Hybridized Extreme Learning Machine Model with Salp Swarm Algorithm: A Novel Predictive Model for Hydrological Application

The capability of the extreme learning machine (ELM) model in modeling stochastic, nonlinear, and complex hydrological engineering problems has been proven remarkably. The classical ELM training algorithm is based on a nontuned and random procedure that might not be efficient in convergence of excel...

Full description

Saved in:
Bibliographic Details
Published inComplexity (New York, N.Y.) Vol. 2020; no. 2020; pp. 1 - 14
Main Authors Yaseen, Zaher Mundher, Al-Ansari, Nadhir, Faris, Hossam
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The capability of the extreme learning machine (ELM) model in modeling stochastic, nonlinear, and complex hydrological engineering problems has been proven remarkably. The classical ELM training algorithm is based on a nontuned and random procedure that might not be efficient in convergence of excellent performance or possible entrapment in the local minima problem. This current study investigates the integration of a newly explored metaheuristic algorithm (i.e., Salp Swarm Algorithm (SSA)) with the ELM model to forecast monthly river flow. Twenty years of river flow data time series of the Tigris river at the Baghdad station, Iraq, is used as a case study. Different input combinations are applied for constructing the predictive models based on antecedent values. The results are evaluated based on several statistical measures and graphical presentations. The river flow forecast accuracy of SSA-ELM outperformed the classical ELM and other artificial intelligence (AI) models. Over the testing phase, the proposed SSA-ELM model yielded a satisfactory enhancement in the level accuracies (8.4 and 13.1 percentage of augmentation for RMSE and MAE, respectively) against the classical ELM model. In summary, the study ascertains that the SSA-ELM model is a qualified data-intelligent model for monthly river flow prediction at the Tigris river, Iraq.
AbstractList The capability of the extreme learning machine (ELM) model in modeling stochastic, nonlinear, and complex hydrological engineering problems has been proven remarkably. The classical ELM training algorithm is based on a nontuned and random procedure that might not be efficient in convergence of excellent performance or possible entrapment in the local minima problem. This current study investigates the integration of a newly explored metaheuristic algorithm (i.e., Salp Swarm Algorithm (SSA)) with the ELM model to forecast monthly river flow. Twenty years of river flow data time series of the Tigris river at the Baghdad station, Iraq, is used as a case study. Different input combinations are applied for constructing the predictive models based on antecedent values. The results are evaluated based on several statistical measures and graphical presentations. The river flow forecast accuracy of SSA-ELM outperformed the classical ELM and other artificial intelligence (AI) models. Over the testing phase, the proposed SSA-ELM model yielded a satisfactory enhancement in the level accuracies (8.4 and 13.1 percentage of augmentation for RMSE and MAE, respectively) against the classical ELM model. In summary, the study ascertains that the SSA-ELM model is a qualified data-intelligent model for monthly river flow prediction at the Tigris river, Iraq.
Audience Academic
Author Yaseen, Zaher Mundher
Faris, Hossam
Al-Ansari, Nadhir
Author_xml – sequence: 1
  fullname: Yaseen, Zaher Mundher
– sequence: 2
  fullname: Al-Ansari, Nadhir
– sequence: 3
  fullname: Faris, Hossam
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77814$$DView record from Swedish Publication Index
BookMark eNqVks1v1DAQxSNUJNrCjTOyxBG29Wccc4tKYSttAanA1XLsydZVEqdOtsv2r8e7aVkhgRDywaOn33vyjOcoO-hCB1n2kuATQoQ4pZji04LinHLxJDskWKkZFjQ_2NYyn1FZyGfZ0TDcYIxVzuRhdj_fVNE7fw8Onf8YI7SAFmBi57slujT22neALoODBq39eI2uTNOjq7WJLSqbZYhJa9-hEn0Kdwn5EsF5O_q7R08dIppvXAxNWHprGlT2fZOK0Yfuefa0Ns0ALx7u4-zbh_OvZ_PZ4vPHi7NyMbMiV-OMK0bAWZpXRGKTEwZQUGacsFaymoOS1tWG8MIIgZOaV9LmqTdQTlkJgh1nF1OuC-ZG99G3Jm50MF7vhBCX2sTR2wY0ge0IKShBHWfWmYpUQIlilbKYc5Oy3k5Zwxr6VfVb2nv_vdylNeNKS1kQnvDXE97HcLuCYdQ3YRW71K2mLFcUc8nwnlqa9Abf1WGMxrZ-sLosaOpaCL7NOvkDlY6D1tu0CLVP-v8bcsoUlZLRZKCTwcYwDBFqbf24-6pk9I0mWG_XTG9npB_WbD-RX6bHmfwFfzPhabGcWft_0a8mGhIDtdnThHOSgJ8hwOmy
CitedBy_id crossref_primary_10_1016_j_asoc_2022_108416
crossref_primary_10_1007_s40940_022_00209_6
crossref_primary_10_3390_math10193566
crossref_primary_10_1007_s00477_022_02235_w
crossref_primary_10_1016_j_pce_2020_102899
crossref_primary_10_1007_s13201_023_01913_6
crossref_primary_10_1016_j_engappai_2023_107559
crossref_primary_10_1080_19942060_2021_1942990
crossref_primary_10_1111_geoj_12478
crossref_primary_10_1155_2021_6611848
crossref_primary_10_1016_j_energy_2022_123773
crossref_primary_10_1155_2021_3511375
crossref_primary_10_3390_su14042250
crossref_primary_10_1007_s12518_020_00342_3
crossref_primary_10_1016_j_jhydrol_2021_126501
crossref_primary_10_1155_2022_4707637
crossref_primary_10_3390_rs14112656
crossref_primary_10_1016_j_seppur_2023_124689
crossref_primary_10_5004_dwt_2021_26903
crossref_primary_10_1051_e3sconf_202449702011
crossref_primary_10_1007_s11356_021_16301_3
crossref_primary_10_1007_s40996_022_00906_w
crossref_primary_10_3389_fenvs_2022_929707
crossref_primary_10_1038_s41598_021_96751_4
crossref_primary_10_1155_2020_6371085
crossref_primary_10_1016_j_jclepro_2020_124868
crossref_primary_10_1016_j_saa_2023_122423
crossref_primary_10_1155_2022_9193511
crossref_primary_10_1007_s11227_024_06916_x
crossref_primary_10_1007_s00170_023_10968_3
crossref_primary_10_3390_w14192972
crossref_primary_10_1007_s11227_022_04931_4
crossref_primary_10_1109_ACCESS_2022_3153038
crossref_primary_10_1155_2022_1648433
crossref_primary_10_1016_j_jhydrol_2020_124974
crossref_primary_10_1155_2020_8844367
crossref_primary_10_1007_s00521_021_06362_3
crossref_primary_10_1155_2021_5586913
crossref_primary_10_3390_pr9071166
crossref_primary_10_3390_atmos14081281
crossref_primary_10_1155_2021_6647829
crossref_primary_10_1016_j_chemosphere_2024_141329
crossref_primary_10_1155_2022_7183700
crossref_primary_10_32604_cmc_2022_023418
crossref_primary_10_1007_s11053_021_09914_5
Cites_doi 10.1623/hysj.49.6.1025.55720
10.1007/s00521-016-2560-9
10.1007/s12665-015-5059-2
10.1007/s11063-015-9409-6
10.1109/access.2019.2937021
10.1111/j.1752-1688.2010.00502.x
10.3390/hydrology5030047
10.1016/j.neucom.2005.12.126
10.1016/j.geoderma.2018.05.030
10.1155/2018/8135193
10.1007/s00521-016-2763-0
10.1016/j.advengsoft.2017.07.002
10.1007/s11269-016-1408-5
10.1016/j.jhydrol.2018.10.020
10.1109/72.329697
10.1016/j.neunet.2014.10.001
10.1007/s00704-017-2336-x
10.1016/j.jhydrol.2015.10.038
10.1016/j.asoc.2017.05.060
10.1016/j.jhydrol.2017.09.007
10.1007/s00477-017-1456-2
10.1016/j.eswa.2018.03.024
10.1007/s11356-017-9283-z
10.1007/s12145-013-0141-3
10.1007/s11600-019-00330-1
10.1016/j.envsoft.2015.08.002
10.1007/s40710-016-0172-0
10.14419/ijet.v7i3.14742
10.1007/s00477-019-01651-9
10.1007/s11269-012-0188-9
10.1016/j.measurement.2016.06.042
10.1007/s00521-019-04575-1
10.1007/s10661-016-5094-9
10.4236/jwarp.2014.612102
10.1142/S0129065714300095
10.1007/s12205-018-0128-1
10.1145/1656274.1656278
10.1016/j.jhydrol.2018.11.069
10.3354/cr01268
10.1016/j.engstruct.2019.05.048
10.1002/hyp.1096
10.1155/2019/8160659
10.1016/j.jhydrol.2016.09.035
10.17265/1934-7359/2014.06.014
10.1007/s12665-018-7376-8
10.1007/s00521‐017‐3112‐7
10.1007/s10333-009-0192-8
10.1007/s00477-017-1474-0
10.1016/j.jhydrol.2016.03.017
10.2166/nh.2017.283
10.1029/2007WR005956
ContentType Journal Article
Copyright Copyright © 2020 Zaher Mundher Yaseen et al.
COPYRIGHT 2020 John Wiley & Sons, Inc.
Copyright © 2020 Zaher Mundher Yaseen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2020 Zaher Mundher Yaseen et al.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: Copyright © 2020 Zaher Mundher Yaseen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
DBID ADJCN
AHFXO
AHMDM
RHU
RHW
RHX
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.1155/2020/8206245
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
قاعدة العلوم الإنسانية - e-Marefa Humanities
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Proquest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep



CrossRef


Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-0526
Editor Vega, Jesus
Editor_xml – sequence: 1
  givenname: Jesus
  surname: Vega
  fullname: Vega, Jesus
EndPage 14
ExternalDocumentID oai_doaj_org_article_1e20202e952d43cdab1be2193b9c044a
oai_DiVA_org_ltu_77814
A821705544
A623927732
10_1155_2020_8206245
1144145
GeographicLocations Iraq
GeographicLocations_xml – name: Iraq
GroupedDBID .3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3R3
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAJEY
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACBWZ
ACCFJ
ACSCC
ACXQS
ADBBV
ADIZJ
ADJCN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AFBPY
AFKRA
AFPKN
AFZJQ
AHFXO
AHMDM
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
DWQXO
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
IAO
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LH4
LP6
LP7
LW6
M2O
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
Q.N
Q11
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WIH
WQJ
WRC
WYUIH
XBAML
XG1
XPP
XSW
XV2
~IA
~WT
RHU
RHW
AAYXX
ACCMX
AMVHM
CITATION
ICD
PHGZM
PHGZT
PMFND
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
AANHP
ACRPL
ACYXJ
ADNMO
ADTPV
AGQPQ
AOWAS
D8T
ZZAVC
PUEGO
ID FETCH-LOGICAL-c569t-4931edc26b170a613ee823ad5cc73f4e97cdfa148a550d5c6b7c6637e9d9c7e53
IEDL.DBID DOA
ISSN 1076-2787
1099-0526
IngestDate Wed Aug 27 01:28:42 EDT 2025
Thu Aug 21 06:26:08 EDT 2025
Fri Jul 25 20:58:46 EDT 2025
Tue Jun 17 21:58:36 EDT 2025
Tue Jun 10 21:01:34 EDT 2025
Tue Jun 10 21:01:38 EDT 2025
Tue Jul 01 02:01:59 EDT 2025
Thu Apr 24 22:55:48 EDT 2025
Sun Jun 02 18:54:58 EDT 2024
Thu Nov 28 18:43:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-4931edc26b170a613ee823ad5cc73f4e97cdfa148a550d5c6b7c6637e9d9c7e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3647-7137
0000-0002-6790-2653
OpenAccessLink https://doaj.org/article/1e20202e952d43cdab1be2193b9c044a
PQID 2369204730
PQPubID 2029978
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_1e20202e952d43cdab1be2193b9c044a
swepub_primary_oai_DiVA_org_ltu_77814
proquest_journals_2369204730
gale_infotracmisc_A821705544
gale_infotracacademiconefile_A821705544
gale_infotracacademiconefile_A623927732
crossref_citationtrail_10_1155_2020_8206245
crossref_primary_10_1155_2020_8206245
hindawi_primary_10_1155_2020_8206245
emarefa_primary_1144145
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 44
45
46
47
48
49
(41) 2010
50
51
52
53
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
7
(6) 2006; 30
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
42
43
References_xml – year: 2010
  ident: 41
– ident: 43
  doi: 10.1623/hysj.49.6.1025.55720
– ident: 46
  doi: 10.1007/s00521-016-2560-9
– ident: 3
  doi: 10.1007/s12665-015-5059-2
– ident: 10
  doi: 10.1007/s11063-015-9409-6
– ident: 53
  doi: 10.1109/access.2019.2937021
– ident: 7
  doi: 10.1111/j.1752-1688.2010.00502.x
– ident: 17
  doi: 10.3390/hydrology5030047
– ident: 20
  doi: 10.1016/j.neucom.2005.12.126
– ident: 35
  doi: 10.1016/j.geoderma.2018.05.030
– ident: 15
  doi: 10.1155/2018/8135193
– ident: 25
  doi: 10.1007/s00521-016-2763-0
– ident: 32
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: 11
  doi: 10.1007/s11269-016-1408-5
– ident: 29
  doi: 10.1016/j.jhydrol.2018.10.020
– ident: 31
  doi: 10.1109/72.329697
– ident: 34
  doi: 10.1016/j.neunet.2014.10.001
– ident: 40
  doi: 10.1007/s00704-017-2336-x
– ident: 9
  doi: 10.1016/j.jhydrol.2015.10.038
– ident: 30
  doi: 10.1016/j.asoc.2017.05.060
– ident: 48
  doi: 10.1016/j.jhydrol.2017.09.007
– ident: 1
  doi: 10.1007/s00477-017-1456-2
– ident: 36
  doi: 10.1016/j.eswa.2018.03.024
– ident: 27
  doi: 10.1007/s11356-017-9283-z
– ident: 12
  doi: 10.1007/s12145-013-0141-3
– ident: 18
  doi: 10.1007/s11600-019-00330-1
– ident: 26
  doi: 10.1016/j.envsoft.2015.08.002
– ident: 28
  doi: 10.1007/s40710-016-0172-0
– ident: 51
  doi: 10.14419/ijet.v7i3.14742
– ident: 2
  doi: 10.1007/s00477-019-01651-9
– ident: 8
  doi: 10.1007/s11269-012-0188-9
– ident: 23
  doi: 10.1016/j.measurement.2016.06.042
– ident: 52
  doi: 10.1007/s00521-019-04575-1
– ident: 13
  doi: 10.1007/s10661-016-5094-9
– ident: 39
  doi: 10.4236/jwarp.2014.612102
– ident: 21
  doi: 10.1142/S0129065714300095
– ident: 16
  doi: 10.1007/s12205-018-0128-1
– ident: 45
  doi: 10.1145/1656274.1656278
– volume: 30
  start-page: 567
  year: 2006
  ident: 6
  publication-title: Iranian Journal of Science and Technology, Transaction B: Engineering
– ident: 14
  doi: 10.1016/j.jhydrol.2018.11.069
– ident: 38
  doi: 10.3354/cr01268
– ident: 44
  doi: 10.1016/j.engstruct.2019.05.048
– ident: 42
  doi: 10.1002/hyp.1096
– ident: 19
  doi: 10.1155/2019/8160659
– ident: 33
  doi: 10.1016/j.jhydrol.2016.09.035
– ident: 37
  doi: 10.17265/1934-7359/2014.06.014
– ident: 50
  doi: 10.1007/s12665-018-7376-8
– ident: 49
  doi: 10.1007/s00521‐017‐3112‐7
– ident: 5
  doi: 10.1007/s10333-009-0192-8
– ident: 47
  doi: 10.1007/s00477-017-1474-0
– ident: 22
  doi: 10.1016/j.jhydrol.2016.03.017
– ident: 24
  doi: 10.2166/nh.2017.283
– ident: 4
  doi: 10.1029/2007WR005956
SSID ssj0009637
Score 2.4173517
Snippet The capability of the extreme learning machine (ELM) model in modeling stochastic, nonlinear, and complex hydrological engineering problems has been proven...
SourceID doaj
swepub
proquest
gale
crossref
hindawi
emarefa
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
alp Swarm Algorithm
Artificial intelligence
Artificial neural networks
Case studies
Entrapment
Forecasts and trends
Geoteknik
Heuristic methods
Hydrological Application
Hydrology
Learning Machine
Machine learning
Mathematical models
Neural networks
Optimization algorithms
Prediction models
Rain
Researchers
River flow
Soil Mechanics
SSA-ELM model
Stream flow
Tigris River
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYJCR4QGz8KivID0OAUETi2EnMW4BNEVInpDHUN8t2nFGpa6c029j-eu5ctyUgNB7jnJPY9935zo4_E7Kvc4grNBiSSRNIUETTRDrJWJRIG6dGNinzxPOjo6w64V_GYhxIkhZ_L-HDaIfpefweacYZF1tkCwCGSXk13nDrZp4aExKZLGIAwNX_7X_U7Y08nqDf78LVcK3XDvnuD0yFryb9gPN3ElE_8Bw-JA9CxEjLpYp3yB032yX3R2u61cUu2QkWuqBvAo3020fkprrG3ViTG1fTg58dzgPSwKZ6Skf-H0pH8Si0KcXJWHqsp-f0-Eq3Z7Scns5bKDv7QEt6NL8Eka8truigbwx1INil1XXdrpwnLTdL4Y_JyeHBt09VFE5aiKzIZBdxmSautiwzSR5rGOGdK1iqa2FtnjbcydzWjYbMSUNCA6WZyS2EKrmTtbS5E-kTsj2bz9wzQgsjdJY1Wmpb8CQxRhfwFKkBEbaQTTwg71ZaUDbQkONpGFPl0xEhFOpMBZ0NyKu19PmSfuMfch9RoWsZJM32BQAkFWxQJQ6rMCcFq3lqa20S48BjAyZtzLkekKcBDpt3Yb6Jj3-N8FBo9PCxVoe9C9BkpM9SJQSRkuV5ym6VLJgnMOJ8QIY9STBr27u9H6B4S8OHK5yq4H0WiqWZZDEH5w39t8Rur2c-T76Xvmem3YXKkfTs-f-9bY_cw8vlFNSQbHfthXsBQVlnXnqT_AU8TCtD
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdgExI8IDZgFArywxAgFC1x4iTmBWXQqUJqNTGG9mbZjtNV6tqSZoztr-fOddr1AfaY5OLEvg_fne3fEbKvMvArFCiSjiMIUHhVBSpKWRAJE8ZaVDFzwPODYdo_Tb6d8TOfcFv4bZWtTXSGupwZzJEfsDgVLExAID_PfwVYNQpXV30JjftkG0xwDsHX9mFvePx9DbubOtRMiHHSgIFstlvfOceoPzxA9HKGR5luTUoOu98d0FVwrVa2-sE5RslX401f9Da-qJuTjp6Qx96ZpMWS-zvknp3ukkeDFRLrYpfseOVd0PceYfrDU3LTv8aDWuMbW9LenwZThNQDrY7owG2vtBSrpE0o5mnpiZrM6cmVqi9oMRnBqDTnF59oQYez30ByXONiD5pN_w74wbR_XdatXaXFepX8GTk96v340g98EYbA8FQ0QSLiyJaGpTrKQgWTv7U5i1XJjcniKrEiM2WlIKhSEOvA3VRnBryYzIpSmMzy-DnZms6m9gWhueYqTSsllMmTKNJa5dCKUCAsJhdV2CEfWy5I4xHKsVDGRLpIhXOJPJOeZx3ydkU9XyJz_IPuEBm6okE8bXdjVo-kV08ZWXyFWcFZmcSmVDrSFow5iKsJk0R1yJ4Xh_W3MBTF5t-heEi0B_CzRvljDdBlRNaSBfiXgmVZzO6kzJnDNkqSDuluUILGm43H-14U7-h4t5VT6Q3TQq7VCMZvKbsbI_N1_LNwIzNpLmWGeGgv_9_MK_IQP7rMSnXJVlNf2tfgpzX6jVfGvwErNu0
  priority: 102
  providerName: ProQuest
Title Hybridized Extreme Learning Machine Model with Salp Swarm Algorithm: A Novel Predictive Model for Hydrological Application
URI https://search.emarefa.net/detail/BIM-1144145
https://dx.doi.org/10.1155/2020/8206245
https://www.proquest.com/docview/2369204730
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77814
https://doaj.org/article/1e20202e952d43cdab1be2193b9c044a
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgCAkOExu_OkrlwxAgFC1x4iTmlkFLhNRq2hjqzXIcZ1TK2qntGNtfz3uO07UH1AuXSnVfneT58_P7HPszIYcqgbxCQUcqwgAICq8qTwUx8wKh_bAQVcis8PxwFOfn0fcxH68d9YVrwhp54MZxR4EBeu4zIzgro1CXqggKA90MKtJ-FNnUCMa8lky1cruxVcsEbhN7DDDZLnnnHNm-f4Sq5Qy3MK0NRlaz327MVfBdrWL041_Ijm8mmznouq6oHYsGz8iuSyJp1tz8Hnlgpvvk6XClwLrYJ3uu0y7oB6cs_fE5uctvcYPW5M6UtP9niVOD1AmsXtChXVZpKJ6OVlOcn6Vnqr6iZzdqfkmz-mI2h7LLzzSjo9lvMDmZ40seDJfuP5D_0vy2nLfxlGb3b8dfkPNB_8eX3HOHL3iax2LpRSIMTKlZXASJr2DQNyZloSq51klYRUYkuqwUkCkFHAdK4yLRkL0kRpRCJ4aHL8nOdDY1rwlNC67iuFJC6TQKgqJQKdQiFIBEp6LyO-RT2wpSO2VyPCCjlpahcC6xzaRrsw55t7K-ahQ5_mF3jA26skEdbVsA6JIOXXIbujrklYPD_bWQgmL17xEeEuMA3KxWbjsDPDIqaskM8krBkiRkWy1TZjWNoqhDuhuW0NP1xs-HDopbHrzb4lS6gLSQLIwF8yOI5-C_Brsbnvk6-ZlZz9TLa5mgDtrB__DfG_IEDZo5qy7ZWc6vzVvI4pZFjzxMB9965NFxf3Ry2rPdFz5P8_FfapBBgw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIQQ8IDZuhQJ-2AQIRUucq5EQCmylY2uFtA3tzTiO01XK2tJmlO5H8Rs5x3Xa9QH2tMemJ07ic7d9vkPIlowhrpCgSJnvQYISFoUjvYg5Hleun_HCZwZ4vtON2ifB19PwdI38qWth8FhlbRONoc6HCtfId5gfceYGIJAfRz8d7BqFu6t1C425WBzo2RRStsmH_V3g7zZjrb3jz23HdhVwVBjxygm47-lcsSjzYleCN9M6Yb7MQ6Vivwg0j1VeSMgSJATvcDXKYgVuOdY85yrW2CUCTP6twPc5alTS-rIE-Y0MRidkVJHDQBPqg_ZhiGsM7g5ipTMsnLriAk2nAFMOLOG3XHiG22eYk0_7q5HvVTRT4wFbD8h9G7rSdC5rG2RNDzbJvc4C93WySTasqZjQNxbP-u1DctmeYVlY_1LndO93hQuS1MK69mjHHObUFHuylRRXhemRLEf0aCrH5zQte8CD6uz8PU1pd_gLSL6NcWsJjbS9B6Ju2p7l49qK03S5J_-InNwIcx6T9cFwoJ8SmmShjKJCcqmSwPOyTCYwCpcgmirhhdsg72ouCGXx0LEtRylMXhSGAnkmLM8aZHtBPZrjgPyD7hMydEGD6N3mwnDcE9YYCE_jLUzzkOWBr3KZeZkG1wHKodwgkA3yxIrD8lmY-OLwr1E8BFofeFklbREFfDLieIkUolnO4thn11ImzCApBUGDNFcowb6olb-3rChe8-HNWk6FNYMTsVRamL-57K7MzG7_e2pmpqwuRIzoa8_-P8wrcqd93DkUh_vdg-fkLr7AfD2sSdar8YV-ARFilb00aknJj5u2A38Bm6ZzHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybridized+Extreme+Learning+Machine+Model+with+Salp+Swarm+Algorithm%3A+A+Novel+Predictive+Model+for+Hydrological+Application&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Zaher+Mundher+Yaseen&rft.au=Hossam+Faris&rft.au=Nadhir+Al-Ansari&rft.date=2020&rft.pub=Wiley&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2020&rft_id=info:doi/10.1155%2F2020%2F8206245&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1e20202e952d43cdab1be2193b9c044a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon