Data-Driven Phenotyping of Alzheimer’s Disease under Epigenetic Conditions Using Partial Volume Correction of PET Studies and Manifold Learning
Alzheimer’s disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism must take into consideration the environmental effects on the patient in the generation of phenotypes. Positron Emission...
Saved in:
Published in | Biomedicines Vol. 11; no. 2; p. 273 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
19.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2227-9059 2227-9059 |
DOI | 10.3390/biomedicines11020273 |
Cover
Abstract | Alzheimer’s disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism must take into consideration the environmental effects on the patient in the generation of phenotypes. Positron Emission Tomography (PET) is employed for the quantification of pathological amyloid deposition in brain tissues. The objective is to develop a new methodology for the hyperparametric analysis of changes in cognitive scores and PET features to test for there being multiple AD phenotypes. We used a computational method to identify phenotypes in a retrospective cohort study (532 subjects), using PET and Magnetic Resonance Imaging (MRI) images and neuropsychological assessments, to develop a novel computational phenotyping method that uses Partial Volume Correction (PVC) and subsets of neuropsychological assessments in a non-biased fashion. Our pipeline is based on a Regional Spread Function (RSF) method for PVC and a t-distributed Stochastic Neighbor Embedding (t-SNE) manifold. The results presented demonstrate that (1) the approach to data-driven phenotyping is valid, (2) the different techniques involved in the pipelines produce different results, and (3) they permit us to identify the best phenotyping pipeline. The method identifies three phenotypes and permits us to analyze them under epigenetic conditions. |
---|---|
AbstractList | Alzheimer's disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism must take into consideration the environmental effects on the patient in the generation of phenotypes. Positron Emission Tomography (PET) is employed for the quantification of pathological amyloid deposition in brain tissues. The objective is to develop a new methodology for the hyperparametric analysis of changes in cognitive scores and PET features to test for there being multiple AD phenotypes. We used a computational method to identify phenotypes in a retrospective cohort study (532 subjects), using PET and Magnetic Resonance Imaging (MRI) images and neuropsychological assessments, to develop a novel computational phenotyping method that uses Partial Volume Correction (PVC) and subsets of neuropsychological assessments in a non-biased fashion. Our pipeline is based on a Regional Spread Function (RSF) method for PVC and a t-distributed Stochastic Neighbor Embedding (t-SNE) manifold. The results presented demonstrate that (1) the approach to data-driven phenotyping is valid, (2) the different techniques involved in the pipelines produce different results, and (3) they permit us to identify the best phenotyping pipeline. The method identifies three phenotypes and permits us to analyze them under epigenetic conditions. Alzheimer's disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism must take into consideration the environmental effects on the patient in the generation of phenotypes. Positron Emission Tomography (PET) is employed for the quantification of pathological amyloid deposition in brain tissues. The objective is to develop a new methodology for the hyperparametric analysis of changes in cognitive scores and PET features to test for there being multiple AD phenotypes. We used a computational method to identify phenotypes in a retrospective cohort study (532 subjects), using PET and Magnetic Resonance Imaging (MRI) images and neuropsychological assessments, to develop a novel computational phenotyping method that uses Partial Volume Correction (PVC) and subsets of neuropsychological assessments in a non-biased fashion. Our pipeline is based on a Regional Spread Function (RSF) method for PVC and a t-distributed Stochastic Neighbor Embedding (t-SNE) manifold. The results presented demonstrate that (1) the approach to data-driven phenotyping is valid, (2) the different techniques involved in the pipelines produce different results, and (3) they permit us to identify the best phenotyping pipeline. The method identifies three phenotypes and permits us to analyze them under epigenetic conditions.Alzheimer's disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism must take into consideration the environmental effects on the patient in the generation of phenotypes. Positron Emission Tomography (PET) is employed for the quantification of pathological amyloid deposition in brain tissues. The objective is to develop a new methodology for the hyperparametric analysis of changes in cognitive scores and PET features to test for there being multiple AD phenotypes. We used a computational method to identify phenotypes in a retrospective cohort study (532 subjects), using PET and Magnetic Resonance Imaging (MRI) images and neuropsychological assessments, to develop a novel computational phenotyping method that uses Partial Volume Correction (PVC) and subsets of neuropsychological assessments in a non-biased fashion. Our pipeline is based on a Regional Spread Function (RSF) method for PVC and a t-distributed Stochastic Neighbor Embedding (t-SNE) manifold. The results presented demonstrate that (1) the approach to data-driven phenotyping is valid, (2) the different techniques involved in the pipelines produce different results, and (3) they permit us to identify the best phenotyping pipeline. The method identifies three phenotypes and permits us to analyze them under epigenetic conditions. |
Audience | Academic |
Author | González-Nóvoa, José A. Campanioni, Silvia Veiga, César Agís-Balboa, Roberto Carlos Busto, Laura |
AuthorAffiliation | 1 Cardiovascular Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), 36213 Vigo, Spain 3 Movement Disorders Group, Health Research Institute of Santiago de Compostela (IDIS), Área Sanitaria de Santiago de Compostela-Hospital Clínico Universitario de Santiago (CHUS), Servizo Galego de Saude-Universidad de Santiago de Compostela (SERGAS-USC), 15706 Santiago de Compostela, Spain 2 NeuroEpigenetics Laboratory, Instituto de Investigación Sanitaria de Santiago (IDIS), Área Sanitaria de Santiago de Compostela-Hospital Clínico Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain 4 Neurology Service, Área Sanitaria de Santiago de Compostela-Hospital Clínico Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain |
AuthorAffiliation_xml | – name: 2 NeuroEpigenetics Laboratory, Instituto de Investigación Sanitaria de Santiago (IDIS), Área Sanitaria de Santiago de Compostela-Hospital Clínico Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain – name: 1 Cardiovascular Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), 36213 Vigo, Spain – name: 4 Neurology Service, Área Sanitaria de Santiago de Compostela-Hospital Clínico Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain – name: 3 Movement Disorders Group, Health Research Institute of Santiago de Compostela (IDIS), Área Sanitaria de Santiago de Compostela-Hospital Clínico Universitario de Santiago (CHUS), Servizo Galego de Saude-Universidad de Santiago de Compostela (SERGAS-USC), 15706 Santiago de Compostela, Spain |
Author_xml | – sequence: 1 givenname: Silvia orcidid: 0000-0002-9088-1336 surname: Campanioni fullname: Campanioni, Silvia – sequence: 2 givenname: José A. orcidid: 0000-0003-2334-1556 surname: González-Nóvoa fullname: González-Nóvoa, José A. – sequence: 3 givenname: Laura orcidid: 0000-0002-1464-2616 surname: Busto fullname: Busto, Laura – sequence: 4 givenname: Roberto Carlos orcidid: 0000-0001-9899-9569 surname: Agís-Balboa fullname: Agís-Balboa, Roberto Carlos – sequence: 5 givenname: César surname: Veiga fullname: Veiga, César |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36830810$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk9v0zAcjdAQG2XfACFLXLh0-E-cxByQqrbApCEqsXG1HOfn1lVqd3YyaZz4Chz5enwSnHWMdZqwD47s957znt_z7MB5B1n2kuATxgR-W1u_gcZq6yASgimmJXuSHVFKy7HAXBzc-z7MjmNc4zQEYRXJn2WHrKgYrgg-yn7OVKfGs2CvwKHFCpzvrrfWLZE3aNJ-X4HdQPj941dEMxtBRUC9ayCg-dYuwUFnNZp619jOehfRRRyoCxU6q1r0zbf9BtJ5CKAHwCC6mJ-jr13fWIhIuQZ9Vs4a3zboDFRwif4ie2pUG-H4dh1lFx_m59NP47MvH0-nk7Ox5oXoxgUrOC0BGkFAY1GyMqdcm2RQU2owUC5qXSlQBdUcSpabnGtaVzrn3LBCsFF2utNtvFrLbbAbFa6lV1bebPiwlIMP3YKsKbC6KIipweQpOcUpEAGkhrzQumZJ6_1Oa9vX6V00uC6odk90_8TZlVz6KykEZwXBSeDNrUDwlz3ETm5s1NC2yoHvo6RlhXHJeLp9lL1-AF37PrgUVUKVIme8wuIfaqmSAeuMT_fqQVROUlIkBXKTwckjqDQb2FidKmds2t8jvLpv9M7h30IlQL4D6OBjDGDuIATLobryseom2rsHNG07NXQm_ZBt_0_-A2E0-aY |
CitedBy_id | crossref_primary_10_1371_journal_pone_0306999 |
Cites_doi | 10.1097/CM9.0000000000001706 10.1016/j.neuroimage.2014.11.058 10.1016/j.jalz.2018.02.001 10.1016/S0031-3203(02)00060-2 10.1137/S1064827502419154 10.21105/joss.00861 10.1126/scitranslmed.3002369 10.1038/s41598-017-13339-7 10.1101/2021.08.26.21262325 10.1038/s41598-020-62263-w 10.1155/2021/4553832 10.1109/TNNLS.2022.3153088 10.1097/00004728-199007000-00011 10.1101/2019.12.13.19014902 10.1016/j.neuroimage.2019.116317 10.2967/jnumed.107.048330 10.1088/0031-9155/57/21/R119 10.1016/j.nucmedbio.2005.05.002 10.1126/science.290.5500.2319 10.3389/fnagi.2022.911635 10.1016/j.neuroimage.2006.01.021 10.1016/j.neuroimage.2012.01.021 10.1371/journal.pone.0197518 10.1097/01.wad.0000213865.09806.92 10.1097/WAD.0b013e318142774e 10.1002/ana.22248 10.1016/j.neuroimage.2009.01.057 10.1109/TNNLS.2021.3063516 10.1145/3097983.3098118 10.1002/ana.20009 10.3390/s21217125 10.1038/jcbfm.1992.81 10.1111/j.1751-5823.2008.00054_10.x 10.1016/j.jbi.2014.07.001 10.3233/JAD-180749 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/biomedicines11020273 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (WRLC) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2227-9059 |
ExternalDocumentID | oai_doaj_org_article_b2e3b661fbef4830a52e19e1be46ccb3 PMC9953610 A742173469 36830810 10_3390_biomedicines11020273 |
Genre | Journal Article |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GrantInformation_xml | – fundername: Xunta de Galicia grantid: TR349V-2022-10000052-00 – fundername: Proxectos de investigación sobre o SARS-CoV-2 e a enfermidade COVID-19 con cargo ao Fondo COVID-19” program grantid: IN845D-2020/29 – fundername: framework Plan de recuperación, transformación y resiliencia grantid: TR349V-2022-10000052-00 – fundername: Axudas para a consolidación e estruturación de unidades de investigación competitivas e outras accións de fomento nos organismos públicos de investigación de Galicia e noutras entidades do sistema galego de I+D+i—GPC grantid: IN607B-2021/18 – fundername: project PI18/01311 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ACPRK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EMOBN GROUPED_DOAJ GX1 HCIFZ HYE IAO IHR INH ITC KQ8 LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PMFND ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c569t-636527eed91ec09737425cf381c22f0e259bc8aea62c5e734f45c2b8c455f3693 |
IEDL.DBID | DOA |
ISSN | 2227-9059 |
IngestDate | Wed Aug 27 01:23:56 EDT 2025 Thu Aug 21 18:37:55 EDT 2025 Thu Sep 04 15:42:23 EDT 2025 Fri Jul 25 12:08:20 EDT 2025 Tue Jun 17 22:24:02 EDT 2025 Tue Jun 10 21:25:36 EDT 2025 Thu Jan 02 22:53:36 EST 2025 Tue Jul 01 03:17:29 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Partial Volume Correction (PVC) PET artificial intelligence data-driven AD phenotyping manifold learning |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c569t-636527eed91ec09737425cf381c22f0e259bc8aea62c5e734f45c2b8c455f3693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9088-1336 0000-0001-9899-9569 0000-0002-1464-2616 0000-0003-2334-1556 |
OpenAccessLink | https://doaj.org/article/b2e3b661fbef4830a52e19e1be46ccb3 |
PMID | 36830810 |
PQID | 2779435809 |
PQPubID | 2032426 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b2e3b661fbef4830a52e19e1be46ccb3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9953610 proquest_miscellaneous_2780073548 proquest_journals_2779435809 gale_infotracmisc_A742173469 gale_infotracacademiconefile_A742173469 pubmed_primary_36830810 crossref_primary_10_3390_biomedicines11020273 crossref_citationtrail_10_3390_biomedicines11020273 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230119 |
PublicationDateYYYYMMDD | 2023-01-19 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230119 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biomedicines |
PublicationTitleAlternate | Biomedicines |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Rowland (ref_40) 2005; 32 Villemagne (ref_24) 2011; 69 Su (ref_31) 2015; 107 Likas (ref_30) 2003; 36 ref_14 ref_11 ref_33 Gao (ref_9) 2022; 14 Klunk (ref_12) 2004; 55 Meltzer (ref_38) 1999; 40 Desikan (ref_35) 2006; 31 ref_19 Rousset (ref_23) 1998; 39 Sammouda (ref_41) 2021; 2021 ref_16 Erlandsson (ref_10) 2012; 57 Joshi (ref_36) 2009; 46 Rousset (ref_39) 2008; 49 Yang (ref_3) 2017; 7 Schwarz (ref_13) 2019; 67 Zhang (ref_17) 2004; 26 Pedregosa (ref_34) 2012; 12 Holtzman (ref_1) 2011; 3 Yu (ref_15) 2022; 33 Fischl (ref_32) 2012; 62 Kim (ref_4) 2020; 10 Brenowitz (ref_18) 2021; 134 Beekly (ref_20) 2007; 21 (ref_25) 2008; 76 Hinton (ref_26) 2008; 9 ref_2 ref_29 ref_27 Meltzer (ref_37) 1990; 14 Morris (ref_21) 2006; 20 Ho (ref_5) 2014; 52 Links (ref_22) 1992; 12 Tenenbaum (ref_28) 2000; 290 ref_7 ref_6 Tabarestani (ref_8) 2020; 206 |
References_xml | – volume: 134 start-page: 2150 year: 2021 ident: ref_18 article-title: Current Alzheimer disease research highlights: Evidence for novel risk factors publication-title: Chin. Med. J. doi: 10.1097/CM9.0000000000001706 – volume: 107 start-page: 55 year: 2015 ident: ref_31 article-title: Partial volume correction in quantitative amyloid imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.11.058 – ident: ref_2 doi: 10.1016/j.jalz.2018.02.001 – volume: 36 start-page: 451 year: 2003 ident: ref_30 article-title: The global k-means clustering algorithm publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(02)00060-2 – volume: 26 start-page: 313 year: 2004 ident: ref_17 article-title: Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827502419154 – volume: 39 start-page: 904 year: 1998 ident: ref_23 article-title: Correction for partial volume effects in PET: Principle and validation publication-title: J. Nucl. Med. – ident: ref_29 doi: 10.21105/joss.00861 – volume: 3 start-page: 77sr1 year: 2011 ident: ref_1 article-title: Alzheimer’s Disease: The Challenge of the Second Century publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3002369 – volume: 7 start-page: 13035 year: 2017 ident: ref_3 article-title: Partial volume correction for PET quantification and its impact on brain network in Alzheimer’s disease publication-title: Sci. Rep. doi: 10.1038/s41598-017-13339-7 – volume: 40 start-page: 2053 year: 1999 ident: ref_38 article-title: Comparative evaluation of MR-based partial-volume correction schemes for PET publication-title: J. Nucl. Med. – ident: ref_11 doi: 10.1101/2021.08.26.21262325 – volume: 10 start-page: 5527 year: 2020 ident: ref_4 article-title: Multimodal Phenotyping of Alzheimer’s Disease with Longitudinal Magnetic Resonance Imaging and Cognitive Function Data publication-title: Sci. Rep. doi: 10.1038/s41598-020-62263-w – volume: 2021 start-page: 4553832 year: 2021 ident: ref_41 article-title: An Optimized Approach for Prostate Image Segmentation Using K-Means Clustering Algorithm with Elbow Method publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/4553832 – ident: ref_14 doi: 10.1109/TNNLS.2022.3153088 – volume: 12 start-page: 2825 year: 2012 ident: ref_34 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 14 start-page: 561 year: 1990 ident: ref_37 article-title: Correction of PET Data for Partial Volume Effects in Human Cerebral Cortex by MR Imaging publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199007000-00011 – ident: ref_19 doi: 10.1101/2019.12.13.19014902 – volume: 206 start-page: 116317 year: 2020 ident: ref_8 article-title: A distributed multitask multimodal approach for the prediction of Alzheimer’s disease in a longitudinal study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116317 – volume: 49 start-page: 1097 year: 2008 ident: ref_39 article-title: Design and Implementation of an Automated Partial Volume Correction in PET: Application to Dopamine Receptor Quantification in the Normal Human Striatum publication-title: J. Nucl. Med. doi: 10.2967/jnumed.107.048330 – volume: 57 start-page: R119 year: 2012 ident: ref_10 article-title: A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/21/R119 – volume: 32 start-page: 567 year: 2005 ident: ref_40 article-title: Registration of [18F] FDG microPET and small-animal MRI publication-title: Nucl. Med. Biol. doi: 10.1016/j.nucmedbio.2005.05.002 – volume: 290 start-page: 2319 year: 2000 ident: ref_28 article-title: A Global Geometric Framework for Nonlinear Dimensionality Reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – ident: ref_33 – ident: ref_27 – volume: 14 start-page: 911635 year: 2022 ident: ref_9 article-title: Epigenetics in Alzheimer’s Disease publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2022.911635 – volume: 31 start-page: 968 year: 2006 ident: ref_35 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 62 start-page: 774 year: 2012 ident: ref_32 article-title: FreeSurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – ident: ref_7 doi: 10.1371/journal.pone.0197518 – volume: 20 start-page: 210 year: 2006 ident: ref_21 article-title: The Uniform Data Set (UDS): Clinical and Cognitive Variables and Descriptive Data From Alzheimer Disease Centers publication-title: Alzheimer Dis. Assoc. Disord. doi: 10.1097/01.wad.0000213865.09806.92 – volume: 21 start-page: 249 year: 2007 ident: ref_20 article-title: The National Alzheimer’s Coordinating Center (NACC) Database: The Uniform Data Set publication-title: Alzheimer Dis. Assoc. Disord. doi: 10.1097/WAD.0b013e318142774e – volume: 69 start-page: 181 year: 2011 ident: ref_24 article-title: Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease publication-title: Ann. Neurol. doi: 10.1002/ana.22248 – volume: 46 start-page: 154 year: 2009 ident: ref_36 article-title: Reducing between scanner differences in multi-center PET studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.057 – volume: 9 start-page: 2579 year: 2008 ident: ref_26 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 33 start-page: 4945 year: 2022 ident: ref_15 article-title: Tensorizing GAN With High-Order Pooling for Alzheimer’s Disease Assessment publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2021.3063516 – ident: ref_6 doi: 10.1145/3097983.3098118 – volume: 55 start-page: 306 year: 2004 ident: ref_12 article-title: Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B publication-title: Ann. Neurol. doi: 10.1002/ana.20009 – ident: ref_16 doi: 10.3390/s21217125 – volume: 12 start-page: 571 year: 1992 ident: ref_22 article-title: Measurement of Radiotracer Concentration in Brain Gray Matter Using Positron Emission Tomography: MRI-Based Correction for Partial Volume Effects publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.1992.81 – volume: 76 start-page: 308 year: 2008 ident: ref_25 article-title: Nonlinear Dimensionality Reduction by John A. Lee, Michel Verleysen publication-title: Int. Stat. Rev. doi: 10.1111/j.1751-5823.2008.00054_10.x – volume: 52 start-page: 199 year: 2014 ident: ref_5 article-title: Limestone: High-throughput candidate phenotype generation via tensor factorization publication-title: J. Biomed. Informatics doi: 10.1016/j.jbi.2014.07.001 – volume: 67 start-page: 181 year: 2019 ident: ref_13 article-title: A Comparison of Partial Volume Correction Techniques for Measuring Change in Serial Amyloid PET SUVR publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-180749 |
SSID | ssj0000913814 |
Score | 2.21497 |
Snippet | Alzheimer’s disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust... Alzheimer's disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 273 |
SubjectTerms | Alzheimer's disease Artificial intelligence Brain research Cognitive ability Computational neuroscience data-driven AD phenotyping Datasets Dementia Dementia disorders Discriminant analysis Embedding Environmental effects Epigenetics Magnetic resonance imaging manifold learning Methods Neurodegenerative diseases Neuroimaging Partial Volume Correction (PVC) Patients PET Phenotypes Phenotyping Physiological aspects Positron emission tomography Software packages |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagvcAB8U-gICMhcYoax47jnNC2u1WF1GqFWtRbZDt2d6UlWbLbA5x4BY68Hk_CTOJdNgLBNf6J7RnPeDwznwl5I1jFC-1lbJXxsTC5j02RmziRlleVEpYJzHc-O5enl-L9VXYVLtxWIaxyIxM7QV01Fu_ID9McocwylRTvlp9jfDUKvavhCY3bZB9EsAI-3z-anE8_bG9ZEPVSMdHnzHGw7w_7rPbOa70C1Ye2Px_opA66_08BvaOhhtGTO-ro5D65F86RdNQT_gG55eqH5O4OuuAj8n2s1zoetyjP6HTm6mb9BbOjaOPpaPF15uafXPvz248VHfdeGooJZS2dLBGhE5Mb6XGDHm3kTNrFFtApchr892Mn1KC87SRmU2On08kFDXGJVNcVPdP13DeLigYQ1-vH5PJkcnF8GocXGGKbyWIdSy6zNAc1WjBnEdgHDOnMelhSm6Y-cWA7Gau00zK1mcu58CKzqVFWZJnnsuBPyF7d1O4Zoa4yMuGGFfBdYEZwIqwz3ltfGWW0jgjf0KC0AZ4cX8lYlGCmIOXKv1EuIvG21bKH5_hP_SMk77Yugmt3H5r2ugx7tTSp4wbOLd44LxRPdJY6VjhmnJDWGujkLTJHiSIAhmh1yGSAiSKYVjmCVWKwGLKIyMGgJmxdOyzesFcZRMeq_M3oEXm9LcaWGA5Xu-YG6yh0sYK1GZGnPTdup8QlDFmxJCL5gE8Hcx6W1PNZByxeoC-fJc__PawX5A6sJUbhxaw4IHvr9sa9hJPZ2rwK2-8XUMo_1w priority: 102 providerName: ProQuest |
Title | Data-Driven Phenotyping of Alzheimer’s Disease under Epigenetic Conditions Using Partial Volume Correction of PET Studies and Manifold Learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36830810 https://www.proquest.com/docview/2779435809 https://www.proquest.com/docview/2780073548 https://pubmed.ncbi.nlm.nih.gov/PMC9953610 https://doaj.org/article/b2e3b661fbef4830a52e19e1be46ccb3 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQucAB8U-gVEZC4hQ1jh0nPm67W1VIrVaoRb1FtmOzKy1JlU0PcOIVOPJ6PAkzTrpKBFIvXD12Yo_HMx7NzGdC3gtWcaW9jG1hfCxM7mOjchMn0vKqKoRlAuudz87l6aX4eJVdjZ76wpywHh64Z9yhSR03YES8cV4UPNFZ6phyzDghrTUB5zNRyciZCjpYMTBFoq-V4-DXH_bV7CFavQWThz4_n9iiANn_t2IeWaZp1uTIDJ08Jo-G-yOd9fN-Qu65-il5OEIVfEZ-znWn43mLeowuV65uum9YFUUbT2eb7yu3_ura3z9-bem8j85QLCRr6eIakTmxqJEeNxjJRomkIaeALpFR8N_PQZkBvQ2asqnxo8vFBR3yEamuK3qm67VvNhUdwFu_PCeXJ4uL49N4eHkhtplUXSy5zNIczKdiziKgDzjQmfXAUpumPnHgMxlbaKdlajOXc-FFZlNTWJFlnkvFX5C9uqndK0JdZWTCDVPQLrASOBHWGe-tr0xhtI4Iv92D0g6w5Pg6xqYE9wR3rvzXzkUk3o267mE57uh_hNu764ug2qEBRK0cRK28S9Qi8gGFo8SjD1O0eqhggIUiiFY5Ay4xYIZUEdmf9IQja6fkW_EqB5WxLdMcsfqyIgHyux0ZR2IaXO2aG-xTYGgVvMyIvOylcbckLmHKBUsikk_kdLLmKaVerwKguMIYPkte_w8mvSEPgOOYoxcztU_2uvbGvYV7W2cOyP2jxfny00E4qn8AzZdJlw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELem7QF4QPwnMMBIIJ6ixbHjJA8IdWunjq1VhTq0txA79lqpJCXthMYTX4FHvgQfik_CXZKWRiB42mvsJLbvfOfz3f2OkBeCZTxOrXR1pKwrVGhdFYfK9aTmWRYJzQTmOw-Gsn8q3p4FZ1vkxyoXBsMqVzKxEtRZofGOfM8PEcosiLz4zfyTi1Wj0Lu6KqFRs8WxufwMJtvi9VEX6PvS9w9744O-21QVcHUg46UruQz8EFRDzIxGsBowDgNtQXNp37eeAXtA6Sg1qfR1YEIurAi0ryItgsByieBLIPJ3BGa0bpOd_d5w9G59q4MomxETdY4e57G3V2fRV17yBahavGvgLR1YlQr4UyFsaMR2tOaG-ju8RW4251baqRntNtky-R1yYwPN8C751k2XqdstUX7S0cTkxfISs7FoYWln9mViph9N-fPr9wXt1l4higlsJe3NEREUkynpQYEedNwJtIploCPkbPjv-0qIQntZSegix4-OemPaxEHSNM_oIM2ntphltAGNPb9HTq-ENvfJdl7k5iGhJlPS44rF8FxgBrIntFHWapupSKWpQ_iKBolu4NCxKscsAbMIKZf8jXIOcddvzWs4kP_030fyrvsimHf1oCjPk0Y2JMo3XME5ySpjRcS9NPANiw1TRkitFXzkFTJHgiIHhqjTJnMCJorgXUkHVonBYsjYIbutniAqdLt5xV5JI6oWye-N5ZDn62Z8E8PvclNcYJ8IXbpg3TrkQc2N6ylxCUOOmOeQsMWnrTm3W_LppAIyjzF2gHmP_j2sZ-Rafzw4SU6OhsePyXVYV4wAdFm8S7aX5YV5AqfCpXrabEVKPlz17v8F1tZ7_g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemTkLwgPi_wAAjgXiKGseOkzwg1K2tNsaqCm1obyF27LVSSUraCY0nvgKPfBU-Dp-EuyQtjUDwtNfYSWzf-c7nu_sdIc8Fy3icWunqSFlXqNC6Kg6V60nNsywSmgnMdz4eyYNT8eYsONsiP1a5MBhWuZKJlaDOCo135F0_RCizIPLirm3CIsb94ev5JxcrSKGndVVOo2aRI3P5Gcy3xavDPtD6he8PByf7B25TYcDVgYyXruQy8ENQEzEzGoFrwFAMtAUtpn3fegZsA6Wj1KTS14EJubAi0L6KtAgCyyUCMYH43w5BK4oO2d4bjMbv1jc8iLgZMVHn63Eee906o77ymC9A7eK9A2_pw6pswJ_KYUM7tiM3N1Th8Ba52Zxhaa9muttky-R3yI0NZMO75Fs_XaZuv0RZSscTkxfLS8zMooWlvdmXiZl-NOXPr98XtF97iCgms5V0MEd0UEyspPsFetNxV9AqroGOkcvhv-8rgQrtZSWtixw_Oh6c0CYmkqZ5Ro_TfGqLWUYbANnze-T0Smhzn3TyIjc7hJpMSY8rFsNzgdnIntBGWattpiKVpg7hKxokuoFGxwodswRMJKRc8jfKOcRdvzWvoUH-038Pybvui8De1YOiPE8aOZEo33AFZyarjBUR99LANyw2TBkhtVbwkZfIHAmKHxiiTpssCpgoAnklPVglBoshY4fstnqC2NDt5hV7JY3YWiS_N5lDnq2b8U0MxctNcYF9InTvgqXrkAc1N66nxCUMOWKeQ8IWn7bm3G7Jp5MK1DzGOALmPfz3sJ6Sa7Drk7eHo6NH5DosKwYDuizeJZ1leWEewwFxqZ40O5GSD1e9-X8BKNuAKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Phenotyping+of+Alzheimer%E2%80%99s+Disease+under+Epigenetic+Conditions+Using+Partial+Volume+Correction+of+PET+Studies+and+Manifold+Learning&rft.jtitle=Biomedicines&rft.au=Silvia+Campanioni&rft.au=Jos%C3%A9+A.+Gonz%C3%A1lez-N%C3%B3voa&rft.au=Laura+Busto&rft.au=Roberto+Carlos+Ag%C3%ADs-Balboa&rft.date=2023-01-19&rft.pub=MDPI+AG&rft.eissn=2227-9059&rft.volume=11&rft.issue=2&rft.spage=273&rft_id=info:doi/10.3390%2Fbiomedicines11020273&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b2e3b661fbef4830a52e19e1be46ccb3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9059&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9059&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9059&client=summon |