Hybridized Extreme Learning Machine Model with Salp Swarm Algorithm: A Novel Predictive Model for Hydrological Application
The capability of the extreme learning machine (ELM) model in modeling stochastic, nonlinear, and complex hydrological engineering problems has been proven remarkably. The classical ELM training algorithm is based on a nontuned and random procedure that might not be efficient in convergence of excel...
Saved in:
Published in | Complexity (New York, N.Y.) Vol. 2020; no. 2020; pp. 1 - 14 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The capability of the extreme learning machine (ELM) model in modeling stochastic, nonlinear, and complex hydrological engineering problems has been proven remarkably. The classical ELM training algorithm is based on a nontuned and random procedure that might not be efficient in convergence of excellent performance or possible entrapment in the local minima problem. This current study investigates the integration of a newly explored metaheuristic algorithm (i.e., Salp Swarm Algorithm (SSA)) with the ELM model to forecast monthly river flow. Twenty years of river flow data time series of the Tigris river at the Baghdad station, Iraq, is used as a case study. Different input combinations are applied for constructing the predictive models based on antecedent values. The results are evaluated based on several statistical measures and graphical presentations. The river flow forecast accuracy of SSA-ELM outperformed the classical ELM and other artificial intelligence (AI) models. Over the testing phase, the proposed SSA-ELM model yielded a satisfactory enhancement in the level accuracies (8.4 and 13.1 percentage of augmentation for RMSE and MAE, respectively) against the classical ELM model. In summary, the study ascertains that the SSA-ELM model is a qualified data-intelligent model for monthly river flow prediction at the Tigris river, Iraq. |
---|---|
AbstractList | The capability of the extreme learning machine (ELM) model in modeling stochastic, nonlinear, and complex hydrological engineering problems has been proven remarkably. The classical ELM training algorithm is based on a nontuned and random procedure that might not be efficient in convergence of excellent performance or possible entrapment in the local minima problem. This current study investigates the integration of a newly explored metaheuristic algorithm (i.e., Salp Swarm Algorithm (SSA)) with the ELM model to forecast monthly river flow. Twenty years of river flow data time series of the Tigris river at the Baghdad station, Iraq, is used as a case study. Different input combinations are applied for constructing the predictive models based on antecedent values. The results are evaluated based on several statistical measures and graphical presentations. The river flow forecast accuracy of SSA-ELM outperformed the classical ELM and other artificial intelligence (AI) models. Over the testing phase, the proposed SSA-ELM model yielded a satisfactory enhancement in the level accuracies (8.4 and 13.1 percentage of augmentation for RMSE and MAE, respectively) against the classical ELM model. In summary, the study ascertains that the SSA-ELM model is a qualified data-intelligent model for monthly river flow prediction at the Tigris river, Iraq. |
Audience | Academic |
Author | Yaseen, Zaher Mundher Faris, Hossam Al-Ansari, Nadhir |
Author_xml | – sequence: 1 fullname: Yaseen, Zaher Mundher – sequence: 2 fullname: Al-Ansari, Nadhir – sequence: 3 fullname: Faris, Hossam |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77814$$DView record from Swedish Publication Index |
BookMark | eNqVks1v1DAQxSNUJNrCjTOyxBG29Wccc4tKYSttAanA1XLsydZVEqdOtsv2r8e7aVkhgRDywaOn33vyjOcoO-hCB1n2kuATQoQ4pZji04LinHLxJDskWKkZFjQ_2NYyn1FZyGfZ0TDcYIxVzuRhdj_fVNE7fw8Onf8YI7SAFmBi57slujT22neALoODBq39eI2uTNOjq7WJLSqbZYhJa9-hEn0Kdwn5EsF5O_q7R08dIppvXAxNWHprGlT2fZOK0Yfuefa0Ns0ALx7u4-zbh_OvZ_PZ4vPHi7NyMbMiV-OMK0bAWZpXRGKTEwZQUGacsFaymoOS1tWG8MIIgZOaV9LmqTdQTlkJgh1nF1OuC-ZG99G3Jm50MF7vhBCX2sTR2wY0ge0IKShBHWfWmYpUQIlilbKYc5Oy3k5Zwxr6VfVb2nv_vdylNeNKS1kQnvDXE97HcLuCYdQ3YRW71K2mLFcUc8nwnlqa9Abf1WGMxrZ-sLosaOpaCL7NOvkDlY6D1tu0CLVP-v8bcsoUlZLRZKCTwcYwDBFqbf24-6pk9I0mWG_XTG9npB_WbD-RX6bHmfwFfzPhabGcWft_0a8mGhIDtdnThHOSgJ8hwOmy |
CitedBy_id | crossref_primary_10_1016_j_asoc_2022_108416 crossref_primary_10_1007_s40940_022_00209_6 crossref_primary_10_3390_math10193566 crossref_primary_10_1007_s00477_022_02235_w crossref_primary_10_1016_j_pce_2020_102899 crossref_primary_10_1007_s13201_023_01913_6 crossref_primary_10_1016_j_engappai_2023_107559 crossref_primary_10_1080_19942060_2021_1942990 crossref_primary_10_1111_geoj_12478 crossref_primary_10_1155_2021_6611848 crossref_primary_10_1016_j_energy_2022_123773 crossref_primary_10_1155_2021_3511375 crossref_primary_10_3390_su14042250 crossref_primary_10_1007_s12518_020_00342_3 crossref_primary_10_1016_j_jhydrol_2021_126501 crossref_primary_10_1155_2022_4707637 crossref_primary_10_3390_rs14112656 crossref_primary_10_1016_j_seppur_2023_124689 crossref_primary_10_5004_dwt_2021_26903 crossref_primary_10_1051_e3sconf_202449702011 crossref_primary_10_1007_s11356_021_16301_3 crossref_primary_10_1007_s40996_022_00906_w crossref_primary_10_3389_fenvs_2022_929707 crossref_primary_10_1038_s41598_021_96751_4 crossref_primary_10_1155_2020_6371085 crossref_primary_10_1016_j_jclepro_2020_124868 crossref_primary_10_1016_j_saa_2023_122423 crossref_primary_10_1155_2022_9193511 crossref_primary_10_1007_s11227_024_06916_x crossref_primary_10_1007_s00170_023_10968_3 crossref_primary_10_3390_w14192972 crossref_primary_10_1007_s11227_022_04931_4 crossref_primary_10_1109_ACCESS_2022_3153038 crossref_primary_10_1155_2022_1648433 crossref_primary_10_1016_j_jhydrol_2020_124974 crossref_primary_10_1155_2020_8844367 crossref_primary_10_1007_s00521_021_06362_3 crossref_primary_10_1155_2021_5586913 crossref_primary_10_3390_pr9071166 crossref_primary_10_3390_atmos14081281 crossref_primary_10_1155_2021_6647829 crossref_primary_10_1016_j_chemosphere_2024_141329 crossref_primary_10_1155_2022_7183700 crossref_primary_10_32604_cmc_2022_023418 crossref_primary_10_1007_s11053_021_09914_5 |
Cites_doi | 10.1623/hysj.49.6.1025.55720 10.1007/s00521-016-2560-9 10.1007/s12665-015-5059-2 10.1007/s11063-015-9409-6 10.1109/access.2019.2937021 10.1111/j.1752-1688.2010.00502.x 10.3390/hydrology5030047 10.1016/j.neucom.2005.12.126 10.1016/j.geoderma.2018.05.030 10.1155/2018/8135193 10.1007/s00521-016-2763-0 10.1016/j.advengsoft.2017.07.002 10.1007/s11269-016-1408-5 10.1016/j.jhydrol.2018.10.020 10.1109/72.329697 10.1016/j.neunet.2014.10.001 10.1007/s00704-017-2336-x 10.1016/j.jhydrol.2015.10.038 10.1016/j.asoc.2017.05.060 10.1016/j.jhydrol.2017.09.007 10.1007/s00477-017-1456-2 10.1016/j.eswa.2018.03.024 10.1007/s11356-017-9283-z 10.1007/s12145-013-0141-3 10.1007/s11600-019-00330-1 10.1016/j.envsoft.2015.08.002 10.1007/s40710-016-0172-0 10.14419/ijet.v7i3.14742 10.1007/s00477-019-01651-9 10.1007/s11269-012-0188-9 10.1016/j.measurement.2016.06.042 10.1007/s00521-019-04575-1 10.1007/s10661-016-5094-9 10.4236/jwarp.2014.612102 10.1142/S0129065714300095 10.1007/s12205-018-0128-1 10.1145/1656274.1656278 10.1016/j.jhydrol.2018.11.069 10.3354/cr01268 10.1016/j.engstruct.2019.05.048 10.1002/hyp.1096 10.1155/2019/8160659 10.1016/j.jhydrol.2016.09.035 10.17265/1934-7359/2014.06.014 10.1007/s12665-018-7376-8 10.1007/s00521‐017‐3112‐7 10.1007/s10333-009-0192-8 10.1007/s00477-017-1474-0 10.1016/j.jhydrol.2016.03.017 10.2166/nh.2017.283 10.1029/2007WR005956 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Zaher Mundher Yaseen et al. COPYRIGHT 2020 John Wiley & Sons, Inc. Copyright © 2020 Zaher Mundher Yaseen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2020 Zaher Mundher Yaseen et al. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: Copyright © 2020 Zaher Mundher Yaseen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
DBID | ADJCN AHFXO AHMDM RHU RHW RHX AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.1155/2020/8206245 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete قاعدة العلوم الإنسانية - e-Marefa Humanities Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Proquest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-0526 |
Editor | Vega, Jesus |
Editor_xml | – sequence: 1 givenname: Jesus surname: Vega fullname: Vega, Jesus |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_1e20202e952d43cdab1be2193b9c044a oai_DiVA_org_ltu_77814 A821705544 A623927732 10_1155_2020_8206245 1144145 |
GeographicLocations | Iraq |
GeographicLocations_xml | – name: Iraq |
GroupedDBID | .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3R3 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACBWZ ACCFJ ACSCC ACXQS ADBBV ADIZJ ADJCN ADZOD AEEZP AEIMD AENEX AEQDE AFBPY AFKRA AFPKN AFZJQ AHFXO AHMDM AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BCNDV BDRZF BENPR BFHJK BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DU5 DWQXO EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ IAO ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LH4 LP6 LP7 LW6 M2O MK4 N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D P62 PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WIH WQJ WRC WYUIH XBAML XG1 XPP XSW XV2 ~IA ~WT RHU RHW AAYXX ACCMX AMVHM CITATION ICD PHGZM PHGZT PMFND 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U AANHP ACRPL ACYXJ ADNMO ADTPV AGQPQ AOWAS D8T ZZAVC PUEGO |
ID | FETCH-LOGICAL-c569t-4931edc26b170a613ee823ad5cc73f4e97cdfa148a550d5c6b7c6637e9d9c7e53 |
IEDL.DBID | DOA |
ISSN | 1076-2787 1099-0526 |
IngestDate | Wed Aug 27 01:28:42 EDT 2025 Thu Aug 21 06:26:08 EDT 2025 Fri Jul 25 20:58:46 EDT 2025 Tue Jun 17 21:58:36 EDT 2025 Tue Jun 10 21:01:34 EDT 2025 Tue Jun 10 21:01:38 EDT 2025 Tue Jul 01 02:01:59 EDT 2025 Thu Apr 24 22:55:48 EDT 2025 Sun Jun 02 18:54:58 EDT 2024 Thu Nov 28 18:43:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2020 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c569t-4931edc26b170a613ee823ad5cc73f4e97cdfa148a550d5c6b7c6637e9d9c7e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3647-7137 0000-0002-6790-2653 |
OpenAccessLink | https://doaj.org/article/1e20202e952d43cdab1be2193b9c044a |
PQID | 2369204730 |
PQPubID | 2029978 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1e20202e952d43cdab1be2193b9c044a swepub_primary_oai_DiVA_org_ltu_77814 proquest_journals_2369204730 gale_infotracmisc_A821705544 gale_infotracacademiconefile_A821705544 gale_infotracacademiconefile_A623927732 crossref_citationtrail_10_1155_2020_8206245 crossref_primary_10_1155_2020_8206245 hindawi_primary_10_1155_2020_8206245 emarefa_primary_1144145 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: Hoboken |
PublicationTitle | Complexity (New York, N.Y.) |
PublicationYear | 2020 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 44 45 46 47 48 49 (41) 2010 50 51 52 53 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 7 (6) 2006; 30 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 42 43 |
References_xml | – year: 2010 ident: 41 – ident: 43 doi: 10.1623/hysj.49.6.1025.55720 – ident: 46 doi: 10.1007/s00521-016-2560-9 – ident: 3 doi: 10.1007/s12665-015-5059-2 – ident: 10 doi: 10.1007/s11063-015-9409-6 – ident: 53 doi: 10.1109/access.2019.2937021 – ident: 7 doi: 10.1111/j.1752-1688.2010.00502.x – ident: 17 doi: 10.3390/hydrology5030047 – ident: 20 doi: 10.1016/j.neucom.2005.12.126 – ident: 35 doi: 10.1016/j.geoderma.2018.05.030 – ident: 15 doi: 10.1155/2018/8135193 – ident: 25 doi: 10.1007/s00521-016-2763-0 – ident: 32 doi: 10.1016/j.advengsoft.2017.07.002 – ident: 11 doi: 10.1007/s11269-016-1408-5 – ident: 29 doi: 10.1016/j.jhydrol.2018.10.020 – ident: 31 doi: 10.1109/72.329697 – ident: 34 doi: 10.1016/j.neunet.2014.10.001 – ident: 40 doi: 10.1007/s00704-017-2336-x – ident: 9 doi: 10.1016/j.jhydrol.2015.10.038 – ident: 30 doi: 10.1016/j.asoc.2017.05.060 – ident: 48 doi: 10.1016/j.jhydrol.2017.09.007 – ident: 1 doi: 10.1007/s00477-017-1456-2 – ident: 36 doi: 10.1016/j.eswa.2018.03.024 – ident: 27 doi: 10.1007/s11356-017-9283-z – ident: 12 doi: 10.1007/s12145-013-0141-3 – ident: 18 doi: 10.1007/s11600-019-00330-1 – ident: 26 doi: 10.1016/j.envsoft.2015.08.002 – ident: 28 doi: 10.1007/s40710-016-0172-0 – ident: 51 doi: 10.14419/ijet.v7i3.14742 – ident: 2 doi: 10.1007/s00477-019-01651-9 – ident: 8 doi: 10.1007/s11269-012-0188-9 – ident: 23 doi: 10.1016/j.measurement.2016.06.042 – ident: 52 doi: 10.1007/s00521-019-04575-1 – ident: 13 doi: 10.1007/s10661-016-5094-9 – ident: 39 doi: 10.4236/jwarp.2014.612102 – ident: 21 doi: 10.1142/S0129065714300095 – ident: 16 doi: 10.1007/s12205-018-0128-1 – ident: 45 doi: 10.1145/1656274.1656278 – volume: 30 start-page: 567 year: 2006 ident: 6 publication-title: Iranian Journal of Science and Technology, Transaction B: Engineering – ident: 14 doi: 10.1016/j.jhydrol.2018.11.069 – ident: 38 doi: 10.3354/cr01268 – ident: 44 doi: 10.1016/j.engstruct.2019.05.048 – ident: 42 doi: 10.1002/hyp.1096 – ident: 19 doi: 10.1155/2019/8160659 – ident: 33 doi: 10.1016/j.jhydrol.2016.09.035 – ident: 37 doi: 10.17265/1934-7359/2014.06.014 – ident: 50 doi: 10.1007/s12665-018-7376-8 – ident: 49 doi: 10.1007/s00521‐017‐3112‐7 – ident: 5 doi: 10.1007/s10333-009-0192-8 – ident: 47 doi: 10.1007/s00477-017-1474-0 – ident: 22 doi: 10.1016/j.jhydrol.2016.03.017 – ident: 24 doi: 10.2166/nh.2017.283 – ident: 4 doi: 10.1029/2007WR005956 |
SSID | ssj0009637 |
Score | 2.4173517 |
Snippet | The capability of the extreme learning machine (ELM) model in modeling stochastic, nonlinear, and complex hydrological engineering problems has been proven... |
SourceID | doaj swepub proquest gale crossref hindawi emarefa |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms alp Swarm Algorithm Artificial intelligence Artificial neural networks Case studies Entrapment Forecasts and trends Geoteknik Heuristic methods Hydrological Application Hydrology Learning Machine Machine learning Mathematical models Neural networks Optimization algorithms Prediction models Rain Researchers River flow Soil Mechanics SSA-ELM model Stream flow Tigris River |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYJCR4QGz8KivID0OAUETi2EnMW4BNEVInpDHUN8t2nFGpa6c029j-eu5ctyUgNB7jnJPY9935zo4_E7Kvc4grNBiSSRNIUETTRDrJWJRIG6dGNinzxPOjo6w64V_GYhxIkhZ_L-HDaIfpefweacYZF1tkCwCGSXk13nDrZp4aExKZLGIAwNX_7X_U7Y08nqDf78LVcK3XDvnuD0yFryb9gPN3ElE_8Bw-JA9CxEjLpYp3yB032yX3R2u61cUu2QkWuqBvAo3020fkprrG3ViTG1fTg58dzgPSwKZ6Skf-H0pH8Si0KcXJWHqsp-f0-Eq3Z7Scns5bKDv7QEt6NL8Eka8truigbwx1INil1XXdrpwnLTdL4Y_JyeHBt09VFE5aiKzIZBdxmSautiwzSR5rGOGdK1iqa2FtnjbcydzWjYbMSUNCA6WZyS2EKrmTtbS5E-kTsj2bz9wzQgsjdJY1Wmpb8CQxRhfwFKkBEbaQTTwg71ZaUDbQkONpGFPl0xEhFOpMBZ0NyKu19PmSfuMfch9RoWsZJM32BQAkFWxQJQ6rMCcFq3lqa20S48BjAyZtzLkekKcBDpt3Yb6Jj3-N8FBo9PCxVoe9C9BkpM9SJQSRkuV5ym6VLJgnMOJ8QIY9STBr27u9H6B4S8OHK5yq4H0WiqWZZDEH5w39t8Rur2c-T76Xvmem3YXKkfTs-f-9bY_cw8vlFNSQbHfthXsBQVlnXnqT_AU8TCtD priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdgExI8IDZgFArywxAgFC1x4iTmBWXQqUJqNTGG9mbZjtNV6tqSZoztr-fOddr1AfaY5OLEvg_fne3fEbKvMvArFCiSjiMIUHhVBSpKWRAJE8ZaVDFzwPODYdo_Tb6d8TOfcFv4bZWtTXSGupwZzJEfsDgVLExAID_PfwVYNQpXV30JjftkG0xwDsHX9mFvePx9DbubOtRMiHHSgIFstlvfOceoPzxA9HKGR5luTUoOu98d0FVwrVa2-sE5RslX401f9Da-qJuTjp6Qx96ZpMWS-zvknp3ukkeDFRLrYpfseOVd0PceYfrDU3LTv8aDWuMbW9LenwZThNQDrY7owG2vtBSrpE0o5mnpiZrM6cmVqi9oMRnBqDTnF59oQYez30ByXONiD5pN_w74wbR_XdatXaXFepX8GTk96v340g98EYbA8FQ0QSLiyJaGpTrKQgWTv7U5i1XJjcniKrEiM2WlIKhSEOvA3VRnBryYzIpSmMzy-DnZms6m9gWhueYqTSsllMmTKNJa5dCKUCAsJhdV2CEfWy5I4xHKsVDGRLpIhXOJPJOeZx3ydkU9XyJz_IPuEBm6okE8bXdjVo-kV08ZWXyFWcFZmcSmVDrSFow5iKsJk0R1yJ4Xh_W3MBTF5t-heEi0B_CzRvljDdBlRNaSBfiXgmVZzO6kzJnDNkqSDuluUILGm43H-14U7-h4t5VT6Q3TQq7VCMZvKbsbI_N1_LNwIzNpLmWGeGgv_9_MK_IQP7rMSnXJVlNf2tfgpzX6jVfGvwErNu0 priority: 102 providerName: ProQuest |
Title | Hybridized Extreme Learning Machine Model with Salp Swarm Algorithm: A Novel Predictive Model for Hydrological Application |
URI | https://search.emarefa.net/detail/BIM-1144145 https://dx.doi.org/10.1155/2020/8206245 https://www.proquest.com/docview/2369204730 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77814 https://doaj.org/article/1e20202e952d43cdab1be2193b9c044a |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgCAkOExu_OkrlwxAgFC1x4iTmlkFLhNRq2hjqzXIcZ1TK2qntGNtfz3uO07UH1AuXSnVfneT58_P7HPszIYcqgbxCQUcqwgAICq8qTwUx8wKh_bAQVcis8PxwFOfn0fcxH68d9YVrwhp54MZxR4EBeu4zIzgro1CXqggKA90MKtJ-FNnUCMa8lky1cruxVcsEbhN7DDDZLnnnHNm-f4Sq5Qy3MK0NRlaz327MVfBdrWL041_Ijm8mmznouq6oHYsGz8iuSyJp1tz8Hnlgpvvk6XClwLrYJ3uu0y7oB6cs_fE5uctvcYPW5M6UtP9niVOD1AmsXtChXVZpKJ6OVlOcn6Vnqr6iZzdqfkmz-mI2h7LLzzSjo9lvMDmZ40seDJfuP5D_0vy2nLfxlGb3b8dfkPNB_8eX3HOHL3iax2LpRSIMTKlZXASJr2DQNyZloSq51klYRUYkuqwUkCkFHAdK4yLRkL0kRpRCJ4aHL8nOdDY1rwlNC67iuFJC6TQKgqJQKdQiFIBEp6LyO-RT2wpSO2VyPCCjlpahcC6xzaRrsw55t7K-ahQ5_mF3jA26skEdbVsA6JIOXXIbujrklYPD_bWQgmL17xEeEuMA3KxWbjsDPDIqaskM8krBkiRkWy1TZjWNoqhDuhuW0NP1xs-HDopbHrzb4lS6gLSQLIwF8yOI5-C_Brsbnvk6-ZlZz9TLa5mgDtrB__DfG_IEDZo5qy7ZWc6vzVvI4pZFjzxMB9965NFxf3Ry2rPdFz5P8_FfapBBgw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIQQ8IDZuhQJ-2AQIRUucq5EQCmylY2uFtA3tzTiO01XK2tJmlO5H8Rs5x3Xa9QH2tMemJ07ic7d9vkPIlowhrpCgSJnvQYISFoUjvYg5Hleun_HCZwZ4vtON2ifB19PwdI38qWth8FhlbRONoc6HCtfId5gfceYGIJAfRz8d7BqFu6t1C425WBzo2RRStsmH_V3g7zZjrb3jz23HdhVwVBjxygm47-lcsSjzYleCN9M6Yb7MQ6Vivwg0j1VeSMgSJATvcDXKYgVuOdY85yrW2CUCTP6twPc5alTS-rIE-Y0MRidkVJHDQBPqg_ZhiGsM7g5ipTMsnLriAk2nAFMOLOG3XHiG22eYk0_7q5HvVTRT4wFbD8h9G7rSdC5rG2RNDzbJvc4C93WySTasqZjQNxbP-u1DctmeYVlY_1LndO93hQuS1MK69mjHHObUFHuylRRXhemRLEf0aCrH5zQte8CD6uz8PU1pd_gLSL6NcWsJjbS9B6Ju2p7l49qK03S5J_-InNwIcx6T9cFwoJ8SmmShjKJCcqmSwPOyTCYwCpcgmirhhdsg72ouCGXx0LEtRylMXhSGAnkmLM8aZHtBPZrjgPyD7hMydEGD6N3mwnDcE9YYCE_jLUzzkOWBr3KZeZkG1wHKodwgkA3yxIrD8lmY-OLwr1E8BFofeFklbREFfDLieIkUolnO4thn11ImzCApBUGDNFcowb6olb-3rChe8-HNWk6FNYMTsVRamL-57K7MzG7_e2pmpqwuRIzoa8_-P8wrcqd93DkUh_vdg-fkLr7AfD2sSdar8YV-ARFilb00aknJj5u2A38Bm6ZzHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybridized+Extreme+Learning+Machine+Model+with+Salp+Swarm+Algorithm%3A+A+Novel+Predictive+Model+for+Hydrological+Application&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Zaher+Mundher+Yaseen&rft.au=Hossam+Faris&rft.au=Nadhir+Al-Ansari&rft.date=2020&rft.pub=Wiley&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2020&rft_id=info:doi/10.1155%2F2020%2F8206245&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1e20202e952d43cdab1be2193b9c044a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |