Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells
The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characte...
Saved in:
Published in | Cytotechnology (Dordrecht) Vol. 67; no. 6; pp. 1073 - 1084 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.12.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O
2
) and hypoxic (1 % O
2
) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e.
Nanog
and
Sox2
. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion. |
---|---|
AbstractList | The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O
2
) and hypoxic (1 % O
2
) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e.
Nanog
and
Sox2
. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion. The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O2) and hypoxic (1 % O2) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion. The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O2) and hypoxic (1 % O2) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion.The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O2) and hypoxic (1 % O2) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion. The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O2) and hypoxic (1 % O2) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion. |
Author | Baldini, Nicola Massa, Annamaria Boriani, Filippo Granchi, Donatella Fotia, Caterina |
Author_xml | – sequence: 1 givenname: Caterina surname: Fotia fullname: Fotia, Caterina email: caterina.fotia@ior.it organization: Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute – sequence: 2 givenname: Annamaria surname: Massa fullname: Massa, Annamaria organization: Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute – sequence: 3 givenname: Filippo surname: Boriani fullname: Boriani, Filippo organization: Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute – sequence: 4 givenname: Nicola surname: Baldini fullname: Baldini, Nicola organization: Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Department of Biomedical and Neuromotor Sciences, University of Bologna – sequence: 5 givenname: Donatella surname: Granchi fullname: Granchi, Donatella organization: Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24798810$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv1DAQhS1URLeFH8AFReLCxeCxkzi-IKEKaKVKvbQnDpbXnnRdJXawk4r993i7bYFK5WTJ_t74vXlH5CDEgIS8BfYRGJOfMrAWWsqgpkoKoPwFWUEjBWVSdgdkxRRnVLFWHZKjnG8YY0qCeEUOeS1V1wFbkR-n2yn-8qbCsDHBYq6mFAffYzKzj6EywVV5xjFgzlXsq80ymnLr_BQzUofJ36KrRswY7GY7muGOriwOQ35NXvZmyPjm_jwmV9--Xp6c0vOL72cnX86pbVo1U1kja1wn27Z3qKyzzkEP2Akh5VqY1iiQ0qBl0sp12xkpONQgem4bsAaYOCaf93OnZT2isxjmZAY9JT-atNXReP3vS_AbfR1vdd3yTkFTBny4H5DizwXzrEefdxFMwLhkDZIr0YhaiYK-f4LexCWFEk9zBR1vWA11od797ejRysPeCwB7wKaYc8L-EQGmd93qfbe6dKt33WpeNPKJxvr5rqUSyg__VfK9MpdfwjWmP6afF_0GvOO5fA |
CitedBy_id | crossref_primary_10_1155_2018_3237253 crossref_primary_10_1007_s12576_019_00720_6 crossref_primary_10_1016_j_cryobiol_2017_01_006 crossref_primary_10_3889_oamjms_2021_5870 crossref_primary_10_1002_jcp_28342 crossref_primary_10_1002_dvg_23592 crossref_primary_10_3389_fbioe_2022_868486 crossref_primary_10_1002_jcp_26046 crossref_primary_10_1016_j_rcreu_2020_10_004 crossref_primary_10_1186_s12918_018_0560_3 crossref_primary_10_3892_ol_2018_8705 crossref_primary_10_1007_s00018_017_2484_2 crossref_primary_10_4252_wjsc_v13_i12_1845 crossref_primary_10_1186_s13287_020_02112_9 crossref_primary_10_1016_j_cryobiol_2024_104856 crossref_primary_10_1016_j_biotechadv_2017_04_005 crossref_primary_10_1016_j_ijcard_2025_133004 crossref_primary_10_1155_2017_4015039 crossref_primary_10_1186_s13287_023_03344_1 crossref_primary_10_1080_03008207_2019_1611792 crossref_primary_10_1007_s12257_019_0118_2 crossref_primary_10_1186_s13287_018_0891_4 crossref_primary_10_1111_cpr_12250 crossref_primary_10_1155_2017_7168687 crossref_primary_10_1016_j_jcyt_2016_09_006 crossref_primary_10_3390_cells8050462 crossref_primary_10_1093_jbcr_irab250 crossref_primary_10_1016_j_scr_2018_01_010 crossref_primary_10_1007_s00018_019_03125_1 crossref_primary_10_1155_2018_6480793 crossref_primary_10_1016_j_tice_2022_101886 crossref_primary_10_3389_fgene_2023_1179256 crossref_primary_10_1093_asj_sjz307 crossref_primary_10_1155_2016_7260562 crossref_primary_10_52711_0974_360X_2021_00465 crossref_primary_10_3390_ijms20051195 crossref_primary_10_3390_cells10040717 crossref_primary_10_3390_ijms26072848 crossref_primary_10_3390_pharmaceutics14051112 crossref_primary_10_1016_j_intimp_2022_109172 crossref_primary_10_5966_sctm_2015_0161 crossref_primary_10_1016_j_bioelechem_2025_108920 crossref_primary_10_1155_2017_5619472 crossref_primary_10_1186_s13018_021_02713_x crossref_primary_10_3389_fcell_2021_658099 crossref_primary_10_1155_2022_8671482 crossref_primary_10_1016_j_jbiotec_2016_08_007 crossref_primary_10_1080_15412555_2018_1536116 crossref_primary_10_1080_21623945_2021_1945210 crossref_primary_10_3390_ijms21041452 crossref_primary_10_1177_0963689719855624 crossref_primary_10_3390_cells12111470 crossref_primary_10_1186_s12951_019_0483_1 crossref_primary_10_3390_ijms20102546 crossref_primary_10_1016_j_tice_2022_101819 crossref_primary_10_1155_2020_2830565 crossref_primary_10_1155_2020_8898221 crossref_primary_10_1038_srep35316 crossref_primary_10_1089_scd_2016_0153 crossref_primary_10_3390_cells10082161 crossref_primary_10_4236_jbise_2017_1011037 crossref_primary_10_1002_sctm_17_0138 crossref_primary_10_1016_j_rcreue_2020_10_005 crossref_primary_10_7603_s40730_016_0004_x crossref_primary_10_3390_bioengineering9040148 crossref_primary_10_1038_cddis_2014_521 crossref_primary_10_3892_etm_2018_6125 crossref_primary_10_3390_cells13161384 crossref_primary_10_1007_s13770_017_0045_2 crossref_primary_10_1016_j_freeradbiomed_2023_07_035 crossref_primary_10_1186_s13018_021_02908_2 crossref_primary_10_29328_journal_jsctt_1001008 crossref_primary_10_1089_scd_2017_0291 crossref_primary_10_1002_cbf_3267 crossref_primary_10_3103_S0096392518010108 crossref_primary_10_1016_j_biomaterials_2018_10_025 crossref_primary_10_1016_j_jcyt_2016_06_005 crossref_primary_10_1038_s41419_018_0914_1 crossref_primary_10_1186_s12967_018_1601_9 crossref_primary_10_1159_000438921 crossref_primary_10_4252_wjsc_v11_i10_722 |
Cites_doi | 10.1089/scd.2010.0353 10.3109/14653240903204322 10.1634/stemcells.2005-0342 10.1089/scd.2011.0722 10.1530/REP-09-0300 10.1101/gad.1399906 10.1002/jcp.20324 10.3109/14653240902981144 10.1007/s11695-007-9235-7 10.1002/stem.629 10.1073/pnas.1220108110 10.1016/j.celrep.2013.03.041 10.1089/ten.tea.2010.0661 10.1016/j.ymeth.2008.03.006 10.1089/ten.tec.2009.0405 10.1016/j.bbrc.2007.05.054 10.1016/j.jcyt.2013.02.006 10.1007/s00418-009-0633-x 10.1097/00003086-199810001-00025 10.1016/j.bone.2006.02.061 10.1016/S0092-8674(00)81279-9 10.1016/j.transproceed.2007.06.070 10.1007/978-3-642-20012-0_23 10.1007/978-3-642-20012-0_17 10.1089/scd.2012.0346 10.1111/j.1365-2184.2012.00817.x 10.1111/j.1582-4934.2010.01224.x 10.1007/978-1-60761-999-4_4 10.1016/S0301-472X(03)00106-1 10.1007/978-3-642-20012-0_2 10.1177/0022034509340867 10.1089/scd.2011.0365 10.1111/j.1474-9726.2007.00336.x 10.1091/mbc.E02-02-0105 10.1097/PRS.0b013e3181b5a3f1 10.1016/j.stem.2010.07.007 10.1089/scd.2009.0003 10.1016/j.stem.2007.09.007 10.1515/BC.2008.098 10.1089/ten.tec.2013.0007 10.2174/138161212799859648 10.1089/107632701300062859 10.1089/ten.2006.12.3007 10.1634/stemcells.2006-0589 10.1002/stem.269 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media Dordrecht 2014 Springer Science+Business Media Dordrecht 2014. |
Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2014 – notice: Springer Science+Business Media Dordrecht 2014. |
DBID | AAYXX CITATION NPM 8FE 8FH AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s10616-014-9731-2 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology |
EISSN | 1573-0778 |
EndPage | 1084 |
ExternalDocumentID | PMC4628915 24798810 10_1007_s10616_014_9731_2 |
Genre | Journal Article |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOIJS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAWUL BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BSONS CAG CCPQU COF CS3 CSCUP DDRTE DIK DL5 DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GX1 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HYE HZ~ I09 I5X IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y M7P MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 OVD P19 P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPM RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TR2 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 Y6R YLTOR Z45 Z7U Z7V Z7X Z82 Z87 Z8O Z8P Z8V Z91 ZMTXR ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 8FE 8FH ABRTQ AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c569t-74e05d8766fde9cdcdd1f1e83377b3a6a9177aec07c7b68a7321413f2c51ca103 |
IEDL.DBID | BENPR |
ISSN | 0920-9069 |
IngestDate | Thu Aug 21 18:18:20 EDT 2025 Thu Jul 10 18:41:22 EDT 2025 Sat Aug 23 14:34:08 EDT 2025 Thu Apr 03 07:04:24 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 Tue Jul 01 00:41:59 EDT 2025 Fri Feb 21 02:33:48 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Stemness Hypoxia Intact adipose tissue Proliferation Regenerative medicine Adipose-derived MSC |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c569t-74e05d8766fde9cdcdd1f1e83377b3a6a9177aec07c7b68a7321413f2c51ca103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10616-014-9731-2.pdf |
PMID | 24798810 |
PQID | 2918250414 |
PQPubID | 2043590 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4628915 proquest_miscellaneous_1729353493 proquest_journals_2918250414 pubmed_primary_24798810 crossref_primary_10_1007_s10616_014_9731_2 crossref_citationtrail_10_1007_s10616_014_9731_2 springer_journals_10_1007_s10616_014_9731_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: United States |
PublicationSubtitle | Incorporating Methods in Cell Science International Journal of Cell Culture and Biotechnology |
PublicationTitle | Cytotechnology (Dordrecht) |
PublicationTitleAbbrev | Cytotechnology |
PublicationTitleAlternate | Cytotechnology |
PublicationYear | 2015 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Weijers, Van Den Broek, Waaijman, Van Hinsbergh, Gibbs, Koolwijk (CR44) 2011; 17 Fraccalvieri, Datta, Bogetti, Verna, Pedrale, Bocchiotti, Boriani, Obbialero, Kefalas, Bruschi (CR16) 2007; 17 Liedtke, Stephan, Kögler (CR28) 2008; 389 Pawitan, Illouz, Sterodimas (CR32) 2011 Zuk, Zhu, Ashjian, De Ugarte, Huang, Mizuno, Alfonso, Fraser, Benhaim, Hedrick (CR47) 2002; 13 Gumbiner (CR20) 1996; 84 Baer, Kuçi, Krause, Kuçi, Zielen, Geiger, Bader, Schubert (CR2) 2013; 22 Zuk, Zhu, Mizuno, Huang, Futrell, Katz, Benhaim, Lorenz, Hedrick (CR46) 2001; 7 Berg, Goodell (CR6) 2007; 1 Baptista, do Amaral, Carias, Aniceto, Claudio-da-Silva, Borojevic (CR4) 2009; 11 Grayson, Zhao, Bunnell, Ma (CR19) 2007; 358 Schroeder, Beyth, Liebergall, Illouz, Sterodimas (CR37) 2011 Wang, Fermor, Gimble, Awad, Guilak (CR43) 2005; 204 Gimble, Bunnell, Chiu, Guilak (CR17) 2011; 29 Zachar, Rasmussen, Fink (CR45) 2011; 698 Kern, Eichler, Stoeve, Klüter, Bieback (CR24) 2006; 24 Bunnell, Flaat, Gagliardi, Patel, Ripoll (CR9) 2008; 45 Ciapetti, Granchi, Baldini (CR10) 2012; 18 Valorani, Montelatici, Germani, Biddle, D’Alessandro, Strollo, Patrizi, Lazzari, Nye, Otto, Pozzilli, Alison (CR42) 2012; 45 Bourin, Bunnell, Casteilla, Dominici, Katz, March, Redl, Rubin, Yoshimura, Gimble (CR7) 2013; 15 Covello, Kehler, Yu, Gordan, Arsham, Hu, Labosky, Simon, Keith (CR11) 2006; 20 Leonardi, Ciapetti, Baglìo, Devescovi, Baldini, Granchi (CR27) 2009; 132 Schreml, Babilas, Fruth, Orsó, Schmitz, Mueller, Nerlich, Prantl (CR36) 2009; 11 Isern, Martín-Antonio, Ghazanfari, Martín, López, Del Toro, Sánchez-Aguilera, Arranz, Martín-Pérez, Suárez-Lledó, Marín, Van Pel, Fibbe, Vázquez, Scheding, Urbano-Ispizúa, Méndez-Ferrer (CR23) 2013; 3 Kim, Park, Song, Kim, Sung (CR25) 2013 Mansilla, Drago, Sturla, Bossi, Salas, Marín, Ibar, Soratti (CR29) 2007; 39 Bruder, Jaiswal, Ricalton, Mosca, Kraus, Kadiyala (CR8) 1998; 355 Pierantozzi, Gava, Manini, Roviello, Marotta, Chiavarelli, Sorrentino (CR33) 2011; 20 Scotti, Piccinini, Takizawa, Todorov, Bourgine, Papadimitropoulos, Barbero, Manz, Martin (CR38) 2013; 110 Suga, Matsumoto, Eto, Inoue, Aoi, Kato, Araki, Yoshimura (CR41) 2009; 18 Mohyeldin, Garzón-Muvdi, Quiñones-Hinojosa (CR30) 2010; 7 D’Ippolito, Diabira, Howard, Roos, Schiller (CR12) 2006; 39 Forristal, Wright, Hanley, Oreffo, Houghton (CR15) 2010; 139 CR21 Schäffler, Büchler (CR35) 2007; 25 Eto, Suga, Matsumoto, Inoue, Aoi, Kato, Araki, Yoshimura (CR13) 2009; 124 Granchi, Ochoa, Leonardi, Devescovi, Baglìo, Osaba, Baldini, Ciapetti (CR18) 2010; 16 Lecourt, Vanneaux, Cras, Freida, Heraoui, Herbi, Caillaud, Chomienne, Marolleau, Belmatoug, Larghero (CR26) 2012; 21 Stocchero, Stocchero, Illouz, Sterodimas (CR39) 2011 Otte, Bucan, Reimers, Hass (CR31) 2013; 19 Fehrer, Brunauer, Laschober, Unterluggauer, Reitinger, Kloss, Gülly, Gassner, Lepperdinger (CR14) 2007; 6 Baksh, Davies, Zandstra (CR3) 2003; 31 Barrilleaux, Phinney, Prockop, O’Connor (CR5) 2006; 12 Huang, Gronthos, Shi (CR22) 2009; 88 Strioga, Viswanathan, Darinskas, Slaby, Michalek (CR40) 2012; 21 Arvidson, Abdallah, Applegate, Baldini, Cenni, Gomez-Barrena, Granchi, Kassem, Konttinen, Mustafa, Pioletti, Sillat, Finne-Wistrand (CR1) 2011; 15 Salem, Thiemermann (CR34) 2010; 28 JH Kim (9731_CR25) 2013 P Bourin (9731_CR7) 2013; 15 S Lecourt (9731_CR26) 2012; 21 SP Bruder (9731_CR8) 1998; 355 S Liedtke (9731_CR28) 2008; 389 C Fehrer (9731_CR14) 2007; 6 G D’Ippolito (9731_CR12) 2006; 39 H Suga (9731_CR41) 2009; 18 B Barrilleaux (9731_CR5) 2006; 12 J Isern (9731_CR23) 2013; 3 HK Salem (9731_CR34) 2010; 28 A Otte (9731_CR31) 2013; 19 A Schäffler (9731_CR35) 2007; 25 PA Zuk (9731_CR47) 2002; 13 H Eto (9731_CR13) 2009; 124 PA Zuk (9731_CR46) 2001; 7 CE Forristal (9731_CR15) 2010; 139 M Strioga (9731_CR40) 2012; 21 G Ciapetti (9731_CR10) 2012; 18 E Mansilla (9731_CR29) 2007; 39 IN Stocchero (9731_CR39) 2011 PC Baer (9731_CR2) 2013; 22 JS Berg (9731_CR6) 2007; 1 D Granchi (9731_CR18) 2010; 16 A Mohyeldin (9731_CR30) 2010; 7 9731_CR21 D Baksh (9731_CR3) 2003; 31 KL Covello (9731_CR11) 2006; 20 V Zachar (9731_CR45) 2011; 698 S Kern (9731_CR24) 2006; 24 C Scotti (9731_CR38) 2013; 110 M Fraccalvieri (9731_CR16) 2007; 17 EM Weijers (9731_CR44) 2011; 17 GTJ Huang (9731_CR22) 2009; 88 E Pierantozzi (9731_CR33) 2011; 20 MG Valorani (9731_CR42) 2012; 45 K Arvidson (9731_CR1) 2011; 15 LS Baptista (9731_CR4) 2009; 11 JM Gimble (9731_CR17) 2011; 29 DW Wang (9731_CR43) 2005; 204 BA Bunnell (9731_CR9) 2008; 45 JE Schroeder (9731_CR37) 2011 JA Pawitan (9731_CR32) 2011 S Schreml (9731_CR36) 2009; 11 WL Grayson (9731_CR19) 2007; 358 BM Gumbiner (9731_CR20) 1996; 84 E Leonardi (9731_CR27) 2009; 132 23579275 - Cell Death Dis. 2013 Apr 11;4:e588 21830936 - Tissue Eng Part A. 2011 Nov;17(21-22):2675-85 17518617 - Tissue Eng. 2006 Nov;12(11):3007-19 23623496 - Cell Rep. 2013 May 30;3(5):1714-24 18000727 - Obes Surg. 2007 Oct;17(10):1319-24 19686055 - Tissue Eng Part C Methods. 2010 Jun;16(3):511-24 21867425 - Stem Cells Dev. 2012 Jan 20;21(2):239-48 18371372 - Cell Stem Cell. 2007 Oct 11;1(4):359-60 16410387 - Stem Cells. 2006 May;24(5):1294-301 19226222 - Stem Cells Dev. 2009 Oct;18(8):1201-10 9917644 - Clin Orthop Relat Res. 1998 Oct;(355 Suppl):S247-56 19755485 - Reproduction. 2010 Jan;139(1):85-97 19711092 - Histochem Cell Biol. 2009 Nov;132(5):547-57 19935292 - Plast Reconstr Surg. 2009 Oct;124(4):1087-97 18593609 - Methods. 2008 Jun;45(2):115-20 20682444 - Cell Stem Cell. 2010 Aug 6;7(2):150-61 11304456 - Tissue Eng. 2001 Apr;7(2):211-28 23570660 - Cytotherapy. 2013 Jun;15(6):641-8 15754341 - J Cell Physiol. 2005 Jul;204(1):184-91 19903106 - Cytotherapy. 2009;11(7):947-57 19967788 - Stem Cells. 2010 Mar 31;28(3):585-96 22920587 - Stem Cells Dev. 2013 Jan 15;22(2):330-9 21129153 - J Cell Mol Med. 2011 Apr;15(4):718-46 19878057 - Cytotherapy. 2009;11(6):706-15 22507457 - Cell Prolif. 2012 Jun;45(3):225-38 20879854 - Stem Cells Dev. 2011 May;20(5):915-23 16510872 - Genes Dev. 2006 Mar 1;20(5):557-70 23401508 - Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3997-4002 8608588 - Cell. 1996 Feb 9;84(3):345-57 22468918 - Stem Cells Dev. 2012 Sep 20;21(14):2724-52 18627312 - Biol Chem. 2008 Jul;389(7):845-50 12475952 - Mol Biol Cell. 2002 Dec;13(12):4279-95 23560527 - Tissue Eng Part C Methods. 2013 Dec;19(12):937-48 12901978 - Exp Hematol. 2003 Aug;31(8):723-32 17420225 - Stem Cells. 2007 Apr;25(4):818-27 21431509 - Methods Mol Biol. 2011;698:37-49 22352754 - Curr Pharm Des. 2012;18(13):1796-820 17889211 - Transplant Proc. 2007 Sep;39(7):2431-3 21433220 - Stem Cells. 2011 May;29(5):749-54 16616713 - Bone. 2006 Sep;39(3):513-22 19767575 - J Dent Res. 2009 Sep;88(9):792-806 17925003 - Aging Cell. 2007 Dec;6(6):745-57 17521616 - Biochem Biophys Res Commun. 2007 Jul 6;358(3):948-53 |
References_xml | – year: 2013 ident: CR25 article-title: Reactive oxygen species-responsive miR-210 regulates proliferation and migration of adipose-derived stem cells via PTPN2 publication-title: Cell Death Dis – volume: 20 start-page: 915 year: 2011 end-page: 923 ident: CR33 article-title: Pluripotency regulators in human mesenchymal stem cells: expression of NANOG but not of OCT-4 and SOX-2 publication-title: Stem Cells Dev doi: 10.1089/scd.2010.0353 – volume: 11 start-page: 947 year: 2009 end-page: 957 ident: CR36 article-title: Harvesting human adipose tissue-derived adult stem cells: resection versus liposuction publication-title: Cytotherapy doi: 10.3109/14653240903204322 – volume: 24 start-page: 1294 year: 2006 end-page: 1301 ident: CR24 article-title: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue publication-title: Stem Cells doi: 10.1634/stemcells.2005-0342 – volume: 21 start-page: 2724 year: 2012 end-page: 2752 ident: CR40 article-title: Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells publication-title: Stem Cells Dev doi: 10.1089/scd.2011.0722 – volume: 139 start-page: 85 year: 2010 end-page: 97 ident: CR15 article-title: Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions publication-title: Reproduction doi: 10.1530/REP-09-0300 – volume: 20 start-page: 557 year: 2006 end-page: 570 ident: CR11 article-title: HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth publication-title: Genes Dev doi: 10.1101/gad.1399906 – volume: 204 start-page: 184 year: 2005 end-page: 191 ident: CR43 article-title: Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells publication-title: J Cell Physiol doi: 10.1002/jcp.20324 – volume: 11 start-page: 706 year: 2009 end-page: 715 ident: CR4 article-title: An alternative method for the isolation of mesenchymal stromal cells derived from lipoaspirate samples publication-title: Cytotherapy doi: 10.3109/14653240902981144 – volume: 17 start-page: 1319 year: 2007 end-page: 1324 ident: CR16 article-title: Abdominoplasty after weight loss in morbidly obese patients: a 4-year clinical experience publication-title: Obes Surg doi: 10.1007/s11695-007-9235-7 – volume: 29 start-page: 749 year: 2011 end-page: 754 ident: CR17 article-title: Concise review: adipose-derived stromal vascular fraction cells and stem cells: let’s not get lost in translation publication-title: Stem Cells doi: 10.1002/stem.629 – volume: 110 start-page: 3997 year: 2013 end-page: 4002 ident: CR38 article-title: Engineering of a functional bone organ through endochondral ossification publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1220108110 – volume: 3 start-page: 1714 year: 2013 end-page: 1724 ident: CR23 article-title: Self-renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion publication-title: Cell Rep doi: 10.1016/j.celrep.2013.03.041 – volume: 17 start-page: 2675 year: 2011 end-page: 2685 ident: CR44 article-title: The influence of hypoxia and fibrinogen variants on the expansion and differentiation of adipose tissue-derived mesenchymal stem cells publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2010.0661 – volume: 45 start-page: 115 year: 2008 end-page: 120 ident: CR9 article-title: Adipose-derived stem cells: isolation, expansion and differentiation publication-title: Methods doi: 10.1016/j.ymeth.2008.03.006 – volume: 16 start-page: 511 year: 2010 end-page: 524 ident: CR18 article-title: Gene expression patterns related to osteogenic differentiation of bone marrow-derived mesenchymal stem cells during ex vivo expansion publication-title: Tissue Eng Part C Methods doi: 10.1089/ten.tec.2009.0405 – volume: 358 start-page: 948 year: 2007 end-page: 953 ident: CR19 article-title: Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2007.05.054 – volume: 15 start-page: 641 year: 2013 end-page: 648 ident: CR7 article-title: Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) publication-title: Cytotherapy doi: 10.1016/j.jcyt.2013.02.006 – volume: 132 start-page: 547 year: 2009 end-page: 557 ident: CR27 article-title: Osteogenic properties of late adherent subpopulations of human bone marrow stromal cells publication-title: Histochem Cell Biol doi: 10.1007/s00418-009-0633-x – volume: 355 start-page: S247 year: 1998 end-page: S256 ident: CR8 article-title: Mesenchymal stem cells in osteobiology and applied bone regeneration publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-199810001-00025 – volume: 39 start-page: 513 year: 2006 end-page: 522 ident: CR12 article-title: Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells publication-title: Bone doi: 10.1016/j.bone.2006.02.061 – volume: 84 start-page: 345 year: 1996 end-page: 357 ident: CR20 article-title: Cell adhesion: the molecular basis of tissue architecture and morphogenesis publication-title: Cell doi: 10.1016/S0092-8674(00)81279-9 – volume: 39 start-page: 2431 year: 2007 end-page: 2433 ident: CR29 article-title: Matrix superhighways configurations: new concepts for complex organ regeneration publication-title: Transpl Proc doi: 10.1016/j.transproceed.2007.06.070 – start-page: 257 year: 2011 end-page: 272 ident: CR32 article-title: Future research in adipose stem cell engineering publication-title: Adipose Stem Cells and Regenerative Medicine doi: 10.1007/978-3-642-20012-0_23 – start-page: 181 year: 2011 end-page: 191 ident: CR37 article-title: Orthopedic use of adipose-derived stem cells publication-title: Adipose Stem Cells and Regenerative Medicine doi: 10.1007/978-3-642-20012-0_17 – ident: CR21 – volume: 22 start-page: 330 year: 2013 end-page: 339 ident: CR2 article-title: Comprehensive phenotypic characterization of human adipose-derived stromal/stem cells and their subsets by a high throughput technology publication-title: Stem Cells Dev doi: 10.1089/scd.2012.0346 – volume: 45 start-page: 225 year: 2012 end-page: 238 ident: CR42 article-title: Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials publication-title: Cell Prolif doi: 10.1111/j.1365-2184.2012.00817.x – volume: 15 start-page: 718 year: 2011 end-page: 746 ident: CR1 article-title: Bone regeneration and stem cells publication-title: J Cell Mol Med doi: 10.1111/j.1582-4934.2010.01224.x – volume: 698 start-page: 37 year: 2011 end-page: 49 ident: CR45 article-title: Isolation and growth of adipose tissue-derived stem cells publication-title: Methods Mol Biol doi: 10.1007/978-1-60761-999-4_4 – volume: 31 start-page: 723 year: 2003 end-page: 732 ident: CR3 article-title: Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion publication-title: Exp Hematol doi: 10.1016/S0301-472X(03)00106-1 – start-page: 13 year: 2011 end-page: 18 ident: CR39 article-title: Isolation of stem cells from human adipose tissue: technique, problems and pearls publication-title: Adipose Stem Cells and Regenerative Medicine doi: 10.1007/978-3-642-20012-0_2 – volume: 88 start-page: 792 year: 2009 end-page: 806 ident: CR22 article-title: Mesenchymal stem cells derived from dental tissues vs. those from other sources. Their biology and role in regenerative medicine publication-title: J Dent Res doi: 10.1177/0022034509340867 – volume: 21 start-page: 239 year: 2012 end-page: 248 ident: CR26 article-title: Bone marrow microenvironment in an in vitro model of Gaucher disease: consequences of glucocerebrosidase deficiency publication-title: Stem Cells Dev doi: 10.1089/scd.2011.0365 – volume: 6 start-page: 745 year: 2007 end-page: 757 ident: CR14 article-title: Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan publication-title: Aging Cell doi: 10.1111/j.1474-9726.2007.00336.x – volume: 13 start-page: 4279 year: 2002 end-page: 4295 ident: CR47 article-title: Human adipose tissue is a source of multipotent stem cells publication-title: Mol Biol Cell doi: 10.1091/mbc.E02-02-0105 – volume: 124 start-page: 1087 year: 2009 end-page: 1097 ident: CR13 article-title: Characterization of structure and cellular components of aspirated and excised adipose tissue publication-title: Plast Reconstr Surg doi: 10.1097/PRS.0b013e3181b5a3f1 – volume: 7 start-page: 150 year: 2010 end-page: 161 ident: CR30 article-title: Oxygen in stem cell biology: a critical component of the stem cell niche publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.07.007 – volume: 18 start-page: 1201 year: 2009 end-page: 1210 ident: CR41 article-title: Functional implications of CD34 expression in human adipose-derived stem/progenitor cells publication-title: Stem Cells Dev doi: 10.1089/scd.2009.0003 – volume: 1 start-page: 359 year: 2007 end-page: 360 ident: CR6 article-title: An argument against a role for Oct4 in somatic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.09.007 – volume: 389 start-page: 845 year: 2008 end-page: 850 ident: CR28 article-title: Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research publication-title: Biol Chem doi: 10.1515/BC.2008.098 – volume: 19 start-page: 937 year: 2013 end-page: 948 ident: CR31 article-title: Mesenchymal stem cells maintain long-term in vitro stemness during explant culture publication-title: Tissue Eng Part C Methods doi: 10.1089/ten.tec.2013.0007 – volume: 18 start-page: 1796 year: 2012 end-page: 1820 ident: CR10 article-title: The combined use of mesenchymal stromal cells and scaffolds for bone repair publication-title: Curr Pharm Des doi: 10.2174/138161212799859648 – volume: 28 start-page: 585 year: 2010 end-page: 596 ident: CR34 article-title: Mesenchymal stromal cells: current understanding and clinical status publication-title: Stem Cells – volume: 7 start-page: 211 year: 2001 end-page: 228 ident: CR46 article-title: Multi-lineage cells from human adipose tissue: implications for cell-based therapies publication-title: Tissue Eng doi: 10.1089/107632701300062859 – volume: 12 start-page: 3007 year: 2006 end-page: 3019 ident: CR5 article-title: Review: ex vivo engineering of living tissues with adult stem cells publication-title: Tissue Eng doi: 10.1089/ten.2006.12.3007 – volume: 25 start-page: 818 year: 2007 end-page: 827 ident: CR35 article-title: Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies publication-title: Stem Cells doi: 10.1634/stemcells.2006-0589 – volume: 21 start-page: 239 year: 2012 ident: 9731_CR26 publication-title: Stem Cells Dev doi: 10.1089/scd.2011.0365 – volume: 13 start-page: 4279 year: 2002 ident: 9731_CR47 publication-title: Mol Biol Cell doi: 10.1091/mbc.E02-02-0105 – ident: 9731_CR21 – volume: 355 start-page: S247 year: 1998 ident: 9731_CR8 publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-199810001-00025 – volume: 15 start-page: 641 year: 2013 ident: 9731_CR7 publication-title: Cytotherapy doi: 10.1016/j.jcyt.2013.02.006 – volume: 39 start-page: 513 year: 2006 ident: 9731_CR12 publication-title: Bone doi: 10.1016/j.bone.2006.02.061 – volume: 11 start-page: 706 year: 2009 ident: 9731_CR4 publication-title: Cytotherapy doi: 10.3109/14653240902981144 – volume: 7 start-page: 211 year: 2001 ident: 9731_CR46 publication-title: Tissue Eng doi: 10.1089/107632701300062859 – volume: 6 start-page: 745 year: 2007 ident: 9731_CR14 publication-title: Aging Cell doi: 10.1111/j.1474-9726.2007.00336.x – volume: 29 start-page: 749 year: 2011 ident: 9731_CR17 publication-title: Stem Cells doi: 10.1002/stem.629 – volume: 12 start-page: 3007 year: 2006 ident: 9731_CR5 publication-title: Tissue Eng doi: 10.1089/ten.2006.12.3007 – volume: 204 start-page: 184 year: 2005 ident: 9731_CR43 publication-title: J Cell Physiol doi: 10.1002/jcp.20324 – year: 2013 ident: 9731_CR25 publication-title: Cell Death Dis – volume: 698 start-page: 37 year: 2011 ident: 9731_CR45 publication-title: Methods Mol Biol doi: 10.1007/978-1-60761-999-4_4 – volume: 22 start-page: 330 year: 2013 ident: 9731_CR2 publication-title: Stem Cells Dev doi: 10.1089/scd.2012.0346 – volume: 18 start-page: 1796 year: 2012 ident: 9731_CR10 publication-title: Curr Pharm Des doi: 10.2174/138161212799859648 – volume: 124 start-page: 1087 year: 2009 ident: 9731_CR13 publication-title: Plast Reconstr Surg doi: 10.1097/PRS.0b013e3181b5a3f1 – volume: 84 start-page: 345 year: 1996 ident: 9731_CR20 publication-title: Cell doi: 10.1016/S0092-8674(00)81279-9 – volume: 39 start-page: 2431 year: 2007 ident: 9731_CR29 publication-title: Transpl Proc doi: 10.1016/j.transproceed.2007.06.070 – volume: 20 start-page: 557 year: 2006 ident: 9731_CR11 publication-title: Genes Dev doi: 10.1101/gad.1399906 – start-page: 13 volume-title: Adipose Stem Cells and Regenerative Medicine year: 2011 ident: 9731_CR39 doi: 10.1007/978-3-642-20012-0_2 – volume: 16 start-page: 511 year: 2010 ident: 9731_CR18 publication-title: Tissue Eng Part C Methods doi: 10.1089/ten.tec.2009.0405 – volume: 25 start-page: 818 year: 2007 ident: 9731_CR35 publication-title: Stem Cells doi: 10.1634/stemcells.2006-0589 – volume: 15 start-page: 718 year: 2011 ident: 9731_CR1 publication-title: J Cell Mol Med doi: 10.1111/j.1582-4934.2010.01224.x – volume: 18 start-page: 1201 year: 2009 ident: 9731_CR41 publication-title: Stem Cells Dev doi: 10.1089/scd.2009.0003 – volume: 3 start-page: 1714 year: 2013 ident: 9731_CR23 publication-title: Cell Rep doi: 10.1016/j.celrep.2013.03.041 – volume: 17 start-page: 1319 year: 2007 ident: 9731_CR16 publication-title: Obes Surg doi: 10.1007/s11695-007-9235-7 – volume: 45 start-page: 225 year: 2012 ident: 9731_CR42 publication-title: Cell Prolif doi: 10.1111/j.1365-2184.2012.00817.x – volume: 19 start-page: 937 year: 2013 ident: 9731_CR31 publication-title: Tissue Eng Part C Methods doi: 10.1089/ten.tec.2013.0007 – start-page: 181 volume-title: Adipose Stem Cells and Regenerative Medicine year: 2011 ident: 9731_CR37 doi: 10.1007/978-3-642-20012-0_17 – volume: 20 start-page: 915 year: 2011 ident: 9731_CR33 publication-title: Stem Cells Dev doi: 10.1089/scd.2010.0353 – volume: 28 start-page: 585 year: 2010 ident: 9731_CR34 publication-title: Stem Cells doi: 10.1002/stem.269 – start-page: 257 volume-title: Adipose Stem Cells and Regenerative Medicine year: 2011 ident: 9731_CR32 doi: 10.1007/978-3-642-20012-0_23 – volume: 110 start-page: 3997 year: 2013 ident: 9731_CR38 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1220108110 – volume: 139 start-page: 85 year: 2010 ident: 9731_CR15 publication-title: Reproduction doi: 10.1530/REP-09-0300 – volume: 358 start-page: 948 year: 2007 ident: 9731_CR19 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2007.05.054 – volume: 1 start-page: 359 year: 2007 ident: 9731_CR6 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.09.007 – volume: 132 start-page: 547 year: 2009 ident: 9731_CR27 publication-title: Histochem Cell Biol doi: 10.1007/s00418-009-0633-x – volume: 45 start-page: 115 year: 2008 ident: 9731_CR9 publication-title: Methods doi: 10.1016/j.ymeth.2008.03.006 – volume: 88 start-page: 792 year: 2009 ident: 9731_CR22 publication-title: J Dent Res doi: 10.1177/0022034509340867 – volume: 389 start-page: 845 year: 2008 ident: 9731_CR28 publication-title: Biol Chem doi: 10.1515/BC.2008.098 – volume: 7 start-page: 150 year: 2010 ident: 9731_CR30 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.07.007 – volume: 17 start-page: 2675 year: 2011 ident: 9731_CR44 publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2010.0661 – volume: 21 start-page: 2724 year: 2012 ident: 9731_CR40 publication-title: Stem Cells Dev doi: 10.1089/scd.2011.0722 – volume: 31 start-page: 723 year: 2003 ident: 9731_CR3 publication-title: Exp Hematol doi: 10.1016/S0301-472X(03)00106-1 – volume: 24 start-page: 1294 year: 2006 ident: 9731_CR24 publication-title: Stem Cells doi: 10.1634/stemcells.2005-0342 – volume: 11 start-page: 947 year: 2009 ident: 9731_CR36 publication-title: Cytotherapy doi: 10.3109/14653240903204322 – reference: 18371372 - Cell Stem Cell. 2007 Oct 11;1(4):359-60 – reference: 18593609 - Methods. 2008 Jun;45(2):115-20 – reference: 17521616 - Biochem Biophys Res Commun. 2007 Jul 6;358(3):948-53 – reference: 19686055 - Tissue Eng Part C Methods. 2010 Jun;16(3):511-24 – reference: 16510872 - Genes Dev. 2006 Mar 1;20(5):557-70 – reference: 19935292 - Plast Reconstr Surg. 2009 Oct;124(4):1087-97 – reference: 19967788 - Stem Cells. 2010 Mar 31;28(3):585-96 – reference: 22920587 - Stem Cells Dev. 2013 Jan 15;22(2):330-9 – reference: 21830936 - Tissue Eng Part A. 2011 Nov;17(21-22):2675-85 – reference: 20879854 - Stem Cells Dev. 2011 May;20(5):915-23 – reference: 17925003 - Aging Cell. 2007 Dec;6(6):745-57 – reference: 21433220 - Stem Cells. 2011 May;29(5):749-54 – reference: 9917644 - Clin Orthop Relat Res. 1998 Oct;(355 Suppl):S247-56 – reference: 18000727 - Obes Surg. 2007 Oct;17(10):1319-24 – reference: 23579275 - Cell Death Dis. 2013 Apr 11;4:e588 – reference: 23570660 - Cytotherapy. 2013 Jun;15(6):641-8 – reference: 22468918 - Stem Cells Dev. 2012 Sep 20;21(14):2724-52 – reference: 21431509 - Methods Mol Biol. 2011;698:37-49 – reference: 20682444 - Cell Stem Cell. 2010 Aug 6;7(2):150-61 – reference: 19878057 - Cytotherapy. 2009;11(6):706-15 – reference: 17518617 - Tissue Eng. 2006 Nov;12(11):3007-19 – reference: 19767575 - J Dent Res. 2009 Sep;88(9):792-806 – reference: 22352754 - Curr Pharm Des. 2012;18(13):1796-820 – reference: 23401508 - Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3997-4002 – reference: 19755485 - Reproduction. 2010 Jan;139(1):85-97 – reference: 17889211 - Transplant Proc. 2007 Sep;39(7):2431-3 – reference: 12901978 - Exp Hematol. 2003 Aug;31(8):723-32 – reference: 11304456 - Tissue Eng. 2001 Apr;7(2):211-28 – reference: 16410387 - Stem Cells. 2006 May;24(5):1294-301 – reference: 16616713 - Bone. 2006 Sep;39(3):513-22 – reference: 23623496 - Cell Rep. 2013 May 30;3(5):1714-24 – reference: 23560527 - Tissue Eng Part C Methods. 2013 Dec;19(12):937-48 – reference: 17420225 - Stem Cells. 2007 Apr;25(4):818-27 – reference: 22507457 - Cell Prolif. 2012 Jun;45(3):225-38 – reference: 19711092 - Histochem Cell Biol. 2009 Nov;132(5):547-57 – reference: 18627312 - Biol Chem. 2008 Jul;389(7):845-50 – reference: 21867425 - Stem Cells Dev. 2012 Jan 20;21(2):239-48 – reference: 19903106 - Cytotherapy. 2009;11(7):947-57 – reference: 21129153 - J Cell Mol Med. 2011 Apr;15(4):718-46 – reference: 19226222 - Stem Cells Dev. 2009 Oct;18(8):1201-10 – reference: 8608588 - Cell. 1996 Feb 9;84(3):345-57 – reference: 12475952 - Mol Biol Cell. 2002 Dec;13(12):4279-95 – reference: 15754341 - J Cell Physiol. 2005 Jul;204(1):184-91 |
SSID | ssj0009713 |
Score | 2.392688 |
Snippet | The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1073 |
SubjectTerms | Abdomen Adipocytes Adipose tissue Antigens Biochemistry Biomedicine Biotechnology Body fat Bone marrow CD34 antigen CD36 antigen CD45 antigen Cell culture Cell differentiation Cell proliferation Chemistry Chemistry and Materials Science Collagen (type II) Collagenase Degenerative disc disease Endothelial cells Hypoxia Kinases Leukocytes Mesenchymal stem cells Method in Cell Science Microenvironments Monoclonal antibodies Osteoarthritis Oxygen tension Patients Pericytes Rheumatoid arthritis Stem cells Tissue engineering |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD5IRbQPouulY6tE8EkJJJlJsnkspWUR9MmFgg9DbsMu2JnF2ZbuvzdnLrtdq4LPOZPJ5EtOzpkk3wfwQXjFfeSGSqNSgiKZo9YES4OIxjr0mh2pz5evajYvPl_Ky-Eedzuedh-3JDtPfeeym-KY_RYU5ZZo8rsPJabuaRDPxemOaVf3msgm5UWGKTNuZf6piv3F6F6Eef-g5G-7pd0idPEMng7RIznt4X4OD2I9gUe9nuRmAo_PRvm2CRzeYRp8Ad9nm1Vzu7Qk1gvEuSUrlOupYj8AiK0DQUpndHykqUgn3UdsWK6aNtKQarmJgVzhVSW_2FylNqA1wd_-7UuYX5x_O5vRQVeBeqnMmuoiMhmSG1RViMYHHwKveJzmudYut8qmFE7b6Jn22qmp1ShmxPNKeMm95Sx_BQd1U8cjIExUTigTgkuBl3TeFMlDaOPF1NkUi1YZsLGDSz-QjqP2xY9yR5eMmJQJkxIxKUUGH7ePrHrGjX8Zn4yolcPka0thUtIkWcGLDN5vi1P3Y6fYOjbXbZniNpPLvDB5Bq97kLdvEwWSuHGWgd6Df2uAlNz7JfVy0VFz401fw2UGn8aBsmvWXz_izX9ZH8OTFLTJ_kjNCRysf17HtykwWrt33UT4BUDmBQ8 priority: 102 providerName: Springer Nature |
Title | Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells |
URI | https://link.springer.com/article/10.1007/s10616-014-9731-2 https://www.ncbi.nlm.nih.gov/pubmed/24798810 https://www.proquest.com/docview/2918250414 https://www.proquest.com/docview/1729353493 https://pubmed.ncbi.nlm.nih.gov/PMC4628915 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFL1iq5DgAcH4CozKSDyBLGIntusnVFC3CsSEEJWKeIgc21ErsSRbOkT_Pb5J2lIm9pIXO3Hsa1-f649zAF5xK5n1TFOhZQhQRJxTo52hjnttcvSaLanP5zM5naUf52LeL7g1_bHKjU9sHbWrLK6Rv-U6IGERpyx9V19QVI3C3dVeQuMABsEFj0LwNXg_OfvydUe7qzqBZB2CJB1LvdnX7C7PSYbRdEpRvony_ZnpGty8fmryn63TdkY6uQ_3eihJxp3tH8AtXx7B7U5ccn0Ed_-iGnwIP6bruvq9NMSXCzR0Q2rU6yl81wOIKR1BTmf0fKQqSKvdR4xb1lXjqQtf-eUdOce7SnaxPg_lYm6C6_7NI5idTL59mNJeWIFaIfWKqtTHwgU_KAvntXXWOVYwP0oSpfLESBNiOGW8jZVVuRwZhWpGLCm4FcwaFieP4bCsSv8USMyLnEvtXB6Ql8itToOLUNryUW4CGC0iiDeNmtmedRzFL35mO75ktEMW7JChHTIewevtK3VHuXFT5uONpbJ-9DXZrq9E8HKbHMYNNoopfXXVZAG46UQkqU4ieNIZdlsaT5HFjcURqD2TbzMgJ_d-SrlctNzceNVXMxHBm03n2P3Wfyvx7OZKPIc7AaaJ7hDNMRyuLq_8iwCFVvkQBuPT758mw77fD-HgdM7Cc8bHfwCd9wmC |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBwQFAeDRQwElxAFrETx-sDQjxabWm7QqiVKnEIju1oV2qTQLbA_il-I548dlkqeuvZjp14xuOZjOf7AJ5xkzDjmKJCJT5AEWFGtbKaWu6UztBqNqA-B-NkdBR_PBbHa_C7r4XBa5W9TWwMtS0N_iN_xZX3hEUYs_hN9Y0iaxRmV3sKjVYt9tz8pw_Z6te7H7x8n3O-s334fkQ7VgFqRKJmVMYuFNYbgSS3ThlrrGU5c8MokjKLdKJ9ACO1M6E0MkuGWiKVD4tybgQzmoWRH_cKrMeRD2UGsP5ue_zp8xLmV7aEzMoHZSpMVJ9HbYv1EobRe0yRLory1ZPwnHt7_pbmP6na5gTcuQU3O9eVvG117TasuWIDrrZklvMNuPEXtOEd-DKaV-WvqSaumKBi1aRCfqDctRpHdGEJYkijpSVlThquQKLttCprR60f5Yez5BRro8xkfurnxd4E8wz1XTi6lCW_B4OiLNwmkJDnGU-UtZn39ERmVOxNklSGDzPtnd88gLBf1NR0KOdItnGSLvGZUQ6pl0OKckh5AC8Wj1QtxMdFnbd6SaXdbq_TpW4G8HTR7PcpLoouXHlWp95RVJGIYhUFcL8V7GI2HiNqHAsDkCsiX3RADPDVlmI6abDAsbRYMRHAy145lq_13494cPFHPIFro8OD_XR_d7z3EK57F1G0F3i2YDD7fuYeeTdslj3udJ_A18vebn8AGuZDIQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hIqAcECzQphQwEidQ1NiJ7fWxKqyWV8WBlSpxiPyKdiWaRM0Wsf--njx2uxSQOMdxHH_2eEbj-T6A18wKaj1VMVciBCg8MbFWTseOeaUNWs2W1OfLqZjOso9n_KzXOW2G2-5DSrKraUCWpnJ5VLvi6Frhm6AYCWcxSi_FwQbfDv1SXNYzdrxh3ZWdPrIKMZJKhBrSmn_qYvtguuFt3rw0-VvmtD2QJg_hQe9JkuMO-kdwy5cjuNNpS65GcO9kkHIbwf1rrIOP4ft0VVe_Fpr4co6YN6RG6Z7Cd4uB6NIRpHdGI0iqgrQyfkS7RV01Pnahl5_ekXMsW7Lz1XkYA7YmmAJonsBs8v7byTTuNRZiy4VaxjLzCXfBJIrCeWWddY4W1I_TVEqTaqFDOCe1t4m00oixlihsRNOCWU6tpkn6FHbKqvT7QBJWGCaUcyY4YdxYlQVrIZVlY6ODX1pEkAwTnNuegBx1MH7kG-pkxCQPmOSISc4ieLN-pe7YN_7V-HBALe83YpMzFQIonmQ0i-DV-nGYfpwUXfrqssmDD6dSnmYqjWCvA3n9NZYhoRtNIpBb8K8bID339pNyMW9purHqV1EewdthoWyG9defOPiv1i_h7td3k_zzh9NPz2A3-HK8u2lzCDvLi0v_PPhLS_Oi3RNXsYIMPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypoxia+enhances+proliferation+and+stemness+of+human+adipose-derived+mesenchymal+stem+cells&rft.jtitle=Cytotechnology+%28Dordrecht%29&rft.au=Fotia%2C+Caterina&rft.au=Massa%2C+Annamaria&rft.au=Boriani%2C+Filippo&rft.au=Baldini%2C+Nicola&rft.date=2015-12-01&rft.issn=0920-9069&rft.volume=67&rft.issue=6&rft.spage=1073&rft_id=info:doi/10.1007%2Fs10616-014-9731-2&rft_id=info%3Apmid%2F24798810&rft.externalDocID=24798810 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-9069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-9069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-9069&client=summon |