Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma

Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarco...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanobiotechnology Vol. 19; no. 1; pp. 79 - 19
Main Authors Zeng, Wei-Nan, Yu, Qiu-Ping, Wang, Duan, Liu, Jun-Li, Yang, Qing-Jun, Zhou, Zong-Ke, Zeng, Yi-Ping
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 19.03.2021
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors. Based on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells. The mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma.
AbstractList Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors. Based on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells. The mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma.
Abstract Background Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors. Methods and results Based on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells. Conclusion The mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma.
Background Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors. Methods and results Based on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells. Conclusion The mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma. Keywords: Synergistic phototherapy, Mitochondria-targeting, Drug-resistant osteosarcoma, Graphene oxide, Single-laser activation
Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors.BACKGROUNDOsteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors.Based on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells.METHODS AND RESULTSBased on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells.The mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma.CONCLUSIONThe mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma.
Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors. Based on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells. The mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma.
ArticleNumber 79
Audience Academic
Author Liu, Jun-Li
Zeng, Wei-Nan
Yang, Qing-Jun
Zhou, Zong-Ke
Yu, Qiu-Ping
Wang, Duan
Zeng, Yi-Ping
Author_xml – sequence: 1
  givenname: Wei-Nan
  surname: Zeng
  fullname: Zeng, Wei-Nan
– sequence: 2
  givenname: Qiu-Ping
  surname: Yu
  fullname: Yu, Qiu-Ping
– sequence: 3
  givenname: Duan
  surname: Wang
  fullname: Wang, Duan
– sequence: 4
  givenname: Jun-Li
  surname: Liu
  fullname: Liu, Jun-Li
– sequence: 5
  givenname: Qing-Jun
  surname: Yang
  fullname: Yang, Qing-Jun
– sequence: 6
  givenname: Zong-Ke
  surname: Zhou
  fullname: Zhou, Zong-Ke
– sequence: 7
  givenname: Yi-Ping
  orcidid: 0000-0001-7017-7352
  surname: Zeng
  fullname: Zeng, Yi-Ping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33740998$$D View this record in MEDLINE/PubMed
BookMark eNp9kttqFTEUhgep2IO-gBcy4I1eTE0yyRxuhFI8FCqCh-uwJrMyO2V2sk0ypX0HH9q13a10i0gICcn3_6y1-I-LAx88FsVzzk4575o3iYte8YoJ2qyredU8Ko64bNuq5kodPLgfFscpXTEmhBTySXFY161kfd8dFT8_uRzMKvgxOqgyxAmz81M5Rdis0GMZbtyIpQcfTFhvQnIZU2lDLO28hIjJoDdYujVMJKumheixTLce4-RSdqbcrEIOeYVkeFsGW45xmSoS0i_4XIaUMSSI5A5Pi8cW5oTP7s6T4vv7d9_OP1aXnz9cnJ9dVkY1fa6azopm4OPQAECrwHTtwGHo2r6WDWtRoujtOPaKOOyVHYRURrHeKEN9N319UlzsfMcAV3oTqfp4qwM4_fshxElDpNpn1IxGLGouwQKTSg5glRSDMoBoh67ber3deW2WYY0jjSNHmPdM93-8W-kpXOu271gjGRm8ujOI4ceCKeu1o6nOM3gMS9JCsVrKrmeC0Jc7dAIqzXkbyNFscX3WqEbyTrWSqNN_ULRGXDtDEbKO3vcEr_cExGS8yRMsKemLr1_22RcP2_3T532iCOh2gIkhpYhWG5chu7Dt3s2aM70Nr96Fl-ZLexte3ZBU_CW9d_-P6BeTrfS_
CitedBy_id crossref_primary_10_1186_s12951_023_01826_1
crossref_primary_10_1007_s12274_023_6296_4
crossref_primary_10_2147_IJN_S423737
crossref_primary_10_3390_ijms222111354
crossref_primary_10_1080_09205063_2023_2265171
crossref_primary_10_1002_VIW_20240115
crossref_primary_10_1016_j_mtcomm_2021_102830
crossref_primary_10_3892_ijmm_2022_5182
crossref_primary_10_3390_molecules26113085
crossref_primary_10_1021_acsami_1c19599
crossref_primary_10_3390_nano11113061
crossref_primary_10_3390_ijms25084139
crossref_primary_10_1038_s41392_024_01889_y
crossref_primary_10_1021_acsanm_3c00953
crossref_primary_10_1016_j_addr_2022_114621
crossref_primary_10_1186_s40824_022_00313_2
crossref_primary_10_1007_s11426_024_2101_1
crossref_primary_10_1016_j_jddst_2022_104112
crossref_primary_10_3389_fbioe_2021_771153
crossref_primary_10_3389_fimmu_2023_1133238
crossref_primary_10_2174_0109298673251648231106112354
crossref_primary_10_1177_15330338231186388
crossref_primary_10_3389_fchem_2022_1035144
crossref_primary_10_1002_mco2_187
crossref_primary_10_3390_antiox11112137
crossref_primary_10_1016_j_trac_2024_118030
crossref_primary_10_1016_j_mtbio_2023_100834
crossref_primary_10_1016_j_pdpdt_2022_103093
crossref_primary_10_1021_acsami_1c19209
crossref_primary_10_1016_j_ijpharm_2021_120651
crossref_primary_10_1016_j_jpha_2025_101270
crossref_primary_10_1016_j_ctarc_2025_100911
crossref_primary_10_1038_s41419_022_05401_8
crossref_primary_10_1016_j_colsurfb_2023_113430
crossref_primary_10_1016_j_ejpb_2024_114597
crossref_primary_10_1016_j_microc_2024_112479
crossref_primary_10_1186_s12943_024_02161_1
crossref_primary_10_1016_j_ijpharm_2024_124633
crossref_primary_10_2174_0118715303282573240112104035
crossref_primary_10_3390_nano14020186
crossref_primary_10_1016_j_jhazmat_2022_130298
crossref_primary_10_3390_nano14020188
crossref_primary_10_1016_j_gendis_2022_12_021
crossref_primary_10_1186_s40824_023_00453_z
crossref_primary_10_1021_acs_molpharmaceut_2c00472
crossref_primary_10_3390_ma14154180
crossref_primary_10_3390_pharmaceutics15061583
crossref_primary_10_1186_s12951_024_02585_3
Cites_doi 10.1021/nn5062386
10.1016/j.cmet.2015.11.014
10.1021/mp300472y
10.1016/S0950-351X(05)80067-9
10.1016/j.biomaterials.2014.02.018
10.1021/am507798d
10.1002/smll.201601094
10.1021/nn1006368
10.1039/C6TB00108D
10.1021/acsami.6b06522
10.1016/j.toxlet.2007.02.013
10.1002/smll.201202538
10.1002/adma.201704196
10.1007/s11864-008-0057-1
10.1021/acsbiomaterials.7b00480
10.1038/srep43506
10.1016/j.tiv.2013.01.016
10.2147/IJN.S150017
10.1016/j.biomaterials.2019.05.030
10.3322/caac.20114
10.1016/j.ab.2017.07.009
10.1002/adma.201707567
10.1016/j.tcb.2019.02.004
10.1038/nrc2499
10.1002/adma.201204623
10.1039/C5RA07535A
10.1517/14728214.2015.1051965
10.1007/s10689-014-9757-9
10.1002/advs.201801122
10.1021/acsami.6b05271
10.1002/ange.201307358
10.1016/j.biomaterials.2016.11.056
10.1016/j.biomaterials.2011.07.071
10.1016/j.biomaterials.2010.05.007
10.1021/acs.accounts.8b00307
10.2217/fon-2016-0519
10.1016/j.jconrel.2015.10.023
10.1021/acsami.8b03185
10.1021/acsami.7b01452
10.1002/advs.201800049
10.1016/j.biomaterials.2013.06.007
10.1002/ange.201901699
10.1038/s41580-019-0173-8
10.1002/adma.201801216
10.1021/nn1024303
10.1038/s41586-019-1715-0
10.1021/am505308f
10.1021/acs.nanolett.8b00040
10.1002/adma.201905825
10.1021/acsami.6b05383
10.1016/j.biomaterials.2019.119569
10.1039/C9CS00309F
ContentType Journal Article
Copyright COPYRIGHT 2021 BioMed Central Ltd.
The Author(s) 2021
Copyright_xml – notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: The Author(s) 2021
DBID AAYXX
CITATION
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/s12951-021-00831-6
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1477-3155
EndPage 19
ExternalDocumentID oai_doaj_org_article_02952314afa0454baf542b5caeefb889
PMC7980640
A656418574
33740998
10_1186_s12951_021_00831_6
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 81873987
– fundername: Natural Science Foundation of Chongqing
  grantid: cstc2019jcyj-msxmX0248
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M653353
– fundername: National Natural Science Foundation of China
  grantid: 31800811
– fundername: ;
  grantid: 2019M653353
– fundername: ;
  grantid: 31800811; 81873987
– fundername: ;
  grantid: cstc2019jcyj-msxmX0248
GroupedDBID ---
0R~
29L
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADDVE
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EBLON
EBS
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
I-F
IAO
IHR
INH
INR
ISR
ITC
ITG
ITH
KB.
KQ8
LK8
M1P
M48
M7P
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
RVI
SCM
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
-A0
3V.
ACRMQ
ADINQ
C24
FRP
NPM
PMFND
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c569t-68f26b1db6aaa75ac87b1ab87934607e4e29fdd958f2e95fb245c509c5c374693
IEDL.DBID M48
ISSN 1477-3155
IngestDate Wed Aug 27 01:21:50 EDT 2025
Thu Aug 21 14:18:08 EDT 2025
Fri Jul 11 01:57:50 EDT 2025
Tue Jun 17 21:45:38 EDT 2025
Tue Jun 10 20:33:18 EDT 2025
Fri Jun 27 03:48:48 EDT 2025
Wed Feb 19 02:28:43 EST 2025
Thu Apr 24 23:07:04 EDT 2025
Tue Jul 01 01:26:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Drug-resistant osteosarcoma
Graphene oxide
Synergistic phototherapy
Single-laser activation
Mitochondria-targeting
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-68f26b1db6aaa75ac87b1ab87934607e4e29fdd958f2e95fb245c509c5c374693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7017-7352
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12951-021-00831-6
PMID 33740998
PQID 2503448902
PQPubID 23479
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_02952314afa0454baf542b5caeefb889
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7980640
proquest_miscellaneous_2503448902
gale_infotracmisc_A656418574
gale_infotracacademiconefile_A656418574
gale_incontextgauss_ISR_A656418574
pubmed_primary_33740998
crossref_citationtrail_10_1186_s12951_021_00831_6
crossref_primary_10_1186_s12951_021_00831_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-19
PublicationDateYYYYMMDD 2021-03-19
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of nanobiotechnology
PublicationTitleAlternate J Nanobiotechnology
PublicationYear 2021
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References G Yang (831_CR18) 2018; 18
K Yang (831_CR34) 2011; 5
R Zhao (831_CR35) 2018; 10
A Logan (831_CR36) 2016; 23
X Zhang (831_CR21) 2019; 6
Z Xu (831_CR41) 2015; 7
A Aranda (831_CR47) 2013; 27
T Qi (831_CR13) 2019; 213
K Han (831_CR51) 2016; 8
S Ye (831_CR46) 2018; 30
HW Yang (831_CR5) 2013; 34
YP Zeng (831_CR30) 2017; 7
C Feng (831_CR39) 2018; 51
P Yuan (831_CR11) 2019; 131
DC Marcano (831_CR37) 2010; 4
CM Hattinger (831_CR4) 2015; 20
SL Luo (831_CR31) 2016; 8
R Guo (831_CR19) 2016; 12
GY Pan (831_CR20) 2017; 3
Y Li (831_CR42) 2016; 8
SS Bielack (831_CR2) 2008; 9
P Agostinis (831_CR17) 2011; 61
Y Que (831_CR43) 2017; 9
FJ Bock (831_CR8) 2020; 21
P Lu (831_CR10) 2016; 240
S Yan (831_CR14) 2019; 31
CM Hattinger (831_CR3) 2017; 13
M Momcilovic (831_CR9) 2019; 575
M Yu (831_CR49) 2007; 170
L Zhang (831_CR16) 2018; 5
YC Wong (831_CR7) 2019; 29
HS Sherratt (831_CR52) 1990; 4
W Zhang (831_CR33) 2011; 32
F Haghiralsadat (831_CR1) 2018; 13
M Guo (831_CR15) 2014; 35
JK Tee (831_CR45) 2019; 48
S Wang (831_CR23) 2013; 25
Z Xu (831_CR40) 2014; 6
BB Zhang (831_CR48) 2015; 14
S Chen (831_CR12) 2017; 117
LD Zorova (831_CR50) 2018; 552
C Zhang (831_CR38) 2010; 31
JE Visvader (831_CR6) 2008; 8
YP Zeng (831_CR28) 2016; 4
Z Sheng (831_CR22) 2014; 8
W Shan (831_CR26) 2018; 30
E Portnoy (831_CR27) 2012; 9
X Tan (831_CR25) 2017; 29
P Kalluru (831_CR24) 2013; 125
YP Zeng (831_CR29) 2015; 5
Z Wang (831_CR44) 2020; 228
L Feng (831_CR32) 2013; 9
References_xml – volume: 8
  start-page: 12310
  issue: 12
  year: 2014
  ident: 831_CR22
  publication-title: ACS Nano
  doi: 10.1021/nn5062386
– volume: 23
  start-page: 379
  issue: 2
  year: 2016
  ident: 831_CR36
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2015.11.014
– volume: 9
  start-page: 3595
  issue: 12
  year: 2012
  ident: 831_CR27
  publication-title: Mol Pharm
  doi: 10.1021/mp300472y
– volume: 4
  start-page: 523
  issue: 3
  year: 1990
  ident: 831_CR52
  publication-title: Baillieres Clin Endocrinol Metab
  doi: 10.1016/S0950-351X(05)80067-9
– volume: 35
  start-page: 4656
  issue: 16
  year: 2014
  ident: 831_CR15
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.02.018
– volume: 7
  start-page: 1355
  issue: 2
  year: 2015
  ident: 831_CR41
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am507798d
– volume: 12
  start-page: 4541
  issue: 33
  year: 2016
  ident: 831_CR19
  publication-title: Small
  doi: 10.1002/smll.201601094
– volume: 4
  start-page: 4806
  issue: 8
  year: 2010
  ident: 831_CR37
  publication-title: ACS Nano
  doi: 10.1021/nn1006368
– volume: 4
  start-page: 2190
  issue: 12
  year: 2016
  ident: 831_CR28
  publication-title: J Mater Chem B
  doi: 10.1039/C6TB00108D
– volume: 8
  start-page: 25060
  issue: 38
  year: 2016
  ident: 831_CR51
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b06522
– volume: 170
  start-page: 83
  issue: 1
  year: 2007
  ident: 831_CR49
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2007.02.013
– volume: 9
  start-page: 1989
  issue: 11
  year: 2013
  ident: 831_CR32
  publication-title: Small
  doi: 10.1002/smll.201202538
– volume: 29
  start-page: 1704196
  issue: 43
  year: 2017
  ident: 831_CR25
  publication-title: Adv Mater
  doi: 10.1002/adma.201704196
– volume: 9
  start-page: 67
  year: 2008
  ident: 831_CR2
  publication-title: Curr Treat Options Oncol
  doi: 10.1007/s11864-008-0057-1
– volume: 3
  start-page: 3596
  issue: 12
  year: 2017
  ident: 831_CR20
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.7b00480
– volume: 7
  start-page: 43506
  year: 2017
  ident: 831_CR30
  publication-title: Sci Rep
  doi: 10.1038/srep43506
– volume: 27
  start-page: 954
  issue: 2
  year: 2013
  ident: 831_CR47
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2013.01.016
– volume: 13
  start-page: 3853
  year: 2018
  ident: 831_CR1
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S150017
– volume: 213
  start-page: 119219
  year: 2019
  ident: 831_CR13
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.05.030
– volume: 61
  start-page: 250
  issue: 4
  year: 2011
  ident: 831_CR17
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.20114
– volume: 552
  start-page: 50
  issue: 1
  year: 2018
  ident: 831_CR50
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2017.07.009
– volume: 30
  start-page: e1707567
  issue: 28
  year: 2018
  ident: 831_CR26
  publication-title: Adv Mater
  doi: 10.1002/adma.201707567
– volume: 29
  start-page: 500
  issue: 6
  year: 2019
  ident: 831_CR7
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2019.02.004
– volume: 8
  start-page: 755
  year: 2008
  ident: 831_CR6
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2499
– volume: 25
  start-page: 3055
  issue: 22
  year: 2013
  ident: 831_CR23
  publication-title: Adv Mater
  doi: 10.1002/adma.201204623
– volume: 5
  start-page: 57725
  issue: 71
  year: 2015
  ident: 831_CR29
  publication-title: RSC Adv
  doi: 10.1039/C5RA07535A
– volume: 20
  start-page: 495
  issue: 3
  year: 2015
  ident: 831_CR4
  publication-title: Expert Opin Emerg Drugs
  doi: 10.1517/14728214.2015.1051965
– volume: 14
  start-page: 19
  year: 2015
  ident: 831_CR48
  publication-title: Fam Cancer
  doi: 10.1007/s10689-014-9757-9
– volume: 6
  start-page: 1801122
  issue: 3
  year: 2019
  ident: 831_CR21
  publication-title: Adv Sci
  doi: 10.1002/advs.201801122
– volume: 8
  start-page: 17352
  issue: 27
  year: 2016
  ident: 831_CR42
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b05271
– volume: 125
  start-page: 12558
  issue: 47
  year: 2013
  ident: 831_CR24
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/ange.201307358
– volume: 117
  start-page: 92
  year: 2017
  ident: 831_CR12
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.11.056
– volume: 32
  start-page: 8555
  issue: 33
  year: 2011
  ident: 831_CR33
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.07.071
– volume: 31
  start-page: 6612
  issue: 25
  year: 2010
  ident: 831_CR38
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.05.007
– volume: 51
  start-page: 2314
  issue: 9
  year: 2018
  ident: 831_CR39
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.8b00307
– volume: 13
  start-page: 673
  year: 2017
  ident: 831_CR3
  publication-title: Future Oncol
  doi: 10.2217/fon-2016-0519
– volume: 240
  start-page: 38
  year: 2016
  ident: 831_CR10
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2015.10.023
– volume: 10
  start-page: 17617
  issue: 21
  year: 2018
  ident: 831_CR35
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b03185
– volume: 9
  start-page: 14647
  issue: 17
  year: 2017
  ident: 831_CR43
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b01452
– volume: 5
  start-page: 1800049
  issue: 8
  year: 2018
  ident: 831_CR16
  publication-title: Adv Sci
  doi: 10.1002/advs.201800049
– volume: 34
  start-page: 7204
  issue: 29
  year: 2013
  ident: 831_CR5
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.06.007
– volume: 131
  start-page: 7739
  issue: 23
  year: 2019
  ident: 831_CR11
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/ange.201901699
– volume: 21
  start-page: 85
  year: 2020
  ident: 831_CR8
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-019-0173-8
– volume: 30
  start-page: e1801216
  issue: 29
  year: 2018
  ident: 831_CR46
  publication-title: Adv Mater
  doi: 10.1002/adma.201801216
– volume: 5
  start-page: 516
  issue: 1
  year: 2011
  ident: 831_CR34
  publication-title: ACS Nano
  doi: 10.1021/nn1024303
– volume: 575
  start-page: 380
  year: 2019
  ident: 831_CR9
  publication-title: Nature
  doi: 10.1038/s41586-019-1715-0
– volume: 6
  start-page: 17268
  issue: 19
  year: 2014
  ident: 831_CR40
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am505308f
– volume: 18
  start-page: 2475
  issue: 4
  year: 2018
  ident: 831_CR18
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.8b00040
– volume: 31
  start-page: e1905825
  issue: 46
  year: 2019
  ident: 831_CR14
  publication-title: Adv Mater
  doi: 10.1002/adma.201905825
– volume: 8
  start-page: 17176
  issue: 27
  year: 2016
  ident: 831_CR31
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b05383
– volume: 228
  start-page: 119569
  year: 2020
  ident: 831_CR44
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119569
– volume: 48
  start-page: 5381
  year: 2019
  ident: 831_CR45
  publication-title: Chem Soc Rev
  doi: 10.1039/C9CS00309F
SSID ssj0022424
Score 2.469876
Snippet Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in...
Background Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results...
Abstract Background Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 79
SubjectTerms Adenosine triphosphate
Care and treatment
Complications and side effects
Drug-resistant osteosarcoma
Fluorescence
Graphene
Graphene oxide
Health aspects
Mitochondria-targeting
Osteosarcoma
Patient outcomes
Phototherapy
Single-laser activation
Synergistic phototherapy
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_ZQ-q7TpKil0EMRWT8ky8e0NKSF9NA2kJvQc7OQyGFtQ_Mf-qMzI3uXNYX20oMvqzFYoxnNN-zMN4S8C95LD2GCeSkdqxyXzEi7YLkBsFF7V5Sp5P_smzg9r75e8IudUV9YEzbSA4-KO1oUDeRKeaWDRrY4owOvCsOt9j4YKVPrHsS8TTI1pVrY9LBpkZHiqIOoxiFtLuDB0VpMzMJQYuv_807eCUrzgsmdCHTyiDycoCM9Hj_5Mbnn4xPyYIdQ8Cn5fQYOChdadGBXbKzyhgWaaKnhVqPtr5XzNOrYYi05Fmz5jgJupeFqaNeJ2sl6urpOs4vYcgBpR7tbbBBMjM705rLtp6atW9oG6tbDksGLCENjT7FlpO3Aedpr_Yycn3z--emUTfMWmOWi6ZmQoRAmd0ZorWuuraxNro0EF67EovaVL5rgXMNBzjc8mKLiFgCH5basIc0un5O92Eb_klDA7dwtuC8dZDzaceNKUZnc1411gQubkXyjfmUnMnKciXGlUlIihRqPTMGRqXRkSmTkw_adm5GK46_SH_FUt5JIo51-AONSk3GpfxlXRt6iTSgkyohYibPUQ9epLz--q2MAwkj8U1cZeT8JhRb2YPXU2ACaQG6tmeTBTBI82c6W32xMT-ESlr9F3w6dApxaQh7dLIqMvBhNcbuxEnQPMF9mpJ4Z6Wzn85W4ukxE4nUj8Y_c_f-hqlfkfpH8q2R5c0D2-vXgDwGv9eZ1cs07ueVBMA
  priority: 102
  providerName: Directory of Open Access Journals
Title Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma
URI https://www.ncbi.nlm.nih.gov/pubmed/33740998
https://www.proquest.com/docview/2503448902
https://pubmed.ncbi.nlm.nih.gov/PMC7980640
https://doaj.org/article/02952314afa0454baf542b5caeefb889
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF71cYED4o2hRAtC4oAW4sc-fECoRQ0FKRUqRMpttS-nkVK72LHU_Ad-NLMbJ4pFhcQhOWTHkXZ2Ps-MPfMNQm8K54QDN0GcEJZklgqihRmSWEOwwZ1N0lDyPz5nZ5Ps25RO99Bm3FGnwObW1M7Pk5rUi_c3v1afAPAfA-AF-9CAz6KQFCfw8YOzCNtHh-CZuJ9oMM62bxUS3woRuo24fzZH6aaJ5tb_6DmqwOf_9117x231Syp3fNToPrrXBZf4eG0ND9CeKx-iuzuUg4_Q7zFAGHZdWrA8sq4DhwUciKvhvoerm7l1uFRl5avNfUmXazBEtrhYtFUdyJ-Mw_OrMN2IzFqQtrhZ-RbCwPmMry-rZdfWtcJVgW3dzghc6APVcol9U0nVALyqK_UYTUanPz-fkW4iAzGU5UvCRJEwHVvNlFKcKiO4jpUWAPKMDbnLXJIX1uYU5FxOC51k1EBIYqhJOSTi6RN0UFale4YwRPbUDqlLLeREylJtU5bp2PHc2IIyE6F4o35pOrpyPzVjIUPaIphcH5mEI5PhyCSL0LvtNddrso5_Sp_4U91KeqLt8ENVz2SHW5DPIVWPM1UoT1aoVUGzRFOjnCu0EHmEXnubkJ5Ko_S1OjPVNo38-uNCHkOo7KmBeBaht51QUcEejOpaH0ATnn2rJ3nUkwSsm97yq43pSb_kC-RKV7WNhEg2hUw7HyYRero2xe3GUtA9JAIiQrxnpL2d91fK-WWgGue58K96n_-XYl-gO0kAUkri_AgdLOvWvYTQbakHaJ9POXyL0ZcBOjw5Pf9-MQiPQQYBqX8ALLtFbQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondria-targeting+graphene+oxide+nanocomposites+for+fluorescence+imaging-guided+synergistic+phototherapy+of+drug-resistant+osteosarcoma&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Zeng%2C+Wei-Nan&rft.au=Yu%2C+Qiu-Ping&rft.au=Wang%2C+Duan&rft.au=Liu%2C+Jun-Li&rft.date=2021-03-19&rft.issn=1477-3155&rft.eissn=1477-3155&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12951-021-00831-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12951_021_00831_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon