Stromal response to Hedgehog signaling restrains pancreatic cancer progression
Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA p...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 30; pp. E3091 - E3100 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
29.07.2014
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention. |
---|---|
AbstractList | Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention. Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention. Preclinical studies have suggested that Hedgehog (Hh) pathway inhibition reduces growth and metastasis of pancreatic ductal adenocarcinoma (PDA), but ensuing clinical trials of Hh pathway antagonists combined with cytotoxic chemotherapy have not succeeded. Here, we find in three distinct genetically engineered mouse models that genetic and pharmacologic inhibition of Hh pathway activity actually accelerates PDA progression. Furthermore, we find that the acute modulation of pathway activity regulates the balance between epithelial and stromal elements, with inhibition causing suppression of desmoplasia and accelerated growth of epithelial elements and activation causing stromal hyperplasia and reduced growth of the neoplastic epithelium. Our study explains previous clinical trial results and suggests the possibility of novel types of therapeutic interventions. Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention. |
Author | Philip A. Beachy Vikram Deshpande Yves Boucher Sally Kawano John J. Lee Huaijun Wang James K. Chen Rushika M. Perera Krishna S. Ghanta Shiwei Han Nabeel Bardeesy Tomoyo Kato Jürgen K. Willmann Julien Fitamant Julia M. Nagle Dai-Chen Wu Phillip D. Jones X. Shawn Liu |
Author_xml | – sequence: 1 givenname: John J. surname: Lee fullname: Lee, John J. organization: Institute for Stem Cell Biology and Regenerative Medicine,, Division of Oncology, Department of Medicine – sequence: 2 givenname: Rushika M. surname: Perera fullname: Perera, Rushika M. organization: Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 – sequence: 3 givenname: Huaijun surname: Wang fullname: Wang, Huaijun organization: Molecular Imaging Program, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 – sequence: 4 givenname: Dai-Chen surname: Wu fullname: Wu, Dai-Chen organization: Institute for Stem Cell Biology and Regenerative Medicine – sequence: 5 givenname: X. Shawn surname: Liu fullname: Liu, X. Shawn organization: Institute for Stem Cell Biology and Regenerative Medicine – sequence: 6 givenname: Shiwei surname: Han fullname: Han, Shiwei organization: Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; and – sequence: 7 givenname: Julien surname: Fitamant fullname: Fitamant, Julien organization: Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 – sequence: 8 givenname: Phillip D. surname: Jones fullname: Jones, Phillip D. organization: Institute for Stem Cell Biology and Regenerative Medicine – sequence: 9 givenname: Krishna S. surname: Ghanta fullname: Ghanta, Krishna S. organization: Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 – sequence: 10 givenname: Sally surname: Kawano fullname: Kawano, Sally organization: Institute for Stem Cell Biology and Regenerative Medicine – sequence: 11 givenname: Julia M. surname: Nagle fullname: Nagle, Julia M. organization: Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 – sequence: 12 givenname: Vikram surname: Deshpande fullname: Deshpande, Vikram organization: Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 – sequence: 13 givenname: Yves surname: Boucher fullname: Boucher, Yves organization: Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; and – sequence: 14 givenname: Tomoyo surname: Kato fullname: Kato, Tomoyo organization: Department of Chemical and Systems Biology, and – sequence: 15 givenname: James K. surname: Chen fullname: Chen, James K. organization: Department of Chemical and Systems Biology, and – sequence: 16 givenname: Jürgen K. surname: Willmann fullname: Willmann, Jürgen K. organization: Molecular Imaging Program, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 – sequence: 17 givenname: Nabeel surname: Bardeesy fullname: Bardeesy, Nabeel organization: Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 – sequence: 18 givenname: Philip A. surname: Beachy fullname: Beachy, Philip A. organization: Institute for Stem Cell Biology and Regenerative Medicine,, Department of Biochemistry,, Howard Hughes Medical Institute, Stanford, CA 94305 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25024225$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLcLZ24QiQuXtDP-jC9IqCoUqYJD6dlysk7qKmsHO4vEf4_DbgtUQpxs6f3m6c28E3IUYnCEvEQ4RVDsbAo2nyJHlEoj4hOyQtBYS67hiKwAqKobTvkxOcn5DgC0aOAZOaYCKKdUrMjn6znFrR2r5PIUQ3bVHKtLtxncbRyq7IdgRx-GRZ6T9SFXkw1dcnb2XdWVr0vVlOJQ9OxjeE6e9nbM7sXhXZObDxdfzy_rqy8fP52_v6o7IfVcl7iiV60S1PUC2o1W4HTnpLYNYCssd1pa1UrOOGvbxha6ZxrUhsqNsrxla_Ju7zvt2q3bdC6UdKOZkt_a9MNE683fSvC3ZojfDUeKTXFdk7cHgxS_7cpyZutz58bRBhd32WADDDRXsvk_KgSAkkrqgr55hN7FXSon_EWhYoKrhXr1Z_iH1PetFEDsgS7FnJPrTefncvG47OJHg2CW9s3Svvndfpk7ezR3b_3vieoQZREeaETDwFyUCyzI6z3S22jskHw2N9cUUAIgZ6zs8xMqPcXp |
CitedBy_id | crossref_primary_10_1158_0008_5472_CAN_16_3022 crossref_primary_10_3390_cancers11050588 crossref_primary_10_18632_oncotarget_27745 crossref_primary_10_1016_j_bbcan_2019_01_007 crossref_primary_10_1016_j_trsl_2019_02_006 crossref_primary_10_1093_carcin_bgae063 crossref_primary_10_7554_eLife_45313 crossref_primary_10_1007_s00018_017_2678_7 crossref_primary_10_1158_1541_7786_MCR_14_0709 crossref_primary_10_18632_oncotarget_3819 crossref_primary_10_18632_oncotarget_10514 crossref_primary_10_1016_j_jaci_2017_12_998 crossref_primary_10_1016_j_bbcan_2014_11_004 crossref_primary_10_3390_cancers10020034 crossref_primary_10_1158_1078_0432_CCR_23_0131 crossref_primary_10_1002_jcb_27817 crossref_primary_10_1016_j_ccell_2017_08_007 crossref_primary_10_1016_j_biomaterials_2017_08_002 crossref_primary_10_1016_j_biomaterials_2019_119421 crossref_primary_10_1007_s13402_023_00874_x crossref_primary_10_1177_1533033818803632 crossref_primary_10_1016_j_cell_2016_03_029 crossref_primary_10_1038_s41388_022_02288_9 crossref_primary_10_1016_j_bbcan_2023_188958 crossref_primary_10_1016_j_semcancer_2021_03_006 crossref_primary_10_1186_s12943_016_0509_3 crossref_primary_10_3390_molecules23051003 crossref_primary_10_1111_cas_14346 crossref_primary_10_1038_s41598_019_47633_3 crossref_primary_10_1111_imr_12969 crossref_primary_10_1016_j_ccell_2021_02_007 crossref_primary_10_1200_JCO_20_00590 crossref_primary_10_1007_s10637_021_01176_5 crossref_primary_10_4291_wjgp_v7_i2_199 crossref_primary_10_1021_acs_molpharmaceut_0c00014 crossref_primary_10_3389_fcell_2021_749924 crossref_primary_10_18632_oncotarget_23929 crossref_primary_10_3892_or_2021_8182 crossref_primary_10_1016_j_trsl_2024_05_005 crossref_primary_10_1016_j_ymthe_2023_09_010 crossref_primary_10_1152_physrev_00042_2019 crossref_primary_10_1016_j_pharmthera_2022_108231 crossref_primary_10_1016_j_ab_2015_08_025 crossref_primary_10_1158_1078_0432_CCR_16_3275 crossref_primary_10_1016_j_tranon_2018_01_018 crossref_primary_10_1152_physrev_00048_2019 crossref_primary_10_3390_cancers15164145 crossref_primary_10_1136_jitc_2022_004585 crossref_primary_10_1073_pnas_1717891115 crossref_primary_10_3390_cancers9070093 crossref_primary_10_1038_s41598_020_74368_3 crossref_primary_10_15252_emmm_201404827 crossref_primary_10_1186_s10020_023_00665_y crossref_primary_10_1016_j_canlet_2019_07_015 crossref_primary_10_2147_IJN_S451151 crossref_primary_10_1200_JCO_2015_62_8719 crossref_primary_10_1038_s41392_020_00341_1 crossref_primary_10_3390_cells8050509 crossref_primary_10_3390_cancers10060193 crossref_primary_10_1016_j_cell_2023_02_014 crossref_primary_10_3389_fphys_2014_00391 crossref_primary_10_1016_j_jfma_2015_01_005 crossref_primary_10_1177_026119291604400509 crossref_primary_10_1016_j_matbio_2017_12_003 crossref_primary_10_3390_ijms222413408 crossref_primary_10_3390_cancers13205086 crossref_primary_10_3390_cancers13092069 crossref_primary_10_1038_s41590_023_01642_7 crossref_primary_10_1016_j_neo_2016_06_003 crossref_primary_10_1371_journal_pone_0221810 crossref_primary_10_18632_genesandcancer_171 crossref_primary_10_1186_s12885_021_08123_w crossref_primary_10_3390_cancers13246175 crossref_primary_10_1126_scitranslmed_aai8504 crossref_primary_10_3390_cancers13174354 crossref_primary_10_3390_cancers13194984 crossref_primary_10_1158_1078_0432_CCR_19_2238 crossref_primary_10_3390_cancers15164135 crossref_primary_10_1158_2159_8290_CD_20_0119 crossref_primary_10_1155_2019_6240505 crossref_primary_10_1136_gutjnl_2016_311585 crossref_primary_10_1158_2159_8290_CD_19_1353 crossref_primary_10_3389_fimmu_2023_1237711 crossref_primary_10_1101_sqb_2016_81_031104 crossref_primary_10_1016_j_biomaterials_2018_11_023 crossref_primary_10_1016_j_xphs_2023_10_019 crossref_primary_10_1016_j_bbcan_2020_188443 crossref_primary_10_1038_ng_3398 crossref_primary_10_1016_j_bbcan_2020_188444 crossref_primary_10_1172_JCI136760 crossref_primary_10_1007_s10585_021_10142_7 crossref_primary_10_1038_nrdp_2016_22 crossref_primary_10_1186_s12885_024_12065_4 crossref_primary_10_1038_s41467_019_08782_1 crossref_primary_10_7554_eLife_62645 crossref_primary_10_1016_j_celrep_2021_109852 crossref_primary_10_1172_JCI120850 crossref_primary_10_3390_cancers12102969 crossref_primary_10_3390_cancers15112923 crossref_primary_10_2139_ssrn_3745132 crossref_primary_10_1016_j_canlet_2024_216962 crossref_primary_10_1016_j_isci_2022_104327 crossref_primary_10_3390_ijms21155486 crossref_primary_10_3390_cancers14215302 crossref_primary_10_1111_cas_13630 crossref_primary_10_1016_j_celrep_2014_09_010 crossref_primary_10_1016_j_semcancer_2021_04_003 crossref_primary_10_1016_j_jconrel_2023_07_039 crossref_primary_10_1053_j_gastro_2022_03_056 crossref_primary_10_1038_s41389_018_0096_9 crossref_primary_10_3389_fonc_2021_751311 crossref_primary_10_1146_annurev_cancerbio_061421_035400 crossref_primary_10_1146_annurev_cellbio_100617_062855 crossref_primary_10_1158_2159_8290_CD_21_0601 crossref_primary_10_1158_2159_8290_CD_15_0671 crossref_primary_10_1038_s41388_020_1224_5 crossref_primary_10_1038_s41575_020_0300_1 crossref_primary_10_3390_cancers13143410 crossref_primary_10_3389_fgene_2019_00075 crossref_primary_10_1016_j_ccell_2014_09_001 crossref_primary_10_1016_j_ebiom_2021_103315 crossref_primary_10_1002_cam4_993 crossref_primary_10_1038_s41568_025_00798_8 crossref_primary_10_1038_s41467_023_42178_6 crossref_primary_10_1038_s41598_021_84058_3 crossref_primary_10_1186_s12935_022_02599_7 crossref_primary_10_2147_IJN_S279192 crossref_primary_10_26508_lsa_201800190 crossref_primary_10_2958_suizo_38_28 crossref_primary_10_1016_j_cell_2020_03_008 crossref_primary_10_1242_jcs_157966 crossref_primary_10_1016_j_biomaterials_2016_06_048 crossref_primary_10_1158_1078_0432_CCR_18_3535 crossref_primary_10_1021_acs_molpharmaceut_4c00801 crossref_primary_10_1016_j_drup_2015_10_002 crossref_primary_10_1016_j_tcb_2020_11_010 crossref_primary_10_1038_s41598_025_94362_x crossref_primary_10_1002_jcp_25798 crossref_primary_10_1016_j_jconrel_2024_03_041 crossref_primary_10_1016_j_jconrel_2024_07_023 crossref_primary_10_1016_j_mtbio_2024_100970 crossref_primary_10_1093_jnci_djx121 crossref_primary_10_1038_nrclinonc_2016_119 crossref_primary_10_1002_cjp2_122 crossref_primary_10_18632_oncotarget_6910 crossref_primary_10_3390_cells11162523 crossref_primary_10_1016_j_bbcan_2023_188901 crossref_primary_10_1016_j_intimp_2023_110601 crossref_primary_10_1016_j_ccell_2016_10_003 crossref_primary_10_3390_cancers14143315 crossref_primary_10_1016_j_cell_2023_03_016 crossref_primary_10_1016_j_devcel_2016_07_026 crossref_primary_10_1016_j_jbiotec_2015_01_012 crossref_primary_10_1016_j_ymthe_2018_02_004 crossref_primary_10_1038_s41467_022_30638_4 crossref_primary_10_1021_acschembio_6b00896 crossref_primary_10_1016_j_drudis_2020_09_008 crossref_primary_10_1016_j_bbcan_2021_188673 crossref_primary_10_1146_annurev_cancerbio_030419_033333 crossref_primary_10_1158_0008_5472_CAN_17_2084 crossref_primary_10_3390_cells8050424 crossref_primary_10_1038_labinvest_2017_127 crossref_primary_10_1002_1878_0261_12073 crossref_primary_10_3390_ijms19082279 crossref_primary_10_1016_j_esmoop_2022_100500 crossref_primary_10_1002_advs_202104594 crossref_primary_10_1038_s41467_021_27607_8 crossref_primary_10_1016_j_pharmthera_2019_04_004 crossref_primary_10_1111_joim_13177 crossref_primary_10_3390_cancers13122995 crossref_primary_10_1038_s43018_021_00181_0 crossref_primary_10_1073_pnas_2304288120 crossref_primary_10_1111_php_13339 crossref_primary_10_3390_cancers13163946 crossref_primary_10_1073_pnas_1717802115 crossref_primary_10_1186_s12964_017_0171_4 crossref_primary_10_3390_ijms24043941 crossref_primary_10_1016_j_cytogfr_2022_09_001 crossref_primary_10_1053_j_gastro_2018_12_044 crossref_primary_10_1158_2159_8290_CD_18_1212 crossref_primary_10_1111_imr_12990 crossref_primary_10_1158_1078_0432_CCR_15_2068 crossref_primary_10_1101_gad_275776_115 crossref_primary_10_1200_JCO_2014_60_0759 crossref_primary_10_18632_oncotarget_11893 crossref_primary_10_1097_MPA_0000000000000499 crossref_primary_10_3389_fimmu_2022_956984 crossref_primary_10_1084_jem_20162024 crossref_primary_10_1111_cpr_13592 crossref_primary_10_1016_j_biomaterials_2018_01_014 crossref_primary_10_1016_j_neo_2017_10_004 crossref_primary_10_1158_2159_8290_CD_21_0010 crossref_primary_10_2174_1568009623666230328123915 crossref_primary_10_1021_acs_jproteome_3c00164 crossref_primary_10_1007_s42058_020_00037_z crossref_primary_10_1038_s43018_023_00526_x crossref_primary_10_3390_ijms20184624 crossref_primary_10_1158_0008_5472_CAN_19_0454 crossref_primary_10_1158_1535_7163_MCT_22_0099 crossref_primary_10_3390_cancers13143565 crossref_primary_10_1080_00365521_2017_1293726 crossref_primary_10_1158_2767_9764_CRC_23_0489 crossref_primary_10_1002_1878_0261_12837 crossref_primary_10_1007_s10555_021_09995_x crossref_primary_10_1053_j_gastro_2015_10_028 crossref_primary_10_3390_cancers10090316 crossref_primary_10_1016_j_jconrel_2017_06_022 crossref_primary_10_1158_2159_8290_CD_19_0094 crossref_primary_10_1111_bph_15028 crossref_primary_10_3389_fonc_2023_1171418 crossref_primary_10_1158_1535_7163_MCT_18_0354 crossref_primary_10_1172_JCI133685 crossref_primary_10_1038_s41575_019_0115_0 crossref_primary_10_1002_ijc_33041 crossref_primary_10_3390_cancers13205224 crossref_primary_10_3892_ijo_2015_3006 crossref_primary_10_1007_s00535_021_01800_4 crossref_primary_10_1016_j_bcp_2024_116492 crossref_primary_10_1007_s11523_018_0578_x crossref_primary_10_1146_annurev_pathmechdis_031621_024600 crossref_primary_10_1002_cam4_833 crossref_primary_10_15252_emmm_201606743 crossref_primary_10_1016_j_juro_2016_01_089 crossref_primary_10_18632_oncotarget_12642 crossref_primary_10_1016_j_jddst_2024_105938 crossref_primary_10_1101_sqb_2015_80_027185 crossref_primary_10_1038_s41556_024_01372_4 crossref_primary_10_1038_ncomms12630 crossref_primary_10_3390_cancers14133293 crossref_primary_10_3727_096504017X14934840662335 crossref_primary_10_1038_tpj_2016_55 crossref_primary_10_1042_BSR20200401 crossref_primary_10_1016_j_addr_2021_02_012 crossref_primary_10_1242_dmm_027417 crossref_primary_10_1152_ajpgi_00416_2017 crossref_primary_10_1155_2019_7135437 crossref_primary_10_1007_s00401_018_1830_2 crossref_primary_10_1038_bjc_2014_663 crossref_primary_10_1158_2159_8290_CD_19_0435 crossref_primary_10_7555_JBR_35_20210139 crossref_primary_10_3390_bioengineering8020017 crossref_primary_10_1002_advs_202203324 crossref_primary_10_2958_suizo_38_37 crossref_primary_10_3390_biomedicines5040065 crossref_primary_10_1016_j_semcancer_2017_04_006 crossref_primary_10_3390_cells10071653 crossref_primary_10_1002_ijc_34276 crossref_primary_10_1016_j_cell_2018_10_026 crossref_primary_10_3390_cancers13133295 crossref_primary_10_3390_genes12071094 crossref_primary_10_3390_cancers15092614 crossref_primary_10_3390_cells9112464 crossref_primary_10_1097_MPA_0000000000000686 crossref_primary_10_1158_2159_8290_CD_18_0710 crossref_primary_10_3390_cancers15030724 crossref_primary_10_1158_2767_9764_CRC_23_0464 crossref_primary_10_3389_fonc_2020_576399 crossref_primary_10_1038_nm_4099 crossref_primary_10_1038_ncomms9695 crossref_primary_10_18632_oncotarget_20601 crossref_primary_10_1002_advs_202002545 crossref_primary_10_1038_s41419_023_06032_3 crossref_primary_10_1007_s00441_016_2471_1 crossref_primary_10_3390_cancers16101847 crossref_primary_10_1016_j_jphotobiol_2023_112811 crossref_primary_10_31083_j_fbl2812357 crossref_primary_10_1158_1078_0432_CCR_20_3715 crossref_primary_10_1158_1535_7163_MCT_15_0602 crossref_primary_10_3748_wjg_v28_i27_3297 crossref_primary_10_1053_j_gastro_2020_09_010 crossref_primary_10_1038_emm_2017_255 crossref_primary_10_2174_1568009621666210825101456 crossref_primary_10_1016_j_actbio_2017_11_037 crossref_primary_10_3390_cancers13081908 crossref_primary_10_1097_CM9_0000000000003031 crossref_primary_10_3389_fonc_2015_00214 crossref_primary_10_1371_journal_pmed_1002223 crossref_primary_10_1158_0008_5472_CAN_15_0744 crossref_primary_10_3390_cancers16234094 crossref_primary_10_1002_path_5926 crossref_primary_10_1021_acs_molpharmaceut_5b00971 crossref_primary_10_1158_0008_5472_CAN_18_1334 crossref_primary_10_1200_PO_17_00121 crossref_primary_10_1016_j_pan_2017_05_390 crossref_primary_10_1101_gad_348523_121 crossref_primary_10_1126_scisignal_aaa5622 crossref_primary_10_1136_gutjnl_2018_316451 crossref_primary_10_1242_dmm_021055 crossref_primary_10_1002_ags3_12225 crossref_primary_10_1152_ajpcell_00079_2020 crossref_primary_10_2174_1389557519666190327163644 crossref_primary_10_1073_pnas_1719109115 crossref_primary_10_3748_wjg_v21_i31_9297 crossref_primary_10_3390_diseases6040103 crossref_primary_10_1039_C7MB00416H crossref_primary_10_18632_oncotarget_11129 crossref_primary_10_1016_j_biomaterials_2019_119745 crossref_primary_10_1038_s41571_020_0363_5 crossref_primary_10_1097_MD_0000000000002996 crossref_primary_10_1038_s41598_017_13869_0 crossref_primary_10_1158_1078_0432_CCR_15_2432 crossref_primary_10_1186_s13073_016_0379_8 crossref_primary_10_3389_fimmu_2022_876291 crossref_primary_10_1016_j_semcancer_2019_08_004 crossref_primary_10_1158_1078_0432_CCR_18_4113 crossref_primary_10_3390_cancers13102427 crossref_primary_10_1016_j_bbcan_2020_188418 crossref_primary_10_1007_s00535_023_02020_8 crossref_primary_10_1038_s41556_021_00644_7 crossref_primary_10_3389_fcell_2021_655152 crossref_primary_10_3103_S0891416817030041 crossref_primary_10_3390_cancers14163994 crossref_primary_10_1186_s13045_024_01561_6 crossref_primary_10_18632_oncotarget_14869 crossref_primary_10_1056_NEJMra1404198 crossref_primary_10_1146_annurev_physiol_061214_111754 crossref_primary_10_1017_erm_2015_3 crossref_primary_10_1186_s12964_023_01204_2 crossref_primary_10_3892_ijo_2022_5383 crossref_primary_10_3389_fcell_2021_743907 crossref_primary_10_1038_onc_2017_63 crossref_primary_10_1007_s13402_024_00938_6 crossref_primary_10_1038_s41598_022_14297_5 crossref_primary_10_1101_gad_289272_116 crossref_primary_10_1016_S1470_2045_16_30566_6 crossref_primary_10_1038_s41568_022_00530_w crossref_primary_10_1073_pnas_2011560117 crossref_primary_10_1080_14712598_2019_1608179 crossref_primary_10_1016_j_jconrel_2022_03_043 crossref_primary_10_1186_s40169_019_0221_1 crossref_primary_10_12659_MSM_892523 crossref_primary_10_3390_ijms25021300 crossref_primary_10_1038_s41598_017_01942_7 crossref_primary_10_1002_jcp_31499 crossref_primary_10_1016_j_ydbio_2015_01_019 crossref_primary_10_1080_07357907_2016_1227442 crossref_primary_10_3389_fimmu_2024_1341079 crossref_primary_10_3390_ijms23010405 crossref_primary_10_3390_biomedicines8100401 crossref_primary_10_18632_oncotarget_6870 crossref_primary_10_1007_s10555_022_10064_0 crossref_primary_10_1053_j_gastro_2018_08_033 crossref_primary_10_1038_nrclinonc_2015_53 crossref_primary_10_7554_eLife_43024 crossref_primary_10_1038_ng_3408 crossref_primary_10_1038_s41580_023_00591_1 crossref_primary_10_1101_cshperspect_a027094 crossref_primary_10_3390_cancers11122010 crossref_primary_10_1016_j_celrep_2021_110227 crossref_primary_10_1038_s41467_024_55658_0 crossref_primary_10_1016_j_bbcan_2022_188795 crossref_primary_10_1016_j_ccell_2020_08_004 crossref_primary_10_1016_j_bbadis_2024_167123 crossref_primary_10_1016_j_bbcan_2016_09_001 crossref_primary_10_1158_0008_5472_CAN_20_2496 crossref_primary_10_1007_s10555_014_9541_1 crossref_primary_10_1042_BST20160233 crossref_primary_10_3390_ijms25179369 crossref_primary_10_1016_j_phrs_2019_104401 crossref_primary_10_26508_lsa_202101230 crossref_primary_10_3390_cancers15072014 crossref_primary_10_1186_s13046_021_02237_6 crossref_primary_10_1016_j_gene_2018_06_012 crossref_primary_10_3390_cancers16040794 crossref_primary_10_1021_acsnano_8b02481 crossref_primary_10_1186_s40478_021_01156_z crossref_primary_10_12688_f1000research_5324_1 crossref_primary_10_12688_f1000research_5324_2 crossref_primary_10_1158_1535_7163_MCT_16_0452 crossref_primary_10_1016_j_drudis_2023_103861 crossref_primary_10_18821_0208_0613_2017_35_3_83_88 crossref_primary_10_3390_biology11071014 crossref_primary_10_3390_cancers11050619 crossref_primary_10_1038_s41571_021_00546_5 crossref_primary_10_1158_1541_7786_MCR_16_0192 |
Cites_doi | 10.1016/S1535-6108(03)00309-X 10.1016/j.ccr.2005.04.023 10.1056/NEJMoa1304369 10.1101/gad.12.11.1705 10.1016/S0092-8674(01)00369-5 10.1016/j.ccr.2014.04.005 10.1158/1078-0432.CCR-08-0291 10.1200/jco.2012.30.15_suppl.4022 10.1016/j.ccr.2012.01.007 10.1053/j.gastro.2010.06.014 10.1016/j.bmcl.2009.05.096 10.1053/j.gastro.2010.07.045 10.1073/pnas.95.22.13036 10.1053/j.gastro.2004.12.008 10.1038/ng959 10.1038/onc.2009.220 10.1136/gut.2007.148189 10.1007/978-1-62703-287-2_13 10.1158/0008-5472.CAN-06-3281 10.1593/neo.11088 10.1016/j.surg.2012.05.030 10.1038/bjc.2012.569 10.1097/00006676-198701000-00003 10.1016/j.ccr.2012.10.025 10.1016/S0092-8674(00)81079-X 10.1053/j.gastro.2008.04.011 10.1097/00006676-199511000-00007 10.1056/NEJMoa1011923 10.1053/j.gastro.2009.12.005 10.1038/nature01972 10.1101/gad.943001 10.1093/jnci/djq517 10.1038/nature07275 10.1101/gad.1753809 10.1038/nature02009 10.1200/jco.2014.32.3_suppl.257 10.1242/dev.129.20.4753 10.1016/j.ccr.2014.04.021 10.1158/1535-7163.MCT-08-0573 10.1097/00006676-200410000-00002 10.1038/ng747 10.1126/science.1171362 10.1016/j.ccr.2007.01.012 10.1016/S0960-9822(06)00340-X 10.1101/gad.1158703 10.1242/dev.127.22.4905 10.1073/pnas.0813203106 10.1053/j.gastro.2013.06.011 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jul 29, 2014 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jul 29, 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1411679111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts CrossRef AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Stromal Hedgehog response blocks pancreatic cancer |
EISSN | 1091-6490 |
EndPage | E3100 |
ExternalDocumentID | PMC4121834 3395285111 25024225 10_1073_pnas_1411679111 111_30_E3091 US201600143379 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute – fundername: NCI NIH HHS grantid: P01CA117969-07 – fundername: NCI NIH HHS grantid: P50CA1270003 – fundername: NCI NIH HHS grantid: R01 CA133557 – fundername: NCI NIH HHS grantid: R01 CA136574 – fundername: NCI NIH HHS grantid: R01CA136574 – fundername: NCI NIH HHS grantid: R01 CA155289 – fundername: NCI NIH HHS grantid: 5R21CA158640-02 – fundername: NCI NIH HHS grantid: R01CA155289-01 – fundername: NIGMS NIH HHS grantid: P50 GM107615 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ H13 KM PQEST X XHC AAYXX ABXSQ ACHIC ADQXQ ADXHL AQVQM CITATION IPSME CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c569t-1675f7b752ef50bd970e9ce69a801b5a4e96a7b64343bb8a75ff3907d26d7a4b3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 17:51:27 EDT 2025 Thu Jul 10 20:09:03 EDT 2025 Fri Jul 11 01:22:11 EDT 2025 Mon Jun 30 08:42:39 EDT 2025 Mon Jul 21 06:05:59 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Tue Jul 01 01:53:11 EDT 2025 Wed Nov 11 00:30:15 EST 2020 Wed Dec 27 19:19:57 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | Sonic hedgehog cancer therapy hedgehog agonist tumor stroma cerulein |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c569t-1675f7b752ef50bd970e9ce69a801b5a4e96a7b64343bb8a75ff3907d26d7a4b3 |
Notes | http://dx.doi.org/10.1073/pnas.1411679111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: J.J.L., R.M.P., Y.B., J.K.W., N.B., and P.A.B. designed research; J.J.L., R.M.P., H.W., D.-C.W., X.S.L., S.H., J.F., P.D.J., K.S.G., S.K., J.M.N., and V.D. performed research; T.K. and J.K.C. contributed new reagents/analytic tools; J.J.L., R.M.P., H.W., S.H., J.F., V.D., N.B., and P.A.B. analyzed data; and J.J.L., R.M.P., N.B., and P.A.B. wrote the paper. 1J.J.L. and R.M.P. contributed equally to this work. 2H.W., D.-C.W., and X.S.L. contributed equally to this work. Reviewers: B.L., University of Massachusetts Medical School; and A.M., University of Texas MD Anderson Cancer Center. Contributed by Philip A. Beachy, June 23, 2014 (sent for review May 27, 2014; reviewed by Brian Lewis and Anirban Maitra) |
OpenAccessLink | https://www.pnas.org/content/pnas/111/30/E3091.full.pdf |
PMID | 25024225 |
PQID | 1551735479 |
PQPubID | 42026 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_1411679111 proquest_journals_1551735479 proquest_miscellaneous_1803094768 pubmed_primary_25024225 proquest_miscellaneous_1550076769 pnas_primary_111_30_E3091 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4121834 crossref_primary_10_1073_pnas_1411679111 fao_agris_US201600143379 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-29 |
PublicationDateYYYYMMDD | 2014-07-29 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 Howlader N (e_1_3_3_1_2) 2013 e_1_3_3_12_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 Whatcott CJ (e_1_3_3_37_2) 2012 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_26_2 doi: 10.1016/S1535-6108(03)00309-X – ident: e_1_3_3_10_2 doi: 10.1016/j.ccr.2005.04.023 – ident: e_1_3_3_4_2 doi: 10.1056/NEJMoa1304369 – ident: e_1_3_3_5_2 doi: 10.1101/gad.12.11.1705 – ident: e_1_3_3_49_2 doi: 10.1016/S0092-8674(01)00369-5 – ident: e_1_3_3_42_2 doi: 10.1016/j.ccr.2014.04.005 – ident: e_1_3_3_19_2 doi: 10.1158/1078-0432.CCR-08-0291 – ident: e_1_3_3_24_2 doi: 10.1200/jco.2012.30.15_suppl.4022 – ident: e_1_3_3_23_2 – ident: e_1_3_3_45_2 doi: 10.1016/j.ccr.2012.01.007 – ident: e_1_3_3_43_2 doi: 10.1053/j.gastro.2010.06.014 – ident: e_1_3_3_36_2 doi: 10.1016/j.bmcl.2009.05.096 – volume-title: Pancreatic Cancer and Tumor Microenvironment year: 2012 ident: e_1_3_3_37_2 – ident: e_1_3_3_44_2 doi: 10.1053/j.gastro.2010.07.045 – ident: e_1_3_3_7_2 doi: 10.1073/pnas.95.22.13036 – ident: e_1_3_3_27_2 doi: 10.1053/j.gastro.2004.12.008 – ident: e_1_3_3_47_2 doi: 10.1038/ng959 – ident: e_1_3_3_16_2 doi: 10.1038/onc.2009.220 – ident: e_1_3_3_13_2 doi: 10.1136/gut.2007.148189 – ident: e_1_3_3_34_2 doi: 10.1007/978-1-62703-287-2_13 – ident: e_1_3_3_14_2 doi: 10.1158/0008-5472.CAN-06-3281 – volume-title: SEER Cancer Statistics Review, 1975-2010 year: 2013 ident: e_1_3_3_1_2 – ident: e_1_3_3_21_2 doi: 10.1593/neo.11088 – ident: e_1_3_3_22_2 doi: 10.1016/j.surg.2012.05.030 – ident: e_1_3_3_46_2 doi: 10.1038/bjc.2012.569 – ident: e_1_3_3_39_2 doi: 10.1097/00006676-198701000-00003 – ident: e_1_3_3_28_2 doi: 10.1016/j.ccr.2012.10.025 – ident: e_1_3_3_51_2 doi: 10.1016/S0092-8674(00)81079-X – ident: e_1_3_3_30_2 doi: 10.1053/j.gastro.2008.04.011 – ident: e_1_3_3_40_2 doi: 10.1097/00006676-199511000-00007 – ident: e_1_3_3_3_2 doi: 10.1056/NEJMoa1011923 – ident: e_1_3_3_8_2 doi: 10.1053/j.gastro.2009.12.005 – ident: e_1_3_3_11_2 doi: 10.1038/nature01972 – ident: e_1_3_3_48_2 doi: 10.1101/gad.943001 – ident: e_1_3_3_2_2 doi: 10.1093/jnci/djq517 – ident: e_1_3_3_12_2 doi: 10.1038/nature07275 – ident: e_1_3_3_18_2 doi: 10.1101/gad.1753809 – ident: e_1_3_3_9_2 doi: 10.1038/nature02009 – ident: e_1_3_3_25_2 doi: 10.1200/jco.2014.32.3_suppl.257 – ident: e_1_3_3_33_2 doi: 10.1242/dev.129.20.4753 – ident: e_1_3_3_41_2 doi: 10.1016/j.ccr.2014.04.021 – ident: e_1_3_3_15_2 doi: 10.1158/1535-7163.MCT-08-0573 – ident: e_1_3_3_38_2 doi: 10.1097/00006676-200410000-00002 – ident: e_1_3_3_50_2 doi: 10.1038/ng747 – ident: e_1_3_3_20_2 doi: 10.1126/science.1171362 – ident: e_1_3_3_29_2 doi: 10.1016/j.ccr.2007.01.012 – ident: e_1_3_3_31_2 doi: 10.1016/S0960-9822(06)00340-X – ident: e_1_3_3_32_2 doi: 10.1101/gad.1158703 – ident: e_1_3_3_6_2 doi: 10.1242/dev.127.22.4905 – ident: e_1_3_3_17_2 doi: 10.1073/pnas.0813203106 – ident: e_1_3_3_35_2 doi: 10.1053/j.gastro.2013.06.011 |
SSID | ssj0009580 |
Score | 2.6093924 |
Snippet | Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical... Preclinical studies have suggested that Hedgehog (Hh) pathway inhibition reduces growth and metastasis of pancreatic ductal adenocarcinoma (PDA), but ensuing... |
SourceID | pubmedcentral proquest pubmed crossref pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E3091 |
SubjectTerms | adenocarcinoma agonists animal models Animals Biological Sciences carcinogenesis Carcinoma, Pancreatic Ductal - drug therapy Carcinoma, Pancreatic Ductal - genetics Carcinoma, Pancreatic Ductal - metabolism Carcinoma, Pancreatic Ductal - pathology clinical trials epithelium fibroblasts Genetic engineering Hedgehog Proteins - antagonists & inhibitors Hedgehog Proteins - genetics Hedgehog Proteins - metabolism Humans hyperplasia ligands Mice Mice, Knockout Molecules Pancreatic cancer pancreatic neoplasms Pancreatic Neoplasms - drug therapy Pancreatic Neoplasms - genetics Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - pathology Pharmacology PNAS Plus Proto-Oncogene Proteins p21(ras) - genetics Proto-Oncogene Proteins p21(ras) - metabolism Rodents Signal Transduction |
Title | Stromal response to Hedgehog signaling restrains pancreatic cancer progression |
URI | http://www.pnas.org/content/111/30/E3091.abstract https://www.ncbi.nlm.nih.gov/pubmed/25024225 https://www.proquest.com/docview/1551735479 https://www.proquest.com/docview/1550076769 https://www.proquest.com/docview/1803094768 https://pubmed.ncbi.nlm.nih.gov/PMC4121834 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELbW7mUv07pfZe0mT9pDp4iOgMHwWFWdokqLKrVR-4ZsYpp0K1QJvPSv351tTBKl07YXFIXDIdzn4-5895mQL0yi21CUfjiNCp-FAuYcJvIFE7GEV3YiNePNj3EymrDzm_imzyrp7pJGHhePW_tK_ker8B3oFbtk_0GzblD4Aj6DfuEIGobjX-n4slnU95qZXxe66l0wRpggm9W3A6zMELrZHLffwJ0glgOY-sZLLLDaq1ALU59luDlW_dQL915bdlUE4y5teNI3oVjLsBz4g4txv6VxV92DVTnnvfFdqIVxVdvlbP5T9InYa5u0HrViftc6uF63pup-7p_ObMeazU8MGSY-bRJDGZsKLomfMLMrqDO61sQadNmlGWNDzwArw63WHcwRbklciSUYeL2AZIdZ0fXDvVY2eHbgfJie6g1C7e7UDnkeQmwRamu-ytScBh0HFI--bfwakkfb69c8mZ1S1MiPC9LbYpXNktsVH-bqFXlpgw96YpC0R56p6jXZ65RIjywH-dc3ZGyhRTto0aamHbSogxZ10KI9tKiBFl2B1lsy-X52dTry7dYbfhEnWePDv41LLnkcqjIO5DTjgcoKlWQCPBoZC6ayRHCZYF-ylKkA6TLKAj4NkykXTEbvyG5VV2qf0ABshBJimCaxZEpGaQpyQyl4ImSZxoFHjrvHmBeWlx7v_Feu6yN4lONDzXsVeOTIXfBgKFmeFt0HveTiFl6Y-eQyRDpFJLSMeOYRTwu7ESAQjoJcg88jh50GczvdYVSILXgUM7z0szsNxhhX2ESl6lbL4NI2T_4kk-KqJoMw3yPvDSjcTXTQ8ghfg4sTQDL49TPVfKZJ4dkQgx324ckxD8iLfnoekt1m0aqP4FA38pOeAL8BQPnI3Q |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stromal+response+to+Hedgehog+signaling+restrains+pancreatic+cancer+progression&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lee%2C+John+J&rft.au=Perera%2C+Rushika+M&rft.au=Wang%2C+Huaijun&rft.au=Wu%2C+Dai-Chen&rft.date=2014-07-29&rft.eissn=1091-6490&rft.volume=111&rft.issue=30&rft.spage=E3091&rft_id=info:doi/10.1073%2Fpnas.1411679111&rft_id=info%3Apmid%2F25024225&rft.externalDocID=25024225 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F30.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F30.cover.gif |