Data-Driven Phenotyping of Alzheimer’s Disease under Epigenetic Conditions Using Partial Volume Correction of PET Studies and Manifold Learning

Alzheimer’s disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism must take into consideration the environmental effects on the patient in the generation of phenotypes. Positron Emission...

Full description

Saved in:
Bibliographic Details
Published inBiomedicines Vol. 11; no. 2; p. 273
Main Authors Campanioni, Silvia, González-Nóvoa, José A., Busto, Laura, Agís-Balboa, Roberto Carlos, Veiga, César
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.01.2023
MDPI
Subjects
Online AccessGet full text
ISSN2227-9059
2227-9059
DOI10.3390/biomedicines11020273

Cover

Abstract Alzheimer’s disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism must take into consideration the environmental effects on the patient in the generation of phenotypes. Positron Emission Tomography (PET) is employed for the quantification of pathological amyloid deposition in brain tissues. The objective is to develop a new methodology for the hyperparametric analysis of changes in cognitive scores and PET features to test for there being multiple AD phenotypes. We used a computational method to identify phenotypes in a retrospective cohort study (532 subjects), using PET and Magnetic Resonance Imaging (MRI) images and neuropsychological assessments, to develop a novel computational phenotyping method that uses Partial Volume Correction (PVC) and subsets of neuropsychological assessments in a non-biased fashion. Our pipeline is based on a Regional Spread Function (RSF) method for PVC and a t-distributed Stochastic Neighbor Embedding (t-SNE) manifold. The results presented demonstrate that (1) the approach to data-driven phenotyping is valid, (2) the different techniques involved in the pipelines produce different results, and (3) they permit us to identify the best phenotyping pipeline. The method identifies three phenotypes and permits us to analyze them under epigenetic conditions.
AbstractList Alzheimer's disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism must take into consideration the environmental effects on the patient in the generation of phenotypes. Positron Emission Tomography (PET) is employed for the quantification of pathological amyloid deposition in brain tissues. The objective is to develop a new methodology for the hyperparametric analysis of changes in cognitive scores and PET features to test for there being multiple AD phenotypes. We used a computational method to identify phenotypes in a retrospective cohort study (532 subjects), using PET and Magnetic Resonance Imaging (MRI) images and neuropsychological assessments, to develop a novel computational phenotyping method that uses Partial Volume Correction (PVC) and subsets of neuropsychological assessments in a non-biased fashion. Our pipeline is based on a Regional Spread Function (RSF) method for PVC and a t-distributed Stochastic Neighbor Embedding (t-SNE) manifold. The results presented demonstrate that (1) the approach to data-driven phenotyping is valid, (2) the different techniques involved in the pipelines produce different results, and (3) they permit us to identify the best phenotyping pipeline. The method identifies three phenotypes and permits us to analyze them under epigenetic conditions.
Alzheimer's disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism must take into consideration the environmental effects on the patient in the generation of phenotypes. Positron Emission Tomography (PET) is employed for the quantification of pathological amyloid deposition in brain tissues. The objective is to develop a new methodology for the hyperparametric analysis of changes in cognitive scores and PET features to test for there being multiple AD phenotypes. We used a computational method to identify phenotypes in a retrospective cohort study (532 subjects), using PET and Magnetic Resonance Imaging (MRI) images and neuropsychological assessments, to develop a novel computational phenotyping method that uses Partial Volume Correction (PVC) and subsets of neuropsychological assessments in a non-biased fashion. Our pipeline is based on a Regional Spread Function (RSF) method for PVC and a t-distributed Stochastic Neighbor Embedding (t-SNE) manifold. The results presented demonstrate that (1) the approach to data-driven phenotyping is valid, (2) the different techniques involved in the pipelines produce different results, and (3) they permit us to identify the best phenotyping pipeline. The method identifies three phenotypes and permits us to analyze them under epigenetic conditions.Alzheimer's disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust phenotyping mechanism must take into consideration the environmental effects on the patient in the generation of phenotypes. Positron Emission Tomography (PET) is employed for the quantification of pathological amyloid deposition in brain tissues. The objective is to develop a new methodology for the hyperparametric analysis of changes in cognitive scores and PET features to test for there being multiple AD phenotypes. We used a computational method to identify phenotypes in a retrospective cohort study (532 subjects), using PET and Magnetic Resonance Imaging (MRI) images and neuropsychological assessments, to develop a novel computational phenotyping method that uses Partial Volume Correction (PVC) and subsets of neuropsychological assessments in a non-biased fashion. Our pipeline is based on a Regional Spread Function (RSF) method for PVC and a t-distributed Stochastic Neighbor Embedding (t-SNE) manifold. The results presented demonstrate that (1) the approach to data-driven phenotyping is valid, (2) the different techniques involved in the pipelines produce different results, and (3) they permit us to identify the best phenotyping pipeline. The method identifies three phenotypes and permits us to analyze them under epigenetic conditions.
Audience Academic
Author González-Nóvoa, José A.
Campanioni, Silvia
Veiga, César
Agís-Balboa, Roberto Carlos
Busto, Laura
AuthorAffiliation 1 Cardiovascular Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), 36213 Vigo, Spain
3 Movement Disorders Group, Health Research Institute of Santiago de Compostela (IDIS), Área Sanitaria de Santiago de Compostela-Hospital Clínico Universitario de Santiago (CHUS), Servizo Galego de Saude-Universidad de Santiago de Compostela (SERGAS-USC), 15706 Santiago de Compostela, Spain
2 NeuroEpigenetics Laboratory, Instituto de Investigación Sanitaria de Santiago (IDIS), Área Sanitaria de Santiago de Compostela-Hospital Clínico Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain
4 Neurology Service, Área Sanitaria de Santiago de Compostela-Hospital Clínico Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain
AuthorAffiliation_xml – name: 2 NeuroEpigenetics Laboratory, Instituto de Investigación Sanitaria de Santiago (IDIS), Área Sanitaria de Santiago de Compostela-Hospital Clínico Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain
– name: 1 Cardiovascular Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), 36213 Vigo, Spain
– name: 4 Neurology Service, Área Sanitaria de Santiago de Compostela-Hospital Clínico Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain
– name: 3 Movement Disorders Group, Health Research Institute of Santiago de Compostela (IDIS), Área Sanitaria de Santiago de Compostela-Hospital Clínico Universitario de Santiago (CHUS), Servizo Galego de Saude-Universidad de Santiago de Compostela (SERGAS-USC), 15706 Santiago de Compostela, Spain
Author_xml – sequence: 1
  givenname: Silvia
  orcidid: 0000-0002-9088-1336
  surname: Campanioni
  fullname: Campanioni, Silvia
– sequence: 2
  givenname: José A.
  orcidid: 0000-0003-2334-1556
  surname: González-Nóvoa
  fullname: González-Nóvoa, José A.
– sequence: 3
  givenname: Laura
  orcidid: 0000-0002-1464-2616
  surname: Busto
  fullname: Busto, Laura
– sequence: 4
  givenname: Roberto Carlos
  orcidid: 0000-0001-9899-9569
  surname: Agís-Balboa
  fullname: Agís-Balboa, Roberto Carlos
– sequence: 5
  givenname: César
  surname: Veiga
  fullname: Veiga, César
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36830810$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk9v0zAcjdAQG2XfACFLXLh0-E-cxByQqrbApCEqsXG1HOfn1lVqd3YyaZz4Chz5enwSnHWMdZqwD47s957znt_z7MB5B1n2kuATxgR-W1u_gcZq6yASgimmJXuSHVFKy7HAXBzc-z7MjmNc4zQEYRXJn2WHrKgYrgg-yn7OVKfGs2CvwKHFCpzvrrfWLZE3aNJ-X4HdQPj941dEMxtBRUC9ayCg-dYuwUFnNZp619jOehfRRRyoCxU6q1r0zbf9BtJ5CKAHwCC6mJ-jr13fWIhIuQZ9Vs4a3zboDFRwif4ie2pUG-H4dh1lFx_m59NP47MvH0-nk7Ox5oXoxgUrOC0BGkFAY1GyMqdcm2RQU2owUC5qXSlQBdUcSpabnGtaVzrn3LBCsFF2utNtvFrLbbAbFa6lV1bebPiwlIMP3YKsKbC6KIipweQpOcUpEAGkhrzQumZJ6_1Oa9vX6V00uC6odk90_8TZlVz6KykEZwXBSeDNrUDwlz3ETm5s1NC2yoHvo6RlhXHJeLp9lL1-AF37PrgUVUKVIme8wuIfaqmSAeuMT_fqQVROUlIkBXKTwckjqDQb2FidKmds2t8jvLpv9M7h30IlQL4D6OBjDGDuIATLobryseom2rsHNG07NXQm_ZBt_0_-A2E0-aY
CitedBy_id crossref_primary_10_1371_journal_pone_0306999
Cites_doi 10.1097/CM9.0000000000001706
10.1016/j.neuroimage.2014.11.058
10.1016/j.jalz.2018.02.001
10.1016/S0031-3203(02)00060-2
10.1137/S1064827502419154
10.21105/joss.00861
10.1126/scitranslmed.3002369
10.1038/s41598-017-13339-7
10.1101/2021.08.26.21262325
10.1038/s41598-020-62263-w
10.1155/2021/4553832
10.1109/TNNLS.2022.3153088
10.1097/00004728-199007000-00011
10.1101/2019.12.13.19014902
10.1016/j.neuroimage.2019.116317
10.2967/jnumed.107.048330
10.1088/0031-9155/57/21/R119
10.1016/j.nucmedbio.2005.05.002
10.1126/science.290.5500.2319
10.3389/fnagi.2022.911635
10.1016/j.neuroimage.2006.01.021
10.1016/j.neuroimage.2012.01.021
10.1371/journal.pone.0197518
10.1097/01.wad.0000213865.09806.92
10.1097/WAD.0b013e318142774e
10.1002/ana.22248
10.1016/j.neuroimage.2009.01.057
10.1109/TNNLS.2021.3063516
10.1145/3097983.3098118
10.1002/ana.20009
10.3390/s21217125
10.1038/jcbfm.1992.81
10.1111/j.1751-5823.2008.00054_10.x
10.1016/j.jbi.2014.07.001
10.3233/JAD-180749
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/biomedicines11020273
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2227-9059
ExternalDocumentID oai_doaj_org_article_b2e3b661fbef4830a52e19e1be46ccb3
PMC9953610
A742173469
36830810
10_3390_biomedicines11020273
Genre Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GrantInformation_xml – fundername: Xunta de Galicia
  grantid: TR349V-2022-10000052-00
– fundername: Proxectos de investigación sobre o SARS-CoV-2 e a enfermidade COVID-19 con cargo ao Fondo COVID-19” program
  grantid: IN845D-2020/29
– fundername: framework Plan de recuperación, transformación y resiliencia
  grantid: TR349V-2022-10000052-00
– fundername: Axudas para a consolidación e estruturación de unidades de investigación competitivas e outras accións de fomento nos organismos públicos de investigación de Galicia e noutras entidades do sistema galego de I+D+i—GPC
  grantid: IN607B-2021/18
– fundername: project PI18/01311
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ACPRK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EMOBN
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PMFND
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c569t-636527eed91ec09737425cf381c22f0e259bc8aea62c5e734f45c2b8c455f3693
IEDL.DBID DOA
ISSN 2227-9059
IngestDate Wed Aug 27 01:23:56 EDT 2025
Thu Aug 21 18:37:55 EDT 2025
Thu Sep 04 15:42:23 EDT 2025
Fri Jul 25 12:08:20 EDT 2025
Tue Jun 17 22:24:02 EDT 2025
Tue Jun 10 21:25:36 EDT 2025
Thu Jan 02 22:53:36 EST 2025
Tue Jul 01 03:17:29 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Partial Volume Correction (PVC)
PET
artificial intelligence
data-driven AD phenotyping
manifold learning
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-636527eed91ec09737425cf381c22f0e259bc8aea62c5e734f45c2b8c455f3693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9088-1336
0000-0001-9899-9569
0000-0002-1464-2616
0000-0003-2334-1556
OpenAccessLink https://doaj.org/article/b2e3b661fbef4830a52e19e1be46ccb3
PMID 36830810
PQID 2779435809
PQPubID 2032426
ParticipantIDs doaj_primary_oai_doaj_org_article_b2e3b661fbef4830a52e19e1be46ccb3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9953610
proquest_miscellaneous_2780073548
proquest_journals_2779435809
gale_infotracmisc_A742173469
gale_infotracacademiconefile_A742173469
pubmed_primary_36830810
crossref_primary_10_3390_biomedicines11020273
crossref_citationtrail_10_3390_biomedicines11020273
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230119
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 1
  year: 2023
  text: 20230119
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomedicines
PublicationTitleAlternate Biomedicines
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Rowland (ref_40) 2005; 32
Villemagne (ref_24) 2011; 69
Su (ref_31) 2015; 107
Likas (ref_30) 2003; 36
ref_14
ref_11
ref_33
Gao (ref_9) 2022; 14
Klunk (ref_12) 2004; 55
Meltzer (ref_38) 1999; 40
Desikan (ref_35) 2006; 31
ref_19
Rousset (ref_23) 1998; 39
Sammouda (ref_41) 2021; 2021
ref_16
Erlandsson (ref_10) 2012; 57
Joshi (ref_36) 2009; 46
Rousset (ref_39) 2008; 49
Yang (ref_3) 2017; 7
Schwarz (ref_13) 2019; 67
Zhang (ref_17) 2004; 26
Pedregosa (ref_34) 2012; 12
Holtzman (ref_1) 2011; 3
Yu (ref_15) 2022; 33
Fischl (ref_32) 2012; 62
Kim (ref_4) 2020; 10
Brenowitz (ref_18) 2021; 134
Beekly (ref_20) 2007; 21
(ref_25) 2008; 76
Hinton (ref_26) 2008; 9
ref_2
ref_29
ref_27
Meltzer (ref_37) 1990; 14
Morris (ref_21) 2006; 20
Ho (ref_5) 2014; 52
Links (ref_22) 1992; 12
Tenenbaum (ref_28) 2000; 290
ref_7
ref_6
Tabarestani (ref_8) 2020; 206
References_xml – volume: 134
  start-page: 2150
  year: 2021
  ident: ref_18
  article-title: Current Alzheimer disease research highlights: Evidence for novel risk factors
  publication-title: Chin. Med. J.
  doi: 10.1097/CM9.0000000000001706
– volume: 107
  start-page: 55
  year: 2015
  ident: ref_31
  article-title: Partial volume correction in quantitative amyloid imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.058
– ident: ref_2
  doi: 10.1016/j.jalz.2018.02.001
– volume: 36
  start-page: 451
  year: 2003
  ident: ref_30
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(02)00060-2
– volume: 26
  start-page: 313
  year: 2004
  ident: ref_17
  article-title: Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827502419154
– volume: 39
  start-page: 904
  year: 1998
  ident: ref_23
  article-title: Correction for partial volume effects in PET: Principle and validation
  publication-title: J. Nucl. Med.
– ident: ref_29
  doi: 10.21105/joss.00861
– volume: 3
  start-page: 77sr1
  year: 2011
  ident: ref_1
  article-title: Alzheimer’s Disease: The Challenge of the Second Century
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3002369
– volume: 7
  start-page: 13035
  year: 2017
  ident: ref_3
  article-title: Partial volume correction for PET quantification and its impact on brain network in Alzheimer’s disease
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13339-7
– volume: 40
  start-page: 2053
  year: 1999
  ident: ref_38
  article-title: Comparative evaluation of MR-based partial-volume correction schemes for PET
  publication-title: J. Nucl. Med.
– ident: ref_11
  doi: 10.1101/2021.08.26.21262325
– volume: 10
  start-page: 5527
  year: 2020
  ident: ref_4
  article-title: Multimodal Phenotyping of Alzheimer’s Disease with Longitudinal Magnetic Resonance Imaging and Cognitive Function Data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-62263-w
– volume: 2021
  start-page: 4553832
  year: 2021
  ident: ref_41
  article-title: An Optimized Approach for Prostate Image Segmentation Using K-Means Clustering Algorithm with Elbow Method
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/4553832
– ident: ref_14
  doi: 10.1109/TNNLS.2022.3153088
– volume: 12
  start-page: 2825
  year: 2012
  ident: ref_34
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 14
  start-page: 561
  year: 1990
  ident: ref_37
  article-title: Correction of PET Data for Partial Volume Effects in Human Cerebral Cortex by MR Imaging
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199007000-00011
– ident: ref_19
  doi: 10.1101/2019.12.13.19014902
– volume: 206
  start-page: 116317
  year: 2020
  ident: ref_8
  article-title: A distributed multitask multimodal approach for the prediction of Alzheimer’s disease in a longitudinal study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116317
– volume: 49
  start-page: 1097
  year: 2008
  ident: ref_39
  article-title: Design and Implementation of an Automated Partial Volume Correction in PET: Application to Dopamine Receptor Quantification in the Normal Human Striatum
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.107.048330
– volume: 57
  start-page: R119
  year: 2012
  ident: ref_10
  article-title: A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/21/R119
– volume: 32
  start-page: 567
  year: 2005
  ident: ref_40
  article-title: Registration of [18F] FDG microPET and small-animal MRI
  publication-title: Nucl. Med. Biol.
  doi: 10.1016/j.nucmedbio.2005.05.002
– volume: 290
  start-page: 2319
  year: 2000
  ident: ref_28
  article-title: A Global Geometric Framework for Nonlinear Dimensionality Reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– ident: ref_33
– ident: ref_27
– volume: 14
  start-page: 911635
  year: 2022
  ident: ref_9
  article-title: Epigenetics in Alzheimer’s Disease
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2022.911635
– volume: 31
  start-page: 968
  year: 2006
  ident: ref_35
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 62
  start-page: 774
  year: 2012
  ident: ref_32
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: ref_7
  doi: 10.1371/journal.pone.0197518
– volume: 20
  start-page: 210
  year: 2006
  ident: ref_21
  article-title: The Uniform Data Set (UDS): Clinical and Cognitive Variables and Descriptive Data From Alzheimer Disease Centers
  publication-title: Alzheimer Dis. Assoc. Disord.
  doi: 10.1097/01.wad.0000213865.09806.92
– volume: 21
  start-page: 249
  year: 2007
  ident: ref_20
  article-title: The National Alzheimer’s Coordinating Center (NACC) Database: The Uniform Data Set
  publication-title: Alzheimer Dis. Assoc. Disord.
  doi: 10.1097/WAD.0b013e318142774e
– volume: 69
  start-page: 181
  year: 2011
  ident: ref_24
  article-title: Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.22248
– volume: 46
  start-page: 154
  year: 2009
  ident: ref_36
  article-title: Reducing between scanner differences in multi-center PET studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.057
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_26
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 33
  start-page: 4945
  year: 2022
  ident: ref_15
  article-title: Tensorizing GAN With High-Order Pooling for Alzheimer’s Disease Assessment
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2021.3063516
– ident: ref_6
  doi: 10.1145/3097983.3098118
– volume: 55
  start-page: 306
  year: 2004
  ident: ref_12
  article-title: Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20009
– ident: ref_16
  doi: 10.3390/s21217125
– volume: 12
  start-page: 571
  year: 1992
  ident: ref_22
  article-title: Measurement of Radiotracer Concentration in Brain Gray Matter Using Positron Emission Tomography: MRI-Based Correction for Partial Volume Effects
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.1992.81
– volume: 76
  start-page: 308
  year: 2008
  ident: ref_25
  article-title: Nonlinear Dimensionality Reduction by John A. Lee, Michel Verleysen
  publication-title: Int. Stat. Rev.
  doi: 10.1111/j.1751-5823.2008.00054_10.x
– volume: 52
  start-page: 199
  year: 2014
  ident: ref_5
  article-title: Limestone: High-throughput candidate phenotype generation via tensor factorization
  publication-title: J. Biomed. Informatics
  doi: 10.1016/j.jbi.2014.07.001
– volume: 67
  start-page: 181
  year: 2019
  ident: ref_13
  article-title: A Comparison of Partial Volume Correction Techniques for Measuring Change in Serial Amyloid PET SUVR
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-180749
SSID ssj0000913814
Score 2.21497
Snippet Alzheimer’s disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust...
Alzheimer's disease (AD) is the most common form of dementia. An increasing number of studies have confirmed epigenetic changes in AD. Consequently, a robust...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 273
SubjectTerms Alzheimer's disease
Artificial intelligence
Brain research
Cognitive ability
Computational neuroscience
data-driven AD phenotyping
Datasets
Dementia
Dementia disorders
Discriminant analysis
Embedding
Environmental effects
Epigenetics
Magnetic resonance imaging
manifold learning
Methods
Neurodegenerative diseases
Neuroimaging
Partial Volume Correction (PVC)
Patients
PET
Phenotypes
Phenotyping
Physiological aspects
Positron emission tomography
Software packages
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagvcAB8U-gICMhcYoax47jnNC2u1WF1GqFWtRbZDt2d6UlWbLbA5x4BY68Hk_CTOJdNgLBNf6J7RnPeDwznwl5I1jFC-1lbJXxsTC5j02RmziRlleVEpYJzHc-O5enl-L9VXYVLtxWIaxyIxM7QV01Fu_ID9McocwylRTvlp9jfDUKvavhCY3bZB9EsAI-3z-anE8_bG9ZEPVSMdHnzHGw7w_7rPbOa70C1Ye2Px_opA66_08BvaOhhtGTO-ro5D65F86RdNQT_gG55eqH5O4OuuAj8n2s1zoetyjP6HTm6mb9BbOjaOPpaPF15uafXPvz248VHfdeGooJZS2dLBGhE5Mb6XGDHm3kTNrFFtApchr892Mn1KC87SRmU2On08kFDXGJVNcVPdP13DeLigYQ1-vH5PJkcnF8GocXGGKbyWIdSy6zNAc1WjBnEdgHDOnMelhSm6Y-cWA7Gau00zK1mcu58CKzqVFWZJnnsuBPyF7d1O4Zoa4yMuGGFfBdYEZwIqwz3ltfGWW0jgjf0KC0AZ4cX8lYlGCmIOXKv1EuIvG21bKH5_hP_SMk77Yugmt3H5r2ugx7tTSp4wbOLd44LxRPdJY6VjhmnJDWGujkLTJHiSIAhmh1yGSAiSKYVjmCVWKwGLKIyMGgJmxdOyzesFcZRMeq_M3oEXm9LcaWGA5Xu-YG6yh0sYK1GZGnPTdup8QlDFmxJCL5gE8Hcx6W1PNZByxeoC-fJc__PawX5A6sJUbhxaw4IHvr9sa9hJPZ2rwK2-8XUMo_1w
  priority: 102
  providerName: ProQuest
Title Data-Driven Phenotyping of Alzheimer’s Disease under Epigenetic Conditions Using Partial Volume Correction of PET Studies and Manifold Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/36830810
https://www.proquest.com/docview/2779435809
https://www.proquest.com/docview/2780073548
https://pubmed.ncbi.nlm.nih.gov/PMC9953610
https://doaj.org/article/b2e3b661fbef4830a52e19e1be46ccb3
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQucAB8U-gVEZC4hQ1jh0nPm67W1VIrVaoRb1FtmOzKy1JlU0PcOIVOPJ6PAkzTrpKBFIvXD12Yo_HMx7NzGdC3gtWcaW9jG1hfCxM7mOjchMn0vKqKoRlAuudz87l6aX4eJVdjZ76wpywHh64Z9yhSR03YES8cV4UPNFZ6phyzDghrTUB5zNRyciZCjpYMTBFoq-V4-DXH_bV7CFavQWThz4_n9iiANn_t2IeWaZp1uTIDJ08Jo-G-yOd9fN-Qu65-il5OEIVfEZ-znWn43mLeowuV65uum9YFUUbT2eb7yu3_ura3z9-bem8j85QLCRr6eIakTmxqJEeNxjJRomkIaeALpFR8N_PQZkBvQ2asqnxo8vFBR3yEamuK3qm67VvNhUdwFu_PCeXJ4uL49N4eHkhtplUXSy5zNIczKdiziKgDzjQmfXAUpumPnHgMxlbaKdlajOXc-FFZlNTWJFlnkvFX5C9uqndK0JdZWTCDVPQLrASOBHWGe-tr0xhtI4Iv92D0g6w5Pg6xqYE9wR3rvzXzkUk3o267mE57uh_hNu764ug2qEBRK0cRK28S9Qi8gGFo8SjD1O0eqhggIUiiFY5Ay4xYIZUEdmf9IQja6fkW_EqB5WxLdMcsfqyIgHyux0ZR2IaXO2aG-xTYGgVvMyIvOylcbckLmHKBUsikk_kdLLmKaVerwKguMIYPkte_w8mvSEPgOOYoxcztU_2uvbGvYV7W2cOyP2jxfny00E4qn8AzZdJlw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELem7QF4QPwnMMBIIJ6ixbHjJA8IdWunjq1VhTq0txA79lqpJCXthMYTX4FHvgQfik_CXZKWRiB42mvsJLbvfOfz3f2OkBeCZTxOrXR1pKwrVGhdFYfK9aTmWRYJzQTmOw-Gsn8q3p4FZ1vkxyoXBsMqVzKxEtRZofGOfM8PEcosiLz4zfyTi1Wj0Lu6KqFRs8WxufwMJtvi9VEX6PvS9w9744O-21QVcHUg46UruQz8EFRDzIxGsBowDgNtQXNp37eeAXtA6Sg1qfR1YEIurAi0ryItgsByieBLIPJ3BGa0bpOd_d5w9G59q4MomxETdY4e57G3V2fRV17yBahavGvgLR1YlQr4UyFsaMR2tOaG-ju8RW4251baqRntNtky-R1yYwPN8C751k2XqdstUX7S0cTkxfISs7FoYWln9mViph9N-fPr9wXt1l4higlsJe3NEREUkynpQYEedNwJtIploCPkbPjv-0qIQntZSegix4-OemPaxEHSNM_oIM2ntphltAGNPb9HTq-ENvfJdl7k5iGhJlPS44rF8FxgBrIntFHWapupSKWpQ_iKBolu4NCxKscsAbMIKZf8jXIOcddvzWs4kP_030fyrvsimHf1oCjPk0Y2JMo3XME5ySpjRcS9NPANiw1TRkitFXzkFTJHgiIHhqjTJnMCJorgXUkHVonBYsjYIbutniAqdLt5xV5JI6oWye-N5ZDn62Z8E8PvclNcYJ8IXbpg3TrkQc2N6ylxCUOOmOeQsMWnrTm3W_LppAIyjzF2gHmP_j2sZ-Rafzw4SU6OhsePyXVYV4wAdFm8S7aX5YV5AqfCpXrabEVKPlz17v8F1tZ7_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemTkLwgPi_wAAjgXiKGseOkzwg1K2tNsaqCm1obyF27LVSSUraCY0nvgKPfBU-Dp-EuyQtjUDwtNfYSWzf-c7nu_sdIc8Fy3icWunqSFlXqNC6Kg6V60nNsywSmgnMdz4eyYNT8eYsONsiP1a5MBhWuZKJlaDOCo135F0_RCizIPLirm3CIsb94ev5JxcrSKGndVVOo2aRI3P5Gcy3xavDPtD6he8PByf7B25TYcDVgYyXruQy8ENQEzEzGoFrwFAMtAUtpn3fegZsA6Wj1KTS14EJubAi0L6KtAgCyyUCMYH43w5BK4oO2d4bjMbv1jc8iLgZMVHn63Eee906o77ymC9A7eK9A2_pw6pswJ_KYUM7tiM3N1Th8Ba52Zxhaa9muttky-R3yI0NZMO75Fs_XaZuv0RZSscTkxfLS8zMooWlvdmXiZl-NOXPr98XtF97iCgms5V0MEd0UEyspPsFetNxV9AqroGOkcvhv-8rgQrtZSWtixw_Oh6c0CYmkqZ5Ro_TfGqLWUYbANnze-T0Smhzn3TyIjc7hJpMSY8rFsNzgdnIntBGWattpiKVpg7hKxokuoFGxwodswRMJKRc8jfKOcRdvzWvoUH-038Pybvui8De1YOiPE8aOZEo33AFZyarjBUR99LANyw2TBkhtVbwkZfIHAmKHxiiTpssCpgoAnklPVglBoshY4fstnqC2NDt5hV7JY3YWiS_N5lDnq2b8U0MxctNcYF9InTvgqXrkAc1N66nxCUMOWKeQ8IWn7bm3G7Jp5MK1DzGOALmPfz3sJ6Sa7Drk7eHo6NH5DosKwYDuizeJZ1leWEewwFxqZ40O5GSD1e9-X8BKNuAKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Phenotyping+of+Alzheimer%E2%80%99s+Disease+under+Epigenetic+Conditions+Using+Partial+Volume+Correction+of+PET+Studies+and+Manifold+Learning&rft.jtitle=Biomedicines&rft.au=Silvia+Campanioni&rft.au=Jos%C3%A9+A.+Gonz%C3%A1lez-N%C3%B3voa&rft.au=Laura+Busto&rft.au=Roberto+Carlos+Ag%C3%ADs-Balboa&rft.date=2023-01-19&rft.pub=MDPI+AG&rft.eissn=2227-9059&rft.volume=11&rft.issue=2&rft.spage=273&rft_id=info:doi/10.3390%2Fbiomedicines11020273&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b2e3b661fbef4830a52e19e1be46ccb3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9059&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9059&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9059&client=summon