AI‐Enabled Soft Sensing Array for Simultaneous Detection of Muscle Deformation and Mechanomyography for Metaverse Somatosensory Interaction
Motion recognition (MR)‐based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human‐computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non‐intrusive muscl...
Saved in:
Published in | Advanced science Vol. 11; no. 16; pp. e2305025 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.04.2024
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motion recognition (MR)‐based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human‐computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non‐intrusive muscle‐sensing wearable device, that in conjunction with machine learning, enables motion‐control‐based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16‐channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower‐limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle‐sensing‐based somatosensory interaction, using the proposed wearable device, for enabling the real‐time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography‐based methods for achieving accurate human motion capture, which can further broaden the applications of motion‐interactive wearable devices for the coming metaverse age.
A non‐invasive wearable device has been developed, incorporating a soft pressure sensor array that enables simultaneous detection of muscle deformation and mechanomyography. By leveraging machine learning techniques, this device demonstrates its ability to recognize a minimum of ten distinct lower limb motions, showcasing significant potential for future metaverse applications. |
---|---|
AbstractList | Abstract Motion recognition (MR)‐based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human‐computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non‐intrusive muscle‐sensing wearable device, that in conjunction with machine learning, enables motion‐control‐based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16‐channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower‐limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle‐sensing‐based somatosensory interaction, using the proposed wearable device, for enabling the real‐time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography‐based methods for achieving accurate human motion capture, which can further broaden the applications of motion‐interactive wearable devices for the coming metaverse age. Motion recognition (MR)‐based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human‐computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non‐intrusive muscle‐sensing wearable device, that in conjunction with machine learning, enables motion‐control‐based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16‐channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower‐limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle‐sensing‐based somatosensory interaction, using the proposed wearable device, for enabling the real‐time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography‐based methods for achieving accurate human motion capture, which can further broaden the applications of motion‐interactive wearable devices for the coming metaverse age. Motion recognition (MR)‐based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human‐computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non‐intrusive muscle‐sensing wearable device, that in conjunction with machine learning, enables motion‐control‐based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16‐channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower‐limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle‐sensing‐based somatosensory interaction, using the proposed wearable device, for enabling the real‐time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography‐based methods for achieving accurate human motion capture, which can further broaden the applications of motion‐interactive wearable devices for the coming metaverse age. A non‐invasive wearable device has been developed, incorporating a soft pressure sensor array that enables simultaneous detection of muscle deformation and mechanomyography. By leveraging machine learning techniques, this device demonstrates its ability to recognize a minimum of ten distinct lower limb motions, showcasing significant potential for future metaverse applications. Motion recognition (MR)-based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human-computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non-intrusive muscle-sensing wearable device, that in conjunction with machine learning, enables motion-control-based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16-channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower-limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle-sensing-based somatosensory interaction, using the proposed wearable device, for enabling the real-time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography-based methods for achieving accurate human motion capture, which can further broaden the applications of motion-interactive wearable devices for the coming metaverse age.Motion recognition (MR)-based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human-computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non-intrusive muscle-sensing wearable device, that in conjunction with machine learning, enables motion-control-based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16-channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower-limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle-sensing-based somatosensory interaction, using the proposed wearable device, for enabling the real-time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography-based methods for achieving accurate human motion capture, which can further broaden the applications of motion-interactive wearable devices for the coming metaverse age. Motion recognition (MR)-based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human-computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non-intrusive muscle-sensing wearable device, that in conjunction with machine learning, enables motion-control-based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16-channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower-limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle-sensing-based somatosensory interaction, using the proposed wearable device, for enabling the real-time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography-based methods for achieving accurate human motion capture, which can further broaden the applications of motion-interactive wearable devices for the coming metaverse age. |
Author | Yu, Xinge Suo, Jiao Yao, Kuanming Wang, Jianping Wang, Jianfei Yang, Xiaomeng Liu, Na Chen, Meng Wang, Zuobin Liu, Yifan Li, Wen Jung Wang, Keer Roy, Vellaisamy A. L. Daoud, Walid A. |
AuthorAffiliation | 4 Dept. of Biomedical Engineering City University of Hong Kong Hong Kong 999077 China 2 Dept. of Electrical and Computer Engineering Michigan State University MI 48840 USA 7 Dept. of Computer Science City University of Hong Kong Hong Kong 999077 China 3 The Int. Research Centre for Nano Handling and Manufacturing of China Changchun University of Science and Technology Changchun 130022 China 5 James Watt School of Engineering University of Glasgow Scotland G12 8QQ UK 1 Dept. of Mechanical Engineering City University of Hong Kong Hong Kong 999077 China 6 Sch. of Mechatronic Engineering and Automation Shanghai University Shanghai 200444 China |
AuthorAffiliation_xml | – name: 5 James Watt School of Engineering University of Glasgow Scotland G12 8QQ UK – name: 7 Dept. of Computer Science City University of Hong Kong Hong Kong 999077 China – name: 6 Sch. of Mechatronic Engineering and Automation Shanghai University Shanghai 200444 China – name: 1 Dept. of Mechanical Engineering City University of Hong Kong Hong Kong 999077 China – name: 3 The Int. Research Centre for Nano Handling and Manufacturing of China Changchun University of Science and Technology Changchun 130022 China – name: 2 Dept. of Electrical and Computer Engineering Michigan State University MI 48840 USA – name: 4 Dept. of Biomedical Engineering City University of Hong Kong Hong Kong 999077 China |
Author_xml | – sequence: 1 givenname: Jiao orcidid: 0000-0001-9765-1608 surname: Suo fullname: Suo, Jiao organization: City University of Hong Kong – sequence: 2 givenname: Yifan surname: Liu fullname: Liu, Yifan organization: Michigan State University – sequence: 3 givenname: Jianfei surname: Wang fullname: Wang, Jianfei organization: Changchun University of Science and Technology – sequence: 4 givenname: Meng surname: Chen fullname: Chen, Meng email: menchen@cityu.edu.hk organization: City University of Hong Kong – sequence: 5 givenname: Keer surname: Wang fullname: Wang, Keer organization: City University of Hong Kong – sequence: 6 givenname: Xiaomeng surname: Yang fullname: Yang, Xiaomeng organization: City University of Hong Kong – sequence: 7 givenname: Kuanming surname: Yao fullname: Yao, Kuanming organization: City University of Hong Kong – sequence: 8 givenname: Vellaisamy A. L. surname: Roy fullname: Roy, Vellaisamy A. L. organization: University of Glasgow – sequence: 9 givenname: Xinge surname: Yu fullname: Yu, Xinge email: xingeyu@cityu.edu.hk organization: City University of Hong Kong – sequence: 10 givenname: Walid A. surname: Daoud fullname: Daoud, Walid A. organization: City University of Hong Kong – sequence: 11 givenname: Na surname: Liu fullname: Liu, Na organization: Shanghai University – sequence: 12 givenname: Jianping surname: Wang fullname: Wang, Jianping organization: City University of Hong Kong – sequence: 13 givenname: Zuobin surname: Wang fullname: Wang, Zuobin email: wangz@cust.edu.cn organization: Changchun University of Science and Technology – sequence: 14 givenname: Wen Jung orcidid: 0000-0001-9616-6213 surname: Li fullname: Li, Wen Jung email: wenjli@cityu.edu.hk organization: City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38376001$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAUhiNUREvpliWKxKabGXxL7KzQqC0wUkcsBthaJ87JTEaJPdjJoNnxAkg8I0-C59KqrYRY2fr9n-9cfF4mJ9ZZTJLXlIwpIewdVJswZoRxkhGWPUvOGC3UiCshTh7cT5OLEFaEEJpxKah6kZxyxWUehbPk12T65-fvGwtli1U6d3WfztGGxi7SifewTWvn03nTDW0PFt0Q0mvs0fSNs6mr09kQTItRi7YO9irYKp2hWYJ13dYtPKyXB8oMe9igDxjTRK8LMY_z23Rqe_SwR75KntfQBrw4nufJ1w83X64-jW4_f5xeTW5HJstjV4KQigEvBYjYeyFlKQRjeZ5zzjJBUEJuaoWcSqyqvCSCYUEqQkxNeRQFP0-mB27lYKXXvunAb7WDRu8F5xcafN_E1jSVJUgA4FQxUddFmZVFlTPMpClR8Tyy3h9Y66HssDJoew_tI-jjF9ss9cJtNKVEEJ4VkXB5JHj3fcDQ664JBtv2MHHNCqZUxgnfFf72iXXlBm_jrDQnIg6AsUxG15uHJd3Xcvft0SAOBuNdCB5rbZp-_32xwqbVlOjdgundgun7BYth4ydhd-R_Bhzz_Gha3P7HrSfX3-aSKMX_AsEw5Iw |
CitedBy_id | crossref_primary_10_1016_j_compscitech_2025_111103 crossref_primary_10_1016_j_nanoen_2025_110724 crossref_primary_10_1016_j_nanoen_2025_110821 crossref_primary_10_1109_JSEN_2024_3492004 crossref_primary_10_1002_admt_202400857 crossref_primary_10_1021_acsapm_4c02903 crossref_primary_10_1002_adfm_202416163 crossref_primary_10_1007_s10462_024_10881_5 crossref_primary_10_1016_j_cej_2024_156512 crossref_primary_10_1039_D4TA01960A crossref_primary_10_3390_inventions10010005 crossref_primary_10_1021_acsapm_4c02791 crossref_primary_10_1016_j_nanoen_2024_109427 crossref_primary_10_1002_adma_202406778 crossref_primary_10_1002_adfm_202419809 crossref_primary_10_1016_j_cej_2024_152705 crossref_primary_10_1002_advs_202410284 crossref_primary_10_1109_JSEN_2024_3523343 |
Cites_doi | 10.1109/JSEN.2022.3146446 10.1007/978-3-642-12654-3_19 10.1021/acsnano.2c12592 10.3390/s120202255 10.1152/jappl.1990.68.2.508 10.1038/s41467-019-10465-w 10.1007/s40846-018-0434-6 10.1021/acsami.6b05025 10.1038/s41598-019-41860-4 10.1002/advs.202203565 10.1016/j.jneumeth.2011.09.026 10.1016/B978-0-12-803137-7.00003-3 10.1016/j.kjms.2011.08.004 10.1016/j.cmpb.2020.105486 10.1007/s12555-020-0934-3 10.1038/s41598-019-38748-8 10.3389/fphys.2020.00143 10.1007/s40279-018-0878-4 10.3390/s21248380 10.1016/j.gaitpost.2013.05.009 10.1002/adfm.201910717 10.1109/TIM.2011.2164279 10.1038/nature14002 10.1109/TMRB.2022.3166543 10.1038/s41928-020-00510-8 10.1016/j.cviu.2006.08.002 10.1038/s41928-020-0428-6 10.1002/advs.202103694 10.1016/j.bspc.2021.103198 10.1002/adma.202200793 10.3390/electronics10202473 10.3390/s131012852 10.1038/s41528-020-00092-7 10.1016/j.irbm.2021.05.001 10.1152/jappl.1991.71.4.1422 10.1002/advs.202100230 10.1109/IMCEC46724.2019.8984187 10.1109/TBME.1983.325209 10.1007/s11749-016-0481-7 10.3390/s21186147 10.1016/j.sna.2021.113025 10.1007/978-3-642-14715-9_5 10.1109/JSEN.2022.3167686 10.1177/2055668320916116 10.1002/aisy.202100228 10.1109/TCSVT.2003.821972 10.1016/j.jelekin.2004.08.007 10.1109/CBMS.2014.43 10.1088/0967-3334/30/5/002 10.3390/nanoenergyadv1010005 10.1002/aisy.202200193 10.1016/j.jelekin.2006.11.010 10.1186/1475-925X-4-67 10.1038/s41928-023-00968-2 10.1016/j.jelekin.2012.04.009 10.1098/rsif.2015.0365 10.1007/s004210050451 10.1109/IBCAST51254.2021.9393014 10.1109/ICET51757.2021.9451086 10.3390/electronics9040556 10.1155/2020/5684812 10.1590/2446-4740.03615 10.1038/s41467-020-19424-2 10.1109/ICIEA.2019.8834270 10.1002/adhm.201600232 10.1007/s00421-003-0819-1 10.1002/inf2.12122 10.1038/s41528-023-00246-3 10.3390/s91108508 10.1016/0022-510X(92)90093-Z 10.1109/ACIE51979.2021.9381089 10.1038/s41467-022-32745-8 10.1126/sciadv.abe5683 10.1109/ICSMC.2011.6083730 10.1007/BF00868071 10.1109/ACCESS.2021.3140175 10.5405/jmbe.757 10.1002/adma.201404794 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202305025 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_17ba7aaa31824ff9b5b9d62e57cbe836 PMC11040359 38376001 10_1002_advs_202305025 ADVS7088 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: General Research Fund Project funderid: 11210819 – fundername: Theme‐based Research Scheme Project funderid: T42‐717/20‐R – fundername: Collaborative Research Fund Project funderid: C7174‐20G – fundername: National Natural Science Foundation of China funderid: 62073208 – fundername: Hong Kong Research Grants Council – fundername: Theme-based Research Scheme Project grantid: T42-717/20-R – fundername: General Research Fund Project grantid: 11210819 – fundername: National Natural Science Foundation of China grantid: 62073208 – fundername: Collaborative Research Fund Project grantid: C7174-20G – fundername: Theme‐based Research Scheme Project grantid: T42‐717/20‐R – fundername: Collaborative Research Fund Project grantid: C7174‐20G |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5698-400d2a3b4a4230977b4422666332540e7a6cf8e317edd6b042e90d00cf1331743 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:31:25 EDT 2025 Thu Aug 21 18:34:51 EDT 2025 Fri Jul 11 12:11:24 EDT 2025 Wed Aug 13 08:32:09 EDT 2025 Thu Apr 03 06:53:26 EDT 2025 Tue Jul 01 04:00:04 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Wed Jan 22 17:19:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | wearable devices natural human–machine interaction non‐intrusive muscle activities sensing mechanomyography human motion recognition |
Language | English |
License | Attribution 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5698-400d2a3b4a4230977b4422666332540e7a6cf8e317edd6b042e90d00cf1331743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9765-1608 0000-0001-9616-6213 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202305025 |
PMID | 38376001 |
PQID | 3046632257 |
PQPubID | 4365299 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_17ba7aaa31824ff9b5b9d62e57cbe836 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11040359 proquest_miscellaneous_2928853034 proquest_journals_3046632257 pubmed_primary_38376001 crossref_citationtrail_10_1002_advs_202305025 crossref_primary_10_1002_advs_202305025 wiley_primary_10_1002_advs_202305025_ADVS7088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2021; 21 2022; 71 2023; 6 2023; 7 2019; 10 2011; 60 1993; 21 2022; 20 2020; 11 2022; 22 2012; 203 2012; 12 2018; 48 2020; 7 2020; 4 2020; 3 2020; 2 2013; 13 2017; 32 2020; 9 2022; 34 2011; 65 2012; 28 1983; BME‐30 2012; 22 2010; 30 2003; 89 2021; 8 2015; 12 2021; 7 2019; 9 2021; 43 2021; 4 2014; 516 2023; 17 2011 2010 2008; 18 2019; 39 2006 1992; 109 2021; 1 2016; 5 2021; 10 2009; 30 2015; 27 2020; 2020 1990; 68 2013; 38 2022; 4 2020; 30 2021 1991; 63 2004; 14 2022; 9 2020; 193 2022; 13 2019 1991; 71 2005; 4 2009; 9 2018 2017 2022; 10 2021; 331 2014 2005; 15 2006; 104 2016; 8 1998; 78 2016; 25 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_80_1 e_1_2_10_82_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Orizio C. (e_1_2_10_53_1) 1993; 21 e_1_2_10_71_1 e_1_2_10_1_1 Dillon M. (e_1_2_10_49_1) 2011; 65 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 2 start-page: 1131 year: 2020 publication-title: InfoMat – volume: 9 start-page: 5569 year: 2019 publication-title: Sci. Rep. – volume: 22 start-page: 908 year: 2012 publication-title: J. Electromyogr. Kinesiol. – volume: 60 start-page: 3259 year: 2011 publication-title: IEEE Trans. Instrum. Meas. – volume: 9 start-page: 2391 year: 2019 publication-title: Sci. Rep. – volume: 3 start-page: 571 year: 2020 publication-title: Nat. Electron. – start-page: 21 year: 2019 – volume: 12 start-page: 2255 year: 2012 publication-title: Sensors – volume: 11 start-page: 143 year: 2020 publication-title: Front. Physiol. – volume: 14 start-page: 149 year: 2004 publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 13 start-page: 5224 year: 2022 publication-title: Nat. Commun. – volume: 7 start-page: 20 year: 2023 publication-title: npj Flex. Electron. – volume: 109 start-page: 56 year: 1992 publication-title: J. Neurol. Sci. – start-page: 1 year: 2021 – volume: 71 start-page: 1422 year: 1991 publication-title: J. Appl. Physiol. – year: 2018 – volume: 4 start-page: 54 year: 2021 publication-title: Nat. Electron. – volume: 104 start-page: 90 year: 2006 publication-title: Comput. Vis. Image Underst. – volume: 34 year: 2022 publication-title: Adv. Mater. – start-page: 1 year: 2010 – volume: 21 start-page: 6147 year: 2021 publication-title: Sensors – volume: 15 start-page: 190 year: 2005 publication-title: J. Electromyogr. Kinesiol. – volume: 25 start-page: 197 year: 2016 publication-title: Test – volume: 21 start-page: 8380 year: 2021 publication-title: Sensors – volume: 7 year: 2020 publication-title: J. Rehabil. Assist. Technol. Eng. – volume: 9 start-page: 8508 year: 2009 publication-title: Sensors – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 64 year: 2023 publication-title: Nat. Electron. – volume: 193 year: 2020 publication-title: Comput. Meth. Programs Biomed. – volume: 2020 year: 2020 publication-title: Math. Probl. Eng. – volume: 39 start-page: 532 year: 2019 publication-title: J. Med. Biol. Eng. – volume: 22 start-page: 7005 year: 2022 publication-title: IEEE Sens. J. – volume: 38 start-page: 993 year: 2013 publication-title: Gait Posture – volume: 10 start-page: 2473 year: 2021 publication-title: Electronics – volume: 89 start-page: 514 year: 2003 publication-title: Eur. J. Appl. Physiol. – start-page: 1234 year: 2021 – volume: 12 year: 2015 publication-title: J. R. Soc. Interface – start-page: 512 year: 2021 end-page: 517 – volume: 65 start-page: 10 year: 2011 publication-title: Clin. Kinesiol. – volume: 71 year: 2022 publication-title: Biomed. Signal Process. Control – year: 2019 – volume: 4 start-page: 29 year: 2020 publication-title: npj Flex. Electron. – volume: 1 start-page: 81 year: 2021 publication-title: Nanoenergy Adv. – volume: 27 start-page: 1316 year: 2015 publication-title: Adv. Mater. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 32 start-page: 307 year: 2017 publication-title: J. Biomed. Eng. Res. – volume: 331 year: 2021 publication-title: Sens. Actuator A Phys. – start-page: 27 year: 2021 – volume: 516 start-page: 222 year: 2014 publication-title: Nature – volume: 20 start-page: 1018 year: 2022 publication-title: Int. J. Control. Autom. Syst. – volume: 9 start-page: 556 year: 2020 publication-title: Electronics – volume: 63 start-page: 412 year: 1991 publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – volume: 30 start-page: 373 year: 2010 publication-title: J. Med. Biol. Eng. – start-page: 31 year: 2019 end-page: 36 – volume: 13 year: 2013 publication-title: Sensors – start-page: 319 year: 2010 – volume: 28 start-page: S13 year: 2012 publication-title: Kaohsiung J. Med. Sci. – volume: 78 start-page: 494 year: 1998 publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – volume: 22 year: 2022 publication-title: IEEE Sens. J. – volume: 18 start-page: 509 year: 2008 publication-title: J. Electromyogr. Kinesiol. – volume: 30 start-page: 441 year: 2009 publication-title: Physiol. Meas. – volume: BME‐30 start-page: 130 year: 1983 publication-title: IEEE Trans. Biomed. Eng. – volume: 9 year: 2022 publication-title: Adv. Sci. – start-page: 421 year: 2014 – volume: 11 start-page: 5615 year: 2020 publication-title: Nat. Commun. – volume: 10 start-page: 2468 year: 2019 publication-title: Nat. Commun. – volume: 17 start-page: 4985 year: 2023 publication-title: ACS Nano – volume: 43 start-page: 414 year: 2021 publication-title: IRBM – start-page: 741 year: 2011 – volume: 4 year: 2022 publication-title: Adv. Intell. Syst. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – start-page: 697 year: 2014 – start-page: 38 year: 2010 – year: 2006 – volume: 68 start-page: 508 year: 1990 publication-title: J. Appl. Physiol. – year: 2017 publication-title: Hum. Modell. Bio‐Inspired Rob. – volume: 21 start-page: 201 year: 1993 publication-title: J. Crit. Rev. Biomed. Eng. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 48 start-page: 1221 year: 2018 publication-title: Sports Med. – volume: 4 start-page: 67 year: 2005 publication-title: Biomed. Eng. Online – volume: 10 start-page: 4209 year: 2022 publication-title: IEEE access – volume: 5 start-page: 2481 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 4 start-page: 472 year: 2022 publication-title: IEEE Trans. Med. Robotics Bionics – volume: 203 start-page: 157 year: 2012 publication-title: J. Neurosci. Methods – ident: e_1_2_10_44_1 – ident: e_1_2_10_31_1 doi: 10.1109/JSEN.2022.3146446 – volume: 65 start-page: 10 year: 2011 ident: e_1_2_10_49_1 publication-title: Clin. Kinesiol. – ident: e_1_2_10_74_1 doi: 10.1007/978-3-642-12654-3_19 – ident: e_1_2_10_5_1 doi: 10.1021/acsnano.2c12592 – ident: e_1_2_10_72_1 doi: 10.3390/s120202255 – ident: e_1_2_10_63_1 doi: 10.1152/jappl.1990.68.2.508 – ident: e_1_2_10_78_1 doi: 10.1038/s41467-019-10465-w – ident: e_1_2_10_14_1 doi: 10.1007/s40846-018-0434-6 – ident: e_1_2_10_38_1 doi: 10.1021/acsami.6b05025 – ident: e_1_2_10_57_1 doi: 10.1038/s41598-019-41860-4 – ident: e_1_2_10_66_1 – ident: e_1_2_10_61_1 doi: 10.1002/advs.202203565 – ident: e_1_2_10_47_1 doi: 10.1016/j.jneumeth.2011.09.026 – ident: e_1_2_10_70_1 doi: 10.1016/B978-0-12-803137-7.00003-3 – ident: e_1_2_10_22_1 doi: 10.1016/j.kjms.2011.08.004 – ident: e_1_2_10_35_1 doi: 10.1016/j.cmpb.2020.105486 – ident: e_1_2_10_30_1 doi: 10.1007/s12555-020-0934-3 – ident: e_1_2_10_71_1 doi: 10.1038/s41598-019-38748-8 – ident: e_1_2_10_58_1 doi: 10.3389/fphys.2020.00143 – ident: e_1_2_10_10_1 doi: 10.1007/s40279-018-0878-4 – ident: e_1_2_10_65_1 doi: 10.3390/s21248380 – ident: e_1_2_10_69_1 doi: 10.1016/j.gaitpost.2013.05.009 – ident: e_1_2_10_80_1 doi: 10.1002/adfm.201910717 – ident: e_1_2_10_42_1 doi: 10.1109/TIM.2011.2164279 – ident: e_1_2_10_79_1 doi: 10.1038/nature14002 – ident: e_1_2_10_29_1 doi: 10.1109/TMRB.2022.3166543 – ident: e_1_2_10_6_1 doi: 10.1038/s41928-020-00510-8 – ident: e_1_2_10_8_1 doi: 10.1016/j.cviu.2006.08.002 – ident: e_1_2_10_18_1 doi: 10.1038/s41928-020-0428-6 – ident: e_1_2_10_16_1 doi: 10.1002/advs.202103694 – ident: e_1_2_10_32_1 doi: 10.1016/j.bspc.2021.103198 – ident: e_1_2_10_20_1 doi: 10.1002/adma.202200793 – ident: e_1_2_10_36_1 doi: 10.3390/electronics10202473 – ident: e_1_2_10_62_1 doi: 10.3390/s131012852 – ident: e_1_2_10_17_1 doi: 10.1038/s41528-020-00092-7 – ident: e_1_2_10_64_1 doi: 10.1016/j.irbm.2021.05.001 – ident: e_1_2_10_43_1 doi: 10.1152/jappl.1991.71.4.1422 – ident: e_1_2_10_59_1 – ident: e_1_2_10_2_1 doi: 10.1002/advs.202100230 – ident: e_1_2_10_26_1 doi: 10.1109/IMCEC46724.2019.8984187 – ident: e_1_2_10_40_1 doi: 10.1109/TBME.1983.325209 – ident: e_1_2_10_67_1 doi: 10.1007/s11749-016-0481-7 – ident: e_1_2_10_27_1 doi: 10.3390/s21186147 – ident: e_1_2_10_34_1 doi: 10.1016/j.sna.2021.113025 – ident: e_1_2_10_9_1 doi: 10.1007/978-3-642-14715-9_5 – ident: e_1_2_10_37_1 doi: 10.1109/JSEN.2022.3167686 – ident: e_1_2_10_51_1 doi: 10.1177/2055668320916116 – ident: e_1_2_10_1_1 doi: 10.1002/aisy.202100228 – ident: e_1_2_10_33_1 – ident: e_1_2_10_68_1 doi: 10.1109/TCSVT.2003.821972 – ident: e_1_2_10_46_1 doi: 10.1016/j.jelekin.2004.08.007 – ident: e_1_2_10_84_1 doi: 10.1109/CBMS.2014.43 – ident: e_1_2_10_50_1 doi: 10.1088/0967-3334/30/5/002 – ident: e_1_2_10_3_1 doi: 10.3390/nanoenergyadv1010005 – ident: e_1_2_10_21_1 doi: 10.1002/aisy.202200193 – ident: e_1_2_10_52_1 doi: 10.1016/j.jelekin.2006.11.010 – ident: e_1_2_10_86_1 doi: 10.1186/1475-925X-4-67 – ident: e_1_2_10_19_1 doi: 10.1038/s41928-023-00968-2 – ident: e_1_2_10_41_1 doi: 10.1016/j.jelekin.2012.04.009 – ident: e_1_2_10_81_1 doi: 10.1098/rsif.2015.0365 – ident: e_1_2_10_54_1 doi: 10.1007/s004210050451 – volume: 21 start-page: 201 year: 1993 ident: e_1_2_10_53_1 publication-title: J. Crit. Rev. Biomed. Eng. – ident: e_1_2_10_85_1 doi: 10.1109/IBCAST51254.2021.9393014 – ident: e_1_2_10_23_1 doi: 10.1109/ICET51757.2021.9451086 – ident: e_1_2_10_24_1 – ident: e_1_2_10_28_1 doi: 10.3390/electronics9040556 – ident: e_1_2_10_25_1 doi: 10.1155/2020/5684812 – ident: e_1_2_10_82_1 doi: 10.1590/2446-4740.03615 – ident: e_1_2_10_12_1 doi: 10.1038/s41467-020-19424-2 – ident: e_1_2_10_13_1 doi: 10.1109/ICIEA.2019.8834270 – ident: e_1_2_10_77_1 doi: 10.1002/adhm.201600232 – ident: e_1_2_10_83_1 doi: 10.1007/s00421-003-0819-1 – ident: e_1_2_10_15_1 doi: 10.1002/inf2.12122 – ident: e_1_2_10_39_1 doi: 10.1038/s41528-023-00246-3 – ident: e_1_2_10_73_1 – ident: e_1_2_10_11_1 doi: 10.3390/s91108508 – ident: e_1_2_10_55_1 doi: 10.1016/0022-510X(92)90093-Z – ident: e_1_2_10_60_1 doi: 10.1109/ACIE51979.2021.9381089 – ident: e_1_2_10_4_1 doi: 10.1038/s41467-022-32745-8 – ident: e_1_2_10_75_1 doi: 10.1126/sciadv.abe5683 – ident: e_1_2_10_45_1 doi: 10.1109/ICSMC.2011.6083730 – ident: e_1_2_10_56_1 doi: 10.1007/BF00868071 – ident: e_1_2_10_7_1 doi: 10.1109/ACCESS.2021.3140175 – ident: e_1_2_10_48_1 doi: 10.5405/jmbe.757 – ident: e_1_2_10_76_1 doi: 10.1002/adma.201404794 |
SSID | ssj0001537418 |
Score | 2.451136 |
Snippet | Motion recognition (MR)‐based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for... Motion recognition (MR)-based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for... Abstract Motion recognition (MR)‐based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2305025 |
SubjectTerms | Adult Artificial Intelligence Deformation Electrodes Electromyography Electromyography - instrumentation Electromyography - methods Equipment Design human motion recognition Humans Male Measurement techniques mechanomyography Muscle contraction Muscle function Muscle, Skeletal - physiology Myography - instrumentation Myography - methods natural human–machine interaction non‐intrusive muscle activities sensing Pressure distribution Sensors Skin Vibration Wearable computers wearable devices Wearable Electronic Devices |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hnrggym-gICMhAYeoTmLn51igVUFaLkul3iw7tqESTdDuFmlvvAASz8iTMGN7o10B6oVr7MSWZ8bzjTPzGeC5L50W6KZyLVqPAYr3ufa-yG0le8sro_vArj_7UJ-eiffn8nzrqi_KCYv0wHHhDovG6EZrjbpXCu87I01n69LJpjeurQLZNvq8rWAq1gdXRMuyYWnk5aG234idGxG35HQv9pYXCmT9f0OYfyZKbgPY4IFObsOtBB3ZUZzyPtxwwx3YT8a5ZC8Tg_Sru_Dj6N2v7z-PQ1mUZXPcadmcEtWHT_j2Qq8ZIlU2v6BkQj04jP3ZW7cKOVkDGz2bXS1xAHw2VTYyPVg2c1QlPF6uE8t1-MrMrTRldjgcBvuOSxxnXKxZOGmMRRP34Ozk-OOb0zzdu5D3su5alBi3pa6M0Ii1OAJEI6jeFrFJheEkd42ue986RB7O2tqg2buOW857jwEvRTj3YW8YB_cQWGWkLWpsLEwnCtu3FK6GfQRDci9lBvlGDqpPpOR0N8YXFemUS0VyU5PcMngx9f8a6Tj-2fM1iXXqRTTa4QEql0rKpa5TrgwONkqhkm0vFf1LrmkfbDJ4NjWjVdKvlig1VXZli0CIVyKDB1GHppnQmQDBzAzaHe3amepuy3DxOTB_I1YTxLmIyxYU8Zo1UAht5g36kUf_YzEew038ckpbOoC91eLKPUFEtjJPg_H9BpAwNSE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Zb9QwEB7B9oUXRDkDBRkJCXiImss5nlALWxWkrRBLpb5ZPkslSMpmF2l_A3-aGcebdsX1GjuJkzn8jT3-BuCFy6wscJqKZVE7DFCci6VzaWxyrk2SK6k9u_7spDw-LT6c8bOw4NaHtMqNT_SO2nSa1sj3aQevJO2r3lx-j6lqFO2uhhIaN2EHXXBdT2DncHry8dPVKgvPiZ5lw9aYZPvS_CCWbkTePKH62NdmI0_a_yek-XvC5HUg62eioztwO0BIdjDIfBdu2PYu7AYj7dmrwCT9-h78PHgfT_3hKMPm6G_ZnNLV23O8dyHXDPEqm19QSqFsbbfq2Tu79JlZLescm616fDxeG883MtkaNrN0Vrj7tg5c1_4pM7uUlN9h8TXYt-vxPd1izfx643B04j6cHk0_vz2OQ_WFWPOyqVFuiclkrgqJiCtBmKgKOnWLQsgxqExsJUvtaov4wxpTKjR-2yQmSbTDsJfinAcwabvWPgKWK27SEhtT1RSp0TUFrd6bYGDuOI8g3khB6EBNThUyvoqBVDkTJDUxSi2Cl2P_y4GU4689D0moYy8i0_YXusW5CLYp0krJSkqJA8oK5xrFVWPKzPJKK1vnZQR7G5UQwcJ7caWPETwfm9E2acNlkJrIGtRJjiChiODhoEHjSGhlgMBmBPWWbm0Ndbulvfji-b8RsRXEvIi_zavhf_6BQIAzr3A2efzv73gCt_CekJa0B5PlYmWfIuJaqmfBrH4BHW0rWA priority: 102 providerName: ProQuest |
Title | AI‐Enabled Soft Sensing Array for Simultaneous Detection of Muscle Deformation and Mechanomyography for Metaverse Somatosensory Interaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202305025 https://www.ncbi.nlm.nih.gov/pubmed/38376001 https://www.proquest.com/docview/3046632257 https://www.proquest.com/docview/2928853034 https://pubmed.ncbi.nlm.nih.gov/PMC11040359 https://doaj.org/article/17ba7aaa31824ff9b5b9d62e57cbe836 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagvXBBLc-UsjISEnCImoedx3FLtyqIVBWhUm-WHdulEk2qzS7S3voHKvEb-SXMONm0ESDEKZLtxJbHY38zmflMyGsbGcngmPIlyywYKNb60trQ1zGvdBArWTl2_eI4OTplH8_42Z0s_o4fYnC4oWa4_RoVXKp275Y0VOrvSLcNEJrDuX2fbGJ-LQb1Rezk1svCY6RnwRvmwLr244yxNXNjEO2NPzE6mRyB_59Q5-_Bk3dBrTuVDrfIwx5O0mkn_21yz9SPyHavsC1927NKv3tMbqYffl7_mLlUKU1L2H1picHr9Tm8PZcrCuiVlhcYYChr0yxbemAWLk6rpo2lxbKFDqBsyHaksta0MJg53FyueuZr95XCLCRGexjoBto2LfTTzFfUeR-7RIon5PRw9uX9kd_fxeBXPIGZA1XXkYwVk4C_AgCNimEOLuCVGEzMwKQyqWxmAI0YrRMFW4HJAx0ElQUjGK2ep2SjbmrznNBYcR0mUBmqnIW6ytCEdXsLmOmWc4_4azmIqicqx_syvomOYjkSKDcxyM0jb4b2Vx1Fx19b7qNYh1ZIre0Kmvm56DVVhKmSqZQSBhQxa3PFVa6TyPC0UiaLE4_srheF6PW9Ffh_OcG9MfXIq6EaNBV_v3RSE1EeZQCOgph55Fm3hoaRoJ8AoadHstHqGg11XFNffHVs4IDfGPIwwrS5hfiPORAAd8oUzpad_2z_gjyAwj5qaZdsLOZL8xIA2UJNnM5NyOb0oPhUwnN_dnzyeeLcG78AuPY0YA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXRHkGChgJBByieh3ndUCopVvt0u4Ksa3Um-vEdqkESdnsgvY38F_4jcw4j3bF69Rr_ExmMv5sz3xDyHPLjRKwTPlKJBY2KNb6ytq-r4Mw1yzIVO7Y9ceTaHgk3h-Hx2vkZxsLg26VrU10hlqXOZ6Rb-ENXoTaF789_-pj1ii8XW1TaNRqsW-W32HLVr0Z7YJ8X3C-Nzh8N_SbrAJ-HkZpAvNhmqsgEwqQBAP4kwmMJoXOA9gsMROrKLeJgXXVaB1loNQmZZqx3MJ2DvE79HuNrIsgYrxH1ncGkw8fL051wgDpYFp2SMa3lP6GrOAwVMgwH_el1c8lCfgTsv3dQfMycHYr394tcrOBrHS71rENsmaK22SjMQoVfdUwV7--Q35sj_yBC8bSdAr2nU7RPb44hbYztaSAj-n0DF0YVWHKRUV3zdx5ghW0tHS8qKB7eNbFU1JVaDo2GJtcflk23Nqul7GZK_QnMTAM1C0rGKecLak736xDNe6SoyuRyz3SK8rCPCA0yELdj6Cwn6Wir_MEN8nOesWC2zD0iN9KQeYNFTpm5PgsaxJnLlFqspOaR1529c9rEpC_1txBoXa1kLzbPShnp7KxBbIfZypWSsGEuLA2zcIs1RE3YZxnJgkij2y2KiEbi1LJC_33yLOuGGwBXvDUUpM85QnALxYIj9yvNaibCZ5EILj1SLKiWytTXS0pzj45vnFAiAKZHuGzOTX8zzeQAKimMaxeD__9Hk_J9eHh-EAejCb7j8gNaN-4RG2S3ny2MI8B7c2zJ80vRsnJVf_VvwCczmUP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcEOUZKGAkEHCINuu8Dwi17K5ayq4qlkq9GTu2SyVIymYXtL-Bf8SvY8Zx0q54nXqNHdvJjMff2DOfCXlqmBYRLFO-iDIDDooxvjBm4KswLlQQSlFYdv3JNNk7it4ex8cb5GebC4Nhla1NtIZaVQXukffxBC9B7Uv7xoVFHA7Hr8---niDFJ60ttdpNCpyoFffwX2rX-0PQdbPGBuPPrzZ890NA34RJ3kGYwsUE6GMBKCKAKCQjDCzFDoKwXEKdCqSwmQa1litVCJBwXUeqCAoDLh2iOWh3StkM0WvqEc2d0fTw_fnOzxxiNQwLVNkwPpCfUOGcOgqDvBu7gsrob0w4E8o9_dgzYsg2q6C4xvkuoOvdKfRty2yocubZMsZiJq-cCzWL2-RHzv7_sgmZik6A1tPZxgqX57Au3OxooCV6ewUwxlFqatlTYd6YaPCSloZOlnW0Dw863IrqSgVnWjMU66-rBzPtm1lohcCY0s0dAN1qxr6qeYravc6m7SN2-ToUuRyh_TKqtT3CA1lrAYJFA5kHg1UkaHDbC1ZGjETxx7xWynwwtGi4-0cn3lD6Mw4So13UvPI867-WUMI8teauyjUrhYSedsH1fyEO7vAB6kUqRACBsQiY3IZy1wlTMdpIXUWJh7ZblWCO-tS8_O54JEnXTHYBTzsaaTGWc4ygGJBGHnkbqNB3UhwVwKBrkeyNd1aG-p6SXn6yXKPA1qMkPURfptVw__8Aw7gapbCSnb_39_xmFyF2czf7U8PHpBr8LqLjtomvcV8qR8C8FvIR26GUfLxsif1L3JoaUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI%E2%80%90Enabled+Soft+Sensing+Array+for+Simultaneous+Detection+of+Muscle+Deformation+and+Mechanomyography+for+Metaverse+Somatosensory+Interaction&rft.jtitle=Advanced+science&rft.au=Suo%2C+Jiao&rft.au=Liu%2C+Yifan&rft.au=Wang%2C+Jianfei&rft.au=Chen%2C+Meng&rft.date=2024-04-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=11&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202305025&rft.externalDBID=10.1002%252Fadvs.202305025&rft.externalDocID=ADVS7088 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |