Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma
Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarco...
Saved in:
Published in | Journal of nanobiotechnology Vol. 19; no. 1; pp. 79 - 19 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
19.03.2021
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors.
Based on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells.
The mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma. |
---|---|
AbstractList | Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors. Based on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells. The mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma. Abstract Background Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors. Methods and results Based on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells. Conclusion The mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma. Background Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors. Methods and results Based on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells. Conclusion The mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma. Keywords: Synergistic phototherapy, Mitochondria-targeting, Drug-resistant osteosarcoma, Graphene oxide, Single-laser activation Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors.BACKGROUNDOsteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors.Based on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells.METHODS AND RESULTSBased on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells.The mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma.CONCLUSIONThe mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma. Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in chemotherapy failure. Therefore, new treatments aimed at novel therapeutic targets are urgently needed for the treatment of drug-resistant osteosarcoma. Mitochondria-targeted phototherapy, i.e., synergistic photodynamic/photothermal therapy, has emerged as a highly promising strategy for treating drug-resistant tumors. This study proposed a new nano-drug delivery system based on near-infrared imaging and multifunctional graphene, which can target mitochondria and show synergistic phototherapy, with preferential accumulation in tumors. Based on our previous study, (4-carboxybutyl) triphenyl phosphonium bromide (TPP), a mitochondria-targeting ligand, was conjugated to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular internalization. Thereafter, exposure to a single dose of near-infrared irradiation enabled synergistic photodynamic and photothermal therapy, which simultaneously inhibited adenosine triphosphate synthesis and mitochondrial function. Induction of intrinsic apoptosis assisted in surmounting drug resistance and caused tumor cell death. After fluorescence imaging-guided synergistic phototherapy, the mitochondria-targeting, multifunctional graphene-based, drug-delivery system showed highly selective anticancer efficiency in vitro and in vivo, resulting in marked inhibition of tumor progression without noticeable toxicity in mice bearing doxorubicin-resistant MG63 tumor cells. The mitochondria-targeting TPP-PPG@ICG nanocomposite constitutes a new class of nanomedicine for fluorescence imaging-guided synergistic phototherapy and shows promise for treating drug-resistant osteosarcoma. |
ArticleNumber | 79 |
Audience | Academic |
Author | Liu, Jun-Li Zeng, Wei-Nan Yang, Qing-Jun Zhou, Zong-Ke Yu, Qiu-Ping Wang, Duan Zeng, Yi-Ping |
Author_xml | – sequence: 1 givenname: Wei-Nan surname: Zeng fullname: Zeng, Wei-Nan – sequence: 2 givenname: Qiu-Ping surname: Yu fullname: Yu, Qiu-Ping – sequence: 3 givenname: Duan surname: Wang fullname: Wang, Duan – sequence: 4 givenname: Jun-Li surname: Liu fullname: Liu, Jun-Li – sequence: 5 givenname: Qing-Jun surname: Yang fullname: Yang, Qing-Jun – sequence: 6 givenname: Zong-Ke surname: Zhou fullname: Zhou, Zong-Ke – sequence: 7 givenname: Yi-Ping orcidid: 0000-0001-7017-7352 surname: Zeng fullname: Zeng, Yi-Ping |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33740998$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kttqFTEUhgep2IO-gBcy4I1eTE0yyRxuhFI8FCqCh-uwJrMyO2V2sk0ypX0HH9q13a10i0gICcn3_6y1-I-LAx88FsVzzk4575o3iYte8YoJ2qyredU8Ko64bNuq5kodPLgfFscpXTEmhBTySXFY161kfd8dFT8_uRzMKvgxOqgyxAmz81M5Rdis0GMZbtyIpQcfTFhvQnIZU2lDLO28hIjJoDdYujVMJKumheixTLce4-RSdqbcrEIOeYVkeFsGW45xmSoS0i_4XIaUMSSI5A5Pi8cW5oTP7s6T4vv7d9_OP1aXnz9cnJ9dVkY1fa6azopm4OPQAECrwHTtwGHo2r6WDWtRoujtOPaKOOyVHYRURrHeKEN9N319UlzsfMcAV3oTqfp4qwM4_fshxElDpNpn1IxGLGouwQKTSg5glRSDMoBoh67ber3deW2WYY0jjSNHmPdM93-8W-kpXOu271gjGRm8ujOI4ceCKeu1o6nOM3gMS9JCsVrKrmeC0Jc7dAIqzXkbyNFscX3WqEbyTrWSqNN_ULRGXDtDEbKO3vcEr_cExGS8yRMsKemLr1_22RcP2_3T532iCOh2gIkhpYhWG5chu7Dt3s2aM70Nr96Fl-ZLexte3ZBU_CW9d_-P6BeTrfS_ |
CitedBy_id | crossref_primary_10_1186_s12951_023_01826_1 crossref_primary_10_1007_s12274_023_6296_4 crossref_primary_10_2147_IJN_S423737 crossref_primary_10_3390_ijms222111354 crossref_primary_10_1080_09205063_2023_2265171 crossref_primary_10_1002_VIW_20240115 crossref_primary_10_1016_j_mtcomm_2021_102830 crossref_primary_10_3892_ijmm_2022_5182 crossref_primary_10_3390_molecules26113085 crossref_primary_10_1021_acsami_1c19599 crossref_primary_10_3390_nano11113061 crossref_primary_10_3390_ijms25084139 crossref_primary_10_1038_s41392_024_01889_y crossref_primary_10_1021_acsanm_3c00953 crossref_primary_10_1016_j_addr_2022_114621 crossref_primary_10_1186_s40824_022_00313_2 crossref_primary_10_1007_s11426_024_2101_1 crossref_primary_10_1016_j_jddst_2022_104112 crossref_primary_10_3389_fbioe_2021_771153 crossref_primary_10_3389_fimmu_2023_1133238 crossref_primary_10_2174_0109298673251648231106112354 crossref_primary_10_1177_15330338231186388 crossref_primary_10_3389_fchem_2022_1035144 crossref_primary_10_1002_mco2_187 crossref_primary_10_3390_antiox11112137 crossref_primary_10_1016_j_trac_2024_118030 crossref_primary_10_1016_j_mtbio_2023_100834 crossref_primary_10_1016_j_pdpdt_2022_103093 crossref_primary_10_1021_acsami_1c19209 crossref_primary_10_1016_j_ijpharm_2021_120651 crossref_primary_10_1016_j_jpha_2025_101270 crossref_primary_10_1016_j_ctarc_2025_100911 crossref_primary_10_1038_s41419_022_05401_8 crossref_primary_10_1016_j_colsurfb_2023_113430 crossref_primary_10_1016_j_ejpb_2024_114597 crossref_primary_10_1016_j_microc_2024_112479 crossref_primary_10_1186_s12943_024_02161_1 crossref_primary_10_1016_j_ijpharm_2024_124633 crossref_primary_10_2174_0118715303282573240112104035 crossref_primary_10_3390_nano14020186 crossref_primary_10_1016_j_jhazmat_2022_130298 crossref_primary_10_3390_nano14020188 crossref_primary_10_1016_j_gendis_2022_12_021 crossref_primary_10_1186_s40824_023_00453_z crossref_primary_10_1021_acs_molpharmaceut_2c00472 crossref_primary_10_3390_ma14154180 crossref_primary_10_3390_pharmaceutics15061583 crossref_primary_10_1186_s12951_024_02585_3 |
Cites_doi | 10.1021/nn5062386 10.1016/j.cmet.2015.11.014 10.1021/mp300472y 10.1016/S0950-351X(05)80067-9 10.1016/j.biomaterials.2014.02.018 10.1021/am507798d 10.1002/smll.201601094 10.1021/nn1006368 10.1039/C6TB00108D 10.1021/acsami.6b06522 10.1016/j.toxlet.2007.02.013 10.1002/smll.201202538 10.1002/adma.201704196 10.1007/s11864-008-0057-1 10.1021/acsbiomaterials.7b00480 10.1038/srep43506 10.1016/j.tiv.2013.01.016 10.2147/IJN.S150017 10.1016/j.biomaterials.2019.05.030 10.3322/caac.20114 10.1016/j.ab.2017.07.009 10.1002/adma.201707567 10.1016/j.tcb.2019.02.004 10.1038/nrc2499 10.1002/adma.201204623 10.1039/C5RA07535A 10.1517/14728214.2015.1051965 10.1007/s10689-014-9757-9 10.1002/advs.201801122 10.1021/acsami.6b05271 10.1002/ange.201307358 10.1016/j.biomaterials.2016.11.056 10.1016/j.biomaterials.2011.07.071 10.1016/j.biomaterials.2010.05.007 10.1021/acs.accounts.8b00307 10.2217/fon-2016-0519 10.1016/j.jconrel.2015.10.023 10.1021/acsami.8b03185 10.1021/acsami.7b01452 10.1002/advs.201800049 10.1016/j.biomaterials.2013.06.007 10.1002/ange.201901699 10.1038/s41580-019-0173-8 10.1002/adma.201801216 10.1021/nn1024303 10.1038/s41586-019-1715-0 10.1021/am505308f 10.1021/acs.nanolett.8b00040 10.1002/adma.201905825 10.1021/acsami.6b05383 10.1016/j.biomaterials.2019.119569 10.1039/C9CS00309F |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 BioMed Central Ltd. The Author(s) 2021 |
Copyright_xml | – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: The Author(s) 2021 |
DBID | AAYXX CITATION NPM ISR 7X8 5PM DOA |
DOI | 10.1186/s12951-021-00831-6 |
DatabaseName | CrossRef PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1477-3155 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_02952314afa0454baf542b5caeefb889 PMC7980640 A656418574 33740998 10_1186_s12951_021_00831_6 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 81873987 – fundername: Natural Science Foundation of Chongqing grantid: cstc2019jcyj-msxmX0248 – fundername: China Postdoctoral Science Foundation grantid: 2019M653353 – fundername: National Natural Science Foundation of China grantid: 31800811 – fundername: ; grantid: 2019M653353 – fundername: ; grantid: 31800811; 81873987 – fundername: ; grantid: cstc2019jcyj-msxmX0248 |
GroupedDBID | --- 0R~ 29L 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADDVE ADMLS ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EBLON EBS EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE I-F IAO IHR INH INR ISR ITC ITG ITH KB. KQ8 LK8 M1P M48 M7P MM. M~E O5R O5S OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV RVI SCM SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB ~8M -A0 3V. ACRMQ ADINQ C24 FRP NPM PMFND 7X8 PPXIY PQGLB 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c569t-68f26b1db6aaa75ac87b1ab87934607e4e29fdd958f2e95fb245c509c5c374693 |
IEDL.DBID | M48 |
ISSN | 1477-3155 |
IngestDate | Wed Aug 27 01:21:50 EDT 2025 Thu Aug 21 14:18:08 EDT 2025 Fri Jul 11 01:57:50 EDT 2025 Tue Jun 17 21:45:38 EDT 2025 Tue Jun 10 20:33:18 EDT 2025 Fri Jun 27 03:48:48 EDT 2025 Wed Feb 19 02:28:43 EST 2025 Thu Apr 24 23:07:04 EDT 2025 Tue Jul 01 01:26:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Drug-resistant osteosarcoma Graphene oxide Synergistic phototherapy Single-laser activation Mitochondria-targeting |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c569t-68f26b1db6aaa75ac87b1ab87934607e4e29fdd958f2e95fb245c509c5c374693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7017-7352 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12951-021-00831-6 |
PMID | 33740998 |
PQID | 2503448902 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_02952314afa0454baf542b5caeefb889 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7980640 proquest_miscellaneous_2503448902 gale_infotracmisc_A656418574 gale_infotracacademiconefile_A656418574 gale_incontextgauss_ISR_A656418574 pubmed_primary_33740998 crossref_citationtrail_10_1186_s12951_021_00831_6 crossref_primary_10_1186_s12951_021_00831_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-19 |
PublicationDateYYYYMMDD | 2021-03-19 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of nanobiotechnology |
PublicationTitleAlternate | J Nanobiotechnology |
PublicationYear | 2021 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | G Yang (831_CR18) 2018; 18 K Yang (831_CR34) 2011; 5 R Zhao (831_CR35) 2018; 10 A Logan (831_CR36) 2016; 23 X Zhang (831_CR21) 2019; 6 Z Xu (831_CR41) 2015; 7 A Aranda (831_CR47) 2013; 27 T Qi (831_CR13) 2019; 213 K Han (831_CR51) 2016; 8 S Ye (831_CR46) 2018; 30 HW Yang (831_CR5) 2013; 34 YP Zeng (831_CR30) 2017; 7 C Feng (831_CR39) 2018; 51 P Yuan (831_CR11) 2019; 131 DC Marcano (831_CR37) 2010; 4 CM Hattinger (831_CR4) 2015; 20 SL Luo (831_CR31) 2016; 8 R Guo (831_CR19) 2016; 12 GY Pan (831_CR20) 2017; 3 Y Li (831_CR42) 2016; 8 SS Bielack (831_CR2) 2008; 9 P Agostinis (831_CR17) 2011; 61 Y Que (831_CR43) 2017; 9 FJ Bock (831_CR8) 2020; 21 P Lu (831_CR10) 2016; 240 S Yan (831_CR14) 2019; 31 CM Hattinger (831_CR3) 2017; 13 M Momcilovic (831_CR9) 2019; 575 M Yu (831_CR49) 2007; 170 L Zhang (831_CR16) 2018; 5 YC Wong (831_CR7) 2019; 29 HS Sherratt (831_CR52) 1990; 4 W Zhang (831_CR33) 2011; 32 F Haghiralsadat (831_CR1) 2018; 13 M Guo (831_CR15) 2014; 35 JK Tee (831_CR45) 2019; 48 S Wang (831_CR23) 2013; 25 Z Xu (831_CR40) 2014; 6 BB Zhang (831_CR48) 2015; 14 S Chen (831_CR12) 2017; 117 LD Zorova (831_CR50) 2018; 552 C Zhang (831_CR38) 2010; 31 JE Visvader (831_CR6) 2008; 8 YP Zeng (831_CR28) 2016; 4 Z Sheng (831_CR22) 2014; 8 W Shan (831_CR26) 2018; 30 E Portnoy (831_CR27) 2012; 9 X Tan (831_CR25) 2017; 29 P Kalluru (831_CR24) 2013; 125 YP Zeng (831_CR29) 2015; 5 Z Wang (831_CR44) 2020; 228 L Feng (831_CR32) 2013; 9 |
References_xml | – volume: 8 start-page: 12310 issue: 12 year: 2014 ident: 831_CR22 publication-title: ACS Nano doi: 10.1021/nn5062386 – volume: 23 start-page: 379 issue: 2 year: 2016 ident: 831_CR36 publication-title: Cell Metab doi: 10.1016/j.cmet.2015.11.014 – volume: 9 start-page: 3595 issue: 12 year: 2012 ident: 831_CR27 publication-title: Mol Pharm doi: 10.1021/mp300472y – volume: 4 start-page: 523 issue: 3 year: 1990 ident: 831_CR52 publication-title: Baillieres Clin Endocrinol Metab doi: 10.1016/S0950-351X(05)80067-9 – volume: 35 start-page: 4656 issue: 16 year: 2014 ident: 831_CR15 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.02.018 – volume: 7 start-page: 1355 issue: 2 year: 2015 ident: 831_CR41 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am507798d – volume: 12 start-page: 4541 issue: 33 year: 2016 ident: 831_CR19 publication-title: Small doi: 10.1002/smll.201601094 – volume: 4 start-page: 4806 issue: 8 year: 2010 ident: 831_CR37 publication-title: ACS Nano doi: 10.1021/nn1006368 – volume: 4 start-page: 2190 issue: 12 year: 2016 ident: 831_CR28 publication-title: J Mater Chem B doi: 10.1039/C6TB00108D – volume: 8 start-page: 25060 issue: 38 year: 2016 ident: 831_CR51 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b06522 – volume: 170 start-page: 83 issue: 1 year: 2007 ident: 831_CR49 publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2007.02.013 – volume: 9 start-page: 1989 issue: 11 year: 2013 ident: 831_CR32 publication-title: Small doi: 10.1002/smll.201202538 – volume: 29 start-page: 1704196 issue: 43 year: 2017 ident: 831_CR25 publication-title: Adv Mater doi: 10.1002/adma.201704196 – volume: 9 start-page: 67 year: 2008 ident: 831_CR2 publication-title: Curr Treat Options Oncol doi: 10.1007/s11864-008-0057-1 – volume: 3 start-page: 3596 issue: 12 year: 2017 ident: 831_CR20 publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.7b00480 – volume: 7 start-page: 43506 year: 2017 ident: 831_CR30 publication-title: Sci Rep doi: 10.1038/srep43506 – volume: 27 start-page: 954 issue: 2 year: 2013 ident: 831_CR47 publication-title: Toxicol In Vitro doi: 10.1016/j.tiv.2013.01.016 – volume: 13 start-page: 3853 year: 2018 ident: 831_CR1 publication-title: Int J Nanomed doi: 10.2147/IJN.S150017 – volume: 213 start-page: 119219 year: 2019 ident: 831_CR13 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.05.030 – volume: 61 start-page: 250 issue: 4 year: 2011 ident: 831_CR17 publication-title: CA Cancer J Clin doi: 10.3322/caac.20114 – volume: 552 start-page: 50 issue: 1 year: 2018 ident: 831_CR50 publication-title: Anal Biochem doi: 10.1016/j.ab.2017.07.009 – volume: 30 start-page: e1707567 issue: 28 year: 2018 ident: 831_CR26 publication-title: Adv Mater doi: 10.1002/adma.201707567 – volume: 29 start-page: 500 issue: 6 year: 2019 ident: 831_CR7 publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2019.02.004 – volume: 8 start-page: 755 year: 2008 ident: 831_CR6 publication-title: Nat Rev Cancer doi: 10.1038/nrc2499 – volume: 25 start-page: 3055 issue: 22 year: 2013 ident: 831_CR23 publication-title: Adv Mater doi: 10.1002/adma.201204623 – volume: 5 start-page: 57725 issue: 71 year: 2015 ident: 831_CR29 publication-title: RSC Adv doi: 10.1039/C5RA07535A – volume: 20 start-page: 495 issue: 3 year: 2015 ident: 831_CR4 publication-title: Expert Opin Emerg Drugs doi: 10.1517/14728214.2015.1051965 – volume: 14 start-page: 19 year: 2015 ident: 831_CR48 publication-title: Fam Cancer doi: 10.1007/s10689-014-9757-9 – volume: 6 start-page: 1801122 issue: 3 year: 2019 ident: 831_CR21 publication-title: Adv Sci doi: 10.1002/advs.201801122 – volume: 8 start-page: 17352 issue: 27 year: 2016 ident: 831_CR42 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b05271 – volume: 125 start-page: 12558 issue: 47 year: 2013 ident: 831_CR24 publication-title: Angew Chem Int Ed Engl doi: 10.1002/ange.201307358 – volume: 117 start-page: 92 year: 2017 ident: 831_CR12 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.11.056 – volume: 32 start-page: 8555 issue: 33 year: 2011 ident: 831_CR33 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.07.071 – volume: 31 start-page: 6612 issue: 25 year: 2010 ident: 831_CR38 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.05.007 – volume: 51 start-page: 2314 issue: 9 year: 2018 ident: 831_CR39 publication-title: Acc Chem Res doi: 10.1021/acs.accounts.8b00307 – volume: 13 start-page: 673 year: 2017 ident: 831_CR3 publication-title: Future Oncol doi: 10.2217/fon-2016-0519 – volume: 240 start-page: 38 year: 2016 ident: 831_CR10 publication-title: J Control Release doi: 10.1016/j.jconrel.2015.10.023 – volume: 10 start-page: 17617 issue: 21 year: 2018 ident: 831_CR35 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b03185 – volume: 9 start-page: 14647 issue: 17 year: 2017 ident: 831_CR43 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b01452 – volume: 5 start-page: 1800049 issue: 8 year: 2018 ident: 831_CR16 publication-title: Adv Sci doi: 10.1002/advs.201800049 – volume: 34 start-page: 7204 issue: 29 year: 2013 ident: 831_CR5 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.06.007 – volume: 131 start-page: 7739 issue: 23 year: 2019 ident: 831_CR11 publication-title: Angew Chem Int Ed Engl doi: 10.1002/ange.201901699 – volume: 21 start-page: 85 year: 2020 ident: 831_CR8 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-019-0173-8 – volume: 30 start-page: e1801216 issue: 29 year: 2018 ident: 831_CR46 publication-title: Adv Mater doi: 10.1002/adma.201801216 – volume: 5 start-page: 516 issue: 1 year: 2011 ident: 831_CR34 publication-title: ACS Nano doi: 10.1021/nn1024303 – volume: 575 start-page: 380 year: 2019 ident: 831_CR9 publication-title: Nature doi: 10.1038/s41586-019-1715-0 – volume: 6 start-page: 17268 issue: 19 year: 2014 ident: 831_CR40 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am505308f – volume: 18 start-page: 2475 issue: 4 year: 2018 ident: 831_CR18 publication-title: Nano Lett doi: 10.1021/acs.nanolett.8b00040 – volume: 31 start-page: e1905825 issue: 46 year: 2019 ident: 831_CR14 publication-title: Adv Mater doi: 10.1002/adma.201905825 – volume: 8 start-page: 17176 issue: 27 year: 2016 ident: 831_CR31 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b05383 – volume: 228 start-page: 119569 year: 2020 ident: 831_CR44 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119569 – volume: 48 start-page: 5381 year: 2019 ident: 831_CR45 publication-title: Chem Soc Rev doi: 10.1039/C9CS00309F |
SSID | ssj0022424 |
Score | 2.469876 |
Snippet | Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results in... Background Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often results... Abstract Background Osteosarcoma (OS) is the most common primary malignant bone tumor occurring in children and young adults. Drug-resistant osteosarcoma often... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 79 |
SubjectTerms | Adenosine triphosphate Care and treatment Complications and side effects Drug-resistant osteosarcoma Fluorescence Graphene Graphene oxide Health aspects Mitochondria-targeting Osteosarcoma Patient outcomes Phototherapy Single-laser activation Synergistic phototherapy |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_ZQ-q7TpKil0EMRWT8ky8e0NKSF9NA2kJvQc7OQyGFtQ_Mf-qMzI3uXNYX20oMvqzFYoxnNN-zMN4S8C95LD2GCeSkdqxyXzEi7YLkBsFF7V5Sp5P_smzg9r75e8IudUV9YEzbSA4-KO1oUDeRKeaWDRrY4owOvCsOt9j4YKVPrHsS8TTI1pVrY9LBpkZHiqIOoxiFtLuDB0VpMzMJQYuv_807eCUrzgsmdCHTyiDycoCM9Hj_5Mbnn4xPyYIdQ8Cn5fQYOChdadGBXbKzyhgWaaKnhVqPtr5XzNOrYYi05Fmz5jgJupeFqaNeJ2sl6urpOs4vYcgBpR7tbbBBMjM705rLtp6atW9oG6tbDksGLCENjT7FlpO3Aedpr_Yycn3z--emUTfMWmOWi6ZmQoRAmd0ZorWuuraxNro0EF67EovaVL5rgXMNBzjc8mKLiFgCH5basIc0un5O92Eb_klDA7dwtuC8dZDzaceNKUZnc1411gQubkXyjfmUnMnKciXGlUlIihRqPTMGRqXRkSmTkw_adm5GK46_SH_FUt5JIo51-AONSk3GpfxlXRt6iTSgkyohYibPUQ9epLz--q2MAwkj8U1cZeT8JhRb2YPXU2ACaQG6tmeTBTBI82c6W32xMT-ESlr9F3w6dApxaQh7dLIqMvBhNcbuxEnQPMF9mpJ4Z6Wzn85W4ukxE4nUj8Y_c_f-hqlfkfpH8q2R5c0D2-vXgDwGv9eZ1cs07ueVBMA priority: 102 providerName: Directory of Open Access Journals |
Title | Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33740998 https://www.proquest.com/docview/2503448902 https://pubmed.ncbi.nlm.nih.gov/PMC7980640 https://doaj.org/article/02952314afa0454baf542b5caeefb889 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF71cYED4o2hRAtC4oAW4sc-fECoRQ0FKRUqRMpttS-nkVK72LHU_Ad-NLMbJ4pFhcQhOWTHkXZ2Ps-MPfMNQm8K54QDN0GcEJZklgqihRmSWEOwwZ1N0lDyPz5nZ5Ps25RO99Bm3FGnwObW1M7Pk5rUi_c3v1afAPAfA-AF-9CAz6KQFCfw8YOzCNtHh-CZuJ9oMM62bxUS3woRuo24fzZH6aaJ5tb_6DmqwOf_9117x231Syp3fNToPrrXBZf4eG0ND9CeKx-iuzuUg4_Q7zFAGHZdWrA8sq4DhwUciKvhvoerm7l1uFRl5avNfUmXazBEtrhYtFUdyJ-Mw_OrMN2IzFqQtrhZ-RbCwPmMry-rZdfWtcJVgW3dzghc6APVcol9U0nVALyqK_UYTUanPz-fkW4iAzGU5UvCRJEwHVvNlFKcKiO4jpUWAPKMDbnLXJIX1uYU5FxOC51k1EBIYqhJOSTi6RN0UFale4YwRPbUDqlLLeREylJtU5bp2PHc2IIyE6F4o35pOrpyPzVjIUPaIphcH5mEI5PhyCSL0LvtNddrso5_Sp_4U91KeqLt8ENVz2SHW5DPIVWPM1UoT1aoVUGzRFOjnCu0EHmEXnubkJ5Ko_S1OjPVNo38-uNCHkOo7KmBeBaht51QUcEejOpaH0ATnn2rJ3nUkwSsm97yq43pSb_kC-RKV7WNhEg2hUw7HyYRero2xe3GUtA9JAIiQrxnpL2d91fK-WWgGue58K96n_-XYl-gO0kAUkri_AgdLOvWvYTQbakHaJ9POXyL0ZcBOjw5Pf9-MQiPQQYBqX8ALLtFbQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondria-targeting+graphene+oxide+nanocomposites+for+fluorescence+imaging-guided+synergistic+phototherapy+of+drug-resistant+osteosarcoma&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Zeng%2C+Wei-Nan&rft.au=Yu%2C+Qiu-Ping&rft.au=Wang%2C+Duan&rft.au=Liu%2C+Jun-Li&rft.date=2021-03-19&rft.issn=1477-3155&rft.eissn=1477-3155&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12951-021-00831-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12951_021_00831_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon |