Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells

The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characte...

Full description

Saved in:
Bibliographic Details
Published inCytotechnology (Dordrecht) Vol. 67; no. 6; pp. 1073 - 1084
Main Authors Fotia, Caterina, Massa, Annamaria, Boriani, Filippo, Baldini, Nicola, Granchi, Donatella
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O 2 ) and hypoxic (1 % O 2 ) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2 . Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion.
AbstractList The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O 2 ) and hypoxic (1 % O 2 ) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2 . Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion.
The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O2) and hypoxic (1 % O2) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion.
The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O2) and hypoxic (1 % O2) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion.The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O2) and hypoxic (1 % O2) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion.
The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O2) and hypoxic (1 % O2) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion.
Author Baldini, Nicola
Massa, Annamaria
Boriani, Filippo
Granchi, Donatella
Fotia, Caterina
Author_xml – sequence: 1
  givenname: Caterina
  surname: Fotia
  fullname: Fotia, Caterina
  email: caterina.fotia@ior.it
  organization: Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute
– sequence: 2
  givenname: Annamaria
  surname: Massa
  fullname: Massa, Annamaria
  organization: Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute
– sequence: 3
  givenname: Filippo
  surname: Boriani
  fullname: Boriani, Filippo
  organization: Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute
– sequence: 4
  givenname: Nicola
  surname: Baldini
  fullname: Baldini, Nicola
  organization: Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Department of Biomedical and Neuromotor Sciences, University of Bologna
– sequence: 5
  givenname: Donatella
  surname: Granchi
  fullname: Granchi, Donatella
  organization: Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24798810$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1URLeFH8AFReLCxeCxkzi-IKEKaKVKvbQnDpbXnnRdJXawk4r993i7bYFK5WTJ_t74vXlH5CDEgIS8BfYRGJOfMrAWWsqgpkoKoPwFWUEjBWVSdgdkxRRnVLFWHZKjnG8YY0qCeEUOeS1V1wFbkR-n2yn-8qbCsDHBYq6mFAffYzKzj6EywVV5xjFgzlXsq80ymnLr_BQzUofJ36KrRswY7GY7muGOriwOQ35NXvZmyPjm_jwmV9--Xp6c0vOL72cnX86pbVo1U1kja1wn27Z3qKyzzkEP2Akh5VqY1iiQ0qBl0sp12xkpONQgem4bsAaYOCaf93OnZT2isxjmZAY9JT-atNXReP3vS_AbfR1vdd3yTkFTBny4H5DizwXzrEefdxFMwLhkDZIr0YhaiYK-f4LexCWFEk9zBR1vWA11od797ejRysPeCwB7wKaYc8L-EQGmd93qfbe6dKt33WpeNPKJxvr5rqUSyg__VfK9MpdfwjWmP6afF_0GvOO5fA
CitedBy_id crossref_primary_10_1155_2018_3237253
crossref_primary_10_1007_s12576_019_00720_6
crossref_primary_10_1016_j_cryobiol_2017_01_006
crossref_primary_10_3889_oamjms_2021_5870
crossref_primary_10_1002_jcp_28342
crossref_primary_10_1002_dvg_23592
crossref_primary_10_3389_fbioe_2022_868486
crossref_primary_10_1002_jcp_26046
crossref_primary_10_1016_j_rcreu_2020_10_004
crossref_primary_10_1186_s12918_018_0560_3
crossref_primary_10_3892_ol_2018_8705
crossref_primary_10_1007_s00018_017_2484_2
crossref_primary_10_4252_wjsc_v13_i12_1845
crossref_primary_10_1186_s13287_020_02112_9
crossref_primary_10_1016_j_cryobiol_2024_104856
crossref_primary_10_1016_j_biotechadv_2017_04_005
crossref_primary_10_1016_j_ijcard_2025_133004
crossref_primary_10_1155_2017_4015039
crossref_primary_10_1186_s13287_023_03344_1
crossref_primary_10_1080_03008207_2019_1611792
crossref_primary_10_1007_s12257_019_0118_2
crossref_primary_10_1186_s13287_018_0891_4
crossref_primary_10_1111_cpr_12250
crossref_primary_10_1155_2017_7168687
crossref_primary_10_1016_j_jcyt_2016_09_006
crossref_primary_10_3390_cells8050462
crossref_primary_10_1093_jbcr_irab250
crossref_primary_10_1016_j_scr_2018_01_010
crossref_primary_10_1007_s00018_019_03125_1
crossref_primary_10_1155_2018_6480793
crossref_primary_10_1016_j_tice_2022_101886
crossref_primary_10_3389_fgene_2023_1179256
crossref_primary_10_1093_asj_sjz307
crossref_primary_10_1155_2016_7260562
crossref_primary_10_52711_0974_360X_2021_00465
crossref_primary_10_3390_ijms20051195
crossref_primary_10_3390_cells10040717
crossref_primary_10_3390_ijms26072848
crossref_primary_10_3390_pharmaceutics14051112
crossref_primary_10_1016_j_intimp_2022_109172
crossref_primary_10_5966_sctm_2015_0161
crossref_primary_10_1016_j_bioelechem_2025_108920
crossref_primary_10_1155_2017_5619472
crossref_primary_10_1186_s13018_021_02713_x
crossref_primary_10_3389_fcell_2021_658099
crossref_primary_10_1155_2022_8671482
crossref_primary_10_1016_j_jbiotec_2016_08_007
crossref_primary_10_1080_15412555_2018_1536116
crossref_primary_10_1080_21623945_2021_1945210
crossref_primary_10_3390_ijms21041452
crossref_primary_10_1177_0963689719855624
crossref_primary_10_3390_cells12111470
crossref_primary_10_1186_s12951_019_0483_1
crossref_primary_10_3390_ijms20102546
crossref_primary_10_1016_j_tice_2022_101819
crossref_primary_10_1155_2020_2830565
crossref_primary_10_1155_2020_8898221
crossref_primary_10_1038_srep35316
crossref_primary_10_1089_scd_2016_0153
crossref_primary_10_3390_cells10082161
crossref_primary_10_4236_jbise_2017_1011037
crossref_primary_10_1002_sctm_17_0138
crossref_primary_10_1016_j_rcreue_2020_10_005
crossref_primary_10_7603_s40730_016_0004_x
crossref_primary_10_3390_bioengineering9040148
crossref_primary_10_1038_cddis_2014_521
crossref_primary_10_3892_etm_2018_6125
crossref_primary_10_3390_cells13161384
crossref_primary_10_1007_s13770_017_0045_2
crossref_primary_10_1016_j_freeradbiomed_2023_07_035
crossref_primary_10_1186_s13018_021_02908_2
crossref_primary_10_29328_journal_jsctt_1001008
crossref_primary_10_1089_scd_2017_0291
crossref_primary_10_1002_cbf_3267
crossref_primary_10_3103_S0096392518010108
crossref_primary_10_1016_j_biomaterials_2018_10_025
crossref_primary_10_1016_j_jcyt_2016_06_005
crossref_primary_10_1038_s41419_018_0914_1
crossref_primary_10_1186_s12967_018_1601_9
crossref_primary_10_1159_000438921
crossref_primary_10_4252_wjsc_v11_i10_722
Cites_doi 10.1089/scd.2010.0353
10.3109/14653240903204322
10.1634/stemcells.2005-0342
10.1089/scd.2011.0722
10.1530/REP-09-0300
10.1101/gad.1399906
10.1002/jcp.20324
10.3109/14653240902981144
10.1007/s11695-007-9235-7
10.1002/stem.629
10.1073/pnas.1220108110
10.1016/j.celrep.2013.03.041
10.1089/ten.tea.2010.0661
10.1016/j.ymeth.2008.03.006
10.1089/ten.tec.2009.0405
10.1016/j.bbrc.2007.05.054
10.1016/j.jcyt.2013.02.006
10.1007/s00418-009-0633-x
10.1097/00003086-199810001-00025
10.1016/j.bone.2006.02.061
10.1016/S0092-8674(00)81279-9
10.1016/j.transproceed.2007.06.070
10.1007/978-3-642-20012-0_23
10.1007/978-3-642-20012-0_17
10.1089/scd.2012.0346
10.1111/j.1365-2184.2012.00817.x
10.1111/j.1582-4934.2010.01224.x
10.1007/978-1-60761-999-4_4
10.1016/S0301-472X(03)00106-1
10.1007/978-3-642-20012-0_2
10.1177/0022034509340867
10.1089/scd.2011.0365
10.1111/j.1474-9726.2007.00336.x
10.1091/mbc.E02-02-0105
10.1097/PRS.0b013e3181b5a3f1
10.1016/j.stem.2010.07.007
10.1089/scd.2009.0003
10.1016/j.stem.2007.09.007
10.1515/BC.2008.098
10.1089/ten.tec.2013.0007
10.2174/138161212799859648
10.1089/107632701300062859
10.1089/ten.2006.12.3007
10.1634/stemcells.2006-0589
10.1002/stem.269
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2014
Springer Science+Business Media Dordrecht 2014.
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2014
– notice: Springer Science+Business Media Dordrecht 2014.
DBID AAYXX
CITATION
NPM
8FE
8FH
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s10616-014-9731-2
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
EISSN 1573-0778
EndPage 1084
ExternalDocumentID PMC4628915
24798810
10_1007_s10616_014_9731_2
Genre Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAWUL
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DIK
DL5
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GX1
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HYE
HZ~
I09
I5X
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7P
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
OVD
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPM
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TR2
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z7U
Z7V
Z7X
Z82
Z87
Z8O
Z8P
Z8V
Z91
ZMTXR
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
8FE
8FH
ABRTQ
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c569t-74e05d8766fde9cdcdd1f1e83377b3a6a9177aec07c7b68a7321413f2c51ca103
IEDL.DBID BENPR
ISSN 0920-9069
IngestDate Thu Aug 21 18:18:20 EDT 2025
Thu Jul 10 18:41:22 EDT 2025
Sat Aug 23 14:34:08 EDT 2025
Thu Apr 03 07:04:24 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
Tue Jul 01 00:41:59 EDT 2025
Fri Feb 21 02:33:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Stemness
Hypoxia
Intact adipose tissue
Proliferation
Regenerative medicine
Adipose-derived MSC
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-74e05d8766fde9cdcdd1f1e83377b3a6a9177aec07c7b68a7321413f2c51ca103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10616-014-9731-2.pdf
PMID 24798810
PQID 2918250414
PQPubID 2043590
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4628915
proquest_miscellaneous_1729353493
proquest_journals_2918250414
pubmed_primary_24798810
crossref_primary_10_1007_s10616_014_9731_2
crossref_citationtrail_10_1007_s10616_014_9731_2
springer_journals_10_1007_s10616_014_9731_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: United States
PublicationSubtitle Incorporating Methods in Cell Science International Journal of Cell Culture and Biotechnology
PublicationTitle Cytotechnology (Dordrecht)
PublicationTitleAbbrev Cytotechnology
PublicationTitleAlternate Cytotechnology
PublicationYear 2015
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Weijers, Van Den Broek, Waaijman, Van Hinsbergh, Gibbs, Koolwijk (CR44) 2011; 17
Fraccalvieri, Datta, Bogetti, Verna, Pedrale, Bocchiotti, Boriani, Obbialero, Kefalas, Bruschi (CR16) 2007; 17
Liedtke, Stephan, Kögler (CR28) 2008; 389
Pawitan, Illouz, Sterodimas (CR32) 2011
Zuk, Zhu, Ashjian, De Ugarte, Huang, Mizuno, Alfonso, Fraser, Benhaim, Hedrick (CR47) 2002; 13
Gumbiner (CR20) 1996; 84
Baer, Kuçi, Krause, Kuçi, Zielen, Geiger, Bader, Schubert (CR2) 2013; 22
Zuk, Zhu, Mizuno, Huang, Futrell, Katz, Benhaim, Lorenz, Hedrick (CR46) 2001; 7
Berg, Goodell (CR6) 2007; 1
Baptista, do Amaral, Carias, Aniceto, Claudio-da-Silva, Borojevic (CR4) 2009; 11
Grayson, Zhao, Bunnell, Ma (CR19) 2007; 358
Schroeder, Beyth, Liebergall, Illouz, Sterodimas (CR37) 2011
Wang, Fermor, Gimble, Awad, Guilak (CR43) 2005; 204
Gimble, Bunnell, Chiu, Guilak (CR17) 2011; 29
Zachar, Rasmussen, Fink (CR45) 2011; 698
Kern, Eichler, Stoeve, Klüter, Bieback (CR24) 2006; 24
Bunnell, Flaat, Gagliardi, Patel, Ripoll (CR9) 2008; 45
Ciapetti, Granchi, Baldini (CR10) 2012; 18
Valorani, Montelatici, Germani, Biddle, D’Alessandro, Strollo, Patrizi, Lazzari, Nye, Otto, Pozzilli, Alison (CR42) 2012; 45
Bourin, Bunnell, Casteilla, Dominici, Katz, March, Redl, Rubin, Yoshimura, Gimble (CR7) 2013; 15
Covello, Kehler, Yu, Gordan, Arsham, Hu, Labosky, Simon, Keith (CR11) 2006; 20
Leonardi, Ciapetti, Baglìo, Devescovi, Baldini, Granchi (CR27) 2009; 132
Schreml, Babilas, Fruth, Orsó, Schmitz, Mueller, Nerlich, Prantl (CR36) 2009; 11
Isern, Martín-Antonio, Ghazanfari, Martín, López, Del Toro, Sánchez-Aguilera, Arranz, Martín-Pérez, Suárez-Lledó, Marín, Van Pel, Fibbe, Vázquez, Scheding, Urbano-Ispizúa, Méndez-Ferrer (CR23) 2013; 3
Kim, Park, Song, Kim, Sung (CR25) 2013
Mansilla, Drago, Sturla, Bossi, Salas, Marín, Ibar, Soratti (CR29) 2007; 39
Bruder, Jaiswal, Ricalton, Mosca, Kraus, Kadiyala (CR8) 1998; 355
Pierantozzi, Gava, Manini, Roviello, Marotta, Chiavarelli, Sorrentino (CR33) 2011; 20
Scotti, Piccinini, Takizawa, Todorov, Bourgine, Papadimitropoulos, Barbero, Manz, Martin (CR38) 2013; 110
Suga, Matsumoto, Eto, Inoue, Aoi, Kato, Araki, Yoshimura (CR41) 2009; 18
Mohyeldin, Garzón-Muvdi, Quiñones-Hinojosa (CR30) 2010; 7
D’Ippolito, Diabira, Howard, Roos, Schiller (CR12) 2006; 39
Forristal, Wright, Hanley, Oreffo, Houghton (CR15) 2010; 139
CR21
Schäffler, Büchler (CR35) 2007; 25
Eto, Suga, Matsumoto, Inoue, Aoi, Kato, Araki, Yoshimura (CR13) 2009; 124
Granchi, Ochoa, Leonardi, Devescovi, Baglìo, Osaba, Baldini, Ciapetti (CR18) 2010; 16
Lecourt, Vanneaux, Cras, Freida, Heraoui, Herbi, Caillaud, Chomienne, Marolleau, Belmatoug, Larghero (CR26) 2012; 21
Stocchero, Stocchero, Illouz, Sterodimas (CR39) 2011
Otte, Bucan, Reimers, Hass (CR31) 2013; 19
Fehrer, Brunauer, Laschober, Unterluggauer, Reitinger, Kloss, Gülly, Gassner, Lepperdinger (CR14) 2007; 6
Baksh, Davies, Zandstra (CR3) 2003; 31
Barrilleaux, Phinney, Prockop, O’Connor (CR5) 2006; 12
Huang, Gronthos, Shi (CR22) 2009; 88
Strioga, Viswanathan, Darinskas, Slaby, Michalek (CR40) 2012; 21
Arvidson, Abdallah, Applegate, Baldini, Cenni, Gomez-Barrena, Granchi, Kassem, Konttinen, Mustafa, Pioletti, Sillat, Finne-Wistrand (CR1) 2011; 15
Salem, Thiemermann (CR34) 2010; 28
JH Kim (9731_CR25) 2013
P Bourin (9731_CR7) 2013; 15
S Lecourt (9731_CR26) 2012; 21
SP Bruder (9731_CR8) 1998; 355
S Liedtke (9731_CR28) 2008; 389
C Fehrer (9731_CR14) 2007; 6
G D’Ippolito (9731_CR12) 2006; 39
H Suga (9731_CR41) 2009; 18
B Barrilleaux (9731_CR5) 2006; 12
J Isern (9731_CR23) 2013; 3
HK Salem (9731_CR34) 2010; 28
A Otte (9731_CR31) 2013; 19
A Schäffler (9731_CR35) 2007; 25
PA Zuk (9731_CR47) 2002; 13
H Eto (9731_CR13) 2009; 124
PA Zuk (9731_CR46) 2001; 7
CE Forristal (9731_CR15) 2010; 139
M Strioga (9731_CR40) 2012; 21
G Ciapetti (9731_CR10) 2012; 18
E Mansilla (9731_CR29) 2007; 39
IN Stocchero (9731_CR39) 2011
PC Baer (9731_CR2) 2013; 22
JS Berg (9731_CR6) 2007; 1
D Granchi (9731_CR18) 2010; 16
A Mohyeldin (9731_CR30) 2010; 7
9731_CR21
D Baksh (9731_CR3) 2003; 31
KL Covello (9731_CR11) 2006; 20
V Zachar (9731_CR45) 2011; 698
S Kern (9731_CR24) 2006; 24
C Scotti (9731_CR38) 2013; 110
M Fraccalvieri (9731_CR16) 2007; 17
EM Weijers (9731_CR44) 2011; 17
GTJ Huang (9731_CR22) 2009; 88
E Pierantozzi (9731_CR33) 2011; 20
MG Valorani (9731_CR42) 2012; 45
K Arvidson (9731_CR1) 2011; 15
LS Baptista (9731_CR4) 2009; 11
JM Gimble (9731_CR17) 2011; 29
DW Wang (9731_CR43) 2005; 204
BA Bunnell (9731_CR9) 2008; 45
JE Schroeder (9731_CR37) 2011
JA Pawitan (9731_CR32) 2011
S Schreml (9731_CR36) 2009; 11
WL Grayson (9731_CR19) 2007; 358
BM Gumbiner (9731_CR20) 1996; 84
E Leonardi (9731_CR27) 2009; 132
23579275 - Cell Death Dis. 2013 Apr 11;4:e588
21830936 - Tissue Eng Part A. 2011 Nov;17(21-22):2675-85
17518617 - Tissue Eng. 2006 Nov;12(11):3007-19
23623496 - Cell Rep. 2013 May 30;3(5):1714-24
18000727 - Obes Surg. 2007 Oct;17(10):1319-24
19686055 - Tissue Eng Part C Methods. 2010 Jun;16(3):511-24
21867425 - Stem Cells Dev. 2012 Jan 20;21(2):239-48
18371372 - Cell Stem Cell. 2007 Oct 11;1(4):359-60
16410387 - Stem Cells. 2006 May;24(5):1294-301
19226222 - Stem Cells Dev. 2009 Oct;18(8):1201-10
9917644 - Clin Orthop Relat Res. 1998 Oct;(355 Suppl):S247-56
19755485 - Reproduction. 2010 Jan;139(1):85-97
19711092 - Histochem Cell Biol. 2009 Nov;132(5):547-57
19935292 - Plast Reconstr Surg. 2009 Oct;124(4):1087-97
18593609 - Methods. 2008 Jun;45(2):115-20
20682444 - Cell Stem Cell. 2010 Aug 6;7(2):150-61
11304456 - Tissue Eng. 2001 Apr;7(2):211-28
23570660 - Cytotherapy. 2013 Jun;15(6):641-8
15754341 - J Cell Physiol. 2005 Jul;204(1):184-91
19903106 - Cytotherapy. 2009;11(7):947-57
19967788 - Stem Cells. 2010 Mar 31;28(3):585-96
22920587 - Stem Cells Dev. 2013 Jan 15;22(2):330-9
21129153 - J Cell Mol Med. 2011 Apr;15(4):718-46
19878057 - Cytotherapy. 2009;11(6):706-15
22507457 - Cell Prolif. 2012 Jun;45(3):225-38
20879854 - Stem Cells Dev. 2011 May;20(5):915-23
16510872 - Genes Dev. 2006 Mar 1;20(5):557-70
23401508 - Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3997-4002
8608588 - Cell. 1996 Feb 9;84(3):345-57
22468918 - Stem Cells Dev. 2012 Sep 20;21(14):2724-52
18627312 - Biol Chem. 2008 Jul;389(7):845-50
12475952 - Mol Biol Cell. 2002 Dec;13(12):4279-95
23560527 - Tissue Eng Part C Methods. 2013 Dec;19(12):937-48
12901978 - Exp Hematol. 2003 Aug;31(8):723-32
17420225 - Stem Cells. 2007 Apr;25(4):818-27
21431509 - Methods Mol Biol. 2011;698:37-49
22352754 - Curr Pharm Des. 2012;18(13):1796-820
17889211 - Transplant Proc. 2007 Sep;39(7):2431-3
21433220 - Stem Cells. 2011 May;29(5):749-54
16616713 - Bone. 2006 Sep;39(3):513-22
19767575 - J Dent Res. 2009 Sep;88(9):792-806
17925003 - Aging Cell. 2007 Dec;6(6):745-57
17521616 - Biochem Biophys Res Commun. 2007 Jul 6;358(3):948-53
References_xml – year: 2013
  ident: CR25
  article-title: Reactive oxygen species-responsive miR-210 regulates proliferation and migration of adipose-derived stem cells via PTPN2
  publication-title: Cell Death Dis
– volume: 20
  start-page: 915
  year: 2011
  end-page: 923
  ident: CR33
  article-title: Pluripotency regulators in human mesenchymal stem cells: expression of NANOG but not of OCT-4 and SOX-2
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2010.0353
– volume: 11
  start-page: 947
  year: 2009
  end-page: 957
  ident: CR36
  article-title: Harvesting human adipose tissue-derived adult stem cells: resection versus liposuction
  publication-title: Cytotherapy
  doi: 10.3109/14653240903204322
– volume: 24
  start-page: 1294
  year: 2006
  end-page: 1301
  ident: CR24
  article-title: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2005-0342
– volume: 21
  start-page: 2724
  year: 2012
  end-page: 2752
  ident: CR40
  article-title: Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2011.0722
– volume: 139
  start-page: 85
  year: 2010
  end-page: 97
  ident: CR15
  article-title: Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions
  publication-title: Reproduction
  doi: 10.1530/REP-09-0300
– volume: 20
  start-page: 557
  year: 2006
  end-page: 570
  ident: CR11
  article-title: HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth
  publication-title: Genes Dev
  doi: 10.1101/gad.1399906
– volume: 204
  start-page: 184
  year: 2005
  end-page: 191
  ident: CR43
  article-title: Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.20324
– volume: 11
  start-page: 706
  year: 2009
  end-page: 715
  ident: CR4
  article-title: An alternative method for the isolation of mesenchymal stromal cells derived from lipoaspirate samples
  publication-title: Cytotherapy
  doi: 10.3109/14653240902981144
– volume: 17
  start-page: 1319
  year: 2007
  end-page: 1324
  ident: CR16
  article-title: Abdominoplasty after weight loss in morbidly obese patients: a 4-year clinical experience
  publication-title: Obes Surg
  doi: 10.1007/s11695-007-9235-7
– volume: 29
  start-page: 749
  year: 2011
  end-page: 754
  ident: CR17
  article-title: Concise review: adipose-derived stromal vascular fraction cells and stem cells: let’s not get lost in translation
  publication-title: Stem Cells
  doi: 10.1002/stem.629
– volume: 110
  start-page: 3997
  year: 2013
  end-page: 4002
  ident: CR38
  article-title: Engineering of a functional bone organ through endochondral ossification
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1220108110
– volume: 3
  start-page: 1714
  year: 2013
  end-page: 1724
  ident: CR23
  article-title: Self-renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.03.041
– volume: 17
  start-page: 2675
  year: 2011
  end-page: 2685
  ident: CR44
  article-title: The influence of hypoxia and fibrinogen variants on the expansion and differentiation of adipose tissue-derived mesenchymal stem cells
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2010.0661
– volume: 45
  start-page: 115
  year: 2008
  end-page: 120
  ident: CR9
  article-title: Adipose-derived stem cells: isolation, expansion and differentiation
  publication-title: Methods
  doi: 10.1016/j.ymeth.2008.03.006
– volume: 16
  start-page: 511
  year: 2010
  end-page: 524
  ident: CR18
  article-title: Gene expression patterns related to osteogenic differentiation of bone marrow-derived mesenchymal stem cells during ex vivo expansion
  publication-title: Tissue Eng Part C Methods
  doi: 10.1089/ten.tec.2009.0405
– volume: 358
  start-page: 948
  year: 2007
  end-page: 953
  ident: CR19
  article-title: Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2007.05.054
– volume: 15
  start-page: 641
  year: 2013
  end-page: 648
  ident: CR7
  article-title: Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT)
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2013.02.006
– volume: 132
  start-page: 547
  year: 2009
  end-page: 557
  ident: CR27
  article-title: Osteogenic properties of late adherent subpopulations of human bone marrow stromal cells
  publication-title: Histochem Cell Biol
  doi: 10.1007/s00418-009-0633-x
– volume: 355
  start-page: S247
  year: 1998
  end-page: S256
  ident: CR8
  article-title: Mesenchymal stem cells in osteobiology and applied bone regeneration
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/00003086-199810001-00025
– volume: 39
  start-page: 513
  year: 2006
  end-page: 522
  ident: CR12
  article-title: Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells
  publication-title: Bone
  doi: 10.1016/j.bone.2006.02.061
– volume: 84
  start-page: 345
  year: 1996
  end-page: 357
  ident: CR20
  article-title: Cell adhesion: the molecular basis of tissue architecture and morphogenesis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81279-9
– volume: 39
  start-page: 2431
  year: 2007
  end-page: 2433
  ident: CR29
  article-title: Matrix superhighways configurations: new concepts for complex organ regeneration
  publication-title: Transpl Proc
  doi: 10.1016/j.transproceed.2007.06.070
– start-page: 257
  year: 2011
  end-page: 272
  ident: CR32
  article-title: Future research in adipose stem cell engineering
  publication-title: Adipose Stem Cells and Regenerative Medicine
  doi: 10.1007/978-3-642-20012-0_23
– start-page: 181
  year: 2011
  end-page: 191
  ident: CR37
  article-title: Orthopedic use of adipose-derived stem cells
  publication-title: Adipose Stem Cells and Regenerative Medicine
  doi: 10.1007/978-3-642-20012-0_17
– ident: CR21
– volume: 22
  start-page: 330
  year: 2013
  end-page: 339
  ident: CR2
  article-title: Comprehensive phenotypic characterization of human adipose-derived stromal/stem cells and their subsets by a high throughput technology
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2012.0346
– volume: 45
  start-page: 225
  year: 2012
  end-page: 238
  ident: CR42
  article-title: Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials
  publication-title: Cell Prolif
  doi: 10.1111/j.1365-2184.2012.00817.x
– volume: 15
  start-page: 718
  year: 2011
  end-page: 746
  ident: CR1
  article-title: Bone regeneration and stem cells
  publication-title: J Cell Mol Med
  doi: 10.1111/j.1582-4934.2010.01224.x
– volume: 698
  start-page: 37
  year: 2011
  end-page: 49
  ident: CR45
  article-title: Isolation and growth of adipose tissue-derived stem cells
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-60761-999-4_4
– volume: 31
  start-page: 723
  year: 2003
  end-page: 732
  ident: CR3
  article-title: Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion
  publication-title: Exp Hematol
  doi: 10.1016/S0301-472X(03)00106-1
– start-page: 13
  year: 2011
  end-page: 18
  ident: CR39
  article-title: Isolation of stem cells from human adipose tissue: technique, problems and pearls
  publication-title: Adipose Stem Cells and Regenerative Medicine
  doi: 10.1007/978-3-642-20012-0_2
– volume: 88
  start-page: 792
  year: 2009
  end-page: 806
  ident: CR22
  article-title: Mesenchymal stem cells derived from dental tissues vs. those from other sources. Their biology and role in regenerative medicine
  publication-title: J Dent Res
  doi: 10.1177/0022034509340867
– volume: 21
  start-page: 239
  year: 2012
  end-page: 248
  ident: CR26
  article-title: Bone marrow microenvironment in an in vitro model of Gaucher disease: consequences of glucocerebrosidase deficiency
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2011.0365
– volume: 6
  start-page: 745
  year: 2007
  end-page: 757
  ident: CR14
  article-title: Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2007.00336.x
– volume: 13
  start-page: 4279
  year: 2002
  end-page: 4295
  ident: CR47
  article-title: Human adipose tissue is a source of multipotent stem cells
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E02-02-0105
– volume: 124
  start-page: 1087
  year: 2009
  end-page: 1097
  ident: CR13
  article-title: Characterization of structure and cellular components of aspirated and excised adipose tissue
  publication-title: Plast Reconstr Surg
  doi: 10.1097/PRS.0b013e3181b5a3f1
– volume: 7
  start-page: 150
  year: 2010
  end-page: 161
  ident: CR30
  article-title: Oxygen in stem cell biology: a critical component of the stem cell niche
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.07.007
– volume: 18
  start-page: 1201
  year: 2009
  end-page: 1210
  ident: CR41
  article-title: Functional implications of CD34 expression in human adipose-derived stem/progenitor cells
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2009.0003
– volume: 1
  start-page: 359
  year: 2007
  end-page: 360
  ident: CR6
  article-title: An argument against a role for Oct4 in somatic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.09.007
– volume: 389
  start-page: 845
  year: 2008
  end-page: 850
  ident: CR28
  article-title: Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research
  publication-title: Biol Chem
  doi: 10.1515/BC.2008.098
– volume: 19
  start-page: 937
  year: 2013
  end-page: 948
  ident: CR31
  article-title: Mesenchymal stem cells maintain long-term in vitro stemness during explant culture
  publication-title: Tissue Eng Part C Methods
  doi: 10.1089/ten.tec.2013.0007
– volume: 18
  start-page: 1796
  year: 2012
  end-page: 1820
  ident: CR10
  article-title: The combined use of mesenchymal stromal cells and scaffolds for bone repair
  publication-title: Curr Pharm Des
  doi: 10.2174/138161212799859648
– volume: 28
  start-page: 585
  year: 2010
  end-page: 596
  ident: CR34
  article-title: Mesenchymal stromal cells: current understanding and clinical status
  publication-title: Stem Cells
– volume: 7
  start-page: 211
  year: 2001
  end-page: 228
  ident: CR46
  article-title: Multi-lineage cells from human adipose tissue: implications for cell-based therapies
  publication-title: Tissue Eng
  doi: 10.1089/107632701300062859
– volume: 12
  start-page: 3007
  year: 2006
  end-page: 3019
  ident: CR5
  article-title: Review: ex vivo engineering of living tissues with adult stem cells
  publication-title: Tissue Eng
  doi: 10.1089/ten.2006.12.3007
– volume: 25
  start-page: 818
  year: 2007
  end-page: 827
  ident: CR35
  article-title: Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2006-0589
– volume: 21
  start-page: 239
  year: 2012
  ident: 9731_CR26
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2011.0365
– volume: 13
  start-page: 4279
  year: 2002
  ident: 9731_CR47
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E02-02-0105
– ident: 9731_CR21
– volume: 355
  start-page: S247
  year: 1998
  ident: 9731_CR8
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/00003086-199810001-00025
– volume: 15
  start-page: 641
  year: 2013
  ident: 9731_CR7
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2013.02.006
– volume: 39
  start-page: 513
  year: 2006
  ident: 9731_CR12
  publication-title: Bone
  doi: 10.1016/j.bone.2006.02.061
– volume: 11
  start-page: 706
  year: 2009
  ident: 9731_CR4
  publication-title: Cytotherapy
  doi: 10.3109/14653240902981144
– volume: 7
  start-page: 211
  year: 2001
  ident: 9731_CR46
  publication-title: Tissue Eng
  doi: 10.1089/107632701300062859
– volume: 6
  start-page: 745
  year: 2007
  ident: 9731_CR14
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2007.00336.x
– volume: 29
  start-page: 749
  year: 2011
  ident: 9731_CR17
  publication-title: Stem Cells
  doi: 10.1002/stem.629
– volume: 12
  start-page: 3007
  year: 2006
  ident: 9731_CR5
  publication-title: Tissue Eng
  doi: 10.1089/ten.2006.12.3007
– volume: 204
  start-page: 184
  year: 2005
  ident: 9731_CR43
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.20324
– year: 2013
  ident: 9731_CR25
  publication-title: Cell Death Dis
– volume: 698
  start-page: 37
  year: 2011
  ident: 9731_CR45
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-60761-999-4_4
– volume: 22
  start-page: 330
  year: 2013
  ident: 9731_CR2
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2012.0346
– volume: 18
  start-page: 1796
  year: 2012
  ident: 9731_CR10
  publication-title: Curr Pharm Des
  doi: 10.2174/138161212799859648
– volume: 124
  start-page: 1087
  year: 2009
  ident: 9731_CR13
  publication-title: Plast Reconstr Surg
  doi: 10.1097/PRS.0b013e3181b5a3f1
– volume: 84
  start-page: 345
  year: 1996
  ident: 9731_CR20
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81279-9
– volume: 39
  start-page: 2431
  year: 2007
  ident: 9731_CR29
  publication-title: Transpl Proc
  doi: 10.1016/j.transproceed.2007.06.070
– volume: 20
  start-page: 557
  year: 2006
  ident: 9731_CR11
  publication-title: Genes Dev
  doi: 10.1101/gad.1399906
– start-page: 13
  volume-title: Adipose Stem Cells and Regenerative Medicine
  year: 2011
  ident: 9731_CR39
  doi: 10.1007/978-3-642-20012-0_2
– volume: 16
  start-page: 511
  year: 2010
  ident: 9731_CR18
  publication-title: Tissue Eng Part C Methods
  doi: 10.1089/ten.tec.2009.0405
– volume: 25
  start-page: 818
  year: 2007
  ident: 9731_CR35
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2006-0589
– volume: 15
  start-page: 718
  year: 2011
  ident: 9731_CR1
  publication-title: J Cell Mol Med
  doi: 10.1111/j.1582-4934.2010.01224.x
– volume: 18
  start-page: 1201
  year: 2009
  ident: 9731_CR41
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2009.0003
– volume: 3
  start-page: 1714
  year: 2013
  ident: 9731_CR23
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.03.041
– volume: 17
  start-page: 1319
  year: 2007
  ident: 9731_CR16
  publication-title: Obes Surg
  doi: 10.1007/s11695-007-9235-7
– volume: 45
  start-page: 225
  year: 2012
  ident: 9731_CR42
  publication-title: Cell Prolif
  doi: 10.1111/j.1365-2184.2012.00817.x
– volume: 19
  start-page: 937
  year: 2013
  ident: 9731_CR31
  publication-title: Tissue Eng Part C Methods
  doi: 10.1089/ten.tec.2013.0007
– start-page: 181
  volume-title: Adipose Stem Cells and Regenerative Medicine
  year: 2011
  ident: 9731_CR37
  doi: 10.1007/978-3-642-20012-0_17
– volume: 20
  start-page: 915
  year: 2011
  ident: 9731_CR33
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2010.0353
– volume: 28
  start-page: 585
  year: 2010
  ident: 9731_CR34
  publication-title: Stem Cells
  doi: 10.1002/stem.269
– start-page: 257
  volume-title: Adipose Stem Cells and Regenerative Medicine
  year: 2011
  ident: 9731_CR32
  doi: 10.1007/978-3-642-20012-0_23
– volume: 110
  start-page: 3997
  year: 2013
  ident: 9731_CR38
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1220108110
– volume: 139
  start-page: 85
  year: 2010
  ident: 9731_CR15
  publication-title: Reproduction
  doi: 10.1530/REP-09-0300
– volume: 358
  start-page: 948
  year: 2007
  ident: 9731_CR19
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2007.05.054
– volume: 1
  start-page: 359
  year: 2007
  ident: 9731_CR6
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.09.007
– volume: 132
  start-page: 547
  year: 2009
  ident: 9731_CR27
  publication-title: Histochem Cell Biol
  doi: 10.1007/s00418-009-0633-x
– volume: 45
  start-page: 115
  year: 2008
  ident: 9731_CR9
  publication-title: Methods
  doi: 10.1016/j.ymeth.2008.03.006
– volume: 88
  start-page: 792
  year: 2009
  ident: 9731_CR22
  publication-title: J Dent Res
  doi: 10.1177/0022034509340867
– volume: 389
  start-page: 845
  year: 2008
  ident: 9731_CR28
  publication-title: Biol Chem
  doi: 10.1515/BC.2008.098
– volume: 7
  start-page: 150
  year: 2010
  ident: 9731_CR30
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.07.007
– volume: 17
  start-page: 2675
  year: 2011
  ident: 9731_CR44
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2010.0661
– volume: 21
  start-page: 2724
  year: 2012
  ident: 9731_CR40
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2011.0722
– volume: 31
  start-page: 723
  year: 2003
  ident: 9731_CR3
  publication-title: Exp Hematol
  doi: 10.1016/S0301-472X(03)00106-1
– volume: 24
  start-page: 1294
  year: 2006
  ident: 9731_CR24
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2005-0342
– volume: 11
  start-page: 947
  year: 2009
  ident: 9731_CR36
  publication-title: Cytotherapy
  doi: 10.3109/14653240903204322
– reference: 18371372 - Cell Stem Cell. 2007 Oct 11;1(4):359-60
– reference: 18593609 - Methods. 2008 Jun;45(2):115-20
– reference: 17521616 - Biochem Biophys Res Commun. 2007 Jul 6;358(3):948-53
– reference: 19686055 - Tissue Eng Part C Methods. 2010 Jun;16(3):511-24
– reference: 16510872 - Genes Dev. 2006 Mar 1;20(5):557-70
– reference: 19935292 - Plast Reconstr Surg. 2009 Oct;124(4):1087-97
– reference: 19967788 - Stem Cells. 2010 Mar 31;28(3):585-96
– reference: 22920587 - Stem Cells Dev. 2013 Jan 15;22(2):330-9
– reference: 21830936 - Tissue Eng Part A. 2011 Nov;17(21-22):2675-85
– reference: 20879854 - Stem Cells Dev. 2011 May;20(5):915-23
– reference: 17925003 - Aging Cell. 2007 Dec;6(6):745-57
– reference: 21433220 - Stem Cells. 2011 May;29(5):749-54
– reference: 9917644 - Clin Orthop Relat Res. 1998 Oct;(355 Suppl):S247-56
– reference: 18000727 - Obes Surg. 2007 Oct;17(10):1319-24
– reference: 23579275 - Cell Death Dis. 2013 Apr 11;4:e588
– reference: 23570660 - Cytotherapy. 2013 Jun;15(6):641-8
– reference: 22468918 - Stem Cells Dev. 2012 Sep 20;21(14):2724-52
– reference: 21431509 - Methods Mol Biol. 2011;698:37-49
– reference: 20682444 - Cell Stem Cell. 2010 Aug 6;7(2):150-61
– reference: 19878057 - Cytotherapy. 2009;11(6):706-15
– reference: 17518617 - Tissue Eng. 2006 Nov;12(11):3007-19
– reference: 19767575 - J Dent Res. 2009 Sep;88(9):792-806
– reference: 22352754 - Curr Pharm Des. 2012;18(13):1796-820
– reference: 23401508 - Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3997-4002
– reference: 19755485 - Reproduction. 2010 Jan;139(1):85-97
– reference: 17889211 - Transplant Proc. 2007 Sep;39(7):2431-3
– reference: 12901978 - Exp Hematol. 2003 Aug;31(8):723-32
– reference: 11304456 - Tissue Eng. 2001 Apr;7(2):211-28
– reference: 16410387 - Stem Cells. 2006 May;24(5):1294-301
– reference: 16616713 - Bone. 2006 Sep;39(3):513-22
– reference: 23623496 - Cell Rep. 2013 May 30;3(5):1714-24
– reference: 23560527 - Tissue Eng Part C Methods. 2013 Dec;19(12):937-48
– reference: 17420225 - Stem Cells. 2007 Apr;25(4):818-27
– reference: 22507457 - Cell Prolif. 2012 Jun;45(3):225-38
– reference: 19711092 - Histochem Cell Biol. 2009 Nov;132(5):547-57
– reference: 18627312 - Biol Chem. 2008 Jul;389(7):845-50
– reference: 21867425 - Stem Cells Dev. 2012 Jan 20;21(2):239-48
– reference: 19903106 - Cytotherapy. 2009;11(7):947-57
– reference: 21129153 - J Cell Mol Med. 2011 Apr;15(4):718-46
– reference: 19226222 - Stem Cells Dev. 2009 Oct;18(8):1201-10
– reference: 8608588 - Cell. 1996 Feb 9;84(3):345-57
– reference: 12475952 - Mol Biol Cell. 2002 Dec;13(12):4279-95
– reference: 15754341 - J Cell Physiol. 2005 Jul;204(1):184-91
SSID ssj0009713
Score 2.392688
Snippet The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1073
SubjectTerms Abdomen
Adipocytes
Adipose tissue
Antigens
Biochemistry
Biomedicine
Biotechnology
Body fat
Bone marrow
CD34 antigen
CD36 antigen
CD45 antigen
Cell culture
Cell differentiation
Cell proliferation
Chemistry
Chemistry and Materials Science
Collagen (type II)
Collagenase
Degenerative disc disease
Endothelial cells
Hypoxia
Kinases
Leukocytes
Mesenchymal stem cells
Method in Cell Science
Microenvironments
Monoclonal antibodies
Osteoarthritis
Oxygen tension
Patients
Pericytes
Rheumatoid arthritis
Stem cells
Tissue engineering
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD5IRbQPouulY6tE8EkJJJlJsnkspWUR9MmFgg9DbsMu2JnF2ZbuvzdnLrtdq4LPOZPJ5EtOzpkk3wfwQXjFfeSGSqNSgiKZo9YES4OIxjr0mh2pz5evajYvPl_Ky-Eedzuedh-3JDtPfeeym-KY_RYU5ZZo8rsPJabuaRDPxemOaVf3msgm5UWGKTNuZf6piv3F6F6Eef-g5G-7pd0idPEMng7RIznt4X4OD2I9gUe9nuRmAo_PRvm2CRzeYRp8Ad9nm1Vzu7Qk1gvEuSUrlOupYj8AiK0DQUpndHykqUgn3UdsWK6aNtKQarmJgVzhVSW_2FylNqA1wd_-7UuYX5x_O5vRQVeBeqnMmuoiMhmSG1RViMYHHwKveJzmudYut8qmFE7b6Jn22qmp1ShmxPNKeMm95Sx_BQd1U8cjIExUTigTgkuBl3TeFMlDaOPF1NkUi1YZsLGDSz-QjqP2xY9yR5eMmJQJkxIxKUUGH7ePrHrGjX8Zn4yolcPka0thUtIkWcGLDN5vi1P3Y6fYOjbXbZniNpPLvDB5Bq97kLdvEwWSuHGWgd6Df2uAlNz7JfVy0VFz401fw2UGn8aBsmvWXz_izX9ZH8OTFLTJ_kjNCRysf17HtykwWrt33UT4BUDmBQ8
  priority: 102
  providerName: Springer Nature
Title Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells
URI https://link.springer.com/article/10.1007/s10616-014-9731-2
https://www.ncbi.nlm.nih.gov/pubmed/24798810
https://www.proquest.com/docview/2918250414
https://www.proquest.com/docview/1729353493
https://pubmed.ncbi.nlm.nih.gov/PMC4628915
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFL1iq5DgAcH4CozKSDyBLGIntusnVFC3CsSEEJWKeIgc21ErsSRbOkT_Pb5J2lIm9pIXO3Hsa1-f649zAF5xK5n1TFOhZQhQRJxTo52hjnttcvSaLanP5zM5naUf52LeL7g1_bHKjU9sHbWrLK6Rv-U6IGERpyx9V19QVI3C3dVeQuMABsEFj0LwNXg_OfvydUe7qzqBZB2CJB1LvdnX7C7PSYbRdEpRvony_ZnpGty8fmryn63TdkY6uQ_3eihJxp3tH8AtXx7B7U5ccn0Ed_-iGnwIP6bruvq9NMSXCzR0Q2rU6yl81wOIKR1BTmf0fKQqSKvdR4xb1lXjqQtf-eUdOce7SnaxPg_lYm6C6_7NI5idTL59mNJeWIFaIfWKqtTHwgU_KAvntXXWOVYwP0oSpfLESBNiOGW8jZVVuRwZhWpGLCm4FcwaFieP4bCsSv8USMyLnEvtXB6Ql8itToOLUNryUW4CGC0iiDeNmtmedRzFL35mO75ktEMW7JChHTIewevtK3VHuXFT5uONpbJ-9DXZrq9E8HKbHMYNNoopfXXVZAG46UQkqU4ieNIZdlsaT5HFjcURqD2TbzMgJ_d-SrlctNzceNVXMxHBm03n2P3Wfyvx7OZKPIc7AaaJ7hDNMRyuLq_8iwCFVvkQBuPT758mw77fD-HgdM7Cc8bHfwCd9wmC
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBwQFAeDRQwElxAFrETx-sDQjxabWm7QqiVKnEIju1oV2qTQLbA_il-I548dlkqeuvZjp14xuOZjOf7AJ5xkzDjmKJCJT5AEWFGtbKaWu6UztBqNqA-B-NkdBR_PBbHa_C7r4XBa5W9TWwMtS0N_iN_xZX3hEUYs_hN9Y0iaxRmV3sKjVYt9tz8pw_Z6te7H7x8n3O-s334fkQ7VgFqRKJmVMYuFNYbgSS3ThlrrGU5c8MokjKLdKJ9ACO1M6E0MkuGWiKVD4tybgQzmoWRH_cKrMeRD2UGsP5ue_zp8xLmV7aEzMoHZSpMVJ9HbYv1EobRe0yRLory1ZPwnHt7_pbmP6na5gTcuQU3O9eVvG117TasuWIDrrZklvMNuPEXtOEd-DKaV-WvqSaumKBi1aRCfqDctRpHdGEJYkijpSVlThquQKLttCprR60f5Yez5BRro8xkfurnxd4E8wz1XTi6lCW_B4OiLNwmkJDnGU-UtZn39ERmVOxNklSGDzPtnd88gLBf1NR0KOdItnGSLvGZUQ6pl0OKckh5AC8Wj1QtxMdFnbd6SaXdbq_TpW4G8HTR7PcpLoouXHlWp95RVJGIYhUFcL8V7GI2HiNqHAsDkCsiX3RADPDVlmI6abDAsbRYMRHAy145lq_13494cPFHPIFro8OD_XR_d7z3EK57F1G0F3i2YDD7fuYeeTdslj3udJ_A18vebn8AGuZDIQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hIqAcECzQphQwEidQ1NiJ7fWxKqyWV8WBlSpxiPyKdiWaRM0Wsf--njx2uxSQOMdxHH_2eEbj-T6A18wKaj1VMVciBCg8MbFWTseOeaUNWs2W1OfLqZjOso9n_KzXOW2G2-5DSrKraUCWpnJ5VLvi6Frhm6AYCWcxSi_FwQbfDv1SXNYzdrxh3ZWdPrIKMZJKhBrSmn_qYvtguuFt3rw0-VvmtD2QJg_hQe9JkuMO-kdwy5cjuNNpS65GcO9kkHIbwf1rrIOP4ft0VVe_Fpr4co6YN6RG6Z7Cd4uB6NIRpHdGI0iqgrQyfkS7RV01Pnahl5_ekXMsW7Lz1XkYA7YmmAJonsBs8v7byTTuNRZiy4VaxjLzCXfBJIrCeWWddY4W1I_TVEqTaqFDOCe1t4m00oixlihsRNOCWU6tpkn6FHbKqvT7QBJWGCaUcyY4YdxYlQVrIZVlY6ODX1pEkAwTnNuegBx1MH7kG-pkxCQPmOSISc4ieLN-pe7YN_7V-HBALe83YpMzFQIonmQ0i-DV-nGYfpwUXfrqssmDD6dSnmYqjWCvA3n9NZYhoRtNIpBb8K8bID339pNyMW9purHqV1EewdthoWyG9defOPiv1i_h7td3k_zzh9NPz2A3-HK8u2lzCDvLi0v_PPhLS_Oi3RNXsYIMPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypoxia+enhances+proliferation+and+stemness+of+human+adipose-derived+mesenchymal+stem+cells&rft.jtitle=Cytotechnology+%28Dordrecht%29&rft.au=Fotia%2C+Caterina&rft.au=Massa%2C+Annamaria&rft.au=Boriani%2C+Filippo&rft.au=Baldini%2C+Nicola&rft.date=2015-12-01&rft.issn=0920-9069&rft.volume=67&rft.issue=6&rft.spage=1073&rft_id=info:doi/10.1007%2Fs10616-014-9731-2&rft_id=info%3Apmid%2F24798810&rft.externalDocID=24798810
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-9069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-9069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-9069&client=summon