 crossref_primary_10_1016_j_biombioe_2020_105754 crossref_primary_10_1016_j_cej_2022_136942 crossref_primary_10_1016_j_envint_2019_03_031 crossref_primary_10_1016_j_jphotochem_2016_04_014 crossref_primary_10_5194_soil_1_665_2015 crossref_primary_10_1016_j_biombioe_2019_01_040 |
Cites_doi | 10.1016/j.orggeochem.2010.07.001 10.1016/S0016-7061(97)00055-4 10.1016/j.orggeochem.2012.03.007 10.1016/j.biortech.2011.06.099 10.1021/ie300565d 10.1021/jf205278v 10.1016/j.orggeochem.2005.03.011 10.1016/S0146-6380(98)00194-6 10.1021/es101337x 10.1002/jpln.201100172 10.4155/bfs.10.81 10.1016/j.apsoil.2012.02.021 10.1016/j.orggeochem.2005.06.010 10.1006/jmra.1993.1231 10.1016/j.orggeochem.2012.10.006 10.1021/ef101342v 10.1071/SR10058 10.1021/ja00420a036 10.1016/S1385-8947(01)00228-5 10.1021/es201792c 10.1002/jpln.201100143 10.1071/SR10010 10.2134/jeq2011.0132 10.1016/S0196-8904(99)00130-2 10.1016/j.soilbio.2008.10.016 10.1016/j.apsoil.2010.04.011 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ AAYXX CITATION IQODW 7QO 7ST 7TV 8FD C1K FR3 P64 SOI 7S9 L.6 1XC |
DOI | 10.1016/j.biombioe.2013.08.026 |
DatabaseName | AGRIS CrossRef Pascal-Francis Biotechnology Research Abstracts Environment Abstracts Pollution Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Pollution Abstracts Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1873-2909 |
EndPage | 278 |
ExternalDocumentID | oai_HAL_hal_02649587v1 28058236 10_1016_j_biombioe_2013_08_026 US201500155528 S0961953413003723 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SES SEW SPC SPCBC SSA SSG SSJ SSR SSZ T5K VH1 WUQ ~G- ~KM AAHBH AATTM AAXKI ABWVN ACRPL ADNMO AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION IQODW 7QO 7ST 7TV 8FD C1K EFKBS FR3 P64 SOI 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c569t-7e50ac9545a293c48cdcfdcbc382888f862df2e9d8f906cd7431b06c8e7645763 |
IEDL.DBID | .~1 |
ISSN | 0961-9534 |
IngestDate | Fri May 09 12:24:28 EDT 2025 Tue Aug 05 09:12:04 EDT 2025 Mon Jul 21 10:58:22 EDT 2025 Wed Apr 02 07:24:01 EDT 2025 Thu Apr 24 22:57:27 EDT 2025 Tue Jul 01 01:49:35 EDT 2025 Thu Apr 03 09:43:10 EDT 2025 Fri Feb 23 02:27:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pyrolysis Gasification Hydrothermal carbonization Polycyclic aromatic hydrocarbons 13C NMR Black carbon Thermochemical treatment Agricultural industry NMR spectrometry Biomass Surface structure Persistent organic pollutant Characterization Carbonization Hydrothermal treatment Chemical composition Carbon 13 Scanning electron microscopy Carbon black Hydrocarbon C NMR Polycyclic aromatic compound Biochar Solid state Energy-dispersive X-ray spectrometry Morphology C-13 NMR |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c569t-7e50ac9545a293c48cdcfdcbc382888f862df2e9d8f906cd7431b06c8e7645763 |
Notes | http://dx.doi.org/10.1016/j.biombioe.2013.08.026 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2131-9451 |
PQID | 1516738962 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | hal_primary_oai_HAL_hal_02649587v1 proquest_miscellaneous_1686719309 proquest_miscellaneous_1516738962 pascalfrancis_primary_28058236 crossref_citationtrail_10_1016_j_biombioe_2013_08_026 crossref_primary_10_1016_j_biombioe_2013_08_026 fao_agris_US201500155528 elsevier_sciencedirect_doi_10_1016_j_biombioe_2013_08_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Biomass & bioenergy |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Schulz, Glaser (bib2) 2012; 175 DIN 38414-24 (bib19) 2000 Kuzyakov, Subbotina, Chen, Bogomolova, Xu (bib1) 2009; 41 Kang, Li, Fan, Chang (bib10) 2012; 51 Eusterhues, Rumpel, Kögel-Knabner (bib30) 2005; 36 Lee, Kidder, Evans, Paik, Buchanan, Garten (bib9) 2010; 44 Schaefer, Stejskal (bib14) 1976; 98 Mumme, Eckervogt, Pielert, Diakité, Rupp, Kern (bib11) 2011; 102 Kögel-Knabner (bib22) 1997; 80 Cao, Ro, Chappell, Li, Mao (bib13) 2011; 25 DIN ISO 13877 (bib18) 1995 George, Wagner, Kücke, Rillig (bib32) 2012; 59 Liu, Schulz, Brandl, Miehtke, Huwe, Glaser (bib3) 2012; 175 McKay (bib25) 2002; 86 Singh, Singh, Cowie (bib26) 2010; 48 BBodSchV (bib27) 1999 Juli 12 Meyer, Glaser, Quicker (bib5) 2011; 45 Wiedner, Naissé, Rumpel, Pozzi, Wieczorek, Glaser (bib12) 2012; 54 (bib20) 1999 Demirbas (bib29) 2000; 41 Kammann, Ratering, Eckhard, Müller (bib4) 2012; 41 AbfKlär V. Klärschlammverordnung (bib24) 1992 April 15 Glaser, Haumaier, Guggenberger, Zech (bib16) 1998; 29 IBI (bib8) 2013 April 11 Brodowski, Rodionov, Haumaier, Glaser, Amelung (bib17) 2005; 36 Schmidt, Abiven, Kamman, Glaser, Bucheli, Leifield (bib7) 2012 Rillig, Wagner, Salem, Antunes, George, Ramke (bib33) 2010; 45 Hilber, Bucheli, Blum, Leifeld, Schmidt (bib28) 2012; 60 Libra, Ro, Kammann, Funke, Berge, Neubauer (bib6) 2011; 2 Fuertes, Camps Arbestain, Sevilla, Maciá-Agulló, Fiol, López (bib21) 2010; 48 Rivas, Matus, Rumpel, Knicker, Garrido (bib31) 2012; 47 Schneider, Hilf, Vogt, Schmidt (bib23) 2010; 41 Peersen, Wu, Kustanovich, Smith (bib15) 1993; 104 Kang (10.1016/j.biombioe.2013.08.026_bib10) 2012; 51 Fuertes (10.1016/j.biombioe.2013.08.026_bib21) 2010; 48 Lee (10.1016/j.biombioe.2013.08.026_bib9) 2010; 44 Glaser (10.1016/j.biombioe.2013.08.026_bib16) 1998; 29 Rillig (10.1016/j.biombioe.2013.08.026_bib33) 2010; 45 Liu (10.1016/j.biombioe.2013.08.026_bib3) 2012; 175 Schmidt (10.1016/j.biombioe.2013.08.026_bib7) 2012 Rivas (10.1016/j.biombioe.2013.08.026_bib31) 2012; 47 DIN ISO 13877 (10.1016/j.biombioe.2013.08.026_bib18) 1995 Demirbas (10.1016/j.biombioe.2013.08.026_bib29) 2000; 41 Hilber (10.1016/j.biombioe.2013.08.026_bib28) 2012; 60 Kögel-Knabner (10.1016/j.biombioe.2013.08.026_bib22) 1997; 80 George (10.1016/j.biombioe.2013.08.026_bib32) 2012; 59 Libra (10.1016/j.biombioe.2013.08.026_bib6) 2011; 2 Cao (10.1016/j.biombioe.2013.08.026_bib13) 2011; 25 Eusterhues (10.1016/j.biombioe.2013.08.026_bib30) 2005; 36 Brodowski (10.1016/j.biombioe.2013.08.026_bib17) 2005; 36 (10.1016/j.biombioe.2013.08.026_bib20) 1999 Kammann (10.1016/j.biombioe.2013.08.026_bib4) 2012; 41 IBI (10.1016/j.biombioe.2013.08.026_bib8) 2013 Meyer (10.1016/j.biombioe.2013.08.026_bib5) 2011; 45 Wiedner (10.1016/j.biombioe.2013.08.026_bib12) 2012; 54 DIN 38414-24 (10.1016/j.biombioe.2013.08.026_bib19) 2000 Mumme (10.1016/j.biombioe.2013.08.026_bib11) 2011; 102 Kuzyakov (10.1016/j.biombioe.2013.08.026_bib1) 2009; 41 Schneider (10.1016/j.biombioe.2013.08.026_bib23) 2010; 41 BBodSchV (10.1016/j.biombioe.2013.08.026_bib27) 1999 AbfKlär V. Klärschlammverordnung (10.1016/j.biombioe.2013.08.026_bib24) 1992 McKay (10.1016/j.biombioe.2013.08.026_bib25) 2002; 86 Schaefer (10.1016/j.biombioe.2013.08.026_bib14) 1976; 98 Schulz (10.1016/j.biombioe.2013.08.026_bib2) 2012; 175 Peersen (10.1016/j.biombioe.2013.08.026_bib15) 1993; 104 Singh (10.1016/j.biombioe.2013.08.026_bib26) 2010; 48 |
References_xml | – volume: 2 start-page: 89 year: 2011 end-page: 124 ident: bib6 article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis publication-title: Biofuels – volume: 36 start-page: 1299 year: 2005 end-page: 1310 ident: bib17 article-title: Revised black carbon assessment using benzene polycarboxylic acids publication-title: Org Geochem – volume: 102 start-page: 9255 year: 2011 end-page: 9260 ident: bib11 article-title: Hydrothermal carbonization of anaerobically digested maize silage publication-title: Bioresour Technol – volume: 48 start-page: 516 year: 2010 end-page: 525 ident: bib26 article-title: Characterisation and evaluation of biochars for their application as a soil amendment publication-title: Aust J Soil Res – year: 2013 April 11 ident: bib8 article-title: Standardized produce definition and product testing guidelines for biochar that is used in soil. Version 1.1 – year: 2000 ident: bib19 article-title: Schlamm und Sedimente (Gruppe S) Teil 24: Bestimmung von polychlorierten Dibenzodioxinen (PCDD) und polychlorierten Dibenzofuranen (PCDF) – volume: 51 start-page: 9023 year: 2012 end-page: 9031 ident: bib10 article-title: Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal publication-title: Ind Eng Chem Res – volume: 104 start-page: 334 year: 1993 end-page: 339 ident: bib15 article-title: Variable amplitude cross-polarization MAS NMR publication-title: J Magn Reson – volume: 41 start-page: 210 year: 2009 end-page: 219 ident: bib1 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by publication-title: Soil Biol Biochem – volume: 175 start-page: 698 year: 2012 end-page: 707 ident: bib3 article-title: Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions publication-title: J Plant Nutr Soil Sci – volume: 36 start-page: 1567 year: 2005 end-page: 1575 ident: bib30 article-title: Stabilization of soil organic matter isolated by oxidative degradation publication-title: Org Geochem – volume: 54 start-page: 91 year: 2012 end-page: 100 ident: bib12 article-title: Chemical modification of biomass residues during hydrothermal carbonization–what makes the difference, temperature or feedstock? publication-title: Org Geochem – year: 1995 ident: bib18 article-title: Bodenbeschaffenheit–Bestimmung von polycyclischen aromatischen Kohlenwasserstoffen (PAK)–Hochleistungs-Flüssigkeitschromatographie (HPLC) Verfahren – volume: 41 start-page: 1082 year: 2010 end-page: 1088 ident: bib23 article-title: The benzene polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200 °C and 1000 °C publication-title: Org Geochem – volume: 45 start-page: 238 year: 2010 end-page: 242 ident: bib33 article-title: Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza publication-title: Appl Soil Ecol – volume: 98 start-page: 1031 year: 1976 end-page: 1032 ident: bib14 article-title: Carbon-13 nuclear magnetic resonance of polymers spinning at the magic-angle publication-title: J Am Chem Soc – start-page: 63 year: 1999 Juli 12 ident: bib27 article-title: German Bundes-Bodenschutz-und Altlastenverordnung – start-page: 26 year: 1992 April 15 ident: bib24 article-title: [Monograpgh on the Internet] – volume: 45 start-page: 9473 year: 2011 end-page: 9483 ident: bib5 article-title: Technical, economical and climate related aspects of biochar production technologies: a literature review publication-title: Environ Sci Technol – volume: 44 start-page: 7970 year: 2010 end-page: 7974 ident: bib9 article-title: Characterization of biochars produced from Cornstovers for soil amendment publication-title: Environ Sci Technol – volume: 60 start-page: 3042 year: 2012 end-page: 3050 ident: bib28 article-title: Quantitative determination of PAHs in biochar–a prerequisite to assure its quality and safe application publication-title: J Agr Food Chem – volume: 41 start-page: 1052 year: 2012 end-page: 1066 ident: bib4 article-title: Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils publication-title: J Environ Qual – volume: 59 start-page: 68 year: 2012 end-page: 72 ident: bib32 article-title: Divergent consequences of hydrochar in the plant–soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects publication-title: Appl Soil Ecol – year: 1999 ident: bib20 publication-title: Cycles of soil: carbon, nitrogen, phosphorus, sulfur and micronutrients – volume: 175 start-page: 410 year: 2012 end-page: 422 ident: bib2 article-title: Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment publication-title: J Plant Nutr Soil Sci – year: 2012 ident: bib7 article-title: Guidelines for biochar production: European biochar certificate version 4.2 – volume: 80 start-page: 243 year: 1997 end-page: 270 ident: bib22 article-title: C and publication-title: Geoderma – volume: 48 start-page: 618 year: 2010 end-page: 626 ident: bib21 article-title: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover publication-title: Aust J Soil Res – volume: 86 start-page: 343 year: 2002 end-page: 368 ident: bib25 article-title: Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review publication-title: Chem Eng J – volume: 29 start-page: 811 year: 1998 end-page: 819 ident: bib16 article-title: Black carbon in soils: the use of benzenecarboxylic acids as specific markers publication-title: Org Geochem – volume: 47 start-page: 41 year: 2012 end-page: 50 ident: bib31 article-title: Black carbon contribution in volcanic soils affected by wildfire or stubble burning publication-title: Org Geochem – volume: 25 start-page: 388 year: 2011 end-page: 397 ident: bib13 article-title: Chemical structures of swine manure chars produced under different carbonization conditions investigated by advanced solid-state publication-title: Energ Fuel – volume: 41 start-page: 633 year: 2000 end-page: 646 ident: bib29 article-title: Mechanisms of liquefaction and pyrolysis reactions of biomass publication-title: Energ Convers Manag – volume: 41 start-page: 1082 issue: 10 year: 2010 ident: 10.1016/j.biombioe.2013.08.026_bib23 article-title: The benzene polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200 °C and 1000 °C publication-title: Org Geochem doi: 10.1016/j.orggeochem.2010.07.001 – volume: 80 start-page: 243 issue: 3 year: 1997 ident: 10.1016/j.biombioe.2013.08.026_bib22 article-title: 13C and 15N NMR spectroscopy as a tool in soil organic matter research publication-title: Geoderma doi: 10.1016/S0016-7061(97)00055-4 – volume: 47 start-page: 41 year: 2012 ident: 10.1016/j.biombioe.2013.08.026_bib31 article-title: Black carbon contribution in volcanic soils affected by wildfire or stubble burning publication-title: Org Geochem doi: 10.1016/j.orggeochem.2012.03.007 – volume: 102 start-page: 9255 issue: 19 year: 2011 ident: 10.1016/j.biombioe.2013.08.026_bib11 article-title: Hydrothermal carbonization of anaerobically digested maize silage publication-title: Bioresour Technol doi: 10.1016/j.biortech.2011.06.099 – volume: 51 start-page: 9023 issue: 26 year: 2012 ident: 10.1016/j.biombioe.2013.08.026_bib10 article-title: Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal publication-title: Ind Eng Chem Res doi: 10.1021/ie300565d – volume: 60 start-page: 3042 issue: 12 year: 2012 ident: 10.1016/j.biombioe.2013.08.026_bib28 article-title: Quantitative determination of PAHs in biochar–a prerequisite to assure its quality and safe application publication-title: J Agr Food Chem doi: 10.1021/jf205278v – volume: 36 start-page: 1299 year: 2005 ident: 10.1016/j.biombioe.2013.08.026_bib17 article-title: Revised black carbon assessment using benzene polycarboxylic acids publication-title: Org Geochem doi: 10.1016/j.orggeochem.2005.03.011 – volume: 29 start-page: 811 issue: 4 year: 1998 ident: 10.1016/j.biombioe.2013.08.026_bib16 article-title: Black carbon in soils: the use of benzenecarboxylic acids as specific markers publication-title: Org Geochem doi: 10.1016/S0146-6380(98)00194-6 – year: 1995 ident: 10.1016/j.biombioe.2013.08.026_bib18 – volume: 44 start-page: 7970 issue: 20 year: 2010 ident: 10.1016/j.biombioe.2013.08.026_bib9 article-title: Characterization of biochars produced from Cornstovers for soil amendment publication-title: Environ Sci Technol doi: 10.1021/es101337x – volume: 175 start-page: 698 issue: 5 year: 2012 ident: 10.1016/j.biombioe.2013.08.026_bib3 article-title: Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201100172 – volume: 2 start-page: 89 issue: 1 year: 2011 ident: 10.1016/j.biombioe.2013.08.026_bib6 article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis publication-title: Biofuels doi: 10.4155/bfs.10.81 – volume: 59 start-page: 68 year: 2012 ident: 10.1016/j.biombioe.2013.08.026_bib32 article-title: Divergent consequences of hydrochar in the plant–soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2012.02.021 – volume: 36 start-page: 1567 issue: 11 year: 2005 ident: 10.1016/j.biombioe.2013.08.026_bib30 article-title: Stabilization of soil organic matter isolated by oxidative degradation publication-title: Org Geochem doi: 10.1016/j.orggeochem.2005.06.010 – volume: 104 start-page: 334 issue: 3 year: 1993 ident: 10.1016/j.biombioe.2013.08.026_bib15 article-title: Variable amplitude cross-polarization MAS NMR publication-title: J Magn Reson doi: 10.1006/jmra.1993.1231 – volume: 54 start-page: 91 year: 2012 ident: 10.1016/j.biombioe.2013.08.026_bib12 article-title: Chemical modification of biomass residues during hydrothermal carbonization–what makes the difference, temperature or feedstock? publication-title: Org Geochem doi: 10.1016/j.orggeochem.2012.10.006 – volume: 25 start-page: 388 issue: 1 year: 2011 ident: 10.1016/j.biombioe.2013.08.026_bib13 article-title: Chemical structures of swine manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy publication-title: Energ Fuel doi: 10.1021/ef101342v – volume: 48 start-page: 516 year: 2010 ident: 10.1016/j.biombioe.2013.08.026_bib26 article-title: Characterisation and evaluation of biochars for their application as a soil amendment publication-title: Aust J Soil Res doi: 10.1071/SR10058 – volume: 98 start-page: 1031 issue: 4 year: 1976 ident: 10.1016/j.biombioe.2013.08.026_bib14 article-title: Carbon-13 nuclear magnetic resonance of polymers spinning at the magic-angle publication-title: J Am Chem Soc doi: 10.1021/ja00420a036 – volume: 86 start-page: 343 issue: 3 year: 2002 ident: 10.1016/j.biombioe.2013.08.026_bib25 article-title: Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review publication-title: Chem Eng J doi: 10.1016/S1385-8947(01)00228-5 – volume: 45 start-page: 9473 issue: 22 year: 2011 ident: 10.1016/j.biombioe.2013.08.026_bib5 article-title: Technical, economical and climate related aspects of biochar production technologies: a literature review publication-title: Environ Sci Technol doi: 10.1021/es201792c – volume: 175 start-page: 410 issue: 3 year: 2012 ident: 10.1016/j.biombioe.2013.08.026_bib2 article-title: Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201100143 – start-page: 63 year: 1999 ident: 10.1016/j.biombioe.2013.08.026_bib27 – start-page: 26 year: 1992 ident: 10.1016/j.biombioe.2013.08.026_bib24 – year: 2000 ident: 10.1016/j.biombioe.2013.08.026_bib19 – volume: 48 start-page: 618 issue: 7 year: 2010 ident: 10.1016/j.biombioe.2013.08.026_bib21 article-title: Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover publication-title: Aust J Soil Res doi: 10.1071/SR10010 – volume: 41 start-page: 1052 issue: 4 year: 2012 ident: 10.1016/j.biombioe.2013.08.026_bib4 article-title: Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils publication-title: J Environ Qual doi: 10.2134/jeq2011.0132 – year: 2013 ident: 10.1016/j.biombioe.2013.08.026_bib8 – volume: 41 start-page: 633 issue: 6 year: 2000 ident: 10.1016/j.biombioe.2013.08.026_bib29 article-title: Mechanisms of liquefaction and pyrolysis reactions of biomass publication-title: Energ Convers Manag doi: 10.1016/S0196-8904(99)00130-2 – volume: 41 start-page: 210 issue: 2 year: 2009 ident: 10.1016/j.biombioe.2013.08.026_bib1 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2008.10.016 – volume: 45 start-page: 238 issue: 3 year: 2010 ident: 10.1016/j.biombioe.2013.08.026_bib33 article-title: Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2010.04.011 – year: 2012 ident: 10.1016/j.biombioe.2013.08.026_bib7 – year: 1999 ident: 10.1016/j.biombioe.2013.08.026_bib20 |
SSID | ssj0014041 |
Score | 2.5131447 |
Snippet | Technologies for agro-industrial feedstock utilization such as pyrolysis, gasification and hydrothermal carbonization at industrial scale develop rapidly. The... |
SourceID | hal proquest pascalfrancis crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 264 |
SubjectTerms | 13C NMR Agronomy. Soil science and plant productions biochar bioenergy Biological and medical sciences biomass Black carbon carbon cation exchange capacity edaphic factors elemental composition Environmental Sciences Fundamental and applied biological sciences. Psychology Gasification General agronomy. Plant production hydrochars Hydrothermal carbonization Life Sciences nuclear magnetic resonance spectroscopy pollutants Polycyclic aromatic hydrocarbons production technology Pyrolysis scanning electron microscopy Use of agricultural and forest wastes. Biomass use, bioconversion X-radiation |
Title | Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale |
URI | https://dx.doi.org/10.1016/j.biombioe.2013.08.026 https://www.proquest.com/docview/1516738962 https://www.proquest.com/docview/1686719309 https://hal.inrae.fr/hal-02649587 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKuYAQgkLVUFgZxAEk0s0mTmIfV1Wr5dVLWak3y_Gj3apNomRbaS_8In4kM06ybQWiBw4b7UaeTTKejD_bM98Q8h5Bfq4EC4VzuM2oWcgdS8I4d9rAGKHFBBOFvx9lszn7cpKebJD9IRcGwyp739_5dO-t-zPjXpvjerEYH2OxEpF6LxwleYyMn4zlaOV7P9dhHsge46vmQWPcqmS3soTP9zDFHT5IlzlJPJUnkiz8fYB64FQFxzOMl3xSqxZU6LraF3-4cT82HT4jT3tQSafdfT8nG7bcIo9vUQ1uke2Dm4w2aNq_0u0L8mugDKA3xN-0chTTsVpae0JYa2ixoggVL7HAVtfcx6v7xTb64VS1GHLkhT_RetVUnumEqtLQs5VpfJrXJQqppqiG3M-PeB112lThYl1AhKKyANBT-FsF18B1dVzVp6gJ-5LMDw9-7M_CvoRDqNNMLMPcppHSAmCaAlyhGddGO6MLncBMj3MH8ynjYisMdyLKtEE8U8AXbvOMwVQo2SabZVXaHUILnReCs0QbK1isM54YbRNmwCtNhCh0QNKh36Tu-c2xzMaFHALZzuXQ3xL7W2L9zTgLyHgtV3cMH_dKiMEs5B1blTAM3Su7A3YkQbeLVs6PY1xwQtiaxjwg78C41veAvN-z6TeJ50AQJrI8v54EZHTH9tbNYx6lWLw-IG8HY5TgKXD7R5W2umolYDss8Sqy-B9tMuQ7FEkkXv3HQ-6SR_iri_p5TTaXzZV9A9htWYz8yzkiD6efv86OfgMoIUaa |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa2cQA0IRhM64BhEEggkbV1nMQ-cJhgU8e6XbZKuxnHP7ZOrKmaDtQLfxE3_kHec5JuE4gd0A6tqtQvTvyc957j976PkNcY5Gda8kh6j9uMhkfC8zhimTcWfISRXSwU3j9IewP--Tg5XiC_mloYTKusbX9l04O1ro-069Fsj4fD9iGSlcgkWOFOnLGGwXrPzb7Duq38sPsJlPyGsZ3to4-9qKYWiEySymmUuaSjjYTwQYO_M1wYa7w1uYlhBSKEhzjfeuakFV52UmPRz-bwQ7gs5RCix3DeRXKHg7lA2oTNH_O8EoSrCTR9cHW4N8qvlCWfbWJNPXwQn7MbB-xQRHX4u0dc9LqA71NM0Fwe6xJ05iuyjT_8RnCGOw_JgzqKpVvVQD0iC260Qu5fwTZcIavblyV00LS2IeVj8rPBKKCXSOO08BTrv0o6Dgi0ztJ8RjE2PUdGr6p5SJAPb_fo2xNdYo5TEH5Px7NJEaBVqB5Zejqzk1BXdo5CepIXTbHpO-xHn0yKaDhnLKE4WLCCoHBaDX3gi3zcRqA4Eu4JGdyKYlfJ0qgYuTVCc5PlUvDYWCc5M6mIrXExt2AGu1LmpkWSRm_K1IDqyOvxVTWZc2eq0bdCfSsk_GRpi7TncuMKUuRGCdlMC3Xt4VDg926UXYN5pGBsh6UaHDJ8w4VxcsJEi7yCyTW_BgQa7231FR4DQVg5i-xbt0U2rs29eXMmOolgMXTwspmMCkwT7jfpkSsuSgXBJHLKypT9o02KAIsy7sj1_7jJF-Ru72i_r_q7B3tPyT38p0o5ekaWppML9xwCx2m-ER5USr7ctmX4DU2OgmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+evaluation+of+chars+produced+by+thermochemical+conversion+%28gasification%2C+pyrolysis+and+hydrothermal+carbonization%29+of+agro-industrial+biomass+on+a+commercial+scale&rft.jtitle=Biomass+%26+bioenergy&rft.au=Wiedner%2C+Katja&rft.au=Rumpel%2C+Cornelia&rft.au=Steiner%2C+Christoph&rft.au=Pozzi%2C+Alessandro&rft.date=2013-12-01&rft.issn=0961-9534&rft.volume=59&rft.spage=264&rft.epage=278&rft_id=info:doi/10.1016%2Fj.biombioe.2013.08.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biombioe_2013_08_026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon |