Genetic Variability in Phosphorus Responses of Rice Root Phenotypes
Background Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is nec...
Saved in:
Published in | Rice (New York, N.Y.) Vol. 9; no. 1; p. 29 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is necessary to identify genetic variation and to assess the plasticity of each trait in response to the environment. In this study, we measured phenotypic variation and effect of phosphorus deficiency on root architectural, morphological and anatomical traits in 15 rice (
Oryza sativa
) genotypes. Rice plants were grown with diffusion-limited phosphorus using solid-phase buffered phosphorus to mimic realistic phosphorus availability conditions.
Results
Shoot dry weight, tiller number, plant height, number of nodal roots and shoot phosphorus content were reduced under low phosphorus availability. Phosphorus deficiency significantly reduced large lateral root density and small and large lateral root length in all genotypes, though the degree of plasticity and relative allocation of root length between the two root classes varied among genotypes. Root hair length and density increased in all genotypes in response to low phosphorus. Nodal root cross-sectional area was significantly less under low phosphorus availability, and reduced cortical area was disproportionately responsible for this decline. Phosphorus deficiency caused a 20 % increase in the percent cortical area converted to aerenchyma. Total stele area and meta-xylem vessel area responses to low phosphorus differed significantly among genotypes. Phosphorus treatment did not significantly affect theoretical water conductance overall, but increased or reduced it in a few genotypes. All genotypes had restricted water conductance at the base of the nodal root compared to other positions along the root axis.
Conclusions
There was substantial genetic variation for all root traits investigated. Low phosphorus availability significantly affected most traits, often to an extent that varied with the genotype. With the exception of stele and meta-xylem vessel area, root responses to low phosphorus were in the same direction for all genotypes tested. Therefore, phenotypic evaluations conducted with adequate fertility should be useful for genetic mapping studies and identifying potential sources of trait variation, but these should be confirmed in low-phosphorus environments. |
---|---|
AbstractList | Background Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is necessary to identify genetic variation and to assess the plasticity of each trait in response to the environment. In this study, we measured phenotypic variation and effect of phosphorus deficiency on root architectural, morphological and anatomical traits in 15 rice (Oryza sativa) genotypes. Rice plants were grown with diffusion-limited phosphorus using solid-phase buffered phosphorus to mimic realistic phosphorus availability conditions. Results Shoot dry weight, tiller number, plant height, number of nodal roots and shoot phosphorus content were reduced under low phosphorus availability. Phosphorus deficiency significantly reduced large lateral root density and small and large lateral root length in all genotypes, though the degree of plasticity and relative allocation of root length between the two root classes varied among genotypes. Root hair length and density increased in all genotypes in response to low phosphorus. Nodal root cross-sectional area was significantly less under low phosphorus availability, and reduced cortical area was disproportionately responsible for this decline. Phosphorus deficiency caused a 20 % increase in the percent cortical area converted to aerenchyma. Total stele area and meta-xylem vessel area responses to low phosphorus differed significantly among genotypes. Phosphorus treatment did not significantly affect theoretical water conductance overall, but increased or reduced it in a few genotypes. All genotypes had restricted water conductance at the base of the nodal root compared to other positions along the root axis. Conclusions There was substantial genetic variation for all root traits investigated. Low phosphorus availability significantly affected most traits, often to an extent that varied with the genotype. With the exception of stele and meta-xylem vessel area, root responses to low phosphorus were in the same direction for all genotypes tested. Therefore, phenotypic evaluations conducted with adequate fertility should be useful for genetic mapping studies and identifying potential sources of trait variation, but these should be confirmed in low-phosphorus environments. Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is necessary to identify genetic variation and to assess the plasticity of each trait in response to the environment. In this study, we measured phenotypic variation and effect of phosphorus deficiency on root architectural, morphological and anatomical traits in 15 rice (Oryza sativa) genotypes. Rice plants were grown with diffusion-limited phosphorus using solid-phase buffered phosphorus to mimic realistic phosphorus availability conditions.BACKGROUNDLow phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is necessary to identify genetic variation and to assess the plasticity of each trait in response to the environment. In this study, we measured phenotypic variation and effect of phosphorus deficiency on root architectural, morphological and anatomical traits in 15 rice (Oryza sativa) genotypes. Rice plants were grown with diffusion-limited phosphorus using solid-phase buffered phosphorus to mimic realistic phosphorus availability conditions.Shoot dry weight, tiller number, plant height, number of nodal roots and shoot phosphorus content were reduced under low phosphorus availability. Phosphorus deficiency significantly reduced large lateral root density and small and large lateral root length in all genotypes, though the degree of plasticity and relative allocation of root length between the two root classes varied among genotypes. Root hair length and density increased in all genotypes in response to low phosphorus. Nodal root cross-sectional area was significantly less under low phosphorus availability, and reduced cortical area was disproportionately responsible for this decline. Phosphorus deficiency caused a 20 % increase in the percent cortical area converted to aerenchyma. Total stele area and meta-xylem vessel area responses to low phosphorus differed significantly among genotypes. Phosphorus treatment did not significantly affect theoretical water conductance overall, but increased or reduced it in a few genotypes. All genotypes had restricted water conductance at the base of the nodal root compared to other positions along the root axis.RESULTSShoot dry weight, tiller number, plant height, number of nodal roots and shoot phosphorus content were reduced under low phosphorus availability. Phosphorus deficiency significantly reduced large lateral root density and small and large lateral root length in all genotypes, though the degree of plasticity and relative allocation of root length between the two root classes varied among genotypes. Root hair length and density increased in all genotypes in response to low phosphorus. Nodal root cross-sectional area was significantly less under low phosphorus availability, and reduced cortical area was disproportionately responsible for this decline. Phosphorus deficiency caused a 20 % increase in the percent cortical area converted to aerenchyma. Total stele area and meta-xylem vessel area responses to low phosphorus differed significantly among genotypes. Phosphorus treatment did not significantly affect theoretical water conductance overall, but increased or reduced it in a few genotypes. All genotypes had restricted water conductance at the base of the nodal root compared to other positions along the root axis.There was substantial genetic variation for all root traits investigated. Low phosphorus availability significantly affected most traits, often to an extent that varied with the genotype. With the exception of stele and meta-xylem vessel area, root responses to low phosphorus were in the same direction for all genotypes tested. Therefore, phenotypic evaluations conducted with adequate fertility should be useful for genetic mapping studies and identifying potential sources of trait variation, but these should be confirmed in low-phosphorus environments.CONCLUSIONSThere was substantial genetic variation for all root traits investigated. Low phosphorus availability significantly affected most traits, often to an extent that varied with the genotype. With the exception of stele and meta-xylem vessel area, root responses to low phosphorus were in the same direction for all genotypes tested. Therefore, phenotypic evaluations conducted with adequate fertility should be useful for genetic mapping studies and identifying potential sources of trait variation, but these should be confirmed in low-phosphorus environments. Background Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is necessary to identify genetic variation and to assess the plasticity of each trait in response to the environment. In this study, we measured phenotypic variation and effect of phosphorus deficiency on root architectural, morphological and anatomical traits in 15 rice ( Oryza sativa ) genotypes. Rice plants were grown with diffusion-limited phosphorus using solid-phase buffered phosphorus to mimic realistic phosphorus availability conditions. Results Shoot dry weight, tiller number, plant height, number of nodal roots and shoot phosphorus content were reduced under low phosphorus availability. Phosphorus deficiency significantly reduced large lateral root density and small and large lateral root length in all genotypes, though the degree of plasticity and relative allocation of root length between the two root classes varied among genotypes. Root hair length and density increased in all genotypes in response to low phosphorus. Nodal root cross-sectional area was significantly less under low phosphorus availability, and reduced cortical area was disproportionately responsible for this decline. Phosphorus deficiency caused a 20 % increase in the percent cortical area converted to aerenchyma. Total stele area and meta-xylem vessel area responses to low phosphorus differed significantly among genotypes. Phosphorus treatment did not significantly affect theoretical water conductance overall, but increased or reduced it in a few genotypes. All genotypes had restricted water conductance at the base of the nodal root compared to other positions along the root axis. Conclusions There was substantial genetic variation for all root traits investigated. Low phosphorus availability significantly affected most traits, often to an extent that varied with the genotype. With the exception of stele and meta-xylem vessel area, root responses to low phosphorus were in the same direction for all genotypes tested. Therefore, phenotypic evaluations conducted with adequate fertility should be useful for genetic mapping studies and identifying potential sources of trait variation, but these should be confirmed in low-phosphorus environments. Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical selection targets for breeding rice with higher productivity in low phosphorus soils. Before using these traits for breeding, it is necessary to identify genetic variation and to assess the plasticity of each trait in response to the environment. In this study, we measured phenotypic variation and effect of phosphorus deficiency on root architectural, morphological and anatomical traits in 15 rice (Oryza sativa) genotypes. Rice plants were grown with diffusion-limited phosphorus using solid-phase buffered phosphorus to mimic realistic phosphorus availability conditions. Shoot dry weight, tiller number, plant height, number of nodal roots and shoot phosphorus content were reduced under low phosphorus availability. Phosphorus deficiency significantly reduced large lateral root density and small and large lateral root length in all genotypes, though the degree of plasticity and relative allocation of root length between the two root classes varied among genotypes. Root hair length and density increased in all genotypes in response to low phosphorus. Nodal root cross-sectional area was significantly less under low phosphorus availability, and reduced cortical area was disproportionately responsible for this decline. Phosphorus deficiency caused a 20 % increase in the percent cortical area converted to aerenchyma. Total stele area and meta-xylem vessel area responses to low phosphorus differed significantly among genotypes. Phosphorus treatment did not significantly affect theoretical water conductance overall, but increased or reduced it in a few genotypes. All genotypes had restricted water conductance at the base of the nodal root compared to other positions along the root axis. There was substantial genetic variation for all root traits investigated. Low phosphorus availability significantly affected most traits, often to an extent that varied with the genotype. With the exception of stele and meta-xylem vessel area, root responses to low phosphorus were in the same direction for all genotypes tested. Therefore, phenotypic evaluations conducted with adequate fertility should be useful for genetic mapping studies and identifying potential sources of trait variation, but these should be confirmed in low-phosphorus environments. |
ArticleNumber | 29 |
Author | Vejchasarn, Phanchita Brown, Kathleen M. Lynch, Jonathan P. |
Author_xml | – sequence: 1 givenname: Phanchita surname: Vejchasarn fullname: Vejchasarn, Phanchita organization: Department of Plant Science, Penn State University, Present address: Ubonratchathani Rice Research Center – sequence: 2 givenname: Jonathan P. surname: Lynch fullname: Lynch, Jonathan P. organization: Department of Plant Science, Penn State University – sequence: 3 givenname: Kathleen M. surname: Brown fullname: Brown, Kathleen M. email: kbe@psu.edu organization: Department of Plant Science, Penn State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27294384$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFDEUhoO02A_9Ad7IgDfeTM3XJJMbQRathYJlUW9DJnOmmzKbjElG2H9vhm2XWtBCQgJ53nPenPcMHfngAaE3BF8Q0ooPiVDa8hoTUTamtXqBToliqm45Y0eHO21O0FlKdxgLRhv1Ep1QSRVnLT9Fq0vwkJ2tfproTOdGl3eV89XNJqRpE-KcqjWkKfgEqQpDtXYWqnUIuRDgQ95NkF6h48GMCV7fn-fox5fP31df6-tvl1erT9e1bYTKNVPCUm4p7aA3PXDZSyLJIFlviGmAM94ZISTmXAhmOO-YoKorywy9VcKwc_RxX3eauy30FnyOZtRTdFsTdzoYp_9-8W6jb8NvzRVuFBOlwPv7AjH8miFlvXXJwjgaD2FOmrS8TAgrrp5HpZK0kUTJgr57gt6FOfoyiYUShDWS40K9fWz-4PohigKQPWBjSCnCcEAI1kvceh-3LnHrJW69uJRPNNZlk11Y_u_G_yrpXplKF38L8ZHpf4r-AB9tvbY |
CitedBy_id | crossref_primary_10_35118_apjmbb_2024_032_1_06 crossref_primary_10_1038_s41598_021_93325_2 crossref_primary_10_1371_journal_pone_0221008 crossref_primary_10_7717_peerj_12766 crossref_primary_10_2135_cropsci2016_07_0594 crossref_primary_10_3389_fpls_2021_658321 crossref_primary_10_1186_s12870_022_04026_5 crossref_primary_10_1186_s13104_018_3179_y crossref_primary_10_1111_pce_14237 crossref_primary_10_1016_j_cpb_2023_100290 crossref_primary_10_3390_agronomy14010041 crossref_primary_10_1080_01904167_2019_1676903 crossref_primary_10_1038_s41598_021_92580_7 crossref_primary_10_3390_ijms24065107 crossref_primary_10_3390_ijms19061762 crossref_primary_10_1007_s11104_021_05010_y crossref_primary_10_1007_s10681_017_1884_6 crossref_primary_10_1007_s11104_017_3496_2 crossref_primary_10_1080_03650340_2020_1775199 crossref_primary_10_31742_ISGPB_83_4_3 crossref_primary_10_1016_j_cj_2020_01_002 crossref_primary_10_1007_s10681_020_02727_2 crossref_primary_10_1186_s12284_018_0200_y crossref_primary_10_3389_fpls_2024_1274610 crossref_primary_10_3390_agronomy10071028 crossref_primary_10_1186_s12284_018_0208_3 crossref_primary_10_3390_land12030724 crossref_primary_10_1111_nph_17572 crossref_primary_10_1080_1343943X_2022_2085588 crossref_primary_10_1111_jipb_13090 crossref_primary_10_1007_s11104_022_05434_0 crossref_primary_10_1007_s13562_020_00586_5 crossref_primary_10_1007_s40502_021_00623_y crossref_primary_10_1007_s10535_018_0773_8 crossref_primary_10_1038_s41598_024_72287_1 crossref_primary_10_1007_s11627_019_10034_2 crossref_primary_10_1007_s00122_018_3109_3 crossref_primary_10_1111_tpj_13423 crossref_primary_10_1071_FP19002 crossref_primary_10_1016_j_scienta_2020_109200 crossref_primary_10_34133_plantphenomics_0002 crossref_primary_10_1101_cshperspect_a034603 crossref_primary_10_3389_fpls_2022_1051080 crossref_primary_10_1007_s11738_019_2891_0 crossref_primary_10_1093_plphys_kiae517 crossref_primary_10_1371_journal_pone_0183261 crossref_primary_10_3389_fpls_2021_797635 crossref_primary_10_1002_cpe_4748 crossref_primary_10_1186_s12284_018_0252_z crossref_primary_10_1080_00380768_2021_2022965 crossref_primary_10_1016_j_bcab_2024_103019 crossref_primary_10_1093_jxb_erx454 crossref_primary_10_1007_s11104_022_05527_w crossref_primary_10_3389_fenvs_2022_855815 crossref_primary_10_1016_j_devcel_2019_01_002 crossref_primary_10_1186_s12870_021_03164_6 crossref_primary_10_1007_s11104_023_06088_2 crossref_primary_10_1002_jpln_202200196 crossref_primary_10_1080_01904167_2024_2380486 crossref_primary_10_3389_fpls_2019_00237 crossref_primary_10_3390_genes13030487 crossref_primary_10_1098_rsos_170770 crossref_primary_10_1007_s42976_024_00521_7 crossref_primary_10_1111_aab_12405 crossref_primary_10_1016_j_plaphy_2019_09_006 crossref_primary_10_1093_plphys_kiae495 crossref_primary_10_3390_plants8020031 crossref_primary_10_1007_s00425_023_04158_4 crossref_primary_10_3389_fpls_2021_738172 crossref_primary_10_3389_fpls_2022_959629 crossref_primary_10_1016_j_plaphy_2021_10_008 crossref_primary_10_3390_agriculture13020262 crossref_primary_10_1016_j_envexpbot_2019_06_008 crossref_primary_10_1111_pce_14588 crossref_primary_10_3390_ijms22179311 crossref_primary_10_3390_agronomy13020305 crossref_primary_10_3390_agronomy9010011 crossref_primary_10_5897_AJB2022_17521 crossref_primary_10_1080_01904167_2023_2191638 crossref_primary_10_3117_plantroot_16_21 crossref_primary_10_1016_j_scienta_2022_111779 crossref_primary_10_1016_j_stress_2024_100508 crossref_primary_10_3390_plants10061194 |
Cites_doi | 10.1104/pp.75.2.372 10.1093/aob/mcs217 10.1007/s11104-011-0950-4 10.2135/cropsci1981.0011183X002100020012x 10.1007/s11104-009-0277-6 10.1046/j.1439-0523.2001.00561.x 10.1016/j.fcr.2011.03.001 10.1007/s11104-004-2026-1 10.1093/aob/mcs231 10.1093/jxb/ers150 10.1104/pp.111.175414 10.1007/s00425-003-1007-6 10.1104/pp.126.2.875 10.1007/s11104-012-1453-7 10.1093/jxb/eru413 10.1046/j.1365-313X.2002.01251.x 10.1007/s11104-004-1096-4 10.1016/j.tplants.2010.01.008 10.1093/aob/mcs285 10.1016/j.envexpbot.2008.01.004 10.1007/s001220050955 10.1007/s11104-004-1697-y 10.3198/jpr2013.03.0013crmp 10.1093/aob/mct069 10.1270/jsbbs.58.7 10.1093/jexbot/51.342.61 10.1111/j.1365-3040.2005.01405.x 10.1007/s11104-012-1571-2 10.1093/jxb/erv074 10.2135/cropsci2012.07.0440 10.1093/aobpla/pls028 10.1007/s11104-010-0675-9 10.1080/01904160600564378 10.1093/aob/mcs085 10.1071/FP03046 10.1038/nature11346 10.1007/s004250050257 10.1023/B:PLSO.0000037020.58002.ac 10.1023/A:1004270201418 10.1093/jxb/ert200 10.1007/s00709-011-0309-y 10.1093/aob/mcr086 10.1007/BF01373813 10.1016/S0378-4290(97)00141-X 10.1104/pp.111.175489 10.1111/j.1469-8137.1987.tb00153.x 10.1626/pps.16.205 10.1073/pnas.0603152103 10.1093/jxb/eru162 10.1071/CP07125 10.1046/j.1469-8137.1997.00640.x 10.1111/j.1399-3054.1980.tb02661.x 10.1071/FP08132 10.1046/j.1469-8137.2003.00907.x 10.1111/j.1744-7909.2007.00450.x 10.1007/s00122-002-1051-9 10.1023/A:1004346412006 10.1093/aob/mcl024 10.1111/j.1365-3040.1990.tb01071.x 10.1007/s00122-014-2306-y 10.1016/S0378-4290(01)00150-2 10.1626/pps.3.437 10.1007/978-1-4020-8435-5_5 10.1007/s00122-005-2051-3 10.1093/jxb/erv557 10.1007/s11104-006-0014-3 10.1071/FP12015 10.1093/jxb/50.333.487 10.1007/s00122-014-2414-8 10.1104/pp.15.00145 10.1007/s11104-013-1955-y 10.1002/jpln.201500155 10.1007/s11104-012-1138-2 10.1104/pp.114.249037 10.1016/j.fcr.2014.10.009 10.1023/A:1013324727040 10.1071/FP04046 10.1016/j.gloenvcha.2008.10.009 10.1016/S0003-2670(00)88444-5 10.1104/pp.114.241711 10.1007/s11103-007-9215-2 10.1046/j.1365-3040.2003.00846.x 10.1007/s12284-008-9016-5 10.1046/j.1365-3040.2003.01093.x 10.1046/j.1365-3040.1999.00405.x 10.1111/pce.12451 10.1104/pp.010934 10.2307/2656995 10.1104/pp.92.3.855 10.1104/pp.91.1.266 10.1104/pp.113.233916 10.1093/jxb/erw115 10.1007/BF00010407 10.1111/j.1365-3040.2009.02099.x |
ContentType | Journal Article |
Copyright | Vejchasarn et al. 2016 The Author(s) 2016 |
Copyright_xml | – notice: Vejchasarn et al. 2016 – notice: The Author(s) 2016 |
DBID | C6C AAYXX CITATION NPM 3V. 7X2 7XB 88I 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ M0K M2P PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY Q9U 7X8 7S9 L.6 5PM |
DOI | 10.1186/s12284-016-0102-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Agricultural Science Database Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1939-8433 1934-8037 |
EndPage | 29 |
ExternalDocumentID | PMC4905936 4087869961 27294384 10_1186_s12284_016_0102_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Royal Thai Government Scholarship Program – fundername: Asia Rice Foundation – fundername: National Science Foundation grantid: IOS-0965380 funderid: http://dx.doi.org/10.13039/100000001 – fundername: ; – fundername: ; grantid: IOS-0965380 |
GroupedDBID | -56 -5G -A0 -BR -Y2 0R~ 123 29P 2JY 2VQ 3V. 4.4 40G 5VS 67Z 6NX 7X2 7XC 88I 8FE 8FH 8TC AAFWJ AAHBH AAJSJ AAKKN AAYZH ABDBF ABEEZ ABMNI ABTEG ABUWG ACACY ACGFS ACGOD ACOMO ACULB ADBBV ADINQ ADKPE ADRAZ AENEX AEUYN AFBBN AFGCZ AFGXO AFKRA AFPKN AFRAH AGJBK AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ATCPS AZQEC BA0 BAPOH BCNDV BENPR BHPHI BPHCQ C24 C6C CAG CCPQU COF CS3 CSCUP DWQXO EBLON EBS ECGQY EJD EN4 ESX GNUQQ GROUPED_DOAJ GXS H13 HCIFZ HG5 HG6 HYE HZ~ IXC IZQ I~X KPH KQ8 M0K M2P M48 O9- O9I OAM OK1 PATMY PGMZT PIMPY PQQKQ PROAC PYCSY Q2X QOS RBZ RIG ROL RPM RSV S1Z S27 SBL SDH SOJ T13 TSK U2A VC2 WK8 Z7Y AASML AAYXX CITATION PHGZM PHGZT NPM 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c569t-396c24c22bedade47d7171f73da1a5e434ba667044663a44b3629b29bafdc96a3 |
IEDL.DBID | M48 |
ISSN | 1939-8425 |
IngestDate | Thu Aug 21 13:57:57 EDT 2025 Fri Jul 11 04:32:18 EDT 2025 Fri Jul 11 06:05:15 EDT 2025 Sun Jun 29 12:36:06 EDT 2025 Thu Apr 03 07:02:25 EDT 2025 Tue Jul 01 03:54:09 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 Fri Feb 21 02:35:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Root anatomy Xylem Phosphorus Lateral roots Root hairs Stele Aerenchyma Oryza sativa |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c569t-396c24c22bedade47d7171f73da1a5e434ba667044663a44b3629b29bafdc96a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12284-016-0102-9 |
PMID | 27294384 |
PQID | 1796135740 |
PQPubID | 54333 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4905936 proquest_miscellaneous_1846320949 proquest_miscellaneous_1797257197 proquest_journals_1796135740 pubmed_primary_27294384 crossref_primary_10_1186_s12284_016_0102_9 crossref_citationtrail_10_1186_s12284_016_0102_9 springer_journals_10_1186_s12284_016_0102_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20161200 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 20161200 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Rice (New York, N.Y.) |
PublicationTitleAbbrev | Rice |
PublicationTitleAlternate | Rice (N Y) |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Burton, Brown, Lynch (CR9) 2013; 53 Cordell, Drangert, White (CR17) 2009; 19 Saengwilai, Nord, Chimungu (CR79) 2014; 166 Fan, Bai, Zhao, Zhang (CR24) 2007; 49 Gahoonia, Ali, Sarker (CR31) 2006; 29 Williamson, Ribrioux, Fitter, Leyser (CR87) 2001; 126 Rose, Impa, Rose (CR78) 2012; 112 Kirk, van Du (CR43) 1997; 135 Postma, Dathe, Lynch (CR69) 2014 Brown, George, Thompson (CR6) 2012; 110 Drew, Nye (CR19) 1969; 31 Pariasca-Tanaka, Chin, Dramé (CR66) 2014; 127 Miguel, Postma, Lynch (CR58) 2015; 167 Lynch (CR52) 2014; 38 Gahoonia, Nielsen (CR29) 2004; 262 Gamuyao, Chin, Pariasca-Tanaka (CR32) 2012; 488 Bouranis, Chorianopoulou, Siyiannis (CR3) 2003; 217 Wissuwa, Wegner, Ae, Yano (CR91) 2002; 105 York, Galindo-Castañeda, Schussler, Lynch (CR92) 2015; 66 Fernandez, Rubio (CR25) 2015; 178 Suralta, Yamauchi (CR83) 2008; 64 Zhu, Lynch (CR94) 2004; 31 Brown, George, Dupuy, White (CR5) 2012; 112 Lafitte, Champoux, McLaren, Toole (CR47) 2001; 71 Kirk, George, Courtois, Senadhira (CR44) 1998; 56 Nestler, Keyes, Wissuwa (CR62) 2016 Richards, Passioura (CR75) 1981; 21 Drew, Jiu He, Morgan (CR20) 1989; 91 Borch, Bouma, Lynch, Brown (CR2) 1999; 22 Burton, Johnson, Foerster (CR10) 2015; 128 Lopez-Bucio, Hernandez-Abreu, Sanchez-Calderon (CR50) 2002; 129 Ogawa, Selvaraj, Fernando (CR65) 2014; 375 Postma, Lynch (CR68) 2011; 156 Siyiannis, Protonotarios, Zechmann (CR82) 2011; 249 Clarkson, Carvajal, Henzler (CR15) 2000; 51 Przywara, Stepniewski (CR70) 2000; 14 Samal, Kovar, Steingrobe (CR80) 2010; 332 Wissuwa, Ae (CR89) 2001; 120 Lynch (CR51) 2011; 156 Fohse, Claassen, Jungk (CR26) 1991; 132 Konings, Verschuren (CR46) 1980; 49 Chimungu, Maliro, Nalivata (CR13) 2015; 171 Burton, Lynch, Brown (CR7) 2012; 367 Eizenga, Ali, Bryant (CR21) 2013; 8 Burton, Williams, Lynch, Brown (CR8) 2012; 357 Gowda, Henry, Vadez (CR34) 2012; 39 Colmer (CR16) 2003; 26 Jaramillo, Nord, Chimungu (CR39) 2013; 112 Clark, Price, Steele, Whalley (CR14) 2008; 35 Zhu, Kaeppler, Lynch (CR95) 2005; 111 Sandhu, Torres, Sta Cruz (CR81) 2015; 66 Vinod, Heuer (CR86) 2012; 2012 Evans (CR22) 2004; 161 Richardson, Hocking, Simpson, George (CR76) 2009; 60 Lynch, Chimungu, Brown (CR57) 2014; 65 Kano, Inukai, Kitano, Yamauchi (CR41) 2011; 342 Bouranis, Chorianopoulou, Kollias (CR4) 2006; 97 Coudert, Perin, Courtois (CR18) 2010; 15 Niones, Suralta, Inukai, Yamauchi (CR63) 2013; 16 Niu, Chai, Jin (CR64) 2013; 112 Reymond, Svistoonoff, Loudet (CR74) 2006; 29 Justin, Armstrong (CR40) 1987; 106 Radin, Eidenbock (CR72) 1984; 75 Gahoonia, Nielsen (CR28) 2003; 26 Radin (CR71) 1990; 92 Vandamme, Renkens, Pypers (CR85) 2013; 369 Bates, Lynch (CR1) 2000; 87 Mollier, Pellerin (CR59) 1999; 50 Lynch, Epstein, Läuchli, Weigt (CR56) 1990; 13 Gowda, Henry, Yamauchi (CR33) 2011; 122 Lynch, Brown, White, Hammond (CR54) 2008 Henry, Cal, Batoto (CR36) 2012; 63 CR11 Rebouillat, Dievart, Verdeil (CR73) 2009; 2 Murphy, Riley (CR61) 1962; 27 Lynch, Ho (CR55) 2005; 269 Zhu, Kaeppler, Lynch (CR96) 2005; 270 Lynch, Brown (CR53) 2001; 237 CR93 Parlanti, Kudahettige, Lombardi (CR67) 2011; 107 Hill, Simpson, Moore, Chapman (CR37) 2006; 286 Haling, Brown, Bengough (CR35) 2013; 64 Chimungu, Brown, Lynch (CR12) 2014; 166 Kondo, Aguilar, Abe, Morita (CR45) 2000; 3 Gahoonia, Nielsen (CR27) 1998; 198 Linkohr, Williamson, Fitter, Leyser (CR48) 2002; 29 Kawai, Samarajeewa, Barrero (CR42) 1998; 204 Zhu, Brown, Lynch (CR97) 2010; 33 Ismail, Heuer, Thomson, Wissuwa (CR38) 2007; 65 Uga, Okuno, Yano (CR84) 2008; 58 Londo, Chiang, Hung (CR49) 2006; 103 Fan, Zhu, Richards (CR23) 2003; 30 Richardson, Lynch, Ryan (CR77) 2011; 349 Wissuwa, Yano, Ae (CR90) 1998; 97 Mori, Fukuda, Vejchasarn (CR60) 2016; 67 Wissuwa (CR88) 2005; 269 Gahoonia, Care, Nielsen (CR30) 1997; 191 D Cordell (102_CR17) 2009; 19 HR Lafitte (102_CR47) 2001; 71 S Parlanti (102_CR67) 2011; 107 R Gamuyao (102_CR32) 2012; 488 S Ogawa (102_CR65) 2014; 375 MS Fan (102_CR24) 2007; 49 J Lynch (102_CR57) 2014; 65 BI Linkohr (102_CR48) 2002; 29 M Wissuwa (102_CR90) 1998; 97 RA Richards (102_CR75) 1981; 21 VRP Gowda (102_CR34) 2012; 39 JP Lynch (102_CR51) 2011; 156 JP Lynch (102_CR52) 2014; 38 DE Evans (102_CR22) 2004; 161 M Kondo (102_CR45) 2000; 3 G Przywara (102_CR70) 2000; 14 TD Colmer (102_CR16) 2003; 26 M Reymond (102_CR74) 2006; 29 KK Vinod (102_CR86) 2012; 2012 JP Lynch (102_CR56) 1990; 13 P Saengwilai (102_CR79) 2014; 166 JP Lynch (102_CR55) 2005; 269 JA Postma (102_CR68) 2011; 156 J Murphy (102_CR61) 1962; 27 MS Fan (102_CR23) 2003; 30 Y Coudert (102_CR18) 2010; 15 LJ Clark (102_CR14) 2008; 35 JO Hill (102_CR37) 2006; 286 GC Eizenga (102_CR21) 2013; 8 J Zhu (102_CR95) 2005; 111 M Wissuwa (102_CR91) 2002; 105 D Fohse (102_CR26) 1991; 132 TS Gahoonia (102_CR31) 2006; 29 JA Postma (102_CR69) 2014 J Rebouillat (102_CR73) 2009; 2 TJ Rose (102_CR78) 2012; 112 VF Siyiannis (102_CR82) 2011; 249 Y Uga (102_CR84) 2008; 58 M Wissuwa (102_CR88) 2005; 269 A Henry (102_CR36) 2012; 63 J Lopez-Bucio (102_CR50) 2002; 129 GJD Kirk (102_CR44) 1998; 56 AL Burton (102_CR10) 2015; 128 N Sandhu (102_CR81) 2015; 66 RE Jaramillo (102_CR39) 2013; 112 J Chimungu (102_CR13) 2015; 171 A Mollier (102_CR59) 1999; 50 K Borch (102_CR2) 1999; 22 102_CR93 LM York (102_CR92) 2015; 66 102_CR11 DL Bouranis (102_CR4) 2006; 97 M Kano (102_CR41) 2011; 342 RR Suralta (102_CR83) 2008; 64 JW Radin (102_CR72) 1984; 75 DL Bouranis (102_CR3) 2003; 217 MA Miguel (102_CR58) 2015; 167 D Samal (102_CR80) 2010; 332 M Wissuwa (102_CR89) 2001; 120 TR Bates (102_CR1) 2000; 87 JM Zhu (102_CR97) 2010; 33 JW Radin (102_CR71) 1990; 92 JP Lynch (102_CR54) 2008 YF Niu (102_CR64) 2013; 112 J Chimungu (102_CR12) 2014; 166 JP Lynch (102_CR53) 2001; 237 AE Richardson (102_CR76) 2009; 60 AL Burton (102_CR9) 2013; 53 VRP Gowda (102_CR33) 2011; 122 LC Williamson (102_CR87) 2001; 126 JM Niones (102_CR63) 2013; 16 AL Burton (102_CR7) 2012; 367 JP Londo (102_CR49) 2006; 103 TS Gahoonia (102_CR27) 1998; 198 RE Haling (102_CR35) 2013; 64 A Mori (102_CR60) 2016; 67 TS Gahoonia (102_CR28) 2003; 26 TS Gahoonia (102_CR29) 2004; 262 H Konings (102_CR46) 1980; 49 M Kawai (102_CR42) 1998; 204 DT Clarkson (102_CR15) 2000; 51 MC Drew (102_CR20) 1989; 91 MC Drew (102_CR19) 1969; 31 GJD Kirk (102_CR43) 1997; 135 AE Richardson (102_CR77) 2011; 349 LK Brown (102_CR6) 2012; 110 MC Fernandez (102_CR25) 2015; 178 AL Burton (102_CR8) 2012; 357 TS Gahoonia (102_CR30) 1997; 191 JM Zhu (102_CR96) 2005; 270 J Nestler (102_CR62) 2016 E Vandamme (102_CR85) 2013; 369 LK Brown (102_CR5) 2012; 112 S Justin (102_CR40) 1987; 106 J Pariasca-Tanaka (102_CR66) 2014; 127 A Ismail (102_CR38) 2007; 65 JM Zhu (102_CR94) 2004; 31 |
References_xml | – volume: 75 start-page: 372 year: 1984 end-page: 377 ident: CR72 article-title: Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants publication-title: Plant Physiol doi: 10.1104/pp.75.2.372 – year: 2014 ident: CR69 article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability publication-title: Plant Physiol – volume: 112 start-page: 331 year: 2012 end-page: 345 ident: CR78 article-title: Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding publication-title: Ann Bot doi: 10.1093/aob/mcs217 – volume: 349 start-page: 121 year: 2011 end-page: 156 ident: CR77 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant Soil doi: 10.1007/s11104-011-0950-4 – volume: 21 start-page: 253 year: 1981 end-page: 255 ident: CR75 article-title: Seminal root morphology and water use of wheat II. Genetic variation publication-title: Crop Sci doi: 10.2135/cropsci1981.0011183X002100020012x – volume: 332 start-page: 105 year: 2010 end-page: 121 ident: CR80 article-title: Potassium uptake efficiency and dynamics in the rhizosphere of maize ( L.), wheat ( L.), and sugar beet ( L.) evaluated with a mechanistic model publication-title: Plant Soil doi: 10.1007/s11104-009-0277-6 – volume: 120 start-page: 43 year: 2001 end-page: 48 ident: CR89 article-title: Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement publication-title: Plant Breed doi: 10.1046/j.1439-0523.2001.00561.x – volume: 122 start-page: 1 year: 2011 end-page: 13 ident: CR33 article-title: Root biology and genetic improvement for drought avoidance in rice publication-title: Field Crop Res doi: 10.1016/j.fcr.2011.03.001 – volume: 269 start-page: 57 year: 2005 end-page: 68 ident: CR88 article-title: Combining a modelling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptake publication-title: Plant Soil doi: 10.1007/s11104-004-2026-1 – volume: 112 start-page: 317 year: 2012 end-page: 330 ident: CR5 article-title: A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? publication-title: Ann Bot doi: 10.1093/aob/mcs231 – volume: 63 start-page: 4751 year: 2012 end-page: 4763 ident: CR36 article-title: Root attributes affecting water uptake of rice ( ) under drought publication-title: J Exp Bot doi: 10.1093/jxb/ers150 – volume: 156 start-page: 1041 year: 2011 end-page: 1049 ident: CR51 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops publication-title: Plant Physiol doi: 10.1104/pp.111.175414 – volume: 217 start-page: 382 year: 2003 end-page: 391 ident: CR3 article-title: Aerenchyma formation in roots of maize during sulphate starvation publication-title: Planta doi: 10.1007/s00425-003-1007-6 – volume: 126 start-page: 875 year: 2001 end-page: 882 ident: CR87 article-title: Phosphate availability regulates root system architecture in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.126.2.875 – volume: 367 start-page: 263 year: 2012 end-page: 274 ident: CR7 article-title: Spatial distribution and phenotypic variation in root cortical aerenchyma of maize ( ) publication-title: Plant Soil doi: 10.1007/s11104-012-1453-7 – ident: CR11 – volume: 66 start-page: 225 year: 2015 end-page: 244 ident: CR81 article-title: Traits and QTLs for development of dry direct-seeded rainfed rice varieties publication-title: J Exp Bot doi: 10.1093/jxb/eru413 – volume: 132 start-page: 261 year: 1991 end-page: 272 ident: CR26 article-title: Phosphorus efficiency of plants. 2. Significance of root radius, root hairs and cation-anion balance for phosphorus influx in 7 plant species publication-title: Plant Soil – volume: 29 start-page: 751 year: 2002 end-page: 760 ident: CR48 article-title: Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis publication-title: Plant J doi: 10.1046/j.1365-313X.2002.01251.x – volume: 269 start-page: 45 year: 2005 end-page: 56 ident: CR55 article-title: Rhizoeconomics: Carbon costs of phosphorus acquisition publication-title: Plant Soil doi: 10.1007/s11104-004-1096-4 – volume: 15 start-page: 219 year: 2010 end-page: 226 ident: CR18 article-title: Genetic control of root development in rice, the model cereal publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2010.01.008 – volume: 112 start-page: 391 year: 2013 end-page: 408 ident: CR64 article-title: Responses of root architecture development to low phosphorus availability: a review publication-title: Ann Bot doi: 10.1093/aob/mcs285 – volume: 64 start-page: 75 year: 2008 end-page: 82 ident: CR83 article-title: Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2008.01.004 – volume: 97 start-page: 777 year: 1998 end-page: 783 ident: CR90 article-title: Mapping of QTLs for phosphorus-deficiency tolerance in rice ( L.) publication-title: Theor Appl Genet doi: 10.1007/s001220050955 – volume: 270 start-page: 299 year: 2005 end-page: 310 ident: CR96 article-title: Mapping of QTL controlling root hair length in maize ( L.) under phosphorus deficiency publication-title: Plant Soil doi: 10.1007/s11104-004-1697-y – volume: 8 start-page: 109 year: 2013 end-page: 116 ident: CR21 article-title: Registration of the Rice Diversity Panel 1 for Genomewide Association Studies publication-title: J Plant Regist doi: 10.3198/jpr2013.03.0013crmp – volume: 112 start-page: 1 year: 2013 end-page: 9 ident: CR39 article-title: Root cortical burden influences drought tolerance in maize publication-title: Ann Bot doi: 10.1093/aob/mct069 – volume: 58 start-page: 7 year: 2008 end-page: 14 ident: CR84 article-title: QTLs underlying natural variation in stele and xylem structures of rice root publication-title: Breed Sci doi: 10.1270/jsbbs.58.7 – volume: 51 start-page: 61 year: 2000 end-page: 70 ident: CR15 article-title: Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress publication-title: J Exp Bot doi: 10.1093/jexbot/51.342.61 – volume: 29 start-page: 115 year: 2006 end-page: 125 ident: CR74 article-title: Identification of QTL controlling root growth response to phosphate starvation in publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2005.01405.x – volume: 369 start-page: 269 year: 2013 end-page: 282 ident: CR85 article-title: Root hairs explain P uptake efficiency of soybean genotypes grown in a P-deficient Ferralsol publication-title: Plant Soil doi: 10.1007/s11104-012-1571-2 – volume: 66 start-page: 2347 year: 2015 end-page: 2358 ident: CR92 article-title: Evolution of US maize ( L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress publication-title: J Exp Bot doi: 10.1093/jxb/erv074 – volume: 53 start-page: 1042 year: 2013 end-page: 1055 ident: CR9 article-title: Phenotypic diversity of root anatomical and architectural traits in species publication-title: Crop Sci doi: 10.2135/cropsci2012.07.0440 – volume: 2012 start-page: pls028 year: 2012 ident: CR86 article-title: Approaches towards nitrogen- and phosphorus-efficient rice publication-title: AoB Plants doi: 10.1093/aobpla/pls028 – volume: 342 start-page: 117 year: 2011 end-page: 128 ident: CR41 article-title: Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice publication-title: Plant Soil doi: 10.1007/s11104-010-0675-9 – volume: 29 start-page: 643 year: 2006 end-page: 655 ident: CR31 article-title: Genetic variation in root traits and nutrient acquisition of lentil genotypes publication-title: J Plant Nutr doi: 10.1080/01904160600564378 – volume: 14 start-page: 401 year: 2000 end-page: 410 ident: CR70 article-title: Influence of flooding and different temperatures of the soil on gas-filled porosity of pea, maize and winter wheat roots publication-title: Int Agrophys – volume: 110 start-page: 319 year: 2012 end-page: 328 ident: CR6 article-title: What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley ( )? publication-title: Ann Bot doi: 10.1093/aob/mcs085 – volume: 30 start-page: 493 year: 2003 end-page: 506 ident: CR23 article-title: Physiological roles for aerenchyma in phosphorus-stressed roots publication-title: Funct Plant Biol doi: 10.1071/FP03046 – volume: 488 start-page: 535 year: 2012 end-page: 539 ident: CR32 article-title: The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency publication-title: Nature doi: 10.1038/nature11346 – volume: 204 start-page: 277 year: 1998 end-page: 287 ident: CR42 article-title: Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots publication-title: Planta doi: 10.1007/s004250050257 – volume: 262 start-page: 55 year: 2004 end-page: 62 ident: CR29 article-title: Barley genotypes with long root hairs sustain high grain yields in low-P field publication-title: Plant Soil doi: 10.1023/B:PLSO.0000037020.58002.ac – volume: 191 start-page: 181 year: 1997 end-page: 188 ident: CR30 article-title: Root hairs and phosphorus acquisition of wheat and barley cultivars publication-title: Plant Soil doi: 10.1023/A:1004270201418 – volume: 64 start-page: 3711 year: 2013 end-page: 3721 ident: CR35 article-title: Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength publication-title: J Exp Bot doi: 10.1093/jxb/ert200 – volume: 249 start-page: 671 year: 2011 end-page: 686 ident: CR82 article-title: Comparative spatiotemporal analysis of root aerenchyma formation processes in maize due to sulphate, nitrate or phosphate deprivation publication-title: Protoplasma doi: 10.1007/s00709-011-0309-y – volume: 107 start-page: 1335 year: 2011 end-page: 1343 ident: CR67 article-title: Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance publication-title: Ann Bot doi: 10.1093/aob/mcr086 – ident: CR93 – volume: 31 start-page: 407 year: 1969 end-page: 424 ident: CR19 article-title: The supply of nutrient ions by diffusion to plant roots in soil publication-title: Plant Soil doi: 10.1007/BF01373813 – volume: 56 start-page: 73 year: 1998 end-page: 92 ident: CR44 article-title: Opportunities to improve phosphorus efficiency and soil fertility in rainfed lowland and upland rice ecosystems publication-title: Field Crop Res doi: 10.1016/S0378-4290(97)00141-X – year: 2016 ident: CR62 article-title: Root hair formation in rice (Oryza sativa L.) differs between root types and is altered in artificial growth conditions publication-title: J Exp Bot – volume: 156 start-page: 1190 year: 2011 end-page: 1201 ident: CR68 article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium publication-title: Plant Physiol doi: 10.1104/pp.111.175489 – volume: 106 start-page: 465 year: 1987 end-page: 495 ident: CR40 article-title: The anatomical characteristics of roots and plant response to soil flooding publication-title: New Phytol doi: 10.1111/j.1469-8137.1987.tb00153.x – volume: 16 start-page: 205 year: 2013 end-page: 216 ident: CR63 article-title: Roles of root aerenchyma development and its associated QTL in dry matter production under transient moisture stress in rice publication-title: Plant Prod Sci doi: 10.1626/pps.16.205 – volume: 103 start-page: 9578 year: 2006 end-page: 9583 ident: CR49 article-title: Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0603152103 – volume: 65 start-page: 6155 year: 2014 end-page: 6166 ident: CR57 article-title: Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement publication-title: J Exp Bot doi: 10.1093/jxb/eru162 – volume: 60 start-page: 124 year: 2009 end-page: 143 ident: CR76 article-title: Plant mechanisms to optimise access to soil phosphorus publication-title: Crop Pasture Sci doi: 10.1071/CP07125 – volume: 135 start-page: 191 year: 1997 end-page: 200 ident: CR43 article-title: Changes in rice root architecture, porosity, and oxygen and proton release under phosphorus deficiency publication-title: New Phytol doi: 10.1046/j.1469-8137.1997.00640.x – volume: 49 start-page: 265 year: 1980 end-page: 279 ident: CR46 article-title: Formation of aerenchyma in roots of in aerated solutions, and its relation to nutrient supply publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1980.tb02661.x – volume: 35 start-page: 1163 year: 2008 end-page: 1171 ident: CR14 article-title: Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice publication-title: Funct Plant Biol doi: 10.1071/FP08132 – volume: 161 start-page: 35 year: 2004 end-page: 49 ident: CR22 article-title: Aerenchyma formation publication-title: New Phytol doi: 10.1046/j.1469-8137.2003.00907.x – volume: 49 start-page: 598 year: 2007 end-page: 604 ident: CR24 article-title: Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots publication-title: J Integr Plant Biol doi: 10.1111/j.1744-7909.2007.00450.x – volume: 105 start-page: 890 year: 2002 end-page: 897 ident: CR91 article-title: Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil publication-title: Theor Appl Genet doi: 10.1007/s00122-002-1051-9 – volume: 198 start-page: 147 year: 1998 end-page: 152 ident: CR27 article-title: Direct evidence on participation of root hairs in phosphorus (P-32) uptake from soil publication-title: Plant Soil doi: 10.1023/A:1004346412006 – volume: 97 start-page: 695 year: 2006 end-page: 704 ident: CR4 article-title: Dynamics of aerenchyma distribution in the cortex of sulfate-deprived adventitious roots of maize publication-title: Ann Bot doi: 10.1093/aob/mcl024 – volume: 13 start-page: 547 year: 1990 end-page: 554 ident: CR56 article-title: An automated greenhouse sand culture system suitable for studies of P nutrition publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1990.tb01071.x – volume: 127 start-page: 1387 issue: 6 year: 2014 end-page: 1398 ident: CR66 article-title: A novel allele of the P-starvation tolerance gene OsPSTOL1 from African rice ( Steud) and its distribution in the genus Oryza publication-title: Theor Appl Genet doi: 10.1007/s00122-014-2306-y – volume: 71 start-page: 57 year: 2001 end-page: 70 ident: CR47 article-title: Rice root morphological traits are related to isozyme group and adaptation publication-title: Field Crop Res doi: 10.1016/S0378-4290(01)00150-2 – volume: 3 start-page: 437 year: 2000 end-page: 445 ident: CR45 article-title: Anatomy of nodal roots in tropical upland and lowland rice varieties publication-title: Plant Prod Sci doi: 10.1626/pps.3.437 – start-page: 83 year: 2008 end-page: 116 ident: CR54 article-title: Root strategies for phosphorus acquisition publication-title: Ecophysiol. Plant-Phosphorus Interact doi: 10.1007/978-1-4020-8435-5_5 – volume: 111 start-page: 688 year: 2005 end-page: 695 ident: CR95 article-title: Mapping of QTLs for lateral root branching and length in maize ( L.) under differential phosphorus supply publication-title: Theor Appl Genet doi: 10.1007/s00122-005-2051-3 – volume: 67 start-page: 1179 year: 2016 end-page: 1189 ident: CR60 article-title: The role of root size versus root efficiency in phosphorus acquisition in rice publication-title: J Exp Bot doi: 10.1093/jxb/erv557 – volume: 286 start-page: 7 year: 2006 end-page: 19 ident: CR37 article-title: Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition publication-title: Plant Soil doi: 10.1007/s11104-006-0014-3 – volume: 39 start-page: 402 year: 2012 ident: CR34 article-title: Water uptake dynamics under progressive drought stress in diverse accessions of the OryzaSNP panel of rice ( ) publication-title: Funct Plant Biol doi: 10.1071/FP12015 – volume: 50 start-page: 487 year: 1999 end-page: 497 ident: CR59 article-title: Maize root system growth and development as influenced by phosphorus deficiency publication-title: J Exp Bot doi: 10.1093/jxb/50.333.487 – volume: 128 start-page: 93 year: 2015 end-page: 106 ident: CR10 article-title: QTL mapping and phenotypic variation of root anatomical traits in maize ( L.) publication-title: Theor Appl Genet doi: 10.1007/s00122-014-2414-8 – volume: 167 start-page: 1430 year: 2015 end-page: 1439 ident: CR58 article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition publication-title: Plant Physiol doi: 10.1104/pp.15.00145 – volume: 375 start-page: 303 year: 2014 end-page: 315 ident: CR65 article-title: N- and P-mediated seminal root elongation response in rice seedlings publication-title: Plant Soil doi: 10.1007/s11104-013-1955-y – volume: 178 start-page: 807 year: 2015 end-page: 815 ident: CR25 article-title: Root morphological traits related to phosphorus‐uptake efficiency of soybean, sunflower, and maize publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201500155 – volume: 33 start-page: 740 year: 2010 end-page: 749 ident: CR97 article-title: Root cortical aerenchyma improves the drought tolerance of maize ( L.) publication-title: Plant Cell Environ – volume: 357 start-page: 189 year: 2012 end-page: 203 ident: CR8 article-title: : Software for high-throughput analysis of root anatomical traits publication-title: Plant Soil doi: 10.1007/s11104-012-1138-2 – volume: 166 start-page: 1943 issue: 4 year: 2014 end-page: 1955 ident: CR12 article-title: Reduced root cortical cell file number improves drought tolerance in maize publication-title: Plant Physiol doi: 10.1104/pp.114.249037 – volume: 171 start-page: 86 year: 2015 end-page: 98 ident: CR13 article-title: Utility of root cortical aerenchyma under water limited conditions in tropical maize ( L.) publication-title: Field Crop Res doi: 10.1016/j.fcr.2014.10.009 – volume: 237 start-page: 225 year: 2001 end-page: 237 ident: CR53 article-title: Topsoil foraging - an architectural adaptation of plants to low phosphorus availability publication-title: Plant Soil doi: 10.1023/A:1013324727040 – volume: 31 start-page: 949 year: 2004 end-page: 958 ident: CR94 article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize ( ) seedlings publication-title: Funct Plant Biol doi: 10.1071/FP04046 – volume: 19 start-page: 292 year: 2009 end-page: 305 ident: CR17 article-title: The story of phosphorus: Global food security and food for thought publication-title: Glob Environ Chang doi: 10.1016/j.gloenvcha.2008.10.009 – volume: 27 start-page: 31 year: 1962 end-page: 36 ident: CR61 article-title: A modified single solution reagent for the determination of phosphate in natural waters publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 166 start-page: 726 year: 2014 end-page: 735 ident: CR79 article-title: Root cortical aerenchyma enhances nitrogen acquisition from low nitrogen soils in maize publication-title: Plant Physiol doi: 10.1104/pp.114.241711 – volume: 65 start-page: 547 year: 2007 end-page: 570 ident: CR38 article-title: Genetic and genomic approaches to develop rice germplasm for problem soils publication-title: Plant Mol Biol doi: 10.1007/s11103-007-9215-2 – volume: 26 start-page: 17 year: 2003 end-page: 36 ident: CR16 article-title: Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2003.00846.x – volume: 2 start-page: 15 year: 2009 end-page: 34 ident: CR73 article-title: Molecular genetics of rice root development publication-title: Rice doi: 10.1007/s12284-008-9016-5 – volume: 26 start-page: 1759 year: 2003 end-page: 1766 ident: CR28 article-title: Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low- and high-P soils publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2003.01093.x – volume: 22 start-page: 425 year: 1999 end-page: 431 ident: CR2 article-title: Ethylene: a regulator of root architectural responses to soil phosphorus availability publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1999.00405.x – volume: 38 start-page: 1775 year: 2014 end-page: 1784 ident: CR52 article-title: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture publication-title: Plant Cell Environ doi: 10.1111/pce.12451 – volume: 129 start-page: 244 year: 2002 end-page: 256 ident: CR50 article-title: Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system publication-title: Plant Physiol doi: 10.1104/pp.010934 – volume: 87 start-page: 964 year: 2000 end-page: 970 ident: CR1 article-title: The efficiency of (Brassicaceae) root hairs in phosphorus acquisition publication-title: Am J Bot doi: 10.2307/2656995 – volume: 92 start-page: 855 year: 1990 end-page: 857 ident: CR71 article-title: Responses of transpiration and hydraulic conductance to root temperature in nitrogen- and phosphorus-deficient cotton seedlings publication-title: Plant Physiol doi: 10.1104/pp.92.3.855 – volume: 91 start-page: 266 year: 1989 end-page: 271 ident: CR20 article-title: Decreased ethylene biosynthesis, and induction of aerenchyma, by nitrogen- or phosphate-starvation in adventitious roots of L publication-title: Plant Physiol doi: 10.1104/pp.91.1.266 – volume: 29 start-page: 751 year: 2002 ident: 102_CR48 publication-title: Plant J doi: 10.1046/j.1365-313X.2002.01251.x – volume: 14 start-page: 401 year: 2000 ident: 102_CR70 publication-title: Int Agrophys – volume: 112 start-page: 331 year: 2012 ident: 102_CR78 publication-title: Ann Bot doi: 10.1093/aob/mcs217 – volume: 53 start-page: 1042 year: 2013 ident: 102_CR9 publication-title: Crop Sci doi: 10.2135/cropsci2012.07.0440 – volume: 26 start-page: 17 year: 2003 ident: 102_CR16 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2003.00846.x – volume: 126 start-page: 875 year: 2001 ident: 102_CR87 publication-title: Plant Physiol doi: 10.1104/pp.126.2.875 – volume: 217 start-page: 382 year: 2003 ident: 102_CR3 publication-title: Planta doi: 10.1007/s00425-003-1007-6 – volume: 29 start-page: 115 year: 2006 ident: 102_CR74 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2005.01405.x – volume: 286 start-page: 7 year: 2006 ident: 102_CR37 publication-title: Plant Soil doi: 10.1007/s11104-006-0014-3 – volume: 156 start-page: 1041 year: 2011 ident: 102_CR51 publication-title: Plant Physiol doi: 10.1104/pp.111.175414 – volume: 369 start-page: 269 year: 2013 ident: 102_CR85 publication-title: Plant Soil doi: 10.1007/s11104-012-1571-2 – volume: 332 start-page: 105 year: 2010 ident: 102_CR80 publication-title: Plant Soil doi: 10.1007/s11104-009-0277-6 – volume: 128 start-page: 93 year: 2015 ident: 102_CR10 publication-title: Theor Appl Genet doi: 10.1007/s00122-014-2414-8 – volume: 198 start-page: 147 year: 1998 ident: 102_CR27 publication-title: Plant Soil doi: 10.1023/A:1004346412006 – volume: 22 start-page: 425 year: 1999 ident: 102_CR2 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1999.00405.x – volume: 91 start-page: 266 year: 1989 ident: 102_CR20 publication-title: Plant Physiol doi: 10.1104/pp.91.1.266 – start-page: 83 volume-title: Ecophysiol. Plant-Phosphorus Interact year: 2008 ident: 102_CR54 doi: 10.1007/978-1-4020-8435-5_5 – volume: 178 start-page: 807 year: 2015 ident: 102_CR25 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.201500155 – volume: 112 start-page: 317 year: 2012 ident: 102_CR5 publication-title: Ann Bot doi: 10.1093/aob/mcs231 – volume: 166 start-page: 1943 issue: 4 year: 2014 ident: 102_CR12 publication-title: Plant Physiol doi: 10.1104/pp.114.249037 – volume: 488 start-page: 535 year: 2012 ident: 102_CR32 publication-title: Nature doi: 10.1038/nature11346 – volume: 65 start-page: 547 year: 2007 ident: 102_CR38 publication-title: Plant Mol Biol doi: 10.1007/s11103-007-9215-2 – volume: 39 start-page: 402 year: 2012 ident: 102_CR34 publication-title: Funct Plant Biol doi: 10.1071/FP12015 – volume: 342 start-page: 117 year: 2011 ident: 102_CR41 publication-title: Plant Soil doi: 10.1007/s11104-010-0675-9 – volume: 60 start-page: 124 year: 2009 ident: 102_CR76 publication-title: Crop Pasture Sci doi: 10.1071/CP07125 – volume: 51 start-page: 61 year: 2000 ident: 102_CR15 publication-title: J Exp Bot doi: 10.1093/jexbot/51.342.61 – volume: 156 start-page: 1190 year: 2011 ident: 102_CR68 publication-title: Plant Physiol doi: 10.1104/pp.111.175489 – volume: 262 start-page: 55 year: 2004 ident: 102_CR29 publication-title: Plant Soil doi: 10.1023/B:PLSO.0000037020.58002.ac – volume: 171 start-page: 86 year: 2015 ident: 102_CR13 publication-title: Field Crop Res doi: 10.1016/j.fcr.2014.10.009 – volume: 367 start-page: 263 year: 2012 ident: 102_CR7 publication-title: Plant Soil doi: 10.1007/s11104-012-1453-7 – volume: 16 start-page: 205 year: 2013 ident: 102_CR63 publication-title: Plant Prod Sci doi: 10.1626/pps.16.205 – volume: 111 start-page: 688 year: 2005 ident: 102_CR95 publication-title: Theor Appl Genet doi: 10.1007/s00122-005-2051-3 – volume: 75 start-page: 372 year: 1984 ident: 102_CR72 publication-title: Plant Physiol doi: 10.1104/pp.75.2.372 – volume: 27 start-page: 31 year: 1962 ident: 102_CR61 publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 64 start-page: 75 year: 2008 ident: 102_CR83 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2008.01.004 – volume: 21 start-page: 253 year: 1981 ident: 102_CR75 publication-title: Crop Sci doi: 10.2135/cropsci1981.0011183X002100020012x – volume: 122 start-page: 1 year: 2011 ident: 102_CR33 publication-title: Field Crop Res doi: 10.1016/j.fcr.2011.03.001 – volume: 112 start-page: 1 year: 2013 ident: 102_CR39 publication-title: Ann Bot doi: 10.1093/aob/mct069 – volume: 112 start-page: 391 year: 2013 ident: 102_CR64 publication-title: Ann Bot doi: 10.1093/aob/mcs285 – volume: 269 start-page: 57 year: 2005 ident: 102_CR88 publication-title: Plant Soil doi: 10.1007/s11104-004-2026-1 – volume: 31 start-page: 407 year: 1969 ident: 102_CR19 publication-title: Plant Soil doi: 10.1007/BF01373813 – volume: 29 start-page: 643 year: 2006 ident: 102_CR31 publication-title: J Plant Nutr doi: 10.1080/01904160600564378 – year: 2014 ident: 102_CR69 publication-title: Plant Physiol doi: 10.1104/pp.113.233916 – volume: 97 start-page: 777 year: 1998 ident: 102_CR90 publication-title: Theor Appl Genet doi: 10.1007/s001220050955 – volume: 135 start-page: 191 year: 1997 ident: 102_CR43 publication-title: New Phytol doi: 10.1046/j.1469-8137.1997.00640.x – volume: 58 start-page: 7 year: 2008 ident: 102_CR84 publication-title: Breed Sci doi: 10.1270/jsbbs.58.7 – volume: 65 start-page: 6155 year: 2014 ident: 102_CR57 publication-title: J Exp Bot doi: 10.1093/jxb/eru162 – volume: 31 start-page: 949 year: 2004 ident: 102_CR94 publication-title: Funct Plant Biol doi: 10.1071/FP04046 – volume: 71 start-page: 57 year: 2001 ident: 102_CR47 publication-title: Field Crop Res doi: 10.1016/S0378-4290(01)00150-2 – ident: 102_CR11 – volume: 92 start-page: 855 year: 1990 ident: 102_CR71 publication-title: Plant Physiol doi: 10.1104/pp.92.3.855 – volume: 106 start-page: 465 year: 1987 ident: 102_CR40 publication-title: New Phytol doi: 10.1111/j.1469-8137.1987.tb00153.x – volume: 97 start-page: 695 year: 2006 ident: 102_CR4 publication-title: Ann Bot doi: 10.1093/aob/mcl024 – volume: 67 start-page: 1179 year: 2016 ident: 102_CR60 publication-title: J Exp Bot doi: 10.1093/jxb/erv557 – volume: 237 start-page: 225 year: 2001 ident: 102_CR53 publication-title: Plant Soil doi: 10.1023/A:1013324727040 – volume: 13 start-page: 547 year: 1990 ident: 102_CR56 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1990.tb01071.x – volume: 49 start-page: 265 year: 1980 ident: 102_CR46 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1980.tb02661.x – volume: 269 start-page: 45 year: 2005 ident: 102_CR55 publication-title: Plant Soil doi: 10.1007/s11104-004-1096-4 – volume: 103 start-page: 9578 year: 2006 ident: 102_CR49 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0603152103 – volume: 375 start-page: 303 year: 2014 ident: 102_CR65 publication-title: Plant Soil doi: 10.1007/s11104-013-1955-y – volume: 8 start-page: 109 year: 2013 ident: 102_CR21 publication-title: J Plant Regist doi: 10.3198/jpr2013.03.0013crmp – volume: 357 start-page: 189 year: 2012 ident: 102_CR8 publication-title: Plant Soil doi: 10.1007/s11104-012-1138-2 – year: 2016 ident: 102_CR62 publication-title: J Exp Bot doi: 10.1093/jxb/erw115 – volume: 191 start-page: 181 year: 1997 ident: 102_CR30 publication-title: Plant Soil doi: 10.1023/A:1004270201418 – volume: 2 start-page: 15 year: 2009 ident: 102_CR73 publication-title: Rice doi: 10.1007/s12284-008-9016-5 – volume: 66 start-page: 2347 year: 2015 ident: 102_CR92 publication-title: J Exp Bot doi: 10.1093/jxb/erv074 – volume: 19 start-page: 292 year: 2009 ident: 102_CR17 publication-title: Glob Environ Chang doi: 10.1016/j.gloenvcha.2008.10.009 – volume: 349 start-page: 121 year: 2011 ident: 102_CR77 publication-title: Plant Soil doi: 10.1007/s11104-011-0950-4 – volume: 120 start-page: 43 year: 2001 ident: 102_CR89 publication-title: Plant Breed doi: 10.1046/j.1439-0523.2001.00561.x – volume: 38 start-page: 1775 year: 2014 ident: 102_CR52 publication-title: Plant Cell Environ doi: 10.1111/pce.12451 – volume: 66 start-page: 225 year: 2015 ident: 102_CR81 publication-title: J Exp Bot doi: 10.1093/jxb/eru413 – volume: 270 start-page: 299 year: 2005 ident: 102_CR96 publication-title: Plant Soil doi: 10.1007/s11104-004-1697-y – ident: 102_CR93 – volume: 30 start-page: 493 year: 2003 ident: 102_CR23 publication-title: Funct Plant Biol doi: 10.1071/FP03046 – volume: 127 start-page: 1387 issue: 6 year: 2014 ident: 102_CR66 publication-title: Theor Appl Genet doi: 10.1007/s00122-014-2306-y – volume: 167 start-page: 1430 year: 2015 ident: 102_CR58 publication-title: Plant Physiol doi: 10.1104/pp.15.00145 – volume: 15 start-page: 219 year: 2010 ident: 102_CR18 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2010.01.008 – volume: 87 start-page: 964 year: 2000 ident: 102_CR1 publication-title: Am J Bot doi: 10.2307/2656995 – volume: 26 start-page: 1759 year: 2003 ident: 102_CR28 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2003.01093.x – volume: 64 start-page: 3711 year: 2013 ident: 102_CR35 publication-title: J Exp Bot doi: 10.1093/jxb/ert200 – volume: 161 start-page: 35 year: 2004 ident: 102_CR22 publication-title: New Phytol doi: 10.1046/j.1469-8137.2003.00907.x – volume: 132 start-page: 261 year: 1991 ident: 102_CR26 publication-title: Plant Soil doi: 10.1007/BF00010407 – volume: 56 start-page: 73 year: 1998 ident: 102_CR44 publication-title: Field Crop Res doi: 10.1016/S0378-4290(97)00141-X – volume: 105 start-page: 890 year: 2002 ident: 102_CR91 publication-title: Theor Appl Genet doi: 10.1007/s00122-002-1051-9 – volume: 35 start-page: 1163 year: 2008 ident: 102_CR14 publication-title: Funct Plant Biol doi: 10.1071/FP08132 – volume: 129 start-page: 244 year: 2002 ident: 102_CR50 publication-title: Plant Physiol doi: 10.1104/pp.010934 – volume: 3 start-page: 437 year: 2000 ident: 102_CR45 publication-title: Plant Prod Sci doi: 10.1626/pps.3.437 – volume: 166 start-page: 726 year: 2014 ident: 102_CR79 publication-title: Plant Physiol doi: 10.1104/pp.114.241711 – volume: 50 start-page: 487 year: 1999 ident: 102_CR59 publication-title: J Exp Bot doi: 10.1093/jxb/50.333.487 – volume: 2012 start-page: pls028 year: 2012 ident: 102_CR86 publication-title: AoB Plants doi: 10.1093/aobpla/pls028 – volume: 204 start-page: 277 year: 1998 ident: 102_CR42 publication-title: Planta doi: 10.1007/s004250050257 – volume: 107 start-page: 1335 year: 2011 ident: 102_CR67 publication-title: Ann Bot doi: 10.1093/aob/mcr086 – volume: 249 start-page: 671 year: 2011 ident: 102_CR82 publication-title: Protoplasma doi: 10.1007/s00709-011-0309-y – volume: 33 start-page: 740 year: 2010 ident: 102_CR97 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2009.02099.x – volume: 63 start-page: 4751 year: 2012 ident: 102_CR36 publication-title: J Exp Bot doi: 10.1093/jxb/ers150 – volume: 110 start-page: 319 year: 2012 ident: 102_CR6 publication-title: Ann Bot doi: 10.1093/aob/mcs085 – volume: 49 start-page: 598 year: 2007 ident: 102_CR24 publication-title: J Integr Plant Biol doi: 10.1111/j.1744-7909.2007.00450.x |
SSID | ssj0063259 ssj0056243 |
Score | 2.4188137 |
Snippet | Background
Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are... Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are logical... Background Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are... BACKGROUND: Low phosphorus availability is a major factor limiting rice productivity. Since root traits determine phosphorus acquisition efficiency, they are... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 29 |
SubjectTerms | aerenchyma Agriculture Biomedical and Life Sciences breeding chromosome mapping genetic variation genotype Genotype & phenotype Life Sciences Original Original Article Oryza sativa phenotype phenotypic variation Phosphorus Plant Breeding/Biotechnology Plant Ecology Plant Genetics and Genomics Plant Sciences Rice root hairs soil stele |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbocmkPVd9dSpEr9UQVgR-x41NFEQhVAqEVIG6RX9tFquLtZvfAv-_YcVK2iJVy81hxPONvZjyTGYS-EqGZcEQUyjpwUIhWhRFcF5YTKa3mnKv4g_P5hTi75j9vy9t84dbmtMoeExNQu2DjHfkBCA5onlLyw-_zP0XsGhWjq7mFxjO0DRBcVSO0_ePk4nLSYzEodz4As2A09U4Dk0UVMfqUg5ykEgctoYDT4FdH9xowQq2rqUe25-MUyv_iqEk9nb5CL7NdiY86QXiNtnzzBr04-rXItTX8W3QcS0zDML4B_7grz32P7xp8OQvtfBYWqxZPuoxZ3-IwxRPAEDwJYQkUvgnxsrZ9h65PT66Oz4rcQ6GwpVDLgilhKbeUGu-081w68N_IVDKniS49Z9xoIWQK6zJgjQGFpgw8euqsAka-R6MmNP4jwrqaarA2hPcyVhWsjCnBmKNMO2NNpdUYHfZbVttcYDz2ufhdJ0ejEnW3y3VMKou7XMOU_WHKvKuusYl4t-dDnQ9aW_8TizH6MgzDEYlxD934sEo0EpCJKLmBBuwwRsHXhdd86Fg7rIiCA8JZxcdIrjF9IIglutdHmrtZKtXNVWqZOEbfevF4sPSnPnRn84d-Qs9pFNSUU7OLRsvFyn8Gy2hp9rL4_wV0Cgju priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X_RB_HY6JYJPSnFN0qR5HOIQQZHhxLeSpJkbSDvW7cH_3kvaDud0IPQtl37kcpf79S6_IHQZckV5GvJAmhQASqhkoDlTgWGhEEYxxqTb4Pz4xO_77OEteqv2cRd1tXudkvSe2pt1zG-KkIArBejrEDCYsVxHG5GD7i5D67Y4lO6XU-JPSIPARAYux1SlMn-9xeJitBRhLhdK_siW-kWou4O2q-gRd0p176I1m-2hrc77pGLQsPvo1hFJQzN-BRRcknB_4lGGn4d5MR7mk1mBe2VdrC1wPsA98BS4l-dTkLBZ7n7JFgeo3717ub0PqpMSAhNxOQ2o5IYwQ4i2qUotEymgtHAgaKpCFVlGmVacC5-8paAADcuW1HCpQWokqOsQNbI8s8cIq3igIKbg1grHHRhrHUHIRqhKtdGxkk3UrocsMRWNuDvN4iPxcCLmSTnKiSsdc6OcQJereZdxyaGxSrhV6yGpzKlIwGtA2BEJ1m6ii3kzGILLbqjM5jMvI8D_hFKskIFoixJAtPCYo1K18zciADMYjVkTiQWlzwUcEfdiSzYaekJuJv3BiE10XU-Pb6_-14ee_Ev6FG0SN299IU0LNaaTmT2DcGiqz_30_wK9RAEL priority: 102 providerName: Springer Nature |
Title | Genetic Variability in Phosphorus Responses of Rice Root Phenotypes |
URI | https://link.springer.com/article/10.1186/s12284-016-0102-9 https://www.ncbi.nlm.nih.gov/pubmed/27294384 https://www.proquest.com/docview/1796135740 https://www.proquest.com/docview/1797257197 https://www.proquest.com/docview/1846320949 https://pubmed.ncbi.nlm.nih.gov/PMC4905936 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_68bI9lG3d1qxdUGFPLd5iSZashzGy0A8GLSU0o29GkpWmUOwuTqD973eSP1jWDzAGo7Oj6O6k3_nk3wF8iYVmIo9FpGyOAUqsVWQE15HlsZRWc86V_8D57FycTvivq-RqDdryVs0AVk-Gdr6e1GR--_X-z8MPdPjvweFT8a2KKU6yGBT72BgdXK3DJi5M0hc0OONdUkEwGmqnIWRRkc8-NUnOJx_hSYIRd3KW8tUV6xEMfbyb8r-Ualipjt_AVgMxybC2ibew5op38Hp4PW9oNtw2jDzbNDaT3xgq10zdD-SmIBezsrqblfNlRcb15llXkXJKxjidkHFZLlDCFaV_b1u9h8nx0eXoNGrKKUQ2EWoRMSUs5ZZS43KdOy5zDOXiqWS5jnXiOONGCyFDhpehlgyubcrgoae5VajTD7BRlIXbAaLTqUbgIZyTnmAwNSZBXEeZzo01qVY9GLRDltmGa9yXvLjNQsyRiqwe8MzvL_MDnuEtB90tdzXRxkvCe60estZkMpxaEJskkg96sN81o7f4FIguXLkMMhInqVjJF2QQkjGKYS_-zMdatV2PWpvogVxReifg2bpXW4qbWWDt5ipUT-zBYWse_3T9uT_66dke7MIr6s017KzZg43FfOk-Iz5amD6s88FJHzZ_Hp1fjPFqRLk_i1E_vHHoB6_A84QO_wJVnA2A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEG8CBYwEF9Cq8WPt9QGhUlqltI2qqEW9LbbXIZXQbsgmQv1T_EbG-4JQkVulvXm868d4Zj7P7AzAayoNlxmVkXYZAhRqdGSlMJETVClnhBA6_OB8PJLDM_H5PD7fgF_tvzAhrLKViZWgzgoX7si3kXFQ88RKDD7MfkShalTwrrYlNGq2OPSXPxGyle8PPuH-vmFsf-90dxg1VQUiF0u9iLiWjgnHmPWZybxQGSIaOlE8M9TEXnBhjZSqcnRyHKxFEa8tPmaSOY1Tw_fegE3B5YD1YPPj3uhk3Mp-NCZEpwgkZ1WtNjSRdBS8XY1TlSZyu6QM9QLi-ADnUSbpVbV4xda9GrL5j9-2Uof7d-FOY8eSnZrx7sGGz-_D7Z1v8yaXh38AuyGlNTaTL4jH63Tgl-QiJyfTopxNi_myJOM6QteXpJiQMcosMi6KBVL4vAiXw-VDOLuW1X0EvbzI_RMgJpkYtG6k9ypkMUysjdF4ZNxk1tnE6D4M2iVLXZPQPNTV-J5WwCaRab3KaQhiC6ucYpe3XZdZnc1jHfFWuw9pc7DL9A8b9uFV14xHMvhZTO6LZUWjUBJSrdbQoN3HGWJr_Mzjemu7ETEEPIInog9qZdM7gpASfLUlv5hWqcGFrko09uFdyx5_Df1_E326fqIv4ebw9PgoPToYHT6DWywwbRXPswW9xXzpn6NVtrAvmqNA4Ot1n77fd6RF7Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLsAfG9wgAjwQso6uw4dvwwobGt2hhUVcXQ3oLtOHQSSkrTCu1f46_bOV9QJvo2KW--JP64r1_ucgfwmgodipSKQNkUAQrVKjCC68ByKqXVnHPlf3D-PBLHZ_zjeXS-Ab_bf2F8WmWrEytFnRbWfyMfIOOg5Ykk3x1kTVrE-HD4fvYz8B2kfKS1badRs8ipu_yF8K3cOznEs37D2PDoy8Fx0HQYCGwk1CIIlbCMW8aMS3XquEwR3dBMhqmmOnI85EYLIaugZ4gTN6julcFLZ6lVuEx87i3YlB4V9WDzw9FoPGntADoWvDMKImRV3zZ0l1TgI19NgJXGYlBShjYCMb2H9qif1KqJvOb3Xk_f_CeGW5nG4T242_i0ZL9mwvuw4fIHsLX_fd7U9XAP4cCXt8Zh8hWxeV0a_JJc5GQ8LcrZtJgvSzKps3VdSYqMTFB_kUlRLJDC5YX_UFw-grMb2d3H0MuL3G0D0XGm0dMRzklf0TA2JkJHkoU6NdbEWvVht92yxDbFzX2PjR9JBXJikdS7nPiENr_LCd7ytrtlVlf2WEe8055D0gh5mfxhyT686oZRPH3MReeuWFY0ErUiVXINDfqAIUOcja95Uh9tNyOG4IeHMe-DXDn0jsCXB18dyS-mVZlwrqp2jX1417LHX1P_30Kfrl_oS7iNUpd8OhmdPoM7zPNsldqzA73FfOmeo4O2MC8aSSDw7aaF7wrRLkoi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Variability+in+Phosphorus+Responses+of+Rice+Root+Phenotypes&rft.jtitle=Rice+%28New+York%2C+N.Y.%29&rft.au=Vejchasarn%2C+Phanchita&rft.au=Lynch%2C+Jonathan+P&rft.au=Brown%2C+Kathleen+M&rft.date=2016-12-01&rft.issn=1939-8425&rft.volume=9&rft.issue=1&rft.spage=29&rft_id=info:doi/10.1186%2Fs12284-016-0102-9&rft_id=info%3Apmid%2F27294384&rft.externalDocID=27294384 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-8425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-8425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-8425&client=summon |