Stromal response to Hedgehog signaling restrains pancreatic cancer progression

Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA p...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 30; pp. E3091 - E3100
Main Authors Lee, John J., Perera, Rushika M., Wang, Huaijun, Wu, Dai-Chen, Liu, X. Shawn, Han, Shiwei, Fitamant, Julien, Jones, Phillip D., Ghanta, Krishna S., Kawano, Sally, Nagle, Julia M., Deshpande, Vikram, Boucher, Yves, Kato, Tomoyo, Chen, James K., Willmann, Jürgen K., Bardeesy, Nabeel, Beachy, Philip A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 29.07.2014
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.
AbstractList Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.
Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.
Preclinical studies have suggested that Hedgehog (Hh) pathway inhibition reduces growth and metastasis of pancreatic ductal adenocarcinoma (PDA), but ensuing clinical trials of Hh pathway antagonists combined with cytotoxic chemotherapy have not succeeded. Here, we find in three distinct genetically engineered mouse models that genetic and pharmacologic inhibition of Hh pathway activity actually accelerates PDA progression. Furthermore, we find that the acute modulation of pathway activity regulates the balance between epithelial and stromal elements, with inhibition causing suppression of desmoplasia and accelerated growth of epithelial elements and activation causing stromal hyperplasia and reduced growth of the neoplastic epithelium. Our study explains previous clinical trial results and suggests the possibility of novel types of therapeutic interventions. Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.
Author Philip A. Beachy
Vikram Deshpande
Yves Boucher
Sally Kawano
John J. Lee
Huaijun Wang
James K. Chen
Rushika M. Perera
Krishna S. Ghanta
Shiwei Han
Nabeel Bardeesy
Tomoyo Kato
Jürgen K. Willmann
Julien Fitamant
Julia M. Nagle
Dai-Chen Wu
Phillip D. Jones
X. Shawn Liu
Author_xml – sequence: 1
  givenname: John J.
  surname: Lee
  fullname: Lee, John J.
  organization: Institute for Stem Cell Biology and Regenerative Medicine,, Division of Oncology, Department of Medicine
– sequence: 2
  givenname: Rushika M.
  surname: Perera
  fullname: Perera, Rushika M.
  organization: Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
– sequence: 3
  givenname: Huaijun
  surname: Wang
  fullname: Wang, Huaijun
  organization: Molecular Imaging Program, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
– sequence: 4
  givenname: Dai-Chen
  surname: Wu
  fullname: Wu, Dai-Chen
  organization: Institute for Stem Cell Biology and Regenerative Medicine
– sequence: 5
  givenname: X. Shawn
  surname: Liu
  fullname: Liu, X. Shawn
  organization: Institute for Stem Cell Biology and Regenerative Medicine
– sequence: 6
  givenname: Shiwei
  surname: Han
  fullname: Han, Shiwei
  organization: Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; and
– sequence: 7
  givenname: Julien
  surname: Fitamant
  fullname: Fitamant, Julien
  organization: Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
– sequence: 8
  givenname: Phillip D.
  surname: Jones
  fullname: Jones, Phillip D.
  organization: Institute for Stem Cell Biology and Regenerative Medicine
– sequence: 9
  givenname: Krishna S.
  surname: Ghanta
  fullname: Ghanta, Krishna S.
  organization: Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
– sequence: 10
  givenname: Sally
  surname: Kawano
  fullname: Kawano, Sally
  organization: Institute for Stem Cell Biology and Regenerative Medicine
– sequence: 11
  givenname: Julia M.
  surname: Nagle
  fullname: Nagle, Julia M.
  organization: Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
– sequence: 12
  givenname: Vikram
  surname: Deshpande
  fullname: Deshpande, Vikram
  organization: Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
– sequence: 13
  givenname: Yves
  surname: Boucher
  fullname: Boucher, Yves
  organization: Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; and
– sequence: 14
  givenname: Tomoyo
  surname: Kato
  fullname: Kato, Tomoyo
  organization: Department of Chemical and Systems Biology, and
– sequence: 15
  givenname: James K.
  surname: Chen
  fullname: Chen, James K.
  organization: Department of Chemical and Systems Biology, and
– sequence: 16
  givenname: Jürgen K.
  surname: Willmann
  fullname: Willmann, Jürgen K.
  organization: Molecular Imaging Program, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
– sequence: 17
  givenname: Nabeel
  surname: Bardeesy
  fullname: Bardeesy, Nabeel
  organization: Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
– sequence: 18
  givenname: Philip A.
  surname: Beachy
  fullname: Beachy, Philip A.
  organization: Institute for Stem Cell Biology and Regenerative Medicine,, Department of Biochemistry,, Howard Hughes Medical Institute, Stanford, CA 94305
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25024225$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLcLZ24QiQuXtDP-jC9IqCoUqYJD6dlysk7qKmsHO4vEf4_DbgtUQpxs6f3m6c28E3IUYnCEvEQ4RVDsbAo2nyJHlEoj4hOyQtBYS67hiKwAqKobTvkxOcn5DgC0aOAZOaYCKKdUrMjn6znFrR2r5PIUQ3bVHKtLtxncbRyq7IdgRx-GRZ6T9SFXkw1dcnb2XdWVr0vVlOJQ9OxjeE6e9nbM7sXhXZObDxdfzy_rqy8fP52_v6o7IfVcl7iiV60S1PUC2o1W4HTnpLYNYCssd1pa1UrOOGvbxha6ZxrUhsqNsrxla_Ju7zvt2q3bdC6UdKOZkt_a9MNE683fSvC3ZojfDUeKTXFdk7cHgxS_7cpyZutz58bRBhd32WADDDRXsvk_KgSAkkrqgr55hN7FXSon_EWhYoKrhXr1Z_iH1PetFEDsgS7FnJPrTefncvG47OJHg2CW9s3Svvndfpk7ezR3b_3vieoQZREeaETDwFyUCyzI6z3S22jskHw2N9cUUAIgZ6zs8xMqPcXp
CitedBy_id crossref_primary_10_1158_0008_5472_CAN_16_3022
crossref_primary_10_3390_cancers11050588
crossref_primary_10_18632_oncotarget_27745
crossref_primary_10_1016_j_bbcan_2019_01_007
crossref_primary_10_1016_j_trsl_2019_02_006
crossref_primary_10_1093_carcin_bgae063
crossref_primary_10_7554_eLife_45313
crossref_primary_10_1007_s00018_017_2678_7
crossref_primary_10_1158_1541_7786_MCR_14_0709
crossref_primary_10_18632_oncotarget_3819
crossref_primary_10_18632_oncotarget_10514
crossref_primary_10_1016_j_jaci_2017_12_998
crossref_primary_10_1016_j_bbcan_2014_11_004
crossref_primary_10_3390_cancers10020034
crossref_primary_10_1158_1078_0432_CCR_23_0131
crossref_primary_10_1002_jcb_27817
crossref_primary_10_1016_j_ccell_2017_08_007
crossref_primary_10_1016_j_biomaterials_2017_08_002
crossref_primary_10_1016_j_biomaterials_2019_119421
crossref_primary_10_1007_s13402_023_00874_x
crossref_primary_10_1177_1533033818803632
crossref_primary_10_1016_j_cell_2016_03_029
crossref_primary_10_1038_s41388_022_02288_9
crossref_primary_10_1016_j_bbcan_2023_188958
crossref_primary_10_1016_j_semcancer_2021_03_006
crossref_primary_10_1186_s12943_016_0509_3
crossref_primary_10_3390_molecules23051003
crossref_primary_10_1111_cas_14346
crossref_primary_10_1038_s41598_019_47633_3
crossref_primary_10_1111_imr_12969
crossref_primary_10_1016_j_ccell_2021_02_007
crossref_primary_10_1200_JCO_20_00590
crossref_primary_10_1007_s10637_021_01176_5
crossref_primary_10_4291_wjgp_v7_i2_199
crossref_primary_10_1021_acs_molpharmaceut_0c00014
crossref_primary_10_3389_fcell_2021_749924
crossref_primary_10_18632_oncotarget_23929
crossref_primary_10_3892_or_2021_8182
crossref_primary_10_1016_j_trsl_2024_05_005
crossref_primary_10_1016_j_ymthe_2023_09_010
crossref_primary_10_1152_physrev_00042_2019
crossref_primary_10_1016_j_pharmthera_2022_108231
crossref_primary_10_1016_j_ab_2015_08_025
crossref_primary_10_1158_1078_0432_CCR_16_3275
crossref_primary_10_1016_j_tranon_2018_01_018
crossref_primary_10_1152_physrev_00048_2019
crossref_primary_10_3390_cancers15164145
crossref_primary_10_1136_jitc_2022_004585
crossref_primary_10_1073_pnas_1717891115
crossref_primary_10_3390_cancers9070093
crossref_primary_10_1038_s41598_020_74368_3
crossref_primary_10_15252_emmm_201404827
crossref_primary_10_1186_s10020_023_00665_y
crossref_primary_10_1016_j_canlet_2019_07_015
crossref_primary_10_2147_IJN_S451151
crossref_primary_10_1200_JCO_2015_62_8719
crossref_primary_10_1038_s41392_020_00341_1
crossref_primary_10_3390_cells8050509
crossref_primary_10_3390_cancers10060193
crossref_primary_10_1016_j_cell_2023_02_014
crossref_primary_10_3389_fphys_2014_00391
crossref_primary_10_1016_j_jfma_2015_01_005
crossref_primary_10_1177_026119291604400509
crossref_primary_10_1016_j_matbio_2017_12_003
crossref_primary_10_3390_ijms222413408
crossref_primary_10_3390_cancers13205086
crossref_primary_10_3390_cancers13092069
crossref_primary_10_1038_s41590_023_01642_7
crossref_primary_10_1016_j_neo_2016_06_003
crossref_primary_10_1371_journal_pone_0221810
crossref_primary_10_18632_genesandcancer_171
crossref_primary_10_1186_s12885_021_08123_w
crossref_primary_10_3390_cancers13246175
crossref_primary_10_1126_scitranslmed_aai8504
crossref_primary_10_3390_cancers13174354
crossref_primary_10_3390_cancers13194984
crossref_primary_10_1158_1078_0432_CCR_19_2238
crossref_primary_10_3390_cancers15164135
crossref_primary_10_1158_2159_8290_CD_20_0119
crossref_primary_10_1155_2019_6240505
crossref_primary_10_1136_gutjnl_2016_311585
crossref_primary_10_1158_2159_8290_CD_19_1353
crossref_primary_10_3389_fimmu_2023_1237711
crossref_primary_10_1101_sqb_2016_81_031104
crossref_primary_10_1016_j_biomaterials_2018_11_023
crossref_primary_10_1016_j_xphs_2023_10_019
crossref_primary_10_1016_j_bbcan_2020_188443
crossref_primary_10_1038_ng_3398
crossref_primary_10_1016_j_bbcan_2020_188444
crossref_primary_10_1172_JCI136760
crossref_primary_10_1007_s10585_021_10142_7
crossref_primary_10_1038_nrdp_2016_22
crossref_primary_10_1186_s12885_024_12065_4
crossref_primary_10_1038_s41467_019_08782_1
crossref_primary_10_7554_eLife_62645
crossref_primary_10_1016_j_celrep_2021_109852
crossref_primary_10_1172_JCI120850
crossref_primary_10_3390_cancers12102969
crossref_primary_10_3390_cancers15112923
crossref_primary_10_2139_ssrn_3745132
crossref_primary_10_1016_j_canlet_2024_216962
crossref_primary_10_1016_j_isci_2022_104327
crossref_primary_10_3390_ijms21155486
crossref_primary_10_3390_cancers14215302
crossref_primary_10_1111_cas_13630
crossref_primary_10_1016_j_celrep_2014_09_010
crossref_primary_10_1016_j_semcancer_2021_04_003
crossref_primary_10_1016_j_jconrel_2023_07_039
crossref_primary_10_1053_j_gastro_2022_03_056
crossref_primary_10_1038_s41389_018_0096_9
crossref_primary_10_3389_fonc_2021_751311
crossref_primary_10_1146_annurev_cancerbio_061421_035400
crossref_primary_10_1146_annurev_cellbio_100617_062855
crossref_primary_10_1158_2159_8290_CD_21_0601
crossref_primary_10_1158_2159_8290_CD_15_0671
crossref_primary_10_1038_s41388_020_1224_5
crossref_primary_10_1038_s41575_020_0300_1
crossref_primary_10_3390_cancers13143410
crossref_primary_10_3389_fgene_2019_00075
crossref_primary_10_1016_j_ccell_2014_09_001
crossref_primary_10_1016_j_ebiom_2021_103315
crossref_primary_10_1002_cam4_993
crossref_primary_10_1038_s41568_025_00798_8
crossref_primary_10_1038_s41467_023_42178_6
crossref_primary_10_1038_s41598_021_84058_3
crossref_primary_10_1186_s12935_022_02599_7
crossref_primary_10_2147_IJN_S279192
crossref_primary_10_26508_lsa_201800190
crossref_primary_10_2958_suizo_38_28
crossref_primary_10_1016_j_cell_2020_03_008
crossref_primary_10_1242_jcs_157966
crossref_primary_10_1016_j_biomaterials_2016_06_048
crossref_primary_10_1158_1078_0432_CCR_18_3535
crossref_primary_10_1021_acs_molpharmaceut_4c00801
crossref_primary_10_1016_j_drup_2015_10_002
crossref_primary_10_1016_j_tcb_2020_11_010
crossref_primary_10_1038_s41598_025_94362_x
crossref_primary_10_1002_jcp_25798
crossref_primary_10_1016_j_jconrel_2024_03_041
crossref_primary_10_1016_j_jconrel_2024_07_023
crossref_primary_10_1016_j_mtbio_2024_100970
crossref_primary_10_1093_jnci_djx121
crossref_primary_10_1038_nrclinonc_2016_119
crossref_primary_10_1002_cjp2_122
crossref_primary_10_18632_oncotarget_6910
crossref_primary_10_3390_cells11162523
crossref_primary_10_1016_j_bbcan_2023_188901
crossref_primary_10_1016_j_intimp_2023_110601
crossref_primary_10_1016_j_ccell_2016_10_003
crossref_primary_10_3390_cancers14143315
crossref_primary_10_1016_j_cell_2023_03_016
crossref_primary_10_1016_j_devcel_2016_07_026
crossref_primary_10_1016_j_jbiotec_2015_01_012
crossref_primary_10_1016_j_ymthe_2018_02_004
crossref_primary_10_1038_s41467_022_30638_4
crossref_primary_10_1021_acschembio_6b00896
crossref_primary_10_1016_j_drudis_2020_09_008
crossref_primary_10_1016_j_bbcan_2021_188673
crossref_primary_10_1146_annurev_cancerbio_030419_033333
crossref_primary_10_1158_0008_5472_CAN_17_2084
crossref_primary_10_3390_cells8050424
crossref_primary_10_1038_labinvest_2017_127
crossref_primary_10_1002_1878_0261_12073
crossref_primary_10_3390_ijms19082279
crossref_primary_10_1016_j_esmoop_2022_100500
crossref_primary_10_1002_advs_202104594
crossref_primary_10_1038_s41467_021_27607_8
crossref_primary_10_1016_j_pharmthera_2019_04_004
crossref_primary_10_1111_joim_13177
crossref_primary_10_3390_cancers13122995
crossref_primary_10_1038_s43018_021_00181_0
crossref_primary_10_1073_pnas_2304288120
crossref_primary_10_1111_php_13339
crossref_primary_10_3390_cancers13163946
crossref_primary_10_1073_pnas_1717802115
crossref_primary_10_1186_s12964_017_0171_4
crossref_primary_10_3390_ijms24043941
crossref_primary_10_1016_j_cytogfr_2022_09_001
crossref_primary_10_1053_j_gastro_2018_12_044
crossref_primary_10_1158_2159_8290_CD_18_1212
crossref_primary_10_1111_imr_12990
crossref_primary_10_1158_1078_0432_CCR_15_2068
crossref_primary_10_1101_gad_275776_115
crossref_primary_10_1200_JCO_2014_60_0759
crossref_primary_10_18632_oncotarget_11893
crossref_primary_10_1097_MPA_0000000000000499
crossref_primary_10_3389_fimmu_2022_956984
crossref_primary_10_1084_jem_20162024
crossref_primary_10_1111_cpr_13592
crossref_primary_10_1016_j_biomaterials_2018_01_014
crossref_primary_10_1016_j_neo_2017_10_004
crossref_primary_10_1158_2159_8290_CD_21_0010
crossref_primary_10_2174_1568009623666230328123915
crossref_primary_10_1021_acs_jproteome_3c00164
crossref_primary_10_1007_s42058_020_00037_z
crossref_primary_10_1038_s43018_023_00526_x
crossref_primary_10_3390_ijms20184624
crossref_primary_10_1158_0008_5472_CAN_19_0454
crossref_primary_10_1158_1535_7163_MCT_22_0099
crossref_primary_10_3390_cancers13143565
crossref_primary_10_1080_00365521_2017_1293726
crossref_primary_10_1158_2767_9764_CRC_23_0489
crossref_primary_10_1002_1878_0261_12837
crossref_primary_10_1007_s10555_021_09995_x
crossref_primary_10_1053_j_gastro_2015_10_028
crossref_primary_10_3390_cancers10090316
crossref_primary_10_1016_j_jconrel_2017_06_022
crossref_primary_10_1158_2159_8290_CD_19_0094
crossref_primary_10_1111_bph_15028
crossref_primary_10_3389_fonc_2023_1171418
crossref_primary_10_1158_1535_7163_MCT_18_0354
crossref_primary_10_1172_JCI133685
crossref_primary_10_1038_s41575_019_0115_0
crossref_primary_10_1002_ijc_33041
crossref_primary_10_3390_cancers13205224
crossref_primary_10_3892_ijo_2015_3006
crossref_primary_10_1007_s00535_021_01800_4
crossref_primary_10_1016_j_bcp_2024_116492
crossref_primary_10_1007_s11523_018_0578_x
crossref_primary_10_1146_annurev_pathmechdis_031621_024600
crossref_primary_10_1002_cam4_833
crossref_primary_10_15252_emmm_201606743
crossref_primary_10_1016_j_juro_2016_01_089
crossref_primary_10_18632_oncotarget_12642
crossref_primary_10_1016_j_jddst_2024_105938
crossref_primary_10_1101_sqb_2015_80_027185
crossref_primary_10_1038_s41556_024_01372_4
crossref_primary_10_1038_ncomms12630
crossref_primary_10_3390_cancers14133293
crossref_primary_10_3727_096504017X14934840662335
crossref_primary_10_1038_tpj_2016_55
crossref_primary_10_1042_BSR20200401
crossref_primary_10_1016_j_addr_2021_02_012
crossref_primary_10_1242_dmm_027417
crossref_primary_10_1152_ajpgi_00416_2017
crossref_primary_10_1155_2019_7135437
crossref_primary_10_1007_s00401_018_1830_2
crossref_primary_10_1038_bjc_2014_663
crossref_primary_10_1158_2159_8290_CD_19_0435
crossref_primary_10_7555_JBR_35_20210139
crossref_primary_10_3390_bioengineering8020017
crossref_primary_10_1002_advs_202203324
crossref_primary_10_2958_suizo_38_37
crossref_primary_10_3390_biomedicines5040065
crossref_primary_10_1016_j_semcancer_2017_04_006
crossref_primary_10_3390_cells10071653
crossref_primary_10_1002_ijc_34276
crossref_primary_10_1016_j_cell_2018_10_026
crossref_primary_10_3390_cancers13133295
crossref_primary_10_3390_genes12071094
crossref_primary_10_3390_cancers15092614
crossref_primary_10_3390_cells9112464
crossref_primary_10_1097_MPA_0000000000000686
crossref_primary_10_1158_2159_8290_CD_18_0710
crossref_primary_10_3390_cancers15030724
crossref_primary_10_1158_2767_9764_CRC_23_0464
crossref_primary_10_3389_fonc_2020_576399
crossref_primary_10_1038_nm_4099
crossref_primary_10_1038_ncomms9695
crossref_primary_10_18632_oncotarget_20601
crossref_primary_10_1002_advs_202002545
crossref_primary_10_1038_s41419_023_06032_3
crossref_primary_10_1007_s00441_016_2471_1
crossref_primary_10_3390_cancers16101847
crossref_primary_10_1016_j_jphotobiol_2023_112811
crossref_primary_10_31083_j_fbl2812357
crossref_primary_10_1158_1078_0432_CCR_20_3715
crossref_primary_10_1158_1535_7163_MCT_15_0602
crossref_primary_10_3748_wjg_v28_i27_3297
crossref_primary_10_1053_j_gastro_2020_09_010
crossref_primary_10_1038_emm_2017_255
crossref_primary_10_2174_1568009621666210825101456
crossref_primary_10_1016_j_actbio_2017_11_037
crossref_primary_10_3390_cancers13081908
crossref_primary_10_1097_CM9_0000000000003031
crossref_primary_10_3389_fonc_2015_00214
crossref_primary_10_1371_journal_pmed_1002223
crossref_primary_10_1158_0008_5472_CAN_15_0744
crossref_primary_10_3390_cancers16234094
crossref_primary_10_1002_path_5926
crossref_primary_10_1021_acs_molpharmaceut_5b00971
crossref_primary_10_1158_0008_5472_CAN_18_1334
crossref_primary_10_1200_PO_17_00121
crossref_primary_10_1016_j_pan_2017_05_390
crossref_primary_10_1101_gad_348523_121
crossref_primary_10_1126_scisignal_aaa5622
crossref_primary_10_1136_gutjnl_2018_316451
crossref_primary_10_1242_dmm_021055
crossref_primary_10_1002_ags3_12225
crossref_primary_10_1152_ajpcell_00079_2020
crossref_primary_10_2174_1389557519666190327163644
crossref_primary_10_1073_pnas_1719109115
crossref_primary_10_3748_wjg_v21_i31_9297
crossref_primary_10_3390_diseases6040103
crossref_primary_10_1039_C7MB00416H
crossref_primary_10_18632_oncotarget_11129
crossref_primary_10_1016_j_biomaterials_2019_119745
crossref_primary_10_1038_s41571_020_0363_5
crossref_primary_10_1097_MD_0000000000002996
crossref_primary_10_1038_s41598_017_13869_0
crossref_primary_10_1158_1078_0432_CCR_15_2432
crossref_primary_10_1186_s13073_016_0379_8
crossref_primary_10_3389_fimmu_2022_876291
crossref_primary_10_1016_j_semcancer_2019_08_004
crossref_primary_10_1158_1078_0432_CCR_18_4113
crossref_primary_10_3390_cancers13102427
crossref_primary_10_1016_j_bbcan_2020_188418
crossref_primary_10_1007_s00535_023_02020_8
crossref_primary_10_1038_s41556_021_00644_7
crossref_primary_10_3389_fcell_2021_655152
crossref_primary_10_3103_S0891416817030041
crossref_primary_10_3390_cancers14163994
crossref_primary_10_1186_s13045_024_01561_6
crossref_primary_10_18632_oncotarget_14869
crossref_primary_10_1056_NEJMra1404198
crossref_primary_10_1146_annurev_physiol_061214_111754
crossref_primary_10_1017_erm_2015_3
crossref_primary_10_1186_s12964_023_01204_2
crossref_primary_10_3892_ijo_2022_5383
crossref_primary_10_3389_fcell_2021_743907
crossref_primary_10_1038_onc_2017_63
crossref_primary_10_1007_s13402_024_00938_6
crossref_primary_10_1038_s41598_022_14297_5
crossref_primary_10_1101_gad_289272_116
crossref_primary_10_1016_S1470_2045_16_30566_6
crossref_primary_10_1038_s41568_022_00530_w
crossref_primary_10_1073_pnas_2011560117
crossref_primary_10_1080_14712598_2019_1608179
crossref_primary_10_1016_j_jconrel_2022_03_043
crossref_primary_10_1186_s40169_019_0221_1
crossref_primary_10_12659_MSM_892523
crossref_primary_10_3390_ijms25021300
crossref_primary_10_1038_s41598_017_01942_7
crossref_primary_10_1002_jcp_31499
crossref_primary_10_1016_j_ydbio_2015_01_019
crossref_primary_10_1080_07357907_2016_1227442
crossref_primary_10_3389_fimmu_2024_1341079
crossref_primary_10_3390_ijms23010405
crossref_primary_10_3390_biomedicines8100401
crossref_primary_10_18632_oncotarget_6870
crossref_primary_10_1007_s10555_022_10064_0
crossref_primary_10_1053_j_gastro_2018_08_033
crossref_primary_10_1038_nrclinonc_2015_53
crossref_primary_10_7554_eLife_43024
crossref_primary_10_1038_ng_3408
crossref_primary_10_1038_s41580_023_00591_1
crossref_primary_10_1101_cshperspect_a027094
crossref_primary_10_3390_cancers11122010
crossref_primary_10_1016_j_celrep_2021_110227
crossref_primary_10_1038_s41467_024_55658_0
crossref_primary_10_1016_j_bbcan_2022_188795
crossref_primary_10_1016_j_ccell_2020_08_004
crossref_primary_10_1016_j_bbadis_2024_167123
crossref_primary_10_1016_j_bbcan_2016_09_001
crossref_primary_10_1158_0008_5472_CAN_20_2496
crossref_primary_10_1007_s10555_014_9541_1
crossref_primary_10_1042_BST20160233
crossref_primary_10_3390_ijms25179369
crossref_primary_10_1016_j_phrs_2019_104401
crossref_primary_10_26508_lsa_202101230
crossref_primary_10_3390_cancers15072014
crossref_primary_10_1186_s13046_021_02237_6
crossref_primary_10_1016_j_gene_2018_06_012
crossref_primary_10_3390_cancers16040794
crossref_primary_10_1021_acsnano_8b02481
crossref_primary_10_1186_s40478_021_01156_z
crossref_primary_10_12688_f1000research_5324_1
crossref_primary_10_12688_f1000research_5324_2
crossref_primary_10_1158_1535_7163_MCT_16_0452
crossref_primary_10_1016_j_drudis_2023_103861
crossref_primary_10_18821_0208_0613_2017_35_3_83_88
crossref_primary_10_3390_biology11071014
crossref_primary_10_3390_cancers11050619
crossref_primary_10_1038_s41571_021_00546_5
crossref_primary_10_1158_1541_7786_MCR_16_0192
Cites_doi 10.1016/S1535-6108(03)00309-X
10.1016/j.ccr.2005.04.023
10.1056/NEJMoa1304369
10.1101/gad.12.11.1705
10.1016/S0092-8674(01)00369-5
10.1016/j.ccr.2014.04.005
10.1158/1078-0432.CCR-08-0291
10.1200/jco.2012.30.15_suppl.4022
10.1016/j.ccr.2012.01.007
10.1053/j.gastro.2010.06.014
10.1016/j.bmcl.2009.05.096
10.1053/j.gastro.2010.07.045
10.1073/pnas.95.22.13036
10.1053/j.gastro.2004.12.008
10.1038/ng959
10.1038/onc.2009.220
10.1136/gut.2007.148189
10.1007/978-1-62703-287-2_13
10.1158/0008-5472.CAN-06-3281
10.1593/neo.11088
10.1016/j.surg.2012.05.030
10.1038/bjc.2012.569
10.1097/00006676-198701000-00003
10.1016/j.ccr.2012.10.025
10.1016/S0092-8674(00)81079-X
10.1053/j.gastro.2008.04.011
10.1097/00006676-199511000-00007
10.1056/NEJMoa1011923
10.1053/j.gastro.2009.12.005
10.1038/nature01972
10.1101/gad.943001
10.1093/jnci/djq517
10.1038/nature07275
10.1101/gad.1753809
10.1038/nature02009
10.1200/jco.2014.32.3_suppl.257
10.1242/dev.129.20.4753
10.1016/j.ccr.2014.04.021
10.1158/1535-7163.MCT-08-0573
10.1097/00006676-200410000-00002
10.1038/ng747
10.1126/science.1171362
10.1016/j.ccr.2007.01.012
10.1016/S0960-9822(06)00340-X
10.1101/gad.1158703
10.1242/dev.127.22.4905
10.1073/pnas.0813203106
10.1053/j.gastro.2013.06.011
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jul 29, 2014
Copyright_xml – notice: Copyright National Academy of Sciences Jul 29, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1411679111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef

AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Stromal Hedgehog response blocks pancreatic cancer
EISSN 1091-6490
EndPage E3100
ExternalDocumentID PMC4121834
3395285111
25024225
10_1073_pnas_1411679111
111_30_E3091
US201600143379
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: Howard Hughes Medical Institute
– fundername: NCI NIH HHS
  grantid: P01CA117969-07
– fundername: NCI NIH HHS
  grantid: P50CA1270003
– fundername: NCI NIH HHS
  grantid: R01 CA133557
– fundername: NCI NIH HHS
  grantid: R01 CA136574
– fundername: NCI NIH HHS
  grantid: R01CA136574
– fundername: NCI NIH HHS
  grantid: R01 CA155289
– fundername: NCI NIH HHS
  grantid: 5R21CA158640-02
– fundername: NCI NIH HHS
  grantid: R01CA155289-01
– fundername: NIGMS NIH HHS
  grantid: P50 GM107615
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
H13
KM
PQEST
X
XHC
AAYXX
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
CITATION
IPSME
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c569t-1675f7b752ef50bd970e9ce69a801b5a4e96a7b64343bb8a75ff3907d26d7a4b3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:51:27 EDT 2025
Thu Jul 10 20:09:03 EDT 2025
Fri Jul 11 01:22:11 EDT 2025
Mon Jun 30 08:42:39 EDT 2025
Mon Jul 21 06:05:59 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Tue Jul 01 01:53:11 EDT 2025
Wed Nov 11 00:30:15 EST 2020
Wed Dec 27 19:19:57 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords Sonic hedgehog
cancer therapy
hedgehog agonist
tumor stroma
cerulein
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c569t-1675f7b752ef50bd970e9ce69a801b5a4e96a7b64343bb8a75ff3907d26d7a4b3
Notes http://dx.doi.org/10.1073/pnas.1411679111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: J.J.L., R.M.P., Y.B., J.K.W., N.B., and P.A.B. designed research; J.J.L., R.M.P., H.W., D.-C.W., X.S.L., S.H., J.F., P.D.J., K.S.G., S.K., J.M.N., and V.D. performed research; T.K. and J.K.C. contributed new reagents/analytic tools; J.J.L., R.M.P., H.W., S.H., J.F., V.D., N.B., and P.A.B. analyzed data; and J.J.L., R.M.P., N.B., and P.A.B. wrote the paper.
1J.J.L. and R.M.P. contributed equally to this work.
2H.W., D.-C.W., and X.S.L. contributed equally to this work.
Reviewers: B.L., University of Massachusetts Medical School; and A.M., University of Texas MD Anderson Cancer Center.
Contributed by Philip A. Beachy, June 23, 2014 (sent for review May 27, 2014; reviewed by Brian Lewis and Anirban Maitra)
OpenAccessLink https://www.pnas.org/content/pnas/111/30/E3091.full.pdf
PMID 25024225
PQID 1551735479
PQPubID 42026
ParticipantIDs crossref_citationtrail_10_1073_pnas_1411679111
proquest_journals_1551735479
proquest_miscellaneous_1803094768
pubmed_primary_25024225
proquest_miscellaneous_1550076769
pnas_primary_111_30_E3091
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4121834
crossref_primary_10_1073_pnas_1411679111
fao_agris_US201600143379
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-29
PublicationDateYYYYMMDD 2014-07-29
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
Howlader N (e_1_3_3_1_2) 2013
e_1_3_3_12_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
Whatcott CJ (e_1_3_3_37_2) 2012
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_26_2
  doi: 10.1016/S1535-6108(03)00309-X
– ident: e_1_3_3_10_2
  doi: 10.1016/j.ccr.2005.04.023
– ident: e_1_3_3_4_2
  doi: 10.1056/NEJMoa1304369
– ident: e_1_3_3_5_2
  doi: 10.1101/gad.12.11.1705
– ident: e_1_3_3_49_2
  doi: 10.1016/S0092-8674(01)00369-5
– ident: e_1_3_3_42_2
  doi: 10.1016/j.ccr.2014.04.005
– ident: e_1_3_3_19_2
  doi: 10.1158/1078-0432.CCR-08-0291
– ident: e_1_3_3_24_2
  doi: 10.1200/jco.2012.30.15_suppl.4022
– ident: e_1_3_3_23_2
– ident: e_1_3_3_45_2
  doi: 10.1016/j.ccr.2012.01.007
– ident: e_1_3_3_43_2
  doi: 10.1053/j.gastro.2010.06.014
– ident: e_1_3_3_36_2
  doi: 10.1016/j.bmcl.2009.05.096
– volume-title: Pancreatic Cancer and Tumor Microenvironment
  year: 2012
  ident: e_1_3_3_37_2
– ident: e_1_3_3_44_2
  doi: 10.1053/j.gastro.2010.07.045
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.95.22.13036
– ident: e_1_3_3_27_2
  doi: 10.1053/j.gastro.2004.12.008
– ident: e_1_3_3_47_2
  doi: 10.1038/ng959
– ident: e_1_3_3_16_2
  doi: 10.1038/onc.2009.220
– ident: e_1_3_3_13_2
  doi: 10.1136/gut.2007.148189
– ident: e_1_3_3_34_2
  doi: 10.1007/978-1-62703-287-2_13
– ident: e_1_3_3_14_2
  doi: 10.1158/0008-5472.CAN-06-3281
– volume-title: SEER Cancer Statistics Review, 1975-2010
  year: 2013
  ident: e_1_3_3_1_2
– ident: e_1_3_3_21_2
  doi: 10.1593/neo.11088
– ident: e_1_3_3_22_2
  doi: 10.1016/j.surg.2012.05.030
– ident: e_1_3_3_46_2
  doi: 10.1038/bjc.2012.569
– ident: e_1_3_3_39_2
  doi: 10.1097/00006676-198701000-00003
– ident: e_1_3_3_28_2
  doi: 10.1016/j.ccr.2012.10.025
– ident: e_1_3_3_51_2
  doi: 10.1016/S0092-8674(00)81079-X
– ident: e_1_3_3_30_2
  doi: 10.1053/j.gastro.2008.04.011
– ident: e_1_3_3_40_2
  doi: 10.1097/00006676-199511000-00007
– ident: e_1_3_3_3_2
  doi: 10.1056/NEJMoa1011923
– ident: e_1_3_3_8_2
  doi: 10.1053/j.gastro.2009.12.005
– ident: e_1_3_3_11_2
  doi: 10.1038/nature01972
– ident: e_1_3_3_48_2
  doi: 10.1101/gad.943001
– ident: e_1_3_3_2_2
  doi: 10.1093/jnci/djq517
– ident: e_1_3_3_12_2
  doi: 10.1038/nature07275
– ident: e_1_3_3_18_2
  doi: 10.1101/gad.1753809
– ident: e_1_3_3_9_2
  doi: 10.1038/nature02009
– ident: e_1_3_3_25_2
  doi: 10.1200/jco.2014.32.3_suppl.257
– ident: e_1_3_3_33_2
  doi: 10.1242/dev.129.20.4753
– ident: e_1_3_3_41_2
  doi: 10.1016/j.ccr.2014.04.021
– ident: e_1_3_3_15_2
  doi: 10.1158/1535-7163.MCT-08-0573
– ident: e_1_3_3_38_2
  doi: 10.1097/00006676-200410000-00002
– ident: e_1_3_3_50_2
  doi: 10.1038/ng747
– ident: e_1_3_3_20_2
  doi: 10.1126/science.1171362
– ident: e_1_3_3_29_2
  doi: 10.1016/j.ccr.2007.01.012
– ident: e_1_3_3_31_2
  doi: 10.1016/S0960-9822(06)00340-X
– ident: e_1_3_3_32_2
  doi: 10.1101/gad.1158703
– ident: e_1_3_3_6_2
  doi: 10.1242/dev.127.22.4905
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.0813203106
– ident: e_1_3_3_35_2
  doi: 10.1053/j.gastro.2013.06.011
SSID ssj0009580
Score 2.6093924
Snippet Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical...
Preclinical studies have suggested that Hedgehog (Hh) pathway inhibition reduces growth and metastasis of pancreatic ductal adenocarcinoma (PDA), but ensuing...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E3091
SubjectTerms adenocarcinoma
agonists
animal models
Animals
Biological Sciences
carcinogenesis
Carcinoma, Pancreatic Ductal - drug therapy
Carcinoma, Pancreatic Ductal - genetics
Carcinoma, Pancreatic Ductal - metabolism
Carcinoma, Pancreatic Ductal - pathology
clinical trials
epithelium
fibroblasts
Genetic engineering
Hedgehog Proteins - antagonists & inhibitors
Hedgehog Proteins - genetics
Hedgehog Proteins - metabolism
Humans
hyperplasia
ligands
Mice
Mice, Knockout
Molecules
Pancreatic cancer
pancreatic neoplasms
Pancreatic Neoplasms - drug therapy
Pancreatic Neoplasms - genetics
Pancreatic Neoplasms - metabolism
Pancreatic Neoplasms - pathology
Pharmacology
PNAS Plus
Proto-Oncogene Proteins p21(ras) - genetics
Proto-Oncogene Proteins p21(ras) - metabolism
Rodents
Signal Transduction
Title Stromal response to Hedgehog signaling restrains pancreatic cancer progression
URI http://www.pnas.org/content/111/30/E3091.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25024225
https://www.proquest.com/docview/1551735479
https://www.proquest.com/docview/1550076769
https://www.proquest.com/docview/1803094768
https://pubmed.ncbi.nlm.nih.gov/PMC4121834
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELbW7mUv07pfZe0mT9pDp4iOgMHwWFWdokqLKrVR-4ZsYpp0K1QJvPSv351tTBKl07YXFIXDIdzn4-5895mQL0yi21CUfjiNCp-FAuYcJvIFE7GEV3YiNePNj3EymrDzm_imzyrp7pJGHhePW_tK_ker8B3oFbtk_0GzblD4Aj6DfuEIGobjX-n4slnU95qZXxe66l0wRpggm9W3A6zMELrZHLffwJ0glgOY-sZLLLDaq1ALU59luDlW_dQL915bdlUE4y5teNI3oVjLsBz4g4txv6VxV92DVTnnvfFdqIVxVdvlbP5T9InYa5u0HrViftc6uF63pup-7p_ObMeazU8MGSY-bRJDGZsKLomfMLMrqDO61sQadNmlGWNDzwArw63WHcwRbklciSUYeL2AZIdZ0fXDvVY2eHbgfJie6g1C7e7UDnkeQmwRamu-ytScBh0HFI--bfwakkfb69c8mZ1S1MiPC9LbYpXNktsVH-bqFXlpgw96YpC0R56p6jXZ65RIjywH-dc3ZGyhRTto0aamHbSogxZ10KI9tKiBFl2B1lsy-X52dTry7dYbfhEnWePDv41LLnkcqjIO5DTjgcoKlWQCPBoZC6ayRHCZYF-ylKkA6TLKAj4NkykXTEbvyG5VV2qf0ABshBJimCaxZEpGaQpyQyl4ImSZxoFHjrvHmBeWlx7v_Feu6yN4lONDzXsVeOTIXfBgKFmeFt0HveTiFl6Y-eQyRDpFJLSMeOYRTwu7ESAQjoJcg88jh50GczvdYVSILXgUM7z0szsNxhhX2ESl6lbL4NI2T_4kk-KqJoMw3yPvDSjcTXTQ8ghfg4sTQDL49TPVfKZJ4dkQgx324ckxD8iLfnoekt1m0aqP4FA38pOeAL8BQPnI3Q
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stromal+response+to+Hedgehog+signaling+restrains+pancreatic+cancer+progression&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lee%2C+John+J&rft.au=Perera%2C+Rushika+M&rft.au=Wang%2C+Huaijun&rft.au=Wu%2C+Dai-Chen&rft.date=2014-07-29&rft.eissn=1091-6490&rft.volume=111&rft.issue=30&rft.spage=E3091&rft_id=info:doi/10.1073%2Fpnas.1411679111&rft_id=info%3Apmid%2F25024225&rft.externalDocID=25024225
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F30.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F30.cover.gif