Genetic Variability in Phosphorus Responses of Rice Root Phenotypes

Background Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is nec...

Full description

Saved in:
Bibliographic Details
Published inRice (New York, N.Y.) Vol. 9; no. 1; p. 29
Main Authors Vejchasarn, Phanchita, Lynch, Jonathan P., Brown, Kathleen M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is necessary to identify genetic variation and to assess the plasticity of each trait in response to the environment. In this study, we measured phenotypic variation and effect of phosphorus deficiency on root architectural, morphological and anatomical traits in 15 rice ( Oryza sativa ) genotypes. Rice plants were grown with diffusion-limited phosphorus using solid-phase buffered phosphorus to mimic realistic phosphorus availability conditions. Results Shoot dry weight, tiller number, plant height, number of nodal roots and shoot phosphorus content were reduced under low phosphorus availability. Phosphorus deficiency significantly reduced large lateral root density and small and large lateral root length in all genotypes, though the degree of plasticity and relative allocation of root length between the two root classes varied among genotypes. Root hair length and density increased in all genotypes in response to low phosphorus. Nodal root cross-sectional area was significantly less under low phosphorus availability, and reduced cortical area was disproportionately responsible for this decline. Phosphorus deficiency caused a 20 % increase in the percent cortical area converted to aerenchyma. Total stele area and meta-xylem vessel area responses to low phosphorus differed significantly among genotypes. Phosphorus treatment did not significantly affect theoretical water conductance overall, but increased or reduced it in a few genotypes. All genotypes had restricted water conductance at the base of the nodal root compared to other positions along the root axis. Conclusions There was substantial genetic variation for all root traits investigated. Low phosphorus availability significantly affected most traits, often to an extent that varied with the genotype. With the exception of stele and meta-xylem vessel area, root responses to low phosphorus were in the same direction for all genotypes tested. Therefore, phenotypic evaluations conducted with adequate fertility should be useful for genetic mapping studies and identifying potential sources of trait variation, but these should be confirmed in low-phosphorus environments.
AbstractList Background Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is necessary to identify genetic variation and to assess the plasticity of each trait in response to the environment. In this study, we measured phenotypic variation and effect of phosphorus deficiency on root architectural, morphological and anatomical traits in 15 rice (Oryza sativa) genotypes. Rice plants were grown with diffusion-limited phosphorus using solid-phase buffered phosphorus to mimic realistic phosphorus availability conditions. Results Shoot dry weight, tiller number, plant height, number of nodal roots and shoot phosphorus content were reduced under low phosphorus availability. Phosphorus deficiency significantly reduced large lateral root density and small and large lateral root length in all genotypes, though the degree of plasticity and relative allocation of root length between the two root classes varied among genotypes. Root hair length and density increased in all genotypes in response to low phosphorus. Nodal root cross-sectional area was significantly less under low phosphorus availability, and reduced cortical area was disproportionately responsible for this decline. Phosphorus deficiency caused a 20 % increase in the percent cortical area converted to aerenchyma. Total stele area and meta-xylem vessel area responses to low phosphorus differed significantly among genotypes. Phosphorus treatment did not significantly affect theoretical water conductance overall, but increased or reduced it in a few genotypes. All genotypes had restricted water conductance at the base of the nodal root compared to other positions along the root axis. Conclusions There was substantial genetic variation for all root traits investigated. Low phosphorus availability significantly affected most traits, often to an extent that varied with the genotype. With the exception of stele and meta-xylem vessel area, root responses to low phosphorus were in the same direction for all genotypes tested. Therefore, phenotypic evaluations conducted with adequate fertility should be useful for genetic mapping studies and identifying potential sources of trait variation, but these should be confirmed in low-phosphorus environments.
Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is necessary to identify genetic variation and to assess the plasticity of each trait in response to the environment. In this study, we measured phenotypic variation and effect of phosphorus deficiency on root architectural, morphological and anatomical traits in 15 rice (Oryza sativa) genotypes. Rice plants were grown with diffusion-limited phosphorus using solid-phase buffered phosphorus to mimic realistic phosphorus availability conditions.BACKGROUNDLow phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is necessary to identify genetic variation and to assess the plasticity of each trait in response to the environment. In this study, we measured phenotypic variation and effect of phosphorus deficiency on root architectural, morphological and anatomical traits in 15 rice (Oryza sativa) genotypes. Rice plants were grown with diffusion-limited phosphorus using solid-phase buffered phosphorus to mimic realistic phosphorus availability conditions.Shoot dry weight, tiller number, plant height, number of nodal roots and shoot phosphorus content were reduced under low phosphorus availability. Phosphorus deficiency significantly reduced large lateral root density and small and large lateral root length in all genotypes, though the degree of plasticity and relative allocation of root length between the two root classes varied among genotypes. Root hair length and density increased in all genotypes in response to low phosphorus. Nodal root cross-sectional area was significantly less under low phosphorus availability, and reduced cortical area was disproportionately responsible for this decline. Phosphorus deficiency caused a 20 % increase in the percent cortical area converted to aerenchyma. Total stele area and meta-xylem vessel area responses to low phosphorus differed significantly among genotypes. Phosphorus treatment did not significantly affect theoretical water conductance overall, but increased or reduced it in a few genotypes. All genotypes had restricted water conductance at the base of the nodal root compared to other positions along the root axis.RESULTSShoot dry weight, tiller number, plant height, number of nodal roots and shoot phosphorus content were reduced under low phosphorus availability. Phosphorus deficiency significantly reduced large lateral root density and small and large lateral root length in all genotypes, though the degree of plasticity and relative allocation of root length between the two root classes varied among genotypes. Root hair length and density increased in all genotypes in response to low phosphorus. Nodal root cross-sectional area was significantly less under low phosphorus availability, and reduced cortical area was disproportionately responsible for this decline. Phosphorus deficiency caused a 20 % increase in the percent cortical area converted to aerenchyma. Total stele area and meta-xylem vessel area responses to low phosphorus differed significantly among genotypes. Phosphorus treatment did not significantly affect theoretical water conductance overall, but increased or reduced it in a few genotypes. All genotypes had restricted water conductance at the base of the nodal root compared to other positions along the root axis.There was substantial genetic variation for all root traits investigated. Low phosphorus availability significantly affected most traits, often to an extent that varied with the genotype. With the exception of stele and meta-xylem vessel area, root responses to low phosphorus were in the same direction for all genotypes tested. Therefore, phenotypic evaluations conducted with adequate fertility should be useful for genetic mapping studies and identifying potential sources of trait variation, but these should be confirmed in low-phosphorus environments.CONCLUSIONSThere was substantial genetic variation for all root traits investigated. Low phosphorus availability significantly affected most traits, often to an extent that varied with the genotype. With the exception of stele and meta-xylem vessel area, root responses to low phosphorus were in the same direction for all genotypes tested. Therefore, phenotypic evaluations conducted with adequate fertility should be useful for genetic mapping studies and identifying potential sources of trait variation, but these should be confirmed in low-phosphorus environments.
Background Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is necessary to identify genetic variation and to assess the plasticity of each trait in response to the environment. In this study, we measured phenotypic variation and effect of phosphorus deficiency on root architectural, morphological and anatomical traits in 15 rice ( Oryza sativa ) genotypes. Rice plants were grown with diffusion-limited phosphorus using solid-phase buffered phosphorus to mimic realistic phosphorus availability conditions. Results Shoot dry weight, tiller number, plant height, number of nodal roots and shoot phosphorus content were reduced under low phosphorus availability. Phosphorus deficiency significantly reduced large lateral root density and small and large lateral root length in all genotypes, though the degree of plasticity and relative allocation of root length between the two root classes varied among genotypes. Root hair length and density increased in all genotypes in response to low phosphorus. Nodal root cross-sectional area was significantly less under low phosphorus availability, and reduced cortical area was disproportionately responsible for this decline. Phosphorus deficiency caused a 20 % increase in the percent cortical area converted to aerenchyma. Total stele area and meta-xylem vessel area responses to low phosphorus differed significantly among genotypes. Phosphorus treatment did not significantly affect theoretical water conductance overall, but increased or reduced it in a few genotypes. All genotypes had restricted water conductance at the base of the nodal root compared to other positions along the root axis. Conclusions There was substantial genetic variation for all root traits investigated. Low phosphorus availability significantly affected most traits, often to an extent that varied with the genotype. With the exception of stele and meta-xylem vessel area, root responses to low phosphorus were in the same direction for all genotypes tested. Therefore, phenotypic evaluations conducted with adequate fertility should be useful for genetic mapping studies and identifying potential sources of trait variation, but these should be confirmed in low-phosphorus environments.
Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is necessary to identify genetic variation and to assess the plasticity of each trait in response to the environment. In this study, we measured phenotypic variation and effect of phosphorus deficiency on root architectural, morphological and anatomical traits in 15 rice (Oryza sativa) genotypes. Rice plants were grown with diffusion-limited phosphorus using solid-phase buffered phosphorus to mimic realistic phosphorus availability conditions. Shoot dry weight, tiller number, plant height, number of nodal roots and shoot phosphorus content were reduced under low phosphorus availability. Phosphorus deficiency significantly reduced large lateral root density and small and large lateral root length in all genotypes, though the degree of plasticity and relative allocation of root length between the two root classes varied among genotypes. Root hair length and density increased in all genotypes in response to low phosphorus. Nodal root cross-sectional area was significantly less under low phosphorus availability, and reduced cortical area was disproportionately responsible for this decline. Phosphorus deficiency caused a 20 % increase in the percent cortical area converted to aerenchyma. Total stele area and meta-xylem vessel area responses to low phosphorus differed significantly among genotypes. Phosphorus treatment did not significantly affect theoretical water conductance overall, but increased or reduced it in a few genotypes. All genotypes had restricted water conductance at the base of the nodal root compared to other positions along the root axis. There was substantial genetic variation for all root traits investigated. Low phosphorus availability significantly affected most traits, often to an extent that varied with the genotype. With the exception of stele and meta-xylem vessel area, root responses to low phosphorus were in the same direction for all genotypes tested. Therefore, phenotypic evaluations conducted with adequate fertility should be useful for genetic mapping studies and identifying potential sources of trait variation, but these should be confirmed in low-phosphorus environments.
ArticleNumber 29
Author Vejchasarn, Phanchita
Brown, Kathleen M.
Lynch, Jonathan P.
Author_xml – sequence: 1
  givenname: Phanchita
  surname: Vejchasarn
  fullname: Vejchasarn, Phanchita
  organization: Department of Plant Science, Penn State University, Present address: Ubonratchathani Rice Research Center
– sequence: 2
  givenname: Jonathan P.
  surname: Lynch
  fullname: Lynch, Jonathan P.
  organization: Department of Plant Science, Penn State University
– sequence: 3
  givenname: Kathleen M.
  surname: Brown
  fullname: Brown, Kathleen M.
  email: kbe@psu.edu
  organization: Department of Plant Science, Penn State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27294384$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoO02A_9Ad7IgDfeTM3XJJMbQRathYJlUW9DJnOmmzKbjElG2H9vhm2XWtBCQgJ53nPenPcMHfngAaE3BF8Q0ooPiVDa8hoTUTamtXqBToliqm45Y0eHO21O0FlKdxgLRhv1Ep1QSRVnLT9Fq0vwkJ2tfproTOdGl3eV89XNJqRpE-KcqjWkKfgEqQpDtXYWqnUIuRDgQ95NkF6h48GMCV7fn-fox5fP31df6-tvl1erT9e1bYTKNVPCUm4p7aA3PXDZSyLJIFlviGmAM94ZISTmXAhmOO-YoKorywy9VcKwc_RxX3eauy30FnyOZtRTdFsTdzoYp_9-8W6jb8NvzRVuFBOlwPv7AjH8miFlvXXJwjgaD2FOmrS8TAgrrp5HpZK0kUTJgr57gt6FOfoyiYUShDWS40K9fWz-4PohigKQPWBjSCnCcEAI1kvceh-3LnHrJW69uJRPNNZlk11Y_u_G_yrpXplKF38L8ZHpf4r-AB9tvbY
CitedBy_id crossref_primary_10_35118_apjmbb_2024_032_1_06
crossref_primary_10_1038_s41598_021_93325_2
crossref_primary_10_1371_journal_pone_0221008
crossref_primary_10_7717_peerj_12766
crossref_primary_10_2135_cropsci2016_07_0594
crossref_primary_10_3389_fpls_2021_658321
crossref_primary_10_1186_s12870_022_04026_5
crossref_primary_10_1186_s13104_018_3179_y
crossref_primary_10_1111_pce_14237
crossref_primary_10_1016_j_cpb_2023_100290
crossref_primary_10_3390_agronomy14010041
crossref_primary_10_1080_01904167_2019_1676903
crossref_primary_10_1038_s41598_021_92580_7
crossref_primary_10_3390_ijms24065107
crossref_primary_10_3390_ijms19061762
crossref_primary_10_1007_s11104_021_05010_y
crossref_primary_10_1007_s10681_017_1884_6
crossref_primary_10_1007_s11104_017_3496_2
crossref_primary_10_1080_03650340_2020_1775199
crossref_primary_10_31742_ISGPB_83_4_3
crossref_primary_10_1016_j_cj_2020_01_002
crossref_primary_10_1007_s10681_020_02727_2
crossref_primary_10_1186_s12284_018_0200_y
crossref_primary_10_3389_fpls_2024_1274610
crossref_primary_10_3390_agronomy10071028
crossref_primary_10_1186_s12284_018_0208_3
crossref_primary_10_3390_land12030724
crossref_primary_10_1111_nph_17572
crossref_primary_10_1080_1343943X_2022_2085588
crossref_primary_10_1111_jipb_13090
crossref_primary_10_1007_s11104_022_05434_0
crossref_primary_10_1007_s13562_020_00586_5
crossref_primary_10_1007_s40502_021_00623_y
crossref_primary_10_1007_s10535_018_0773_8
crossref_primary_10_1038_s41598_024_72287_1
crossref_primary_10_1007_s11627_019_10034_2
crossref_primary_10_1007_s00122_018_3109_3
crossref_primary_10_1111_tpj_13423
crossref_primary_10_1071_FP19002
crossref_primary_10_1016_j_scienta_2020_109200
crossref_primary_10_34133_plantphenomics_0002
crossref_primary_10_1101_cshperspect_a034603
crossref_primary_10_3389_fpls_2022_1051080
crossref_primary_10_1007_s11738_019_2891_0
crossref_primary_10_1093_plphys_kiae517
crossref_primary_10_1371_journal_pone_0183261
crossref_primary_10_3389_fpls_2021_797635
crossref_primary_10_1002_cpe_4748
crossref_primary_10_1186_s12284_018_0252_z
crossref_primary_10_1080_00380768_2021_2022965
crossref_primary_10_1016_j_bcab_2024_103019
crossref_primary_10_1093_jxb_erx454
crossref_primary_10_1007_s11104_022_05527_w
crossref_primary_10_3389_fenvs_2022_855815
crossref_primary_10_1016_j_devcel_2019_01_002
crossref_primary_10_1186_s12870_021_03164_6
crossref_primary_10_1007_s11104_023_06088_2
crossref_primary_10_1002_jpln_202200196
crossref_primary_10_1080_01904167_2024_2380486
crossref_primary_10_3389_fpls_2019_00237
crossref_primary_10_3390_genes13030487
crossref_primary_10_1098_rsos_170770
crossref_primary_10_1007_s42976_024_00521_7
crossref_primary_10_1111_aab_12405
crossref_primary_10_1016_j_plaphy_2019_09_006
crossref_primary_10_1093_plphys_kiae495
crossref_primary_10_3390_plants8020031
crossref_primary_10_1007_s00425_023_04158_4
crossref_primary_10_3389_fpls_2021_738172
crossref_primary_10_3389_fpls_2022_959629
crossref_primary_10_1016_j_plaphy_2021_10_008
crossref_primary_10_3390_agriculture13020262
crossref_primary_10_1016_j_envexpbot_2019_06_008
crossref_primary_10_1111_pce_14588
crossref_primary_10_3390_ijms22179311
crossref_primary_10_3390_agronomy13020305
crossref_primary_10_3390_agronomy9010011
crossref_primary_10_5897_AJB2022_17521
crossref_primary_10_1080_01904167_2023_2191638
crossref_primary_10_3117_plantroot_16_21
crossref_primary_10_1016_j_scienta_2022_111779
crossref_primary_10_1016_j_stress_2024_100508
crossref_primary_10_3390_plants10061194
Cites_doi 10.1104/pp.75.2.372
10.1093/aob/mcs217
10.1007/s11104-011-0950-4
10.2135/cropsci1981.0011183X002100020012x
10.1007/s11104-009-0277-6
10.1046/j.1439-0523.2001.00561.x
10.1016/j.fcr.2011.03.001
10.1007/s11104-004-2026-1
10.1093/aob/mcs231
10.1093/jxb/ers150
10.1104/pp.111.175414
10.1007/s00425-003-1007-6
10.1104/pp.126.2.875
10.1007/s11104-012-1453-7
10.1093/jxb/eru413
10.1046/j.1365-313X.2002.01251.x
10.1007/s11104-004-1096-4
10.1016/j.tplants.2010.01.008
10.1093/aob/mcs285
10.1016/j.envexpbot.2008.01.004
10.1007/s001220050955
10.1007/s11104-004-1697-y
10.3198/jpr2013.03.0013crmp
10.1093/aob/mct069
10.1270/jsbbs.58.7
10.1093/jexbot/51.342.61
10.1111/j.1365-3040.2005.01405.x
10.1007/s11104-012-1571-2
10.1093/jxb/erv074
10.2135/cropsci2012.07.0440
10.1093/aobpla/pls028
10.1007/s11104-010-0675-9
10.1080/01904160600564378
10.1093/aob/mcs085
10.1071/FP03046
10.1038/nature11346
10.1007/s004250050257
10.1023/B:PLSO.0000037020.58002.ac
10.1023/A:1004270201418
10.1093/jxb/ert200
10.1007/s00709-011-0309-y
10.1093/aob/mcr086
10.1007/BF01373813
10.1016/S0378-4290(97)00141-X
10.1104/pp.111.175489
10.1111/j.1469-8137.1987.tb00153.x
10.1626/pps.16.205
10.1073/pnas.0603152103
10.1093/jxb/eru162
10.1071/CP07125
10.1046/j.1469-8137.1997.00640.x
10.1111/j.1399-3054.1980.tb02661.x
10.1071/FP08132
10.1046/j.1469-8137.2003.00907.x
10.1111/j.1744-7909.2007.00450.x
10.1007/s00122-002-1051-9
10.1023/A:1004346412006
10.1093/aob/mcl024
10.1111/j.1365-3040.1990.tb01071.x
10.1007/s00122-014-2306-y
10.1016/S0378-4290(01)00150-2
10.1626/pps.3.437
10.1007/978-1-4020-8435-5_5
10.1007/s00122-005-2051-3
10.1093/jxb/erv557
10.1007/s11104-006-0014-3
10.1071/FP12015
10.1093/jxb/50.333.487
10.1007/s00122-014-2414-8
10.1104/pp.15.00145
10.1007/s11104-013-1955-y
10.1002/jpln.201500155
10.1007/s11104-012-1138-2
10.1104/pp.114.249037
10.1016/j.fcr.2014.10.009
10.1023/A:1013324727040
10.1071/FP04046
10.1016/j.gloenvcha.2008.10.009
10.1016/S0003-2670(00)88444-5
10.1104/pp.114.241711
10.1007/s11103-007-9215-2
10.1046/j.1365-3040.2003.00846.x
10.1007/s12284-008-9016-5
10.1046/j.1365-3040.2003.01093.x
10.1046/j.1365-3040.1999.00405.x
10.1111/pce.12451
10.1104/pp.010934
10.2307/2656995
10.1104/pp.92.3.855
10.1104/pp.91.1.266
10.1104/pp.113.233916
10.1093/jxb/erw115
10.1007/BF00010407
10.1111/j.1365-3040.2009.02099.x
ContentType Journal Article
Copyright Vejchasarn et al. 2016
The Author(s) 2016
Copyright_xml – notice: Vejchasarn et al. 2016
– notice: The Author(s) 2016
DBID C6C
AAYXX
CITATION
NPM
3V.
7X2
7XB
88I
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
M0K
M2P
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
7X8
7S9
L.6
5PM
DOI 10.1186/s12284-016-0102-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database
MEDLINE - Academic

PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1939-8433
1934-8037
EndPage 29
ExternalDocumentID PMC4905936
4087869961
27294384
10_1186_s12284_016_0102_9
Genre Journal Article
GrantInformation_xml – fundername: Royal Thai Government Scholarship Program
– fundername: Asia Rice Foundation
– fundername: National Science Foundation
  grantid: IOS-0965380
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: ;
– fundername: ;
  grantid: IOS-0965380
GroupedDBID -56
-5G
-A0
-BR
-Y2
0R~
123
29P
2JY
2VQ
3V.
4.4
40G
5VS
67Z
6NX
7X2
7XC
88I
8FE
8FH
8TC
AAFWJ
AAHBH
AAJSJ
AAKKN
AAYZH
ABDBF
ABEEZ
ABMNI
ABTEG
ABUWG
ACACY
ACGFS
ACGOD
ACOMO
ACULB
ADBBV
ADINQ
ADKPE
ADRAZ
AENEX
AEUYN
AFBBN
AFGCZ
AFGXO
AFKRA
AFPKN
AFRAH
AGJBK
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ATCPS
AZQEC
BA0
BAPOH
BCNDV
BENPR
BHPHI
BPHCQ
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DWQXO
EBLON
EBS
ECGQY
EJD
EN4
ESX
GNUQQ
GROUPED_DOAJ
GXS
H13
HCIFZ
HG5
HG6
HYE
HZ~
IXC
IZQ
I~X
KPH
KQ8
M0K
M2P
M48
O9-
O9I
OAM
OK1
PATMY
PGMZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
QOS
RBZ
RIG
ROL
RPM
RSV
S1Z
S27
SBL
SDH
SOJ
T13
TSK
U2A
VC2
WK8
Z7Y
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c569t-396c24c22bedade47d7171f73da1a5e434ba667044663a44b3629b29bafdc96a3
IEDL.DBID M48
ISSN 1939-8425
IngestDate Thu Aug 21 13:57:57 EDT 2025
Fri Jul 11 04:32:18 EDT 2025
Fri Jul 11 06:05:15 EDT 2025
Sun Jun 29 12:36:06 EDT 2025
Thu Apr 03 07:02:25 EDT 2025
Tue Jul 01 03:54:09 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Fri Feb 21 02:35:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Root anatomy
Xylem
Phosphorus
Lateral roots
Root hairs
Stele
Aerenchyma
Oryza sativa
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-396c24c22bedade47d7171f73da1a5e434ba667044663a44b3629b29bafdc96a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12284-016-0102-9
PMID 27294384
PQID 1796135740
PQPubID 54333
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4905936
proquest_miscellaneous_1846320949
proquest_miscellaneous_1797257197
proquest_journals_1796135740
pubmed_primary_27294384
crossref_primary_10_1186_s12284_016_0102_9
crossref_citationtrail_10_1186_s12284_016_0102_9
springer_journals_10_1186_s12284_016_0102_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20161200
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 20161200
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Rice (New York, N.Y.)
PublicationTitleAbbrev Rice
PublicationTitleAlternate Rice (N Y)
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Burton, Brown, Lynch (CR9) 2013; 53
Cordell, Drangert, White (CR17) 2009; 19
Saengwilai, Nord, Chimungu (CR79) 2014; 166
Fan, Bai, Zhao, Zhang (CR24) 2007; 49
Gahoonia, Ali, Sarker (CR31) 2006; 29
Williamson, Ribrioux, Fitter, Leyser (CR87) 2001; 126
Rose, Impa, Rose (CR78) 2012; 112
Kirk, van Du (CR43) 1997; 135
Postma, Dathe, Lynch (CR69) 2014
Brown, George, Thompson (CR6) 2012; 110
Drew, Nye (CR19) 1969; 31
Pariasca-Tanaka, Chin, Dramé (CR66) 2014; 127
Miguel, Postma, Lynch (CR58) 2015; 167
Lynch (CR52) 2014; 38
Gahoonia, Nielsen (CR29) 2004; 262
Gamuyao, Chin, Pariasca-Tanaka (CR32) 2012; 488
Bouranis, Chorianopoulou, Siyiannis (CR3) 2003; 217
Wissuwa, Wegner, Ae, Yano (CR91) 2002; 105
York, Galindo-Castañeda, Schussler, Lynch (CR92) 2015; 66
Fernandez, Rubio (CR25) 2015; 178
Suralta, Yamauchi (CR83) 2008; 64
Zhu, Lynch (CR94) 2004; 31
Brown, George, Dupuy, White (CR5) 2012; 112
Lafitte, Champoux, McLaren, Toole (CR47) 2001; 71
Kirk, George, Courtois, Senadhira (CR44) 1998; 56
Nestler, Keyes, Wissuwa (CR62) 2016
Richards, Passioura (CR75) 1981; 21
Drew, Jiu He, Morgan (CR20) 1989; 91
Borch, Bouma, Lynch, Brown (CR2) 1999; 22
Burton, Johnson, Foerster (CR10) 2015; 128
Lopez-Bucio, Hernandez-Abreu, Sanchez-Calderon (CR50) 2002; 129
Ogawa, Selvaraj, Fernando (CR65) 2014; 375
Postma, Lynch (CR68) 2011; 156
Siyiannis, Protonotarios, Zechmann (CR82) 2011; 249
Clarkson, Carvajal, Henzler (CR15) 2000; 51
Przywara, Stepniewski (CR70) 2000; 14
Samal, Kovar, Steingrobe (CR80) 2010; 332
Wissuwa, Ae (CR89) 2001; 120
Lynch (CR51) 2011; 156
Fohse, Claassen, Jungk (CR26) 1991; 132
Konings, Verschuren (CR46) 1980; 49
Chimungu, Maliro, Nalivata (CR13) 2015; 171
Burton, Lynch, Brown (CR7) 2012; 367
Eizenga, Ali, Bryant (CR21) 2013; 8
Burton, Williams, Lynch, Brown (CR8) 2012; 357
Gowda, Henry, Vadez (CR34) 2012; 39
Colmer (CR16) 2003; 26
Jaramillo, Nord, Chimungu (CR39) 2013; 112
Clark, Price, Steele, Whalley (CR14) 2008; 35
Zhu, Kaeppler, Lynch (CR95) 2005; 111
Sandhu, Torres, Sta Cruz (CR81) 2015; 66
Vinod, Heuer (CR86) 2012; 2012
Evans (CR22) 2004; 161
Richardson, Hocking, Simpson, George (CR76) 2009; 60
Lynch, Chimungu, Brown (CR57) 2014; 65
Kano, Inukai, Kitano, Yamauchi (CR41) 2011; 342
Bouranis, Chorianopoulou, Kollias (CR4) 2006; 97
Coudert, Perin, Courtois (CR18) 2010; 15
Niones, Suralta, Inukai, Yamauchi (CR63) 2013; 16
Niu, Chai, Jin (CR64) 2013; 112
Reymond, Svistoonoff, Loudet (CR74) 2006; 29
Justin, Armstrong (CR40) 1987; 106
Radin, Eidenbock (CR72) 1984; 75
Gahoonia, Nielsen (CR28) 2003; 26
Radin (CR71) 1990; 92
Vandamme, Renkens, Pypers (CR85) 2013; 369
Bates, Lynch (CR1) 2000; 87
Mollier, Pellerin (CR59) 1999; 50
Lynch, Epstein, Läuchli, Weigt (CR56) 1990; 13
Gowda, Henry, Yamauchi (CR33) 2011; 122
Lynch, Brown, White, Hammond (CR54) 2008
Henry, Cal, Batoto (CR36) 2012; 63
CR11
Rebouillat, Dievart, Verdeil (CR73) 2009; 2
Murphy, Riley (CR61) 1962; 27
Lynch, Ho (CR55) 2005; 269
Zhu, Kaeppler, Lynch (CR96) 2005; 270
Lynch, Brown (CR53) 2001; 237
CR93
Parlanti, Kudahettige, Lombardi (CR67) 2011; 107
Hill, Simpson, Moore, Chapman (CR37) 2006; 286
Haling, Brown, Bengough (CR35) 2013; 64
Chimungu, Brown, Lynch (CR12) 2014; 166
Kondo, Aguilar, Abe, Morita (CR45) 2000; 3
Gahoonia, Nielsen (CR27) 1998; 198
Linkohr, Williamson, Fitter, Leyser (CR48) 2002; 29
Kawai, Samarajeewa, Barrero (CR42) 1998; 204
Zhu, Brown, Lynch (CR97) 2010; 33
Ismail, Heuer, Thomson, Wissuwa (CR38) 2007; 65
Uga, Okuno, Yano (CR84) 2008; 58
Londo, Chiang, Hung (CR49) 2006; 103
Fan, Zhu, Richards (CR23) 2003; 30
Richardson, Lynch, Ryan (CR77) 2011; 349
Wissuwa, Yano, Ae (CR90) 1998; 97
Mori, Fukuda, Vejchasarn (CR60) 2016; 67
Wissuwa (CR88) 2005; 269
Gahoonia, Care, Nielsen (CR30) 1997; 191
D Cordell (102_CR17) 2009; 19
HR Lafitte (102_CR47) 2001; 71
S Parlanti (102_CR67) 2011; 107
R Gamuyao (102_CR32) 2012; 488
S Ogawa (102_CR65) 2014; 375
MS Fan (102_CR24) 2007; 49
J Lynch (102_CR57) 2014; 65
BI Linkohr (102_CR48) 2002; 29
M Wissuwa (102_CR90) 1998; 97
RA Richards (102_CR75) 1981; 21
VRP Gowda (102_CR34) 2012; 39
JP Lynch (102_CR51) 2011; 156
JP Lynch (102_CR52) 2014; 38
DE Evans (102_CR22) 2004; 161
M Kondo (102_CR45) 2000; 3
G Przywara (102_CR70) 2000; 14
TD Colmer (102_CR16) 2003; 26
M Reymond (102_CR74) 2006; 29
KK Vinod (102_CR86) 2012; 2012
JP Lynch (102_CR56) 1990; 13
P Saengwilai (102_CR79) 2014; 166
JP Lynch (102_CR55) 2005; 269
JA Postma (102_CR68) 2011; 156
J Murphy (102_CR61) 1962; 27
MS Fan (102_CR23) 2003; 30
Y Coudert (102_CR18) 2010; 15
LJ Clark (102_CR14) 2008; 35
JO Hill (102_CR37) 2006; 286
GC Eizenga (102_CR21) 2013; 8
J Zhu (102_CR95) 2005; 111
M Wissuwa (102_CR91) 2002; 105
D Fohse (102_CR26) 1991; 132
TS Gahoonia (102_CR31) 2006; 29
JA Postma (102_CR69) 2014
J Rebouillat (102_CR73) 2009; 2
TJ Rose (102_CR78) 2012; 112
VF Siyiannis (102_CR82) 2011; 249
Y Uga (102_CR84) 2008; 58
M Wissuwa (102_CR88) 2005; 269
A Henry (102_CR36) 2012; 63
J Lopez-Bucio (102_CR50) 2002; 129
GJD Kirk (102_CR44) 1998; 56
AL Burton (102_CR10) 2015; 128
N Sandhu (102_CR81) 2015; 66
RE Jaramillo (102_CR39) 2013; 112
J Chimungu (102_CR13) 2015; 171
A Mollier (102_CR59) 1999; 50
K Borch (102_CR2) 1999; 22
102_CR93
LM York (102_CR92) 2015; 66
102_CR11
DL Bouranis (102_CR4) 2006; 97
M Kano (102_CR41) 2011; 342
RR Suralta (102_CR83) 2008; 64
JW Radin (102_CR72) 1984; 75
DL Bouranis (102_CR3) 2003; 217
MA Miguel (102_CR58) 2015; 167
D Samal (102_CR80) 2010; 332
M Wissuwa (102_CR89) 2001; 120
TR Bates (102_CR1) 2000; 87
JM Zhu (102_CR97) 2010; 33
JW Radin (102_CR71) 1990; 92
JP Lynch (102_CR54) 2008
YF Niu (102_CR64) 2013; 112
J Chimungu (102_CR12) 2014; 166
JP Lynch (102_CR53) 2001; 237
AE Richardson (102_CR76) 2009; 60
AL Burton (102_CR9) 2013; 53
VRP Gowda (102_CR33) 2011; 122
LC Williamson (102_CR87) 2001; 126
JM Niones (102_CR63) 2013; 16
AL Burton (102_CR7) 2012; 367
JP Londo (102_CR49) 2006; 103
TS Gahoonia (102_CR27) 1998; 198
RE Haling (102_CR35) 2013; 64
A Mori (102_CR60) 2016; 67
TS Gahoonia (102_CR28) 2003; 26
TS Gahoonia (102_CR29) 2004; 262
H Konings (102_CR46) 1980; 49
M Kawai (102_CR42) 1998; 204
DT Clarkson (102_CR15) 2000; 51
MC Drew (102_CR20) 1989; 91
MC Drew (102_CR19) 1969; 31
GJD Kirk (102_CR43) 1997; 135
AE Richardson (102_CR77) 2011; 349
LK Brown (102_CR6) 2012; 110
MC Fernandez (102_CR25) 2015; 178
AL Burton (102_CR8) 2012; 357
TS Gahoonia (102_CR30) 1997; 191
JM Zhu (102_CR96) 2005; 270
J Nestler (102_CR62) 2016
E Vandamme (102_CR85) 2013; 369
LK Brown (102_CR5) 2012; 112
S Justin (102_CR40) 1987; 106
J Pariasca-Tanaka (102_CR66) 2014; 127
A Ismail (102_CR38) 2007; 65
JM Zhu (102_CR94) 2004; 31
References_xml – volume: 75
  start-page: 372
  year: 1984
  end-page: 377
  ident: CR72
  article-title: Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants
  publication-title: Plant Physiol
  doi: 10.1104/pp.75.2.372
– year: 2014
  ident: CR69
  article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability
  publication-title: Plant Physiol
– volume: 112
  start-page: 331
  year: 2012
  end-page: 345
  ident: CR78
  article-title: Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding
  publication-title: Ann Bot
  doi: 10.1093/aob/mcs217
– volume: 349
  start-page: 121
  year: 2011
  end-page: 156
  ident: CR77
  article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0950-4
– volume: 21
  start-page: 253
  year: 1981
  end-page: 255
  ident: CR75
  article-title: Seminal root morphology and water use of wheat II. Genetic variation
  publication-title: Crop Sci
  doi: 10.2135/cropsci1981.0011183X002100020012x
– volume: 332
  start-page: 105
  year: 2010
  end-page: 121
  ident: CR80
  article-title: Potassium uptake efficiency and dynamics in the rhizosphere of maize ( L.), wheat ( L.), and sugar beet ( L.) evaluated with a mechanistic model
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0277-6
– volume: 120
  start-page: 43
  year: 2001
  end-page: 48
  ident: CR89
  article-title: Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement
  publication-title: Plant Breed
  doi: 10.1046/j.1439-0523.2001.00561.x
– volume: 122
  start-page: 1
  year: 2011
  end-page: 13
  ident: CR33
  article-title: Root biology and genetic improvement for drought avoidance in rice
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2011.03.001
– volume: 269
  start-page: 57
  year: 2005
  end-page: 68
  ident: CR88
  article-title: Combining a modelling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptake
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-2026-1
– volume: 112
  start-page: 317
  year: 2012
  end-page: 330
  ident: CR5
  article-title: A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability?
  publication-title: Ann Bot
  doi: 10.1093/aob/mcs231
– volume: 63
  start-page: 4751
  year: 2012
  end-page: 4763
  ident: CR36
  article-title: Root attributes affecting water uptake of rice ( ) under drought
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ers150
– volume: 156
  start-page: 1041
  year: 2011
  end-page: 1049
  ident: CR51
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175414
– volume: 217
  start-page: 382
  year: 2003
  end-page: 391
  ident: CR3
  article-title: Aerenchyma formation in roots of maize during sulphate starvation
  publication-title: Planta
  doi: 10.1007/s00425-003-1007-6
– volume: 126
  start-page: 875
  year: 2001
  end-page: 882
  ident: CR87
  article-title: Phosphate availability regulates root system architecture in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.126.2.875
– volume: 367
  start-page: 263
  year: 2012
  end-page: 274
  ident: CR7
  article-title: Spatial distribution and phenotypic variation in root cortical aerenchyma of maize ( )
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1453-7
– ident: CR11
– volume: 66
  start-page: 225
  year: 2015
  end-page: 244
  ident: CR81
  article-title: Traits and QTLs for development of dry direct-seeded rainfed rice varieties
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru413
– volume: 132
  start-page: 261
  year: 1991
  end-page: 272
  ident: CR26
  article-title: Phosphorus efficiency of plants. 2. Significance of root radius, root hairs and cation-anion balance for phosphorus influx in 7 plant species
  publication-title: Plant Soil
– volume: 29
  start-page: 751
  year: 2002
  end-page: 760
  ident: CR48
  article-title: Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2002.01251.x
– volume: 269
  start-page: 45
  year: 2005
  end-page: 56
  ident: CR55
  article-title: Rhizoeconomics: Carbon costs of phosphorus acquisition
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-1096-4
– volume: 15
  start-page: 219
  year: 2010
  end-page: 226
  ident: CR18
  article-title: Genetic control of root development in rice, the model cereal
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2010.01.008
– volume: 112
  start-page: 391
  year: 2013
  end-page: 408
  ident: CR64
  article-title: Responses of root architecture development to low phosphorus availability: a review
  publication-title: Ann Bot
  doi: 10.1093/aob/mcs285
– volume: 64
  start-page: 75
  year: 2008
  end-page: 82
  ident: CR83
  article-title: Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2008.01.004
– volume: 97
  start-page: 777
  year: 1998
  end-page: 783
  ident: CR90
  article-title: Mapping of QTLs for phosphorus-deficiency tolerance in rice ( L.)
  publication-title: Theor Appl Genet
  doi: 10.1007/s001220050955
– volume: 270
  start-page: 299
  year: 2005
  end-page: 310
  ident: CR96
  article-title: Mapping of QTL controlling root hair length in maize ( L.) under phosphorus deficiency
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-1697-y
– volume: 8
  start-page: 109
  year: 2013
  end-page: 116
  ident: CR21
  article-title: Registration of the Rice Diversity Panel 1 for Genomewide Association Studies
  publication-title: J Plant Regist
  doi: 10.3198/jpr2013.03.0013crmp
– volume: 112
  start-page: 1
  year: 2013
  end-page: 9
  ident: CR39
  article-title: Root cortical burden influences drought tolerance in maize
  publication-title: Ann Bot
  doi: 10.1093/aob/mct069
– volume: 58
  start-page: 7
  year: 2008
  end-page: 14
  ident: CR84
  article-title: QTLs underlying natural variation in stele and xylem structures of rice root
  publication-title: Breed Sci
  doi: 10.1270/jsbbs.58.7
– volume: 51
  start-page: 61
  year: 2000
  end-page: 70
  ident: CR15
  article-title: Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress
  publication-title: J Exp Bot
  doi: 10.1093/jexbot/51.342.61
– volume: 29
  start-page: 115
  year: 2006
  end-page: 125
  ident: CR74
  article-title: Identification of QTL controlling root growth response to phosphate starvation in
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2005.01405.x
– volume: 369
  start-page: 269
  year: 2013
  end-page: 282
  ident: CR85
  article-title: Root hairs explain P uptake efficiency of soybean genotypes grown in a P-deficient Ferralsol
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1571-2
– volume: 66
  start-page: 2347
  year: 2015
  end-page: 2358
  ident: CR92
  article-title: Evolution of US maize ( L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erv074
– volume: 53
  start-page: 1042
  year: 2013
  end-page: 1055
  ident: CR9
  article-title: Phenotypic diversity of root anatomical and architectural traits in species
  publication-title: Crop Sci
  doi: 10.2135/cropsci2012.07.0440
– volume: 2012
  start-page: pls028
  year: 2012
  ident: CR86
  article-title: Approaches towards nitrogen- and phosphorus-efficient rice
  publication-title: AoB Plants
  doi: 10.1093/aobpla/pls028
– volume: 342
  start-page: 117
  year: 2011
  end-page: 128
  ident: CR41
  article-title: Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0675-9
– volume: 29
  start-page: 643
  year: 2006
  end-page: 655
  ident: CR31
  article-title: Genetic variation in root traits and nutrient acquisition of lentil genotypes
  publication-title: J Plant Nutr
  doi: 10.1080/01904160600564378
– volume: 14
  start-page: 401
  year: 2000
  end-page: 410
  ident: CR70
  article-title: Influence of flooding and different temperatures of the soil on gas-filled porosity of pea, maize and winter wheat roots
  publication-title: Int Agrophys
– volume: 110
  start-page: 319
  year: 2012
  end-page: 328
  ident: CR6
  article-title: What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley ( )?
  publication-title: Ann Bot
  doi: 10.1093/aob/mcs085
– volume: 30
  start-page: 493
  year: 2003
  end-page: 506
  ident: CR23
  article-title: Physiological roles for aerenchyma in phosphorus-stressed roots
  publication-title: Funct Plant Biol
  doi: 10.1071/FP03046
– volume: 488
  start-page: 535
  year: 2012
  end-page: 539
  ident: CR32
  article-title: The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency
  publication-title: Nature
  doi: 10.1038/nature11346
– volume: 204
  start-page: 277
  year: 1998
  end-page: 287
  ident: CR42
  article-title: Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots
  publication-title: Planta
  doi: 10.1007/s004250050257
– volume: 262
  start-page: 55
  year: 2004
  end-page: 62
  ident: CR29
  article-title: Barley genotypes with long root hairs sustain high grain yields in low-P field
  publication-title: Plant Soil
  doi: 10.1023/B:PLSO.0000037020.58002.ac
– volume: 191
  start-page: 181
  year: 1997
  end-page: 188
  ident: CR30
  article-title: Root hairs and phosphorus acquisition of wheat and barley cultivars
  publication-title: Plant Soil
  doi: 10.1023/A:1004270201418
– volume: 64
  start-page: 3711
  year: 2013
  end-page: 3721
  ident: CR35
  article-title: Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert200
– volume: 249
  start-page: 671
  year: 2011
  end-page: 686
  ident: CR82
  article-title: Comparative spatiotemporal analysis of root aerenchyma formation processes in maize due to sulphate, nitrate or phosphate deprivation
  publication-title: Protoplasma
  doi: 10.1007/s00709-011-0309-y
– volume: 107
  start-page: 1335
  year: 2011
  end-page: 1343
  ident: CR67
  article-title: Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance
  publication-title: Ann Bot
  doi: 10.1093/aob/mcr086
– ident: CR93
– volume: 31
  start-page: 407
  year: 1969
  end-page: 424
  ident: CR19
  article-title: The supply of nutrient ions by diffusion to plant roots in soil
  publication-title: Plant Soil
  doi: 10.1007/BF01373813
– volume: 56
  start-page: 73
  year: 1998
  end-page: 92
  ident: CR44
  article-title: Opportunities to improve phosphorus efficiency and soil fertility in rainfed lowland and upland rice ecosystems
  publication-title: Field Crop Res
  doi: 10.1016/S0378-4290(97)00141-X
– year: 2016
  ident: CR62
  article-title: Root hair formation in rice (Oryza sativa L.) differs between root types and is altered in artificial growth conditions
  publication-title: J Exp Bot
– volume: 156
  start-page: 1190
  year: 2011
  end-page: 1201
  ident: CR68
  article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175489
– volume: 106
  start-page: 465
  year: 1987
  end-page: 495
  ident: CR40
  article-title: The anatomical characteristics of roots and plant response to soil flooding
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1987.tb00153.x
– volume: 16
  start-page: 205
  year: 2013
  end-page: 216
  ident: CR63
  article-title: Roles of root aerenchyma development and its associated QTL in dry matter production under transient moisture stress in rice
  publication-title: Plant Prod Sci
  doi: 10.1626/pps.16.205
– volume: 103
  start-page: 9578
  year: 2006
  end-page: 9583
  ident: CR49
  article-title: Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice,
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0603152103
– volume: 65
  start-page: 6155
  year: 2014
  end-page: 6166
  ident: CR57
  article-title: Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru162
– volume: 60
  start-page: 124
  year: 2009
  end-page: 143
  ident: CR76
  article-title: Plant mechanisms to optimise access to soil phosphorus
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP07125
– volume: 135
  start-page: 191
  year: 1997
  end-page: 200
  ident: CR43
  article-title: Changes in rice root architecture, porosity, and oxygen and proton release under phosphorus deficiency
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.1997.00640.x
– volume: 49
  start-page: 265
  year: 1980
  end-page: 279
  ident: CR46
  article-title: Formation of aerenchyma in roots of in aerated solutions, and its relation to nutrient supply
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1980.tb02661.x
– volume: 35
  start-page: 1163
  year: 2008
  end-page: 1171
  ident: CR14
  article-title: Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice
  publication-title: Funct Plant Biol
  doi: 10.1071/FP08132
– volume: 161
  start-page: 35
  year: 2004
  end-page: 49
  ident: CR22
  article-title: Aerenchyma formation
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2003.00907.x
– volume: 49
  start-page: 598
  year: 2007
  end-page: 604
  ident: CR24
  article-title: Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots
  publication-title: J Integr Plant Biol
  doi: 10.1111/j.1744-7909.2007.00450.x
– volume: 105
  start-page: 890
  year: 2002
  end-page: 897
  ident: CR91
  article-title: Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-002-1051-9
– volume: 198
  start-page: 147
  year: 1998
  end-page: 152
  ident: CR27
  article-title: Direct evidence on participation of root hairs in phosphorus (P-32) uptake from soil
  publication-title: Plant Soil
  doi: 10.1023/A:1004346412006
– volume: 97
  start-page: 695
  year: 2006
  end-page: 704
  ident: CR4
  article-title: Dynamics of aerenchyma distribution in the cortex of sulfate-deprived adventitious roots of maize
  publication-title: Ann Bot
  doi: 10.1093/aob/mcl024
– volume: 13
  start-page: 547
  year: 1990
  end-page: 554
  ident: CR56
  article-title: An automated greenhouse sand culture system suitable for studies of P nutrition
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1990.tb01071.x
– volume: 127
  start-page: 1387
  issue: 6
  year: 2014
  end-page: 1398
  ident: CR66
  article-title: A novel allele of the P-starvation tolerance gene OsPSTOL1 from African rice ( Steud) and its distribution in the genus Oryza
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-014-2306-y
– volume: 71
  start-page: 57
  year: 2001
  end-page: 70
  ident: CR47
  article-title: Rice root morphological traits are related to isozyme group and adaptation
  publication-title: Field Crop Res
  doi: 10.1016/S0378-4290(01)00150-2
– volume: 3
  start-page: 437
  year: 2000
  end-page: 445
  ident: CR45
  article-title: Anatomy of nodal roots in tropical upland and lowland rice varieties
  publication-title: Plant Prod Sci
  doi: 10.1626/pps.3.437
– start-page: 83
  year: 2008
  end-page: 116
  ident: CR54
  article-title: Root strategies for phosphorus acquisition
  publication-title: Ecophysiol. Plant-Phosphorus Interact
  doi: 10.1007/978-1-4020-8435-5_5
– volume: 111
  start-page: 688
  year: 2005
  end-page: 695
  ident: CR95
  article-title: Mapping of QTLs for lateral root branching and length in maize ( L.) under differential phosphorus supply
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-005-2051-3
– volume: 67
  start-page: 1179
  year: 2016
  end-page: 1189
  ident: CR60
  article-title: The role of root size versus root efficiency in phosphorus acquisition in rice
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erv557
– volume: 286
  start-page: 7
  year: 2006
  end-page: 19
  ident: CR37
  article-title: Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-0014-3
– volume: 39
  start-page: 402
  year: 2012
  ident: CR34
  article-title: Water uptake dynamics under progressive drought stress in diverse accessions of the OryzaSNP panel of rice ( )
  publication-title: Funct Plant Biol
  doi: 10.1071/FP12015
– volume: 50
  start-page: 487
  year: 1999
  end-page: 497
  ident: CR59
  article-title: Maize root system growth and development as influenced by phosphorus deficiency
  publication-title: J Exp Bot
  doi: 10.1093/jxb/50.333.487
– volume: 128
  start-page: 93
  year: 2015
  end-page: 106
  ident: CR10
  article-title: QTL mapping and phenotypic variation of root anatomical traits in maize ( L.)
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-014-2414-8
– volume: 167
  start-page: 1430
  year: 2015
  end-page: 1439
  ident: CR58
  article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.00145
– volume: 375
  start-page: 303
  year: 2014
  end-page: 315
  ident: CR65
  article-title: N- and P-mediated seminal root elongation response in rice seedlings
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1955-y
– volume: 178
  start-page: 807
  year: 2015
  end-page: 815
  ident: CR25
  article-title: Root morphological traits related to phosphorus‐uptake efficiency of soybean, sunflower, and maize
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201500155
– volume: 33
  start-page: 740
  year: 2010
  end-page: 749
  ident: CR97
  article-title: Root cortical aerenchyma improves the drought tolerance of maize ( L.)
  publication-title: Plant Cell Environ
– volume: 357
  start-page: 189
  year: 2012
  end-page: 203
  ident: CR8
  article-title: : Software for high-throughput analysis of root anatomical traits
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1138-2
– volume: 166
  start-page: 1943
  issue: 4
  year: 2014
  end-page: 1955
  ident: CR12
  article-title: Reduced root cortical cell file number improves drought tolerance in maize
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.249037
– volume: 171
  start-page: 86
  year: 2015
  end-page: 98
  ident: CR13
  article-title: Utility of root cortical aerenchyma under water limited conditions in tropical maize ( L.)
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2014.10.009
– volume: 237
  start-page: 225
  year: 2001
  end-page: 237
  ident: CR53
  article-title: Topsoil foraging - an architectural adaptation of plants to low phosphorus availability
  publication-title: Plant Soil
  doi: 10.1023/A:1013324727040
– volume: 31
  start-page: 949
  year: 2004
  end-page: 958
  ident: CR94
  article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize ( ) seedlings
  publication-title: Funct Plant Biol
  doi: 10.1071/FP04046
– volume: 19
  start-page: 292
  year: 2009
  end-page: 305
  ident: CR17
  article-title: The story of phosphorus: Global food security and food for thought
  publication-title: Glob Environ Chang
  doi: 10.1016/j.gloenvcha.2008.10.009
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  ident: CR61
  article-title: A modified single solution reagent for the determination of phosphate in natural waters
  publication-title: Anal Chim Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 166
  start-page: 726
  year: 2014
  end-page: 735
  ident: CR79
  article-title: Root cortical aerenchyma enhances nitrogen acquisition from low nitrogen soils in maize
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.241711
– volume: 65
  start-page: 547
  year: 2007
  end-page: 570
  ident: CR38
  article-title: Genetic and genomic approaches to develop rice germplasm for problem soils
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-007-9215-2
– volume: 26
  start-page: 17
  year: 2003
  end-page: 36
  ident: CR16
  article-title: Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.2003.00846.x
– volume: 2
  start-page: 15
  year: 2009
  end-page: 34
  ident: CR73
  article-title: Molecular genetics of rice root development
  publication-title: Rice
  doi: 10.1007/s12284-008-9016-5
– volume: 26
  start-page: 1759
  year: 2003
  end-page: 1766
  ident: CR28
  article-title: Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low- and high-P soils
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.2003.01093.x
– volume: 22
  start-page: 425
  year: 1999
  end-page: 431
  ident: CR2
  article-title: Ethylene: a regulator of root architectural responses to soil phosphorus availability
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1999.00405.x
– volume: 38
  start-page: 1775
  year: 2014
  end-page: 1784
  ident: CR52
  article-title: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12451
– volume: 129
  start-page: 244
  year: 2002
  end-page: 256
  ident: CR50
  article-title: Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system
  publication-title: Plant Physiol
  doi: 10.1104/pp.010934
– volume: 87
  start-page: 964
  year: 2000
  end-page: 970
  ident: CR1
  article-title: The efficiency of (Brassicaceae) root hairs in phosphorus acquisition
  publication-title: Am J Bot
  doi: 10.2307/2656995
– volume: 92
  start-page: 855
  year: 1990
  end-page: 857
  ident: CR71
  article-title: Responses of transpiration and hydraulic conductance to root temperature in nitrogen- and phosphorus-deficient cotton seedlings
  publication-title: Plant Physiol
  doi: 10.1104/pp.92.3.855
– volume: 91
  start-page: 266
  year: 1989
  end-page: 271
  ident: CR20
  article-title: Decreased ethylene biosynthesis, and induction of aerenchyma, by nitrogen- or phosphate-starvation in adventitious roots of L
  publication-title: Plant Physiol
  doi: 10.1104/pp.91.1.266
– volume: 29
  start-page: 751
  year: 2002
  ident: 102_CR48
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2002.01251.x
– volume: 14
  start-page: 401
  year: 2000
  ident: 102_CR70
  publication-title: Int Agrophys
– volume: 112
  start-page: 331
  year: 2012
  ident: 102_CR78
  publication-title: Ann Bot
  doi: 10.1093/aob/mcs217
– volume: 53
  start-page: 1042
  year: 2013
  ident: 102_CR9
  publication-title: Crop Sci
  doi: 10.2135/cropsci2012.07.0440
– volume: 26
  start-page: 17
  year: 2003
  ident: 102_CR16
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.2003.00846.x
– volume: 126
  start-page: 875
  year: 2001
  ident: 102_CR87
  publication-title: Plant Physiol
  doi: 10.1104/pp.126.2.875
– volume: 217
  start-page: 382
  year: 2003
  ident: 102_CR3
  publication-title: Planta
  doi: 10.1007/s00425-003-1007-6
– volume: 29
  start-page: 115
  year: 2006
  ident: 102_CR74
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2005.01405.x
– volume: 286
  start-page: 7
  year: 2006
  ident: 102_CR37
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-0014-3
– volume: 156
  start-page: 1041
  year: 2011
  ident: 102_CR51
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175414
– volume: 369
  start-page: 269
  year: 2013
  ident: 102_CR85
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1571-2
– volume: 332
  start-page: 105
  year: 2010
  ident: 102_CR80
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0277-6
– volume: 128
  start-page: 93
  year: 2015
  ident: 102_CR10
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-014-2414-8
– volume: 198
  start-page: 147
  year: 1998
  ident: 102_CR27
  publication-title: Plant Soil
  doi: 10.1023/A:1004346412006
– volume: 22
  start-page: 425
  year: 1999
  ident: 102_CR2
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1999.00405.x
– volume: 91
  start-page: 266
  year: 1989
  ident: 102_CR20
  publication-title: Plant Physiol
  doi: 10.1104/pp.91.1.266
– start-page: 83
  volume-title: Ecophysiol. Plant-Phosphorus Interact
  year: 2008
  ident: 102_CR54
  doi: 10.1007/978-1-4020-8435-5_5
– volume: 178
  start-page: 807
  year: 2015
  ident: 102_CR25
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.201500155
– volume: 112
  start-page: 317
  year: 2012
  ident: 102_CR5
  publication-title: Ann Bot
  doi: 10.1093/aob/mcs231
– volume: 166
  start-page: 1943
  issue: 4
  year: 2014
  ident: 102_CR12
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.249037
– volume: 488
  start-page: 535
  year: 2012
  ident: 102_CR32
  publication-title: Nature
  doi: 10.1038/nature11346
– volume: 65
  start-page: 547
  year: 2007
  ident: 102_CR38
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-007-9215-2
– volume: 39
  start-page: 402
  year: 2012
  ident: 102_CR34
  publication-title: Funct Plant Biol
  doi: 10.1071/FP12015
– volume: 342
  start-page: 117
  year: 2011
  ident: 102_CR41
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0675-9
– volume: 60
  start-page: 124
  year: 2009
  ident: 102_CR76
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP07125
– volume: 51
  start-page: 61
  year: 2000
  ident: 102_CR15
  publication-title: J Exp Bot
  doi: 10.1093/jexbot/51.342.61
– volume: 156
  start-page: 1190
  year: 2011
  ident: 102_CR68
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175489
– volume: 262
  start-page: 55
  year: 2004
  ident: 102_CR29
  publication-title: Plant Soil
  doi: 10.1023/B:PLSO.0000037020.58002.ac
– volume: 171
  start-page: 86
  year: 2015
  ident: 102_CR13
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2014.10.009
– volume: 367
  start-page: 263
  year: 2012
  ident: 102_CR7
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1453-7
– volume: 16
  start-page: 205
  year: 2013
  ident: 102_CR63
  publication-title: Plant Prod Sci
  doi: 10.1626/pps.16.205
– volume: 111
  start-page: 688
  year: 2005
  ident: 102_CR95
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-005-2051-3
– volume: 75
  start-page: 372
  year: 1984
  ident: 102_CR72
  publication-title: Plant Physiol
  doi: 10.1104/pp.75.2.372
– volume: 27
  start-page: 31
  year: 1962
  ident: 102_CR61
  publication-title: Anal Chim Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 64
  start-page: 75
  year: 2008
  ident: 102_CR83
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2008.01.004
– volume: 21
  start-page: 253
  year: 1981
  ident: 102_CR75
  publication-title: Crop Sci
  doi: 10.2135/cropsci1981.0011183X002100020012x
– volume: 122
  start-page: 1
  year: 2011
  ident: 102_CR33
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2011.03.001
– volume: 112
  start-page: 1
  year: 2013
  ident: 102_CR39
  publication-title: Ann Bot
  doi: 10.1093/aob/mct069
– volume: 112
  start-page: 391
  year: 2013
  ident: 102_CR64
  publication-title: Ann Bot
  doi: 10.1093/aob/mcs285
– volume: 269
  start-page: 57
  year: 2005
  ident: 102_CR88
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-2026-1
– volume: 31
  start-page: 407
  year: 1969
  ident: 102_CR19
  publication-title: Plant Soil
  doi: 10.1007/BF01373813
– volume: 29
  start-page: 643
  year: 2006
  ident: 102_CR31
  publication-title: J Plant Nutr
  doi: 10.1080/01904160600564378
– year: 2014
  ident: 102_CR69
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.233916
– volume: 97
  start-page: 777
  year: 1998
  ident: 102_CR90
  publication-title: Theor Appl Genet
  doi: 10.1007/s001220050955
– volume: 135
  start-page: 191
  year: 1997
  ident: 102_CR43
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.1997.00640.x
– volume: 58
  start-page: 7
  year: 2008
  ident: 102_CR84
  publication-title: Breed Sci
  doi: 10.1270/jsbbs.58.7
– volume: 65
  start-page: 6155
  year: 2014
  ident: 102_CR57
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru162
– volume: 31
  start-page: 949
  year: 2004
  ident: 102_CR94
  publication-title: Funct Plant Biol
  doi: 10.1071/FP04046
– volume: 71
  start-page: 57
  year: 2001
  ident: 102_CR47
  publication-title: Field Crop Res
  doi: 10.1016/S0378-4290(01)00150-2
– ident: 102_CR11
– volume: 92
  start-page: 855
  year: 1990
  ident: 102_CR71
  publication-title: Plant Physiol
  doi: 10.1104/pp.92.3.855
– volume: 106
  start-page: 465
  year: 1987
  ident: 102_CR40
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1987.tb00153.x
– volume: 97
  start-page: 695
  year: 2006
  ident: 102_CR4
  publication-title: Ann Bot
  doi: 10.1093/aob/mcl024
– volume: 67
  start-page: 1179
  year: 2016
  ident: 102_CR60
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erv557
– volume: 237
  start-page: 225
  year: 2001
  ident: 102_CR53
  publication-title: Plant Soil
  doi: 10.1023/A:1013324727040
– volume: 13
  start-page: 547
  year: 1990
  ident: 102_CR56
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1990.tb01071.x
– volume: 49
  start-page: 265
  year: 1980
  ident: 102_CR46
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1980.tb02661.x
– volume: 269
  start-page: 45
  year: 2005
  ident: 102_CR55
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-1096-4
– volume: 103
  start-page: 9578
  year: 2006
  ident: 102_CR49
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0603152103
– volume: 375
  start-page: 303
  year: 2014
  ident: 102_CR65
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1955-y
– volume: 8
  start-page: 109
  year: 2013
  ident: 102_CR21
  publication-title: J Plant Regist
  doi: 10.3198/jpr2013.03.0013crmp
– volume: 357
  start-page: 189
  year: 2012
  ident: 102_CR8
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1138-2
– year: 2016
  ident: 102_CR62
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erw115
– volume: 191
  start-page: 181
  year: 1997
  ident: 102_CR30
  publication-title: Plant Soil
  doi: 10.1023/A:1004270201418
– volume: 2
  start-page: 15
  year: 2009
  ident: 102_CR73
  publication-title: Rice
  doi: 10.1007/s12284-008-9016-5
– volume: 66
  start-page: 2347
  year: 2015
  ident: 102_CR92
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erv074
– volume: 19
  start-page: 292
  year: 2009
  ident: 102_CR17
  publication-title: Glob Environ Chang
  doi: 10.1016/j.gloenvcha.2008.10.009
– volume: 349
  start-page: 121
  year: 2011
  ident: 102_CR77
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0950-4
– volume: 120
  start-page: 43
  year: 2001
  ident: 102_CR89
  publication-title: Plant Breed
  doi: 10.1046/j.1439-0523.2001.00561.x
– volume: 38
  start-page: 1775
  year: 2014
  ident: 102_CR52
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12451
– volume: 66
  start-page: 225
  year: 2015
  ident: 102_CR81
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru413
– volume: 270
  start-page: 299
  year: 2005
  ident: 102_CR96
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-1697-y
– ident: 102_CR93
– volume: 30
  start-page: 493
  year: 2003
  ident: 102_CR23
  publication-title: Funct Plant Biol
  doi: 10.1071/FP03046
– volume: 127
  start-page: 1387
  issue: 6
  year: 2014
  ident: 102_CR66
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-014-2306-y
– volume: 167
  start-page: 1430
  year: 2015
  ident: 102_CR58
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.00145
– volume: 15
  start-page: 219
  year: 2010
  ident: 102_CR18
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2010.01.008
– volume: 87
  start-page: 964
  year: 2000
  ident: 102_CR1
  publication-title: Am J Bot
  doi: 10.2307/2656995
– volume: 26
  start-page: 1759
  year: 2003
  ident: 102_CR28
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.2003.01093.x
– volume: 64
  start-page: 3711
  year: 2013
  ident: 102_CR35
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert200
– volume: 161
  start-page: 35
  year: 2004
  ident: 102_CR22
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2003.00907.x
– volume: 132
  start-page: 261
  year: 1991
  ident: 102_CR26
  publication-title: Plant Soil
  doi: 10.1007/BF00010407
– volume: 56
  start-page: 73
  year: 1998
  ident: 102_CR44
  publication-title: Field Crop Res
  doi: 10.1016/S0378-4290(97)00141-X
– volume: 105
  start-page: 890
  year: 2002
  ident: 102_CR91
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-002-1051-9
– volume: 35
  start-page: 1163
  year: 2008
  ident: 102_CR14
  publication-title: Funct Plant Biol
  doi: 10.1071/FP08132
– volume: 129
  start-page: 244
  year: 2002
  ident: 102_CR50
  publication-title: Plant Physiol
  doi: 10.1104/pp.010934
– volume: 3
  start-page: 437
  year: 2000
  ident: 102_CR45
  publication-title: Plant Prod Sci
  doi: 10.1626/pps.3.437
– volume: 166
  start-page: 726
  year: 2014
  ident: 102_CR79
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.241711
– volume: 50
  start-page: 487
  year: 1999
  ident: 102_CR59
  publication-title: J Exp Bot
  doi: 10.1093/jxb/50.333.487
– volume: 2012
  start-page: pls028
  year: 2012
  ident: 102_CR86
  publication-title: AoB Plants
  doi: 10.1093/aobpla/pls028
– volume: 204
  start-page: 277
  year: 1998
  ident: 102_CR42
  publication-title: Planta
  doi: 10.1007/s004250050257
– volume: 107
  start-page: 1335
  year: 2011
  ident: 102_CR67
  publication-title: Ann Bot
  doi: 10.1093/aob/mcr086
– volume: 249
  start-page: 671
  year: 2011
  ident: 102_CR82
  publication-title: Protoplasma
  doi: 10.1007/s00709-011-0309-y
– volume: 33
  start-page: 740
  year: 2010
  ident: 102_CR97
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2009.02099.x
– volume: 63
  start-page: 4751
  year: 2012
  ident: 102_CR36
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ers150
– volume: 110
  start-page: 319
  year: 2012
  ident: 102_CR6
  publication-title: Ann Bot
  doi: 10.1093/aob/mcs085
– volume: 49
  start-page: 598
  year: 2007
  ident: 102_CR24
  publication-title: J Integr Plant Biol
  doi: 10.1111/j.1744-7909.2007.00450.x
SSID ssj0063259
ssj0056243
Score 2.4188137
Snippet Background Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are...
Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical...
Background Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are...
BACKGROUND: Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 29
SubjectTerms aerenchyma
Agriculture
Biomedical and Life Sciences
breeding
chromosome mapping
genetic variation
genotype
Genotype & phenotype
Life Sciences
Original
Original Article
Oryza sativa
phenotype
phenotypic variation
Phosphorus
Plant Breeding/Biotechnology
Plant Ecology
Plant Genetics and Genomics
Plant Sciences
Rice
root hairs
soil
stele
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbocmkPVd9dSpEr9UQVgR-x41NFEQhVAqEVIG6RX9tFquLtZvfAv-_YcVK2iJVy81hxPONvZjyTGYS-EqGZcEQUyjpwUIhWhRFcF5YTKa3mnKv4g_P5hTi75j9vy9t84dbmtMoeExNQu2DjHfkBCA5onlLyw-_zP0XsGhWjq7mFxjO0DRBcVSO0_ePk4nLSYzEodz4As2A09U4Dk0UVMfqUg5ykEgctoYDT4FdH9xowQq2rqUe25-MUyv_iqEk9nb5CL7NdiY86QXiNtnzzBr04-rXItTX8W3QcS0zDML4B_7grz32P7xp8OQvtfBYWqxZPuoxZ3-IwxRPAEDwJYQkUvgnxsrZ9h65PT66Oz4rcQ6GwpVDLgilhKbeUGu-081w68N_IVDKniS49Z9xoIWQK6zJgjQGFpgw8euqsAka-R6MmNP4jwrqaarA2hPcyVhWsjCnBmKNMO2NNpdUYHfZbVttcYDz2ufhdJ0ejEnW3y3VMKou7XMOU_WHKvKuusYl4t-dDnQ9aW_8TizH6MgzDEYlxD934sEo0EpCJKLmBBuwwRsHXhdd86Fg7rIiCA8JZxcdIrjF9IIglutdHmrtZKtXNVWqZOEbfevF4sPSnPnRn84d-Qs9pFNSUU7OLRsvFyn8Gy2hp9rL4_wV0Cgju
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X_RB_HY6JYJPSnFN0qR5HOIQQZHhxLeSpJkbSDvW7cH_3kvaDud0IPQtl37kcpf79S6_IHQZckV5GvJAmhQASqhkoDlTgWGhEEYxxqTb4Pz4xO_77OEteqv2cRd1tXudkvSe2pt1zG-KkIArBejrEDCYsVxHG5GD7i5D67Y4lO6XU-JPSIPARAYux1SlMn-9xeJitBRhLhdK_siW-kWou4O2q-gRd0p176I1m-2hrc77pGLQsPvo1hFJQzN-BRRcknB_4lGGn4d5MR7mk1mBe2VdrC1wPsA98BS4l-dTkLBZ7n7JFgeo3717ub0PqpMSAhNxOQ2o5IYwQ4i2qUotEymgtHAgaKpCFVlGmVacC5-8paAADcuW1HCpQWokqOsQNbI8s8cIq3igIKbg1grHHRhrHUHIRqhKtdGxkk3UrocsMRWNuDvN4iPxcCLmSTnKiSsdc6OcQJereZdxyaGxSrhV6yGpzKlIwGtA2BEJ1m6ii3kzGILLbqjM5jMvI8D_hFKskIFoixJAtPCYo1K18zciADMYjVkTiQWlzwUcEfdiSzYaekJuJv3BiE10XU-Pb6_-14ee_Ev6FG0SN299IU0LNaaTmT2DcGiqz_30_wK9RAEL
  priority: 102
  providerName: Springer Nature
Title Genetic Variability in Phosphorus Responses of Rice Root Phenotypes
URI https://link.springer.com/article/10.1186/s12284-016-0102-9
https://www.ncbi.nlm.nih.gov/pubmed/27294384
https://www.proquest.com/docview/1796135740
https://www.proquest.com/docview/1797257197
https://www.proquest.com/docview/1846320949
https://pubmed.ncbi.nlm.nih.gov/PMC4905936
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_68bI9lG3d1qxdUGFPLd5iSZashzGy0A8GLSU0o29GkpWmUOwuTqD973eSP1jWDzAGo7Oj6O6k3_nk3wF8iYVmIo9FpGyOAUqsVWQE15HlsZRWc86V_8D57FycTvivq-RqDdryVs0AVk-Gdr6e1GR--_X-z8MPdPjvweFT8a2KKU6yGBT72BgdXK3DJi5M0hc0OONdUkEwGmqnIWRRkc8-NUnOJx_hSYIRd3KW8tUV6xEMfbyb8r-Ualipjt_AVgMxybC2ibew5op38Hp4PW9oNtw2jDzbNDaT3xgq10zdD-SmIBezsrqblfNlRcb15llXkXJKxjidkHFZLlDCFaV_b1u9h8nx0eXoNGrKKUQ2EWoRMSUs5ZZS43KdOy5zDOXiqWS5jnXiOONGCyFDhpehlgyubcrgoae5VajTD7BRlIXbAaLTqUbgIZyTnmAwNSZBXEeZzo01qVY9GLRDltmGa9yXvLjNQsyRiqwe8MzvL_MDnuEtB90tdzXRxkvCe60estZkMpxaEJskkg96sN81o7f4FIguXLkMMhInqVjJF2QQkjGKYS_-zMdatV2PWpvogVxReifg2bpXW4qbWWDt5ipUT-zBYWse_3T9uT_66dke7MIr6s017KzZg43FfOk-Iz5amD6s88FJHzZ_Hp1fjPFqRLk_i1E_vHHoB6_A84QO_wJVnA2A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEG8CBYwEF9Cq8WPt9QGhUlqltI2qqEW9LbbXIZXQbsgmQv1T_EbG-4JQkVulvXm868d4Zj7P7AzAayoNlxmVkXYZAhRqdGSlMJETVClnhBA6_OB8PJLDM_H5PD7fgF_tvzAhrLKViZWgzgoX7si3kXFQ88RKDD7MfkShalTwrrYlNGq2OPSXPxGyle8PPuH-vmFsf-90dxg1VQUiF0u9iLiWjgnHmPWZybxQGSIaOlE8M9TEXnBhjZSqcnRyHKxFEa8tPmaSOY1Tw_fegE3B5YD1YPPj3uhk3Mp-NCZEpwgkZ1WtNjSRdBS8XY1TlSZyu6QM9QLi-ADnUSbpVbV4xda9GrL5j9-2Uof7d-FOY8eSnZrx7sGGz-_D7Z1v8yaXh38AuyGlNTaTL4jH63Tgl-QiJyfTopxNi_myJOM6QteXpJiQMcosMi6KBVL4vAiXw-VDOLuW1X0EvbzI_RMgJpkYtG6k9ypkMUysjdF4ZNxk1tnE6D4M2iVLXZPQPNTV-J5WwCaRab3KaQhiC6ucYpe3XZdZnc1jHfFWuw9pc7DL9A8b9uFV14xHMvhZTO6LZUWjUBJSrdbQoN3HGWJr_Mzjemu7ETEEPIInog9qZdM7gpASfLUlv5hWqcGFrko09uFdyx5_Df1_E326fqIv4ebw9PgoPToYHT6DWywwbRXPswW9xXzpn6NVtrAvmqNA4Ot1n77fd6RF7Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLsAfG9wgAjwQso6uw4dvwwobGt2hhUVcXQ3oLtOHQSSkrTCu1f46_bOV9QJvo2KW--JP64r1_ucgfwmgodipSKQNkUAQrVKjCC68ByKqXVnHPlf3D-PBLHZ_zjeXS-Ab_bf2F8WmWrEytFnRbWfyMfIOOg5Ykk3x1kTVrE-HD4fvYz8B2kfKS1badRs8ipu_yF8K3cOznEs37D2PDoy8Fx0HQYCGwk1CIIlbCMW8aMS3XquEwR3dBMhqmmOnI85EYLIaugZ4gTN6julcFLZ6lVuEx87i3YlB4V9WDzw9FoPGntADoWvDMKImRV3zZ0l1TgI19NgJXGYlBShjYCMb2H9qif1KqJvOb3Xk_f_CeGW5nG4T242_i0ZL9mwvuw4fIHsLX_fd7U9XAP4cCXt8Zh8hWxeV0a_JJc5GQ8LcrZtJgvSzKps3VdSYqMTFB_kUlRLJDC5YX_UFw-grMb2d3H0MuL3G0D0XGm0dMRzklf0TA2JkJHkoU6NdbEWvVht92yxDbFzX2PjR9JBXJikdS7nPiENr_LCd7ytrtlVlf2WEe8055D0gh5mfxhyT686oZRPH3MReeuWFY0ErUiVXINDfqAIUOcja95Uh9tNyOG4IeHMe-DXDn0jsCXB18dyS-mVZlwrqp2jX1417LHX1P_30Kfrl_oS7iNUpd8OhmdPoM7zPNsldqzA73FfOmeo4O2MC8aSSDw7aaF7wrRLkoi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Variability+in+Phosphorus+Responses+of+Rice+Root+Phenotypes&rft.jtitle=Rice+%28New+York%2C+N.Y.%29&rft.au=Vejchasarn%2C+Phanchita&rft.au=Lynch%2C+Jonathan+P&rft.au=Brown%2C+Kathleen+M&rft.date=2016-12-01&rft.issn=1939-8425&rft.volume=9&rft.issue=1&rft.spage=29&rft_id=info:doi/10.1186%2Fs12284-016-0102-9&rft_id=info%3Apmid%2F27294384&rft.externalDocID=27294384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-8425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-8425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-8425&client=summon