AI‐Enabled Soft Sensing Array for Simultaneous Detection of Muscle Deformation and Mechanomyography for Metaverse Somatosensory Interaction

Motion recognition (MR)‐based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human‐computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non‐intrusive muscl...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 11; no. 16; pp. e2305025 - n/a
Main Authors Suo, Jiao, Liu, Yifan, Wang, Jianfei, Chen, Meng, Wang, Keer, Yang, Xiaomeng, Yao, Kuanming, Roy, Vellaisamy A. L., Yu, Xinge, Daoud, Walid A., Liu, Na, Wang, Jianping, Wang, Zuobin, Li, Wen Jung
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.04.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motion recognition (MR)‐based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human‐computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non‐intrusive muscle‐sensing wearable device, that in conjunction with machine learning, enables motion‐control‐based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16‐channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower‐limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle‐sensing‐based somatosensory interaction, using the proposed wearable device, for enabling the real‐time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography‐based methods for achieving accurate human motion capture, which can further broaden the applications of motion‐interactive wearable devices for the coming metaverse age. A non‐invasive wearable device has been developed, incorporating a soft pressure sensor array that enables simultaneous detection of muscle deformation and mechanomyography. By leveraging machine learning techniques, this device demonstrates its ability to recognize a minimum of ten distinct lower limb motions, showcasing significant potential for future metaverse applications.
AbstractList Abstract Motion recognition (MR)‐based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human‐computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non‐intrusive muscle‐sensing wearable device, that in conjunction with machine learning, enables motion‐control‐based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16‐channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower‐limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle‐sensing‐based somatosensory interaction, using the proposed wearable device, for enabling the real‐time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography‐based methods for achieving accurate human motion capture, which can further broaden the applications of motion‐interactive wearable devices for the coming metaverse age.
Motion recognition (MR)‐based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human‐computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non‐intrusive muscle‐sensing wearable device, that in conjunction with machine learning, enables motion‐control‐based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16‐channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower‐limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle‐sensing‐based somatosensory interaction, using the proposed wearable device, for enabling the real‐time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography‐based methods for achieving accurate human motion capture, which can further broaden the applications of motion‐interactive wearable devices for the coming metaverse age.
Motion recognition (MR)‐based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human‐computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non‐intrusive muscle‐sensing wearable device, that in conjunction with machine learning, enables motion‐control‐based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16‐channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower‐limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle‐sensing‐based somatosensory interaction, using the proposed wearable device, for enabling the real‐time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography‐based methods for achieving accurate human motion capture, which can further broaden the applications of motion‐interactive wearable devices for the coming metaverse age. A non‐invasive wearable device has been developed, incorporating a soft pressure sensor array that enables simultaneous detection of muscle deformation and mechanomyography. By leveraging machine learning techniques, this device demonstrates its ability to recognize a minimum of ten distinct lower limb motions, showcasing significant potential for future metaverse applications.
Motion recognition (MR)-based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human-computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non-intrusive muscle-sensing wearable device, that in conjunction with machine learning, enables motion-control-based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16-channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower-limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle-sensing-based somatosensory interaction, using the proposed wearable device, for enabling the real-time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography-based methods for achieving accurate human motion capture, which can further broaden the applications of motion-interactive wearable devices for the coming metaverse age.Motion recognition (MR)-based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human-computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non-intrusive muscle-sensing wearable device, that in conjunction with machine learning, enables motion-control-based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16-channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower-limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle-sensing-based somatosensory interaction, using the proposed wearable device, for enabling the real-time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography-based methods for achieving accurate human motion capture, which can further broaden the applications of motion-interactive wearable devices for the coming metaverse age.
Motion recognition (MR)-based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human-computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non-intrusive muscle-sensing wearable device, that in conjunction with machine learning, enables motion-control-based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16-channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower-limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle-sensing-based somatosensory interaction, using the proposed wearable device, for enabling the real-time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography-based methods for achieving accurate human motion capture, which can further broaden the applications of motion-interactive wearable devices for the coming metaverse age.
Author Yu, Xinge
Suo, Jiao
Yao, Kuanming
Wang, Jianping
Wang, Jianfei
Yang, Xiaomeng
Liu, Na
Chen, Meng
Wang, Zuobin
Liu, Yifan
Li, Wen Jung
Wang, Keer
Roy, Vellaisamy A. L.
Daoud, Walid A.
AuthorAffiliation 4 Dept. of Biomedical Engineering City University of Hong Kong Hong Kong 999077 China
2 Dept. of Electrical and Computer Engineering Michigan State University MI 48840 USA
7 Dept. of Computer Science City University of Hong Kong Hong Kong 999077 China
3 The Int. Research Centre for Nano Handling and Manufacturing of China Changchun University of Science and Technology Changchun 130022 China
5 James Watt School of Engineering University of Glasgow Scotland G12 8QQ UK
1 Dept. of Mechanical Engineering City University of Hong Kong Hong Kong 999077 China
6 Sch. of Mechatronic Engineering and Automation Shanghai University Shanghai 200444 China
AuthorAffiliation_xml – name: 5 James Watt School of Engineering University of Glasgow Scotland G12 8QQ UK
– name: 7 Dept. of Computer Science City University of Hong Kong Hong Kong 999077 China
– name: 6 Sch. of Mechatronic Engineering and Automation Shanghai University Shanghai 200444 China
– name: 1 Dept. of Mechanical Engineering City University of Hong Kong Hong Kong 999077 China
– name: 3 The Int. Research Centre for Nano Handling and Manufacturing of China Changchun University of Science and Technology Changchun 130022 China
– name: 2 Dept. of Electrical and Computer Engineering Michigan State University MI 48840 USA
– name: 4 Dept. of Biomedical Engineering City University of Hong Kong Hong Kong 999077 China
Author_xml – sequence: 1
  givenname: Jiao
  orcidid: 0000-0001-9765-1608
  surname: Suo
  fullname: Suo, Jiao
  organization: City University of Hong Kong
– sequence: 2
  givenname: Yifan
  surname: Liu
  fullname: Liu, Yifan
  organization: Michigan State University
– sequence: 3
  givenname: Jianfei
  surname: Wang
  fullname: Wang, Jianfei
  organization: Changchun University of Science and Technology
– sequence: 4
  givenname: Meng
  surname: Chen
  fullname: Chen, Meng
  email: menchen@cityu.edu.hk
  organization: City University of Hong Kong
– sequence: 5
  givenname: Keer
  surname: Wang
  fullname: Wang, Keer
  organization: City University of Hong Kong
– sequence: 6
  givenname: Xiaomeng
  surname: Yang
  fullname: Yang, Xiaomeng
  organization: City University of Hong Kong
– sequence: 7
  givenname: Kuanming
  surname: Yao
  fullname: Yao, Kuanming
  organization: City University of Hong Kong
– sequence: 8
  givenname: Vellaisamy A. L.
  surname: Roy
  fullname: Roy, Vellaisamy A. L.
  organization: University of Glasgow
– sequence: 9
  givenname: Xinge
  surname: Yu
  fullname: Yu, Xinge
  email: xingeyu@cityu.edu.hk
  organization: City University of Hong Kong
– sequence: 10
  givenname: Walid A.
  surname: Daoud
  fullname: Daoud, Walid A.
  organization: City University of Hong Kong
– sequence: 11
  givenname: Na
  surname: Liu
  fullname: Liu, Na
  organization: Shanghai University
– sequence: 12
  givenname: Jianping
  surname: Wang
  fullname: Wang, Jianping
  organization: City University of Hong Kong
– sequence: 13
  givenname: Zuobin
  surname: Wang
  fullname: Wang, Zuobin
  email: wangz@cust.edu.cn
  organization: Changchun University of Science and Technology
– sequence: 14
  givenname: Wen Jung
  orcidid: 0000-0001-9616-6213
  surname: Li
  fullname: Li, Wen Jung
  email: wenjli@cityu.edu.hk
  organization: City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38376001$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhiNUREvpliWKxKabGXxL7KzQqC0wUkcsBthaJ87JTEaJPdjJoNnxAkg8I0-C59KqrYRY2fr9n-9cfF4mJ9ZZTJLXlIwpIewdVJswZoRxkhGWPUvOGC3UiCshTh7cT5OLEFaEEJpxKah6kZxyxWUehbPk12T65-fvGwtli1U6d3WfztGGxi7SifewTWvn03nTDW0PFt0Q0mvs0fSNs6mr09kQTItRi7YO9irYKp2hWYJ13dYtPKyXB8oMe9igDxjTRK8LMY_z23Rqe_SwR75KntfQBrw4nufJ1w83X64-jW4_f5xeTW5HJstjV4KQigEvBYjYeyFlKQRjeZ5zzjJBUEJuaoWcSqyqvCSCYUEqQkxNeRQFP0-mB27lYKXXvunAb7WDRu8F5xcafN_E1jSVJUgA4FQxUddFmZVFlTPMpClR8Tyy3h9Y66HssDJoew_tI-jjF9ss9cJtNKVEEJ4VkXB5JHj3fcDQ664JBtv2MHHNCqZUxgnfFf72iXXlBm_jrDQnIg6AsUxG15uHJd3Xcvft0SAOBuNdCB5rbZp-_32xwqbVlOjdgundgun7BYth4ydhd-R_Bhzz_Gha3P7HrSfX3-aSKMX_AsEw5Iw
CitedBy_id crossref_primary_10_1016_j_compscitech_2025_111103
crossref_primary_10_1016_j_nanoen_2025_110724
crossref_primary_10_1016_j_nanoen_2025_110821
crossref_primary_10_1109_JSEN_2024_3492004
crossref_primary_10_1002_admt_202400857
crossref_primary_10_1021_acsapm_4c02903
crossref_primary_10_1002_adfm_202416163
crossref_primary_10_1007_s10462_024_10881_5
crossref_primary_10_1016_j_cej_2024_156512
crossref_primary_10_1039_D4TA01960A
crossref_primary_10_3390_inventions10010005
crossref_primary_10_1021_acsapm_4c02791
crossref_primary_10_1016_j_nanoen_2024_109427
crossref_primary_10_1002_adma_202406778
crossref_primary_10_1002_adfm_202419809
crossref_primary_10_1016_j_cej_2024_152705
crossref_primary_10_1002_advs_202410284
crossref_primary_10_1109_JSEN_2024_3523343
Cites_doi 10.1109/JSEN.2022.3146446
10.1007/978-3-642-12654-3_19
10.1021/acsnano.2c12592
10.3390/s120202255
10.1152/jappl.1990.68.2.508
10.1038/s41467-019-10465-w
10.1007/s40846-018-0434-6
10.1021/acsami.6b05025
10.1038/s41598-019-41860-4
10.1002/advs.202203565
10.1016/j.jneumeth.2011.09.026
10.1016/B978-0-12-803137-7.00003-3
10.1016/j.kjms.2011.08.004
10.1016/j.cmpb.2020.105486
10.1007/s12555-020-0934-3
10.1038/s41598-019-38748-8
10.3389/fphys.2020.00143
10.1007/s40279-018-0878-4
10.3390/s21248380
10.1016/j.gaitpost.2013.05.009
10.1002/adfm.201910717
10.1109/TIM.2011.2164279
10.1038/nature14002
10.1109/TMRB.2022.3166543
10.1038/s41928-020-00510-8
10.1016/j.cviu.2006.08.002
10.1038/s41928-020-0428-6
10.1002/advs.202103694
10.1016/j.bspc.2021.103198
10.1002/adma.202200793
10.3390/electronics10202473
10.3390/s131012852
10.1038/s41528-020-00092-7
10.1016/j.irbm.2021.05.001
10.1152/jappl.1991.71.4.1422
10.1002/advs.202100230
10.1109/IMCEC46724.2019.8984187
10.1109/TBME.1983.325209
10.1007/s11749-016-0481-7
10.3390/s21186147
10.1016/j.sna.2021.113025
10.1007/978-3-642-14715-9_5
10.1109/JSEN.2022.3167686
10.1177/2055668320916116
10.1002/aisy.202100228
10.1109/TCSVT.2003.821972
10.1016/j.jelekin.2004.08.007
10.1109/CBMS.2014.43
10.1088/0967-3334/30/5/002
10.3390/nanoenergyadv1010005
10.1002/aisy.202200193
10.1016/j.jelekin.2006.11.010
10.1186/1475-925X-4-67
10.1038/s41928-023-00968-2
10.1016/j.jelekin.2012.04.009
10.1098/rsif.2015.0365
10.1007/s004210050451
10.1109/IBCAST51254.2021.9393014
10.1109/ICET51757.2021.9451086
10.3390/electronics9040556
10.1155/2020/5684812
10.1590/2446-4740.03615
10.1038/s41467-020-19424-2
10.1109/ICIEA.2019.8834270
10.1002/adhm.201600232
10.1007/s00421-003-0819-1
10.1002/inf2.12122
10.1038/s41528-023-00246-3
10.3390/s91108508
10.1016/0022-510X(92)90093-Z
10.1109/ACIE51979.2021.9381089
10.1038/s41467-022-32745-8
10.1126/sciadv.abe5683
10.1109/ICSMC.2011.6083730
10.1007/BF00868071
10.1109/ACCESS.2021.3140175
10.5405/jmbe.757
10.1002/adma.201404794
ContentType Journal Article
Copyright 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
2023 The Authors. Advanced Science published by Wiley‐VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202305025
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic

Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_17ba7aaa31824ff9b5b9d62e57cbe836
PMC11040359
38376001
10_1002_advs_202305025
ADVS7088
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: General Research Fund Project
  funderid: 11210819
– fundername: Theme‐based Research Scheme Project
  funderid: T42‐717/20‐R
– fundername: Collaborative Research Fund Project
  funderid: C7174‐20G
– fundername: National Natural Science Foundation of China
  funderid: 62073208
– fundername: Hong Kong Research Grants Council
– fundername: Theme-based Research Scheme Project
  grantid: T42-717/20-R
– fundername: General Research Fund Project
  grantid: 11210819
– fundername: National Natural Science Foundation of China
  grantid: 62073208
– fundername: Collaborative Research Fund Project
  grantid: C7174-20G
– fundername: Theme‐based Research Scheme Project
  grantid: T42‐717/20‐R
– fundername: Collaborative Research Fund Project
  grantid: C7174‐20G
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5698-400d2a3b4a4230977b4422666332540e7a6cf8e317edd6b042e90d00cf1331743
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Wed Aug 27 01:31:25 EDT 2025
Thu Aug 21 18:34:51 EDT 2025
Fri Jul 11 12:11:24 EDT 2025
Wed Aug 13 08:32:09 EDT 2025
Thu Apr 03 06:53:26 EDT 2025
Tue Jul 01 04:00:04 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Wed Jan 22 17:19:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords wearable devices
natural human–machine interaction
non‐intrusive muscle activities sensing
mechanomyography
human motion recognition
Language English
License Attribution
2023 The Authors. Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5698-400d2a3b4a4230977b4422666332540e7a6cf8e317edd6b042e90d00cf1331743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9765-1608
0000-0001-9616-6213
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202305025
PMID 38376001
PQID 3046632257
PQPubID 4365299
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_17ba7aaa31824ff9b5b9d62e57cbe836
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11040359
proquest_miscellaneous_2928853034
proquest_journals_3046632257
pubmed_primary_38376001
crossref_citationtrail_10_1002_advs_202305025
crossref_primary_10_1002_advs_202305025
wiley_primary_10_1002_advs_202305025_ADVS7088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2021; 21
2022; 71
2023; 6
2023; 7
2019; 10
2011; 60
1993; 21
2022; 20
2020; 11
2022; 22
2012; 203
2012; 12
2018; 48
2020; 7
2020; 4
2020; 3
2020; 2
2013; 13
2017; 32
2020; 9
2022; 34
2011; 65
2012; 28
1983; BME‐30
2012; 22
2010; 30
2003; 89
2021; 8
2015; 12
2021; 7
2019; 9
2021; 43
2021; 4
2014; 516
2023; 17
2011
2010
2008; 18
2019; 39
2006
1992; 109
2021; 1
2016; 5
2021; 10
2009; 30
2015; 27
2020; 2020
1990; 68
2013; 38
2022; 4
2020; 30
2021
1991; 63
2004; 14
2022; 9
2020; 193
2022; 13
2019
1991; 71
2005; 4
2009; 9
2018
2017
2022; 10
2021; 331
2014
2005; 15
2006; 104
2016; 8
1998; 78
2016; 25
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Orizio C. (e_1_2_10_53_1) 1993; 21
e_1_2_10_71_1
e_1_2_10_1_1
Dillon M. (e_1_2_10_49_1) 2011; 65
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 2
  start-page: 1131
  year: 2020
  publication-title: InfoMat
– volume: 9
  start-page: 5569
  year: 2019
  publication-title: Sci. Rep.
– volume: 22
  start-page: 908
  year: 2012
  publication-title: J. Electromyogr. Kinesiol.
– volume: 60
  start-page: 3259
  year: 2011
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 9
  start-page: 2391
  year: 2019
  publication-title: Sci. Rep.
– volume: 3
  start-page: 571
  year: 2020
  publication-title: Nat. Electron.
– start-page: 21
  year: 2019
– volume: 12
  start-page: 2255
  year: 2012
  publication-title: Sensors
– volume: 11
  start-page: 143
  year: 2020
  publication-title: Front. Physiol.
– volume: 14
  start-page: 149
  year: 2004
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 13
  start-page: 5224
  year: 2022
  publication-title: Nat. Commun.
– volume: 7
  start-page: 20
  year: 2023
  publication-title: npj Flex. Electron.
– volume: 109
  start-page: 56
  year: 1992
  publication-title: J. Neurol. Sci.
– start-page: 1
  year: 2021
– volume: 71
  start-page: 1422
  year: 1991
  publication-title: J. Appl. Physiol.
– year: 2018
– volume: 4
  start-page: 54
  year: 2021
  publication-title: Nat. Electron.
– volume: 104
  start-page: 90
  year: 2006
  publication-title: Comput. Vis. Image Underst.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– start-page: 1
  year: 2010
– volume: 21
  start-page: 6147
  year: 2021
  publication-title: Sensors
– volume: 15
  start-page: 190
  year: 2005
  publication-title: J. Electromyogr. Kinesiol.
– volume: 25
  start-page: 197
  year: 2016
  publication-title: Test
– volume: 21
  start-page: 8380
  year: 2021
  publication-title: Sensors
– volume: 7
  year: 2020
  publication-title: J. Rehabil. Assist. Technol. Eng.
– volume: 9
  start-page: 8508
  year: 2009
  publication-title: Sensors
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 64
  year: 2023
  publication-title: Nat. Electron.
– volume: 193
  year: 2020
  publication-title: Comput. Meth. Programs Biomed.
– volume: 2020
  year: 2020
  publication-title: Math. Probl. Eng.
– volume: 39
  start-page: 532
  year: 2019
  publication-title: J. Med. Biol. Eng.
– volume: 22
  start-page: 7005
  year: 2022
  publication-title: IEEE Sens. J.
– volume: 38
  start-page: 993
  year: 2013
  publication-title: Gait Posture
– volume: 10
  start-page: 2473
  year: 2021
  publication-title: Electronics
– volume: 89
  start-page: 514
  year: 2003
  publication-title: Eur. J. Appl. Physiol.
– start-page: 1234
  year: 2021
– volume: 12
  year: 2015
  publication-title: J. R. Soc. Interface
– start-page: 512
  year: 2021
  end-page: 517
– volume: 65
  start-page: 10
  year: 2011
  publication-title: Clin. Kinesiol.
– volume: 71
  year: 2022
  publication-title: Biomed. Signal Process. Control
– year: 2019
– volume: 4
  start-page: 29
  year: 2020
  publication-title: npj Flex. Electron.
– volume: 1
  start-page: 81
  year: 2021
  publication-title: Nanoenergy Adv.
– volume: 27
  start-page: 1316
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 32
  start-page: 307
  year: 2017
  publication-title: J. Biomed. Eng. Res.
– volume: 331
  year: 2021
  publication-title: Sens. Actuator A Phys.
– start-page: 27
  year: 2021
– volume: 516
  start-page: 222
  year: 2014
  publication-title: Nature
– volume: 20
  start-page: 1018
  year: 2022
  publication-title: Int. J. Control. Autom. Syst.
– volume: 9
  start-page: 556
  year: 2020
  publication-title: Electronics
– volume: 63
  start-page: 412
  year: 1991
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
– volume: 30
  start-page: 373
  year: 2010
  publication-title: J. Med. Biol. Eng.
– start-page: 31
  year: 2019
  end-page: 36
– volume: 13
  year: 2013
  publication-title: Sensors
– start-page: 319
  year: 2010
– volume: 28
  start-page: S13
  year: 2012
  publication-title: Kaohsiung J. Med. Sci.
– volume: 78
  start-page: 494
  year: 1998
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
– volume: 22
  year: 2022
  publication-title: IEEE Sens. J.
– volume: 18
  start-page: 509
  year: 2008
  publication-title: J. Electromyogr. Kinesiol.
– volume: 30
  start-page: 441
  year: 2009
  publication-title: Physiol. Meas.
– volume: BME‐30
  start-page: 130
  year: 1983
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– start-page: 421
  year: 2014
– volume: 11
  start-page: 5615
  year: 2020
  publication-title: Nat. Commun.
– volume: 10
  start-page: 2468
  year: 2019
  publication-title: Nat. Commun.
– volume: 17
  start-page: 4985
  year: 2023
  publication-title: ACS Nano
– volume: 43
  start-page: 414
  year: 2021
  publication-title: IRBM
– start-page: 741
  year: 2011
– volume: 4
  year: 2022
  publication-title: Adv. Intell. Syst.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 697
  year: 2014
– start-page: 38
  year: 2010
– year: 2006
– volume: 68
  start-page: 508
  year: 1990
  publication-title: J. Appl. Physiol.
– year: 2017
  publication-title: Hum. Modell. Bio‐Inspired Rob.
– volume: 21
  start-page: 201
  year: 1993
  publication-title: J. Crit. Rev. Biomed. Eng.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 48
  start-page: 1221
  year: 2018
  publication-title: Sports Med.
– volume: 4
  start-page: 67
  year: 2005
  publication-title: Biomed. Eng. Online
– volume: 10
  start-page: 4209
  year: 2022
  publication-title: IEEE access
– volume: 5
  start-page: 2481
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 4
  start-page: 472
  year: 2022
  publication-title: IEEE Trans. Med. Robotics Bionics
– volume: 203
  start-page: 157
  year: 2012
  publication-title: J. Neurosci. Methods
– ident: e_1_2_10_44_1
– ident: e_1_2_10_31_1
  doi: 10.1109/JSEN.2022.3146446
– volume: 65
  start-page: 10
  year: 2011
  ident: e_1_2_10_49_1
  publication-title: Clin. Kinesiol.
– ident: e_1_2_10_74_1
  doi: 10.1007/978-3-642-12654-3_19
– ident: e_1_2_10_5_1
  doi: 10.1021/acsnano.2c12592
– ident: e_1_2_10_72_1
  doi: 10.3390/s120202255
– ident: e_1_2_10_63_1
  doi: 10.1152/jappl.1990.68.2.508
– ident: e_1_2_10_78_1
  doi: 10.1038/s41467-019-10465-w
– ident: e_1_2_10_14_1
  doi: 10.1007/s40846-018-0434-6
– ident: e_1_2_10_38_1
  doi: 10.1021/acsami.6b05025
– ident: e_1_2_10_57_1
  doi: 10.1038/s41598-019-41860-4
– ident: e_1_2_10_66_1
– ident: e_1_2_10_61_1
  doi: 10.1002/advs.202203565
– ident: e_1_2_10_47_1
  doi: 10.1016/j.jneumeth.2011.09.026
– ident: e_1_2_10_70_1
  doi: 10.1016/B978-0-12-803137-7.00003-3
– ident: e_1_2_10_22_1
  doi: 10.1016/j.kjms.2011.08.004
– ident: e_1_2_10_35_1
  doi: 10.1016/j.cmpb.2020.105486
– ident: e_1_2_10_30_1
  doi: 10.1007/s12555-020-0934-3
– ident: e_1_2_10_71_1
  doi: 10.1038/s41598-019-38748-8
– ident: e_1_2_10_58_1
  doi: 10.3389/fphys.2020.00143
– ident: e_1_2_10_10_1
  doi: 10.1007/s40279-018-0878-4
– ident: e_1_2_10_65_1
  doi: 10.3390/s21248380
– ident: e_1_2_10_69_1
  doi: 10.1016/j.gaitpost.2013.05.009
– ident: e_1_2_10_80_1
  doi: 10.1002/adfm.201910717
– ident: e_1_2_10_42_1
  doi: 10.1109/TIM.2011.2164279
– ident: e_1_2_10_79_1
  doi: 10.1038/nature14002
– ident: e_1_2_10_29_1
  doi: 10.1109/TMRB.2022.3166543
– ident: e_1_2_10_6_1
  doi: 10.1038/s41928-020-00510-8
– ident: e_1_2_10_8_1
  doi: 10.1016/j.cviu.2006.08.002
– ident: e_1_2_10_18_1
  doi: 10.1038/s41928-020-0428-6
– ident: e_1_2_10_16_1
  doi: 10.1002/advs.202103694
– ident: e_1_2_10_32_1
  doi: 10.1016/j.bspc.2021.103198
– ident: e_1_2_10_20_1
  doi: 10.1002/adma.202200793
– ident: e_1_2_10_36_1
  doi: 10.3390/electronics10202473
– ident: e_1_2_10_62_1
  doi: 10.3390/s131012852
– ident: e_1_2_10_17_1
  doi: 10.1038/s41528-020-00092-7
– ident: e_1_2_10_64_1
  doi: 10.1016/j.irbm.2021.05.001
– ident: e_1_2_10_43_1
  doi: 10.1152/jappl.1991.71.4.1422
– ident: e_1_2_10_59_1
– ident: e_1_2_10_2_1
  doi: 10.1002/advs.202100230
– ident: e_1_2_10_26_1
  doi: 10.1109/IMCEC46724.2019.8984187
– ident: e_1_2_10_40_1
  doi: 10.1109/TBME.1983.325209
– ident: e_1_2_10_67_1
  doi: 10.1007/s11749-016-0481-7
– ident: e_1_2_10_27_1
  doi: 10.3390/s21186147
– ident: e_1_2_10_34_1
  doi: 10.1016/j.sna.2021.113025
– ident: e_1_2_10_9_1
  doi: 10.1007/978-3-642-14715-9_5
– ident: e_1_2_10_37_1
  doi: 10.1109/JSEN.2022.3167686
– ident: e_1_2_10_51_1
  doi: 10.1177/2055668320916116
– ident: e_1_2_10_1_1
  doi: 10.1002/aisy.202100228
– ident: e_1_2_10_33_1
– ident: e_1_2_10_68_1
  doi: 10.1109/TCSVT.2003.821972
– ident: e_1_2_10_46_1
  doi: 10.1016/j.jelekin.2004.08.007
– ident: e_1_2_10_84_1
  doi: 10.1109/CBMS.2014.43
– ident: e_1_2_10_50_1
  doi: 10.1088/0967-3334/30/5/002
– ident: e_1_2_10_3_1
  doi: 10.3390/nanoenergyadv1010005
– ident: e_1_2_10_21_1
  doi: 10.1002/aisy.202200193
– ident: e_1_2_10_52_1
  doi: 10.1016/j.jelekin.2006.11.010
– ident: e_1_2_10_86_1
  doi: 10.1186/1475-925X-4-67
– ident: e_1_2_10_19_1
  doi: 10.1038/s41928-023-00968-2
– ident: e_1_2_10_41_1
  doi: 10.1016/j.jelekin.2012.04.009
– ident: e_1_2_10_81_1
  doi: 10.1098/rsif.2015.0365
– ident: e_1_2_10_54_1
  doi: 10.1007/s004210050451
– volume: 21
  start-page: 201
  year: 1993
  ident: e_1_2_10_53_1
  publication-title: J. Crit. Rev. Biomed. Eng.
– ident: e_1_2_10_85_1
  doi: 10.1109/IBCAST51254.2021.9393014
– ident: e_1_2_10_23_1
  doi: 10.1109/ICET51757.2021.9451086
– ident: e_1_2_10_24_1
– ident: e_1_2_10_28_1
  doi: 10.3390/electronics9040556
– ident: e_1_2_10_25_1
  doi: 10.1155/2020/5684812
– ident: e_1_2_10_82_1
  doi: 10.1590/2446-4740.03615
– ident: e_1_2_10_12_1
  doi: 10.1038/s41467-020-19424-2
– ident: e_1_2_10_13_1
  doi: 10.1109/ICIEA.2019.8834270
– ident: e_1_2_10_77_1
  doi: 10.1002/adhm.201600232
– ident: e_1_2_10_83_1
  doi: 10.1007/s00421-003-0819-1
– ident: e_1_2_10_15_1
  doi: 10.1002/inf2.12122
– ident: e_1_2_10_39_1
  doi: 10.1038/s41528-023-00246-3
– ident: e_1_2_10_73_1
– ident: e_1_2_10_11_1
  doi: 10.3390/s91108508
– ident: e_1_2_10_55_1
  doi: 10.1016/0022-510X(92)90093-Z
– ident: e_1_2_10_60_1
  doi: 10.1109/ACIE51979.2021.9381089
– ident: e_1_2_10_4_1
  doi: 10.1038/s41467-022-32745-8
– ident: e_1_2_10_75_1
  doi: 10.1126/sciadv.abe5683
– ident: e_1_2_10_45_1
  doi: 10.1109/ICSMC.2011.6083730
– ident: e_1_2_10_56_1
  doi: 10.1007/BF00868071
– ident: e_1_2_10_7_1
  doi: 10.1109/ACCESS.2021.3140175
– ident: e_1_2_10_48_1
  doi: 10.5405/jmbe.757
– ident: e_1_2_10_76_1
  doi: 10.1002/adma.201404794
SSID ssj0001537418
Score 2.451136
Snippet Motion recognition (MR)‐based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for...
Motion recognition (MR)-based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for...
Abstract Motion recognition (MR)‐based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2305025
SubjectTerms Adult
Artificial Intelligence
Deformation
Electrodes
Electromyography
Electromyography - instrumentation
Electromyography - methods
Equipment Design
human motion recognition
Humans
Male
Measurement techniques
mechanomyography
Muscle contraction
Muscle function
Muscle, Skeletal - physiology
Myography - instrumentation
Myography - methods
natural human–machine interaction
non‐intrusive muscle activities sensing
Pressure distribution
Sensors
Skin
Vibration
Wearable computers
wearable devices
Wearable Electronic Devices
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hnrggym-gICMhAYeoTmLn51igVUFaLkul3iw7tqESTdDuFmlvvAASz8iTMGN7o10B6oVr7MSWZ8bzjTPzGeC5L50W6KZyLVqPAYr3ufa-yG0le8sro_vArj_7UJ-eiffn8nzrqi_KCYv0wHHhDovG6EZrjbpXCu87I01n69LJpjeurQLZNvq8rWAq1gdXRMuyYWnk5aG234idGxG35HQv9pYXCmT9f0OYfyZKbgPY4IFObsOtBB3ZUZzyPtxwwx3YT8a5ZC8Tg_Sru_Dj6N2v7z-PQ1mUZXPcadmcEtWHT_j2Qq8ZIlU2v6BkQj04jP3ZW7cKOVkDGz2bXS1xAHw2VTYyPVg2c1QlPF6uE8t1-MrMrTRldjgcBvuOSxxnXKxZOGmMRRP34Ozk-OOb0zzdu5D3su5alBi3pa6M0Ii1OAJEI6jeFrFJheEkd42ue986RB7O2tqg2buOW857jwEvRTj3YW8YB_cQWGWkLWpsLEwnCtu3FK6GfQRDci9lBvlGDqpPpOR0N8YXFemUS0VyU5PcMngx9f8a6Tj-2fM1iXXqRTTa4QEql0rKpa5TrgwONkqhkm0vFf1LrmkfbDJ4NjWjVdKvlig1VXZli0CIVyKDB1GHppnQmQDBzAzaHe3amepuy3DxOTB_I1YTxLmIyxYU8Zo1UAht5g36kUf_YzEew038ckpbOoC91eLKPUFEtjJPg_H9BpAwNSE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Zb9QwEB7B9oUXRDkDBRkJCXiImss5nlALWxWkrRBLpb5ZPkslSMpmF2l_A3-aGcebdsX1GjuJkzn8jT3-BuCFy6wscJqKZVE7DFCci6VzaWxyrk2SK6k9u_7spDw-LT6c8bOw4NaHtMqNT_SO2nSa1sj3aQevJO2r3lx-j6lqFO2uhhIaN2EHXXBdT2DncHry8dPVKgvPiZ5lw9aYZPvS_CCWbkTePKH62NdmI0_a_yek-XvC5HUg62eioztwO0BIdjDIfBdu2PYu7AYj7dmrwCT9-h78PHgfT_3hKMPm6G_ZnNLV23O8dyHXDPEqm19QSqFsbbfq2Tu79JlZLescm616fDxeG883MtkaNrN0Vrj7tg5c1_4pM7uUlN9h8TXYt-vxPd1izfx643B04j6cHk0_vz2OQ_WFWPOyqVFuiclkrgqJiCtBmKgKOnWLQsgxqExsJUvtaov4wxpTKjR-2yQmSbTDsJfinAcwabvWPgKWK27SEhtT1RSp0TUFrd6bYGDuOI8g3khB6EBNThUyvoqBVDkTJDUxSi2Cl2P_y4GU4689D0moYy8i0_YXusW5CLYp0krJSkqJA8oK5xrFVWPKzPJKK1vnZQR7G5UQwcJ7caWPETwfm9E2acNlkJrIGtRJjiChiODhoEHjSGhlgMBmBPWWbm0Ndbulvfji-b8RsRXEvIi_zavhf_6BQIAzr3A2efzv73gCt_CekJa0B5PlYmWfIuJaqmfBrH4BHW0rWA
  priority: 102
  providerName: ProQuest
Title AI‐Enabled Soft Sensing Array for Simultaneous Detection of Muscle Deformation and Mechanomyography for Metaverse Somatosensory Interaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202305025
https://www.ncbi.nlm.nih.gov/pubmed/38376001
https://www.proquest.com/docview/3046632257
https://www.proquest.com/docview/2928853034
https://pubmed.ncbi.nlm.nih.gov/PMC11040359
https://doaj.org/article/17ba7aaa31824ff9b5b9d62e57cbe836
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagvXBBLc-UsjISEnCImoedx3FLtyqIVBWhUm-WHdulEk2qzS7S3voHKvEb-SXMONm0ESDEKZLtxJbHY38zmflMyGsbGcngmPIlyywYKNb60trQ1zGvdBArWTl2_eI4OTplH8_42Z0s_o4fYnC4oWa4_RoVXKp275Y0VOrvSLcNEJrDuX2fbGJ-LQb1Rezk1svCY6RnwRvmwLr244yxNXNjEO2NPzE6mRyB_59Q5-_Bk3dBrTuVDrfIwx5O0mkn_21yz9SPyHavsC1927NKv3tMbqYffl7_mLlUKU1L2H1picHr9Tm8PZcrCuiVlhcYYChr0yxbemAWLk6rpo2lxbKFDqBsyHaksta0MJg53FyueuZr95XCLCRGexjoBto2LfTTzFfUeR-7RIon5PRw9uX9kd_fxeBXPIGZA1XXkYwVk4C_AgCNimEOLuCVGEzMwKQyqWxmAI0YrRMFW4HJAx0ElQUjGK2ep2SjbmrznNBYcR0mUBmqnIW6ytCEdXsLmOmWc4_4azmIqicqx_syvomOYjkSKDcxyM0jb4b2Vx1Fx19b7qNYh1ZIre0Kmvm56DVVhKmSqZQSBhQxa3PFVa6TyPC0UiaLE4_srheF6PW9Ffh_OcG9MfXIq6EaNBV_v3RSE1EeZQCOgph55Fm3hoaRoJ8AoadHstHqGg11XFNffHVs4IDfGPIwwrS5hfiPORAAd8oUzpad_2z_gjyAwj5qaZdsLOZL8xIA2UJNnM5NyOb0oPhUwnN_dnzyeeLcG78AuPY0YA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXRHkGChgJBByieh3ndUCopVvt0u4Ksa3Um-vEdqkESdnsgvY38F_4jcw4j3bF69Rr_ExmMv5sz3xDyHPLjRKwTPlKJBY2KNb6ytq-r4Mw1yzIVO7Y9ceTaHgk3h-Hx2vkZxsLg26VrU10hlqXOZ6Rb-ENXoTaF789_-pj1ii8XW1TaNRqsW-W32HLVr0Z7YJ8X3C-Nzh8N_SbrAJ-HkZpAvNhmqsgEwqQBAP4kwmMJoXOA9gsMROrKLeJgXXVaB1loNQmZZqx3MJ2DvE79HuNrIsgYrxH1ncGkw8fL051wgDpYFp2SMa3lP6GrOAwVMgwH_el1c8lCfgTsv3dQfMycHYr394tcrOBrHS71rENsmaK22SjMQoVfdUwV7--Q35sj_yBC8bSdAr2nU7RPb44hbYztaSAj-n0DF0YVWHKRUV3zdx5ghW0tHS8qKB7eNbFU1JVaDo2GJtcflk23Nqul7GZK_QnMTAM1C0rGKecLak736xDNe6SoyuRyz3SK8rCPCA0yELdj6Cwn6Wir_MEN8nOesWC2zD0iN9KQeYNFTpm5PgsaxJnLlFqspOaR1529c9rEpC_1txBoXa1kLzbPShnp7KxBbIfZypWSsGEuLA2zcIs1RE3YZxnJgkij2y2KiEbi1LJC_33yLOuGGwBXvDUUpM85QnALxYIj9yvNaibCZ5EILj1SLKiWytTXS0pzj45vnFAiAKZHuGzOTX8zzeQAKimMaxeD__9Hk_J9eHh-EAejCb7j8gNaN-4RG2S3ny2MI8B7c2zJ80vRsnJVf_VvwCczmUP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcEOUZKGAkEHCINuu8Dwi17K5ayq4qlkq9GTu2SyVIymYXtL-Bf8SvY8Zx0q54nXqNHdvJjMff2DOfCXlqmBYRLFO-iDIDDooxvjBm4KswLlQQSlFYdv3JNNk7it4ex8cb5GebC4Nhla1NtIZaVQXukffxBC9B7Uv7xoVFHA7Hr8---niDFJ60ttdpNCpyoFffwX2rX-0PQdbPGBuPPrzZ890NA34RJ3kGYwsUE6GMBKCKAKCQjDCzFDoKwXEKdCqSwmQa1litVCJBwXUeqCAoDLh2iOWh3StkM0WvqEc2d0fTw_fnOzxxiNQwLVNkwPpCfUOGcOgqDvBu7gsrob0w4E8o9_dgzYsg2q6C4xvkuoOvdKfRty2yocubZMsZiJq-cCzWL2-RHzv7_sgmZik6A1tPZxgqX57Au3OxooCV6ewUwxlFqatlTYd6YaPCSloZOlnW0Dw863IrqSgVnWjMU66-rBzPtm1lohcCY0s0dAN1qxr6qeYravc6m7SN2-ToUuRyh_TKqtT3CA1lrAYJFA5kHg1UkaHDbC1ZGjETxx7xWynwwtGi4-0cn3lD6Mw4So13UvPI867-WUMI8teauyjUrhYSedsH1fyEO7vAB6kUqRACBsQiY3IZy1wlTMdpIXUWJh7ZblWCO-tS8_O54JEnXTHYBTzsaaTGWc4ygGJBGHnkbqNB3UhwVwKBrkeyNd1aG-p6SXn6yXKPA1qMkPURfptVw__8Aw7gapbCSnb_39_xmFyF2czf7U8PHpBr8LqLjtomvcV8qR8C8FvIR26GUfLxsif1L3JoaUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI%E2%80%90Enabled+Soft+Sensing+Array+for+Simultaneous+Detection+of+Muscle+Deformation+and+Mechanomyography+for+Metaverse+Somatosensory+Interaction&rft.jtitle=Advanced+science&rft.au=Suo%2C+Jiao&rft.au=Liu%2C+Yifan&rft.au=Wang%2C+Jianfei&rft.au=Chen%2C+Meng&rft.date=2024-04-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=11&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202305025&rft.externalDBID=10.1002%252Fadvs.202305025&rft.externalDocID=ADVS7088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon