The role of oxidative stress in Rett syndrome: an overview
The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl‐CpG binding protein 2 (MeCP2) gene. To date, no cure for RTT exists, although disease reversibility has been demonstrated in animal models. Emerging evidence from...
Saved in:
Published in | Annals of the New York Academy of Sciences Vol. 1259; no. 1; pp. 121 - 135 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.07.2012
Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0077-8923 1749-6632 1749-6632 |
DOI | 10.1111/j.1749-6632.2012.06611.x |
Cover
Loading…
Abstract | The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl‐CpG binding protein 2 (MeCP2) gene. To date, no cure for RTT exists, although disease reversibility has been demonstrated in animal models. Emerging evidence from our and other laboratories indicates a potential role of oxidative stress (OS) in RTT. This review examines the current state of the knowledge on the role of OS in explaining the natural history, genotype–phenotype correlation, and clinical heterogeneity of the human disease. Biochemical evidence of OS appears to be related to neurological symptom severity, mutation type, and clinical presentation. These findings pave the way for potential new genetic downstream therapeutic strategies aimed at improving patient quality of life. Further efforts in the near future are needed for investigating the yet unexplored “black box” between the MeCP2 gene mutation and subsequent OS derangement. |
---|---|
AbstractList | The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl-CpG binding protein 2 (MeCP2) gene. To date, no cure for RTT exists, although disease reversibility has been demonstrated in animal models. Emerging evidence from our and other laboratories indicates a potential role of oxidative stress (OS) in RTT. This review examines the current state of the knowledge on the role of OS in explaining the natural history, genotype-phenotype correlation, and clinical heterogeneity of the human disease. Biochemical evidence of OS appears to be related to neurological symptom severity, mutation type, and clinical presentation. These findings pave the way for potential new genetic downstream therapeutic strategies aimed at improving patient quality of life. Further efforts in the near future are needed for investigating the yet unexplored "black box" between the MeCP2 gene mutation and subsequent OS derangement. The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl-CpG binding protein 2 (MeCP2) gene. To date, no cure for RTT exists, although disease reversibility has been demonstrated in animal models. Emerging evidence from our and other laboratories indicates a potential role of oxidative stress (OS) in RTT. This review examines the current state of the knowledge on the role of OS in explaining the natural history, genotype-phenotype correlation, and clinical heterogeneity of the human disease. Biochemical evidence of OS appears to be related to neurological symptom severity, mutation type, and clinical presentation. These findings pave the way for potential new genetic downstream therapeutic strategies aimed at improving patient quality of life. Further efforts in the near future are needed for investigating the yet unexplored "black box" between the MeCP2 gene mutation and subsequent OS derangement.The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl-CpG binding protein 2 (MeCP2) gene. To date, no cure for RTT exists, although disease reversibility has been demonstrated in animal models. Emerging evidence from our and other laboratories indicates a potential role of oxidative stress (OS) in RTT. This review examines the current state of the knowledge on the role of OS in explaining the natural history, genotype-phenotype correlation, and clinical heterogeneity of the human disease. Biochemical evidence of OS appears to be related to neurological symptom severity, mutation type, and clinical presentation. These findings pave the way for potential new genetic downstream therapeutic strategies aimed at improving patient quality of life. Further efforts in the near future are needed for investigating the yet unexplored "black box" between the MeCP2 gene mutation and subsequent OS derangement. The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl‐CpG binding protein 2 ( MeCP2 ) gene. To date, no cure for RTT exists, although disease reversibility has been demonstrated in animal models. Emerging evidence from our and other laboratories indicates a potential role of oxidative stress (OS) in RTT. This review examines the current state of the knowledge on the role of OS in explaining the natural history, genotype–phenotype correlation, and clinical heterogeneity of the human disease. Biochemical evidence of OS appears to be related to neurological symptom severity, mutation type, and clinical presentation. These findings pave the way for potential new genetic downstream therapeutic strategies aimed at improving patient quality of life. Further efforts in the near future are needed for investigating the yet unexplored “black box” between the MeCP2 gene mutation and subsequent OS derangement. |
Author | Hayek, Joussef Durand, Thierry Valacchi, Giuseppe Ciccoli, Lucia Leoncini, Silvia De Felice, Claudio Signorini, Cinzia Pecorelli, Alessandra |
Author_xml | – sequence: 1 givenname: Claudio surname: De Felice fullname: De Felice, Claudio organization: Neonatal Intensive Care Unit University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS) of Siena, Siena, Italy – sequence: 2 givenname: Cinzia surname: Signorini fullname: Signorini, Cinzia organization: Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy – sequence: 3 givenname: Silvia surname: Leoncini fullname: Leoncini, Silvia organization: Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy – sequence: 4 givenname: Alessandra surname: Pecorelli fullname: Pecorelli, Alessandra organization: Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy – sequence: 5 givenname: Thierry surname: Durand fullname: Durand, Thierry organization: Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France – sequence: 6 givenname: Giuseppe surname: Valacchi fullname: Valacchi, Giuseppe organization: Department of Evolutionary Biology, University of Ferrara, Ferrara, Italy – sequence: 7 givenname: Lucia surname: Ciccoli fullname: Ciccoli, Lucia organization: Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy – sequence: 8 givenname: Joussef surname: Hayek fullname: Hayek, Joussef organization: Child Neuropsychiatry Unit, University Hospital, AOUS, Siena, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22758644$$D View this record in MEDLINE/PubMed https://hal.science/hal-00714965$$DView record in HAL |
BookMark | eNqNkU1vEzEQhi1URNPCX0CWuNDDLv5Y2-sekKICLSgqCIoQXCyzO1YdNutib9Lk3-MlaQ49xRdbM8-845n3BB31oQeEMCUlzefNvKSq0oWUnJWMUFYSKSkt10_QZJ84QhNClCpqzfgxOklpTjJZV-oZOmZMiVpW1QSd39wCjqEDHBwOa9_awa8ApyFCStj3-CsMA06bvo1hAefY9jisIK483D9HT53tErzY3afo-4f3NxdXxezz5ceL6axohNS0cCAoaRvnqloRTQQHLhWTDpzmWticY1YJaxvlNACtNW2YANHaVlJwouWn6Gyre2s7cxf9wsaNCdabq-nMjLE8Jq20FCua2ddb9i6Gv0tIg1n41EDX2R7CMhlKeM14TWp5CKqkzDDP6KtH6DwsY5-HNlTJWmiS952plztq-XsB7f6rD8vOwNst0MSQUgRnGj_kfYd-iNZ3uaMZ3TVzM5poRhPN6K75765ZZ4H6kcBDjwNKd73vfQebg-vM9c_pt_GZBYqtgE8DrPcCNv4xUnElzI_rS6O_sF-fyDtqKP8H-QrHnQ |
CODEN | ANYAA9 |
CitedBy_id | crossref_primary_10_1016_j_autrev_2016_01_011 crossref_primary_10_1155_2019_3279670 crossref_primary_10_1007_s00439_013_1271_x crossref_primary_10_1016_j_neuroscience_2020_04_037 crossref_primary_10_1038_s41598_017_12293_8 crossref_primary_10_1042_BST20140071 crossref_primary_10_1155_2014_983178 crossref_primary_10_1038_s41598_020_80723_1 crossref_primary_10_1097_WCO_0b013e32835f19a7 crossref_primary_10_1007_s00404_014_3208_6 crossref_primary_10_2217_fnl_15_9 crossref_primary_10_1007_s40263_024_01106_y crossref_primary_10_1007_s10286_023_00958_6 crossref_primary_10_3389_fphys_2016_00385 crossref_primary_10_1016_j_jprot_2016_12_010 crossref_primary_10_1016_j_celrep_2015_11_007 crossref_primary_10_1155_2017_9467819 crossref_primary_10_1016_j_plefa_2014_08_002 crossref_primary_10_1155_2014_195935 crossref_primary_10_1016_j_abb_2020_108666 crossref_primary_10_1016_j_neubiorev_2018_12_009 crossref_primary_10_3389_fphys_2019_00479 crossref_primary_10_1371_journal_pgen_1004676 crossref_primary_10_15252_embj_201489282 crossref_primary_10_1155_2013_723269 crossref_primary_10_1051_ocl_2015055 crossref_primary_10_1371_journal_pone_0104834 crossref_primary_10_1016_j_freeradbiomed_2016_12_045 crossref_primary_10_1186_s11689_020_09344_z crossref_primary_10_1155_2014_480980 crossref_primary_10_1016_j_freeradbiomed_2015_02_014 crossref_primary_10_1155_2014_560120 crossref_primary_10_1113_JP275890 crossref_primary_10_1002_mnfr_201500436 crossref_primary_10_1051_ocl_2023008 crossref_primary_10_3390_brainsci4010150 crossref_primary_10_1016_j_febslet_2013_05_042 crossref_primary_10_3389_fnins_2019_00680 crossref_primary_10_3389_fneur_2024_1388506 crossref_primary_10_1093_hmg_ddy301 crossref_primary_10_3389_fncel_2016_00266 crossref_primary_10_1523_JNEUROSCI_3236_14_2014 crossref_primary_10_1152_physiol_00008_2020 crossref_primary_10_1155_2017_3064016 crossref_primary_10_1016_j_abb_2023_109860 crossref_primary_10_3390_antiox11071406 crossref_primary_10_1016_j_biocel_2016_07_015 crossref_primary_10_1016_j_ddmod_2019_11_001 crossref_primary_10_1155_2013_432616 crossref_primary_10_3389_fncel_2015_00055 crossref_primary_10_3389_fnins_2021_729757 crossref_primary_10_1007_s13311_015_0353_y crossref_primary_10_1007_s11010_019_03633_5 crossref_primary_10_1016_j_nbd_2014_04_006 crossref_primary_10_3389_fnint_2020_00007 crossref_primary_10_1113_JP270369 crossref_primary_10_1155_2015_421624 crossref_primary_10_1515_hsz_2015_0117 crossref_primary_10_1007_s10803_020_04611_3 crossref_primary_10_1016_j_biocel_2016_08_001 crossref_primary_10_1016_j_freeradbiomed_2017_12_009 crossref_primary_10_3390_life12020146 crossref_primary_10_7763_IJCEA_2010_V1_6 crossref_primary_10_3390_epigenomes1020011 crossref_primary_10_4236_fns_2013_49A1012 crossref_primary_10_3390_ijms23105735 crossref_primary_10_3390_ijms21176253 crossref_primary_10_1016_j_expneurol_2024_114885 crossref_primary_10_1371_journal_pone_0150101 crossref_primary_10_3390_ijms22084240 crossref_primary_10_1016_j_neubiorev_2014_01_012 crossref_primary_10_1371_journal_pone_0056599 |
Cites_doi | 10.1136/jmg.38.4.224 10.1111/j.1471-4159.2005.03572.x 10.1086/662453 10.1002/anie.200705122 10.1038/85899 10.1126/science.1138389 10.1177/0883073807309786 10.1002/ajmg.a.10053 10.1016/0887-8994(89)90027-1 10.1038/sj.ejhg.5200473 10.1016/S0887-8994(02)00624-0 10.1016/j.bbagen.2004.04.003 10.1016/j.neuron.2011.08.022 10.1055/s-2007-979735 10.1007/s003359900157 10.1194/jlr.P017798 10.1007/978-1-4614-0653-2_22 10.1016/j.freeradbiomed.2004.10.024 10.1136/adc.80.4.384 10.1134/S1819712411020024 10.1155/2012/724904 10.1002/ana.22124 10.1002/ppul.20866 10.1186/1471-2202-11-53 10.1378/chest.09-3021 10.1016/S1474-4422(09)70262-5 10.1038/85906 10.1006/nbdi.2001.0428 10.1001/archneurol.2011.149 10.1016/j.neuron.2007.10.001 10.1016/B978-0-12-385883-2.00005-9 10.1179/1351000211Y.0000000004 10.1042/BJ20110648 10.1002/mrdd.10020 10.1212/WNL.0b013e3181d6b852 10.1136/adc.85.1.29 10.1371/journal.pone.0003669 10.1523/JNEUROSCI.0169-11.2011 10.1016/j.jchromb.2003.10.036 10.1128/MCB.01665-05 10.1002/ana.410140412 10.1046/j.1471-4159.1999.0720734.x 10.1097/FBP.0b013e32830c3645 10.1002/ana.21715 10.1136/jmg.40.5.e52 10.1002/ana.410210410 10.1006/bbrc.1997.7883 10.1016/0748-5514(85)90134-5 10.1016/j.taap.2004.06.021 10.1073/pnas.93.18.9782 10.1016/j.bbagen.2011.12.002 10.1002/ajmg.a.20247 10.1016/S0387-7604(01)00369-2 10.1093/nar/gkh739 10.1016/S0891-5849(02)01360-6 10.1128/MCB.23.3.916-922.2003 10.1016/j.lfs.2011.08.006 10.1016/0387-7604(94)90129-5 10.1016/j.molcel.2010.01.030 10.1016/S0022-510X(98)00035-5 10.1146/annurev-cellbio-092910-154121 10.1016/j.freeradbiomed.2005.08.023 10.1016/j.tcb.2011.06.004 10.1002/prca.201000121 10.1016/j.ajhg.2008.05.015 10.1073/pnas.87.23.9383 10.1016/S0304-3940(98)00303-6 10.1194/jlr.M700503-JLR200 10.1212/01.wnl.0000291011.54508.aa 10.1016/j.nlm.2011.05.006 10.1194/jlr.M600327-JLR200 10.1136/jmg.2006.045260 10.1126/science.1153252 10.2174/187152710791556113 10.1007/s12263-012-0285-7 10.1212/01.wnl.0000223318.28938.45 10.1016/j.conb.2011.06.006 10.1055/s-2007-973480 10.1016/j.biocel.2006.07.001 10.1016/S0387-7604(87)80079-7 10.1177/088307389100600216 10.1016/B978-0-12-394317-0.00011-X 10.1038/nature09582 10.1038/nature10214 10.1016/j.freeradbiomed.2009.05.016 10.1016/j.resp.2010.07.006 10.1074/jbc.273.22.13605 10.1016/S0387-7604(85)80037-1 10.1016/S0387-7604(12)80283-X 10.1091/mbc.E11-09-0784 10.1002/ajmg.1320320131 10.1212/WNL.56.11.1486 10.1093/brain/awn197 10.1523/JNEUROSCI.5966-09.2010 10.1007/s11920-010-0097-7 10.1016/j.clinbiochem.2011.01.007 10.1093/hmg/9.9.1369 10.1021/cr200160h 10.1093/nar/20.19.5085 10.1038/nn0309-239 10.1016/0163-7827(85)90011-6 10.1371/journal.pgen.1000667 10.1016/j.bone.2007.12.003 10.1007/s10495-007-0756-2 10.1038/13810 10.1136/jmg.2004.026237 10.1002/biof.184 10.1002/ana.21562 10.1016/S0891-5849(02)00759-1 10.1093/hmg/ddi198 10.1002/humu.10194 10.1006/bbrc.1997.6869 10.1016/S0387-7604(01)00374-6 10.1038/nature10907 10.1042/bj2190001 10.1212/01.wnl.0000304752.50773.ec 10.1002/humu.10243 10.1086/302690 10.1016/S0387-7604(85)80030-9 10.1002/ajmg.10633 10.1093/hmg/9.7.1119 10.1152/japplphysiol.01266.2007 10.1111/j.1469-8749.2010.03636.x 10.1002/1531-8249(200005)47:5<670::AID-ANA20>3.0.CO;2-F 10.1016/j.braindev.2010.01.004 10.1016/j.clinph.2008.08.015 10.1007/s11064-008-9775-9 10.1002/ajmg.a.31314 10.1016/0387-7604(93)90045-A 10.1177/0883073811429859 10.1016/j.cca.2011.04.016 |
ContentType | Journal Article |
Copyright | 2012 New York Academy of Sciences. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2012 New York Academy of Sciences. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7ST 7T5 7T7 7TK 7TM 7TO 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 SOI 7X8 1XC |
DOI | 10.1111/j.1749-6632.2012.06611.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts Neurosciences Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1749-6632 |
EndPage | 135 |
ExternalDocumentID | oai_HAL_hal_00714965v1 3966402401 22758644 10_1111_j_1749_6632_2012_06611_x NYAS6611 ark_67375_WNG_9P2ZJ0D1_1 |
Genre | article Journal Article Review |
GroupedDBID | --- --Z -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1OB 1OC 23M 31~ 33P 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 692 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAMDK AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOJD ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFSWV AFZJQ AHBTC AHEFC AHMBA AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IH2 IX1 J0M K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RAG RIWAO RJQFR ROL RX1 S10 SAMSI SJN SUPJJ SV3 TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WOHZO WQJ WRC WUP WVDHM WXSBR X7M XG1 YBU YOC YSK ZGI ZKB ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG AHDLI CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7ST 7T5 7T7 7TK 7TM 7TO 7U7 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 RC3 SOI 7X8 1XC UMC |
ID | FETCH-LOGICAL-c5691-fe510dcff48709053e36726fef9395a10d2a75aac7f9ee1891c25e5dad61ef5d3 |
IEDL.DBID | DR2 |
ISSN | 0077-8923 1749-6632 |
IngestDate | Fri May 09 12:24:02 EDT 2025 Fri Jul 11 06:55:26 EDT 2025 Fri Jul 11 12:26:19 EDT 2025 Sun Jul 13 04:44:09 EDT 2025 Thu Apr 03 07:07:08 EDT 2025 Tue Jul 01 04:00:44 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Wed Jan 22 16:23:10 EST 2025 Wed Oct 30 10:03:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | MeCP2 isoprostanes oxidative stress Rett syndrome |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2012 New York Academy of Sciences. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5691-fe510dcff48709053e36726fef9395a10d2a75aac7f9ee1891c25e5dad61ef5d3 |
Notes | ArticleID:NYAS6611 istex:CE51EEFF49F87A026BE6C97418BD0D4A3E617210 ark:/67375/WNG-9P2ZJ0D1-1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7027-1207 0000-0002-9881-3119 0000-0003-0006-9414 0000-0001-6086-7296 |
PMID | 22758644 |
PQID | 1768590632 |
PQPubID | 946344 |
PageCount | 15 |
ParticipantIDs | hal_primary_oai_HAL_hal_00714965v1 proquest_miscellaneous_1038238086 proquest_miscellaneous_1037662383 proquest_journals_1768590632 pubmed_primary_22758644 crossref_citationtrail_10_1111_j_1749_6632_2012_06611_x crossref_primary_10_1111_j_1749_6632_2012_06611_x wiley_primary_10_1111_j_1749_6632_2012_06611_x_NYAS6611 istex_primary_ark_67375_WNG_9P2ZJ0D1_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2012 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: July 2012 |
PublicationDecade | 2010 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: United States – name: New York |
PublicationTitle | Annals of the New York Academy of Sciences |
PublicationTitleAlternate | Ann N Y Acad Sci |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Inc Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Blackwell Publishing Inc – name: Wiley Subscription Services, Inc – name: Wiley |
References | De Bona, C., M. Zappella, J. Hayek, et al. 2000. Preserved speech variant is allelic of classic Rett syndrome. Europ. J. Hum. Genet. 8: 325-330. Urdinguio, R.G., L. Lopez-Serra, P. Lopez-Nieva, et al . 2008. Mecp2-null mice provide new neuronal targets for Rett syndrome. PLoS One 3: e3669. Mari, F., S. Azimonti, I. Bertani et al. 2005. CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum. Mol. Genet. 14: 1935-1946. Perluigi, M., F. di Domenico, A. Fiorini, et al . 2011. Oxidative stress occurs early in Down syndrome pregnancy: a redox proteomics analysis of amniotic fluid. Proteomics Clin. Appl. 5: 167-178. Leonard, H., L. Colvin, J. Christodoulou, et al . 2003. Patients with the R133C mutation: is their phenotype different from patients with Rett syndrome with other mutations? J. Med. Genet. 40: e52. Coker, S.B. & A.R. Melnyk. 1991. Rett syndrome and mitochondrial enzyme deficiencies. J. Child. Neurol. 6: 164-166. Neul, J.L., W.E. Kaufmann, D.G. Glaze, et al. 2010. Rett syndrome: revised diagnostic criteria and nomenclature. Ann. Neurol. 68: 944-950. Gonzales, M.L. & J.M. LaSalle. 2010. The role of MeCP2 in brain development and neurodevelopmental disorders. Curr. Psychiatry Rep. 12: 127-134. Skene P.J., R.S. Illingworth, S. Webb, et al. 2010. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37: 457-468. Papanikolaou, G. & K. Pantopoulos 2005. Iron metabolism and toxicity. Toxicol. Appl. Pharmacol. 202: 199-211. Lawson, J.A., S. Kim, W.S. Powell, et al . 2006. Oxidized derivatives of omega-3 fatty acids: identification of IPF3 alpha-VI in human urine. J. Lipid. Res. 47: 2515-2524. Miltenberger-Miltenyi, G. & F. Laccone. 2003. Mutations and polymorphisms in the human methyl CpG-binding protein MECP2. Hum. Mutat. 22: 107-115. Kadiiska, M.B., B.C. Gladen, D.D. Baird, et al . 2005. Biomarkers of oxidative stress study III. Effects of the nonsteroidal anti-inflammatory agents indomethacin and meclofenamic acid on measurements of oxidative products of lipids in CCl4 poisoning. Free Radic. Biol. Med. 38: 711-718. Bebbington, A., A. Anderson, D. Ravine, et al . 2008. Investigating genotype-phenotype relationships in Rett syndrome using an international data set. Neurology 70: 868-875. Donzel-Javouhey, A., C. Thauvin-Robinet, V. Cusin, et al. 2006. A new cohort of MECP2 mutation screening in unexplained mental retardation: careful re-evaluation is the best indicator for molecular diagnosis. Am. J. Med. Genet. A 140: 1603-1607. Rolando, S. 1985. Rett syndrome: report of eight cases. Brain Dev. 7: 290-296. Wan, M., S.S. Lee, X. Zhang, et al . 1999. Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am. J. Hum. Genet. 65: 1520-1529. Kankirawatana, P., H. Leonard, C. Ellaway, et al . 2006. Early progressive encephalopathy in boys and MECP2 mutations. Neurology 67: 164-166. Chao, H.T., H. Chen, R.C. Samaco, et al . 2010. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468: 263-269. Shepherd, G.M. & D.M. Katz. 2011. Synaptic microcircuit dysfunction in genetic models of neurodevelopmental disorders: focus on Mecp2 and Met. Curr. Opin. Neurobiol. 21: 827-833. Jahn, U., T. Durand & J.-M. Galano. 2008. Beyond prostaglandins-chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew. Chem. Int. Ed. 47: 5894-5955. Downs, J., A. Bebbington, P. Jacoby, et al . 2010. Level of purposeful hand function as a marker of clinical severity in Rett syndrome. Dev. Med. Child Neurol. 52: 817-823. Guy, J., J. Gan, J. Selfridge, et al . 2007. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315: 1143-1147. Martin, LJ. 2012. Biology of mitochondria in neurodegenerative diseases. Prog. Mol Biol. Transl. Sci. 107: 355-415. Temudo, T., M. Santos, E. Ramos, et al . 2011. Rett syndrome with and without detected MECP2 mutations: An attempt to redefine phenotypes. Brain Dev. 33: 69-76. Boggio, E.M., G. Lonetti, T. Pizzorusso & M. Giustetto 2010. Synaptic determinants of Rett syndrome. Front, Synaptic Neurosci. 2: 28. Sofić, E., P. Riederer, W. Killian, et al . 1987. Reduced concentrations of ascorbic acid and glutathione in a single case of Rett syndrome: a postmortem brain study. Brain Dev. 9: 529-531. Ciccoli, L., C. De Felice, E. Paccagnini, et al . 2012. Morphological changes and oxidative damage in Rett syndrome erythrocytes. Biochim. Biophys. Acta 1820: 511-520. Valko, M., D. Leibfritz, J. Moncol, et al . 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39: 44-84. Valinluck V., H.H. Tsai, D.K. Rogstad, et al . 2004. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32: 4100-4108. Corthals, A.P. 2011. Multiple sclerosis is not a disease of the immune system. Q. Rev. Biol. 86: 287-321. Chen, R.Z., S. Akbarian, M. Tudor, et al. 2001. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet. 27: 327-33. Berger-Sweeney, J. 2011. Cognitive deficits in Rett syndrome: what we know and what we need to know to treat them. Neurobiol. Learn Mem. 96: 637-646. Yant, L.J., Q. Ran, L. Rao, et al . 2003. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34: 496-502. Dotti, M.T., L. Manneschi, A. Malandrini. et al. 1993. Mitochondrial dysfunction in Rett syndrome. An ultrastructural and biochemical study. Brain Dev. 15: 103-106. D'Esposito, M., N.A. Quaderi, A. Ciccodicola, et al . 1996. Isolation, physical mapping and northern analysis of the X-linked human gene encoding methyl CpG-binding protein, MECP2. Mamm. Gen. 7: 533-535. Gitschier, J. 2009. On the tracks of DNA methylation: an interview to Adrian Bird. PLoS Genet. 5: e1000667. Samaco, R.C. & J.L. Neul. 2011. Complexities of Rett syndrome and MeCP2. J. Neurosci. 31: 7951-7959. Musiek, E.S., J.K. Cha, H. Yin, et al . 2004. Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay. J. Chrom. B: Analyt. Technol. Biomed. Life Sci. 799: 95-102. Maezawa, I. & L.W. Jin. 2010. Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J. Neurosci. 30: 5346-5356. Cardaioli, E., M.T. Dotti, J. Hayek, et al . 1999. Studies on mitochondrial pathogenesis of Rett syndrome: ultrastructural data from skin and muscle biopsies and mutational analysis at mtDNA nucleotides 10463 and 2835. J. Submicrosc. Cytol. Pathol. 31: 301-304. Chahrour, M. & H.Y. Zoghbi. 2007. The story of Rett syndrome: from clinic to neurobiology. Neuron 56: 422-437. Ott, M., V. Gogvadze, S. Orrenius, et al . 2007. Mitochondria, oxidative stress and cell death. Apoptosis 12: 913-922. Percy, A.K. 2011. Rett syndrome: exploring the autism link. Arch. Neurol. 68: 985-989. Thomas, C.E. & S.D. Aust. 1985. Rat liver microsomal NADPH-dependent release of iron from ferritin and lipid peroxidation. Free Radic. Biol. Med. 1: 293-300. Ruch, A., T.W. Kurczynski & M.E. Velasco. 1989. Mitochondrial alterations in Rett syndrome. Pediatr. Neurol. 5: 320-323. Aggarwal, S., L. Yurlova & M. Simons. 2011. Central nervous system myelin: structure, synthesis and assembly. Trends Cell Biol. 21: 585-593. Hoffbuhr, K., J.M. Devaney, B. LaFleur, et al . 2001. MeCP2 mutations in children with and without the phenotype of Rett syndrome. Neurology 56: 1486-1495. Hagberg, B., J. Aicardi, K. Dias, et al. 1983. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome:report of 35 cases. Ann. Neurol. 14: 471-479. Squillaro, T., N. Alessio, M. Cipollaro, et al . 2012. Reduced expression of MECP2 affects cell commitment and maintenance in neurons by triggering senescence, new perspective for Rett syndrome. Mol. Biol. Cell. 23: 1435-1445. Urdinguio, R.G., J.V. Sanchez-Mut & M. Esteller. 2009. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 8: 1056-1072. Gomot, M., C. Gendrot, A. Verloes, et al. 2003. MECP2 gene mutations in non-syndromic X-linked mental retardation: phenotype-genotype correlation. Am. J. Med. Genet. A 123A: 129-139. Morrow, J.D., K.E. Hill, R.F. Burk, et al . 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. USA 87: 9383-9387. De Felice, C., S. Maffei, C. Signorini, et al. 2012. Subclinical myocardial dysfunction in Rett syndrome. Eur. Heart J. Echocardiogr. Imaging. Cohen, S., H.W. Gabel, M. Hemberg, et al. 2011. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron 72: 72-85. Weaving, L.S., S.L. Williamson, B. Bennetts, et al . 2003. Effects of MECP2 mutation type, location and X-inactivation in modulating Rett syndrome phenotype. Am. J. Med. Genet. 118A: 103-114. Haas RH., F. Nasirian, X. Hua, et al. 1995. Oxidative metabolism in Rett syndrome: 2. Biochemical and molecular studies. Neuropediatrics 26: 95-99. Gibson, J.H., B. Slobedman, H. KN, et al. 2010. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci. 11: 53. Bahi-Buisson, N., J. Nectoux, H. Rosas-Vargas, et al . 2008. Key clinical features to identify girls with CDKL5 mutations. Brain 131: 2647-2661. Nonn, L., R.R. Williams, R.P. Erickson, et al . 2003. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol. Cell Biol. 23: 916-922. Sas 2010; 12 2010; 11 2012; 484 2010; 468 2011; 52 2008; 33 2008; 104 1997; 6 1998; 156 2011; 475 2011; 111 1983; 14 1985; 24 1998; 273 2009; 12 2004; 32 2003; 118A 1989; 32 1985; 219 1995; 26 2006; 26 2011; 72 2008; 119 2008; 23 2011; 68 2010; 2 2001; 56 2003; 40 2012; 23 2010; 30 2010; 9 2011; 412 2009; 66 1989; 5 2010; 37 2009; 65 2002; 8 1999; 23 1996; 93 2001; 27 2001; 23 2007; 12 2011; 5 2012; 107 2003; 34 2007; 315 2006; 40 2006; 47 2008; 49 2008; 47 2011; 86 2003; 28 1999; 31 2008; 43 1994; 16 2001; 38 2010; 173 2011; 89 1999; 30 2004; 1672 2008; 42 1992; 20 2008; 131 2010; 52 2004; 799 2003; 21 2003; 22 2003; 23 2005; 14 2007; 39 1997; 236 2009; 47 2011; 439 2012; 2012 1966; 116 2000; 47 1987; 9 2000; 9 2000; 8 2002; 111 2011; 96 1992; 14 2008; 3 2011; 16 2008; 70 1999; 80 2012; 56 2001; 85 2012; 724 1990; 87 2010; 68 2006; 67 2011; 21 1998; 248 2011; 27 2005; 38 1998; 242 2010; 74 1996; 7 1985; 1 2006; 96 2012 2008; 19 2002; 32 1985; 7 2012; 1820 2011; 31 2011; 33 2005; 42 1999; 65 2011; 37 2008; 320 2007; 56 2003; 123A 1991; 6 1993; 15 1987; 21 2010; 138 2005; 202 2001; 8 2006; 140 2011; 44 2009; 8 2009; 5 2001; 1 1999; 72 2008; 83 2007; 44 e_1_2_10_44_2 e_1_2_10_21_2 e_1_2_10_109_2 e_1_2_10_40_2 Julu P.O. (e_1_2_10_83_2) 1997; 6 e_1_2_10_131_2 e_1_2_10_70_2 Rett A (e_1_2_10_14_2) 1966; 116 e_1_2_10_116_2 e_1_2_10_139_2 e_1_2_10_93_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_74_2 e_1_2_10_112_2 e_1_2_10_135_2 e_1_2_10_37_2 e_1_2_10_97_2 e_1_2_10_55_2 e_1_2_10_78_2 e_1_2_10_6_2 e_1_2_10_79_2 e_1_2_10_32_2 e_1_2_10_51_2 e_1_2_10_120_2 e_1_2_10_143_2 e_1_2_10_105_2 e_1_2_10_128_2 e_1_2_10_29_2 e_1_2_10_63_2 Boggio E.M. (e_1_2_10_9_2) 2010; 2 e_1_2_10_101_2 e_1_2_10_124_2 e_1_2_10_48_2 e_1_2_10_86_2 e_1_2_10_25_2 e_1_2_10_67_2 e_1_2_10_22_2 e_1_2_10_45_2 e_1_2_10_68_2 e_1_2_10_41_2 e_1_2_10_129_2 e_1_2_10_90_2 e_1_2_10_19_2 e_1_2_10_71_2 e_1_2_10_94_2 e_1_2_10_117_2 e_1_2_10_3_2 e_1_2_10_52_2 e_1_2_10_136_2 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_75_2 e_1_2_10_98_2 e_1_2_10_113_2 e_1_2_10_7_2 e_1_2_10_56_2 De Felice C. (e_1_2_10_123_2) 2012 e_1_2_10_132_2 e_1_2_10_57_2 e_1_2_10_33_2 e_1_2_10_10_2 e_1_2_10_118_2 e_1_2_10_60_2 e_1_2_10_106_2 e_1_2_10_125_2 e_1_2_10_26_2 e_1_2_10_49_2 e_1_2_10_64_2 e_1_2_10_87_2 e_1_2_10_102_2 e_1_2_10_140_2 e_1_2_10_121_2 e_1_2_10_23_2 e_1_2_10_69_2 e_1_2_10_42_2 e_1_2_10_107_2 Cardaioli E. (e_1_2_10_80_2) 1999; 31 e_1_2_10_91_2 e_1_2_10_72_2 e_1_2_10_114_2 e_1_2_10_137_2 e_1_2_10_39_2 e_1_2_10_95_2 e_1_2_10_53_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_76_2 e_1_2_10_110_2 e_1_2_10_133_2 e_1_2_10_35_2 e_1_2_10_99_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_8_2 e_1_2_10_58_2 e_1_2_10_30_2 e_1_2_10_119_2 Kerr A.M. (e_1_2_10_82_2) 1992; 14 e_1_2_10_61_2 e_1_2_10_103_2 e_1_2_10_126_2 e_1_2_10_84_2 e_1_2_10_27_2 e_1_2_10_65_2 e_1_2_10_122_2 e_1_2_10_141_2 e_1_2_10_46_2 e_1_2_10_88_2 e_1_2_10_20_2 e_1_2_10_43_2 e_1_2_10_130_2 e_1_2_10_92_2 Witt Engerström I. (e_1_2_10_108_2) 1992; 14 e_1_2_10_138_2 e_1_2_10_17_2 e_1_2_10_73_2 e_1_2_10_96_2 e_1_2_10_115_2 e_1_2_10_5_2 e_1_2_10_54_2 e_1_2_10_13_2 e_1_2_10_36_2 e_1_2_10_77_2 e_1_2_10_111_2 e_1_2_10_12_2 e_1_2_10_59_2 e_1_2_10_31_2 e_1_2_10_50_2 e_1_2_10_81_2 Armostrong D.D. (e_1_2_10_134_2) 1992; 14 e_1_2_10_127_2 e_1_2_10_28_2 e_1_2_10_62_2 e_1_2_10_85_2 e_1_2_10_104_2 e_1_2_10_24_2 e_1_2_10_47_2 e_1_2_10_66_2 e_1_2_10_89_2 e_1_2_10_100_2 e_1_2_10_142_2 |
References_xml | – reference: Cheadle, J.P., H. Gill, N. Fleming, et al . 2000. Long-read sequence analysis of the MECP2 gene in Rett syndrome patients: correlation of disease severity with mutation type and location. Hum. Mol. Genet. 9: 1119-1129. – reference: Huppke, P., F. Laccone, N. Kramer, et al . 2000. Rett syndrome: analysis of MECP2 and clinical characterization of 31 patients. Hum. Mol. Genet. 9: 1369-1375. – reference: Witt Engerström, I. 1992. Age-related occurrence of signs and symptoms in the Rett syndrome. Brain Dev. 14(Suppl): S11-S20. – reference: Ramocki, M.B., S.U. Peters, Y.J. Tavyev, et al. 2009. Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann. Neurol. 66: 771-782. – reference: Ricceri, L., B. De Filippis & G. Laviola. 2008. Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches. Behav. Pharmacol. 19: 501-517. – reference: De Felice, C., G. Guazzi, M. Rossi, et al. 2010. Unrecognized lung disease in classic Rett syndrome: a physiologic and high-resolution CT imaging study. Chest 138: 386-392. – reference: Morrow, J.D., K.E. Hill, R.F. Burk, et al . 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. USA 87: 9383-9387. – reference: Chao, H.T., H. Chen, R.C. Samaco, et al. 2010. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468: 263-269. – reference: Boggio, E.M., G. Lonetti, T. Pizzorusso & M. Giustetto 2010. Synaptic determinants of Rett syndrome. Front, Synaptic Neurosci. 2: 28. – reference: De Felice, C., S. Maffei, C. Signorini, et al. 2012. Subclinical myocardial dysfunction in Rett syndrome. Eur. Heart J. Echocardiogr. Imaging. – reference: Julu, P.O., A.M. Kerr, F. Apartopoulos, et al . 2001. Characterization of breathing and associated central autonomic dysfunction in the Rett disorder. Arch. Dis. Child. 85: 29-37. – reference: Corthals, A.P. 2011. Multiple sclerosis is not a disease of the immune system. Q. Rev. Biol. 86: 287-321. – reference: Neul, J.L., W.E. Kaufmann, D.G. Glaze, et al . 2010. Rett syndrome: revised diagnostic criteria and nomenclature. Ann. Neurol. 68: 944-950. – reference: Downs, J., A. Bebbington, P. Jacoby, et al . 2010. Level of purposeful hand function as a marker of clinical severity in Rett syndrome. Dev. Med. Child Neurol. 52: 817-823. – reference: Heilstedt, H.A., M.D. Shahbazian & B Lee. Infantile hypotonia as a presentation of Rett syndrome. 2002. Am. J. Med. Genet. 111: 238-242. – reference: Amir, R.E., I.B. Van den Veyver, R. Schultz, et al . 2000. Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann. Neurol. 47: 670-679. – reference: Lebovitz, R.M., H. Zhang, H. Vogel, et al . 1996. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. USA 93: 9782-9787. – reference: Kerr, A.M. & P.O. Julu. 1999. Recent insights into hyperventilation from the study of Rett syndrome. Arch. Dis. Child. 80: 384-387. – reference: Watson, P., G. Black, S. Ramsden, et al . 2001. Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein. J. Med. Genet. 38: 224-228. – reference: Dotti, M.T., L. Manneschi, A. Malandrini. et al. 1993. Mitochondrial dysfunction in Rett syndrome. An ultrastructural and biochemical study. Brain Dev. 15: 103-106. – reference: Nourooz-Zadeh, J., E.H. Liu, B. Yhlen, et al . 1999. F4-isoprostanes as specific marker of docosahexaenoic acdid peroxidation in Alzheimer's disease. J. Neurochem. 72: 734-740. – reference: Ciccoli, L., C. De Felice, E. Paccagnini, et al . 2012. Morphological changes and oxidative damage in Rett syndrome erythrocytes. Biochim. Biophys. Acta 1820: 511-520. – reference: Gadalla, K.K., M.E. Bailey & S.R. Cobb. 2011. MeCP2 and Rett syndrome: reversibility and potential avenues for therapy. Biochem. J. 439: 1-14. – reference: Campos, C., R. Guzmán, E. López-Fernández, et al . 2011. Evaluation of urinary biomarkers of oxidative/nitrosative stress in children with Down syndrome. Life Sci. 89: 655-661. – reference: Percy, A.K. 2011. Rett syndrome: exploring the autism link. Arch. Neurol. 68: 985-989. – reference: Leoncini, S., C. De Felice, C. Signorini, et al . 2011. Oxidative stress in Rett syndrome: natural history, genotype, and variants. Redox Rep. 16: 145-153. – reference: Guy, J., B. Hendrich, M. Holmes, et al. 2001. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27: 322-326. – reference: Sofić, E., P. Riederer, W. Killian, et al . 1987. Reduced concentrations of ascorbic acid and glutathione in a single case of Rett syndrome: a postmortem brain study. Brain Dev. 9: 529-531. – reference: Haas RH., F. Nasirian, X. Hua, et al. 1995. Oxidative metabolism in Rett syndrome: 2. Biochemical and molecular studies. Neuropediatrics 26: 95-99. – reference: Tiano, L. & J. Busciglio. 2011. Mitochondrial dysfunction and Down's syndrome: is there a role for coenzyme Q(10)? Biofactors 37: 386-392. – reference: Roberts, L.J., T.J. Montine, W.R. Markesbery, et al . 1998. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273: 13605-13612. – reference: Donzel-Javouhey, A., C. Thauvin-Robinet, V. Cusin, et al. 2006. A new cohort of MECP2 mutation screening in unexplained mental retardation: careful re-evaluation is the best indicator for molecular diagnosis. Am. J. Med. Genet. A 140: 1603-1607. – reference: Armostrong, D.D. 1992. The neuropathology of the Rett syndrome. Brain Dev. Suppl. 14: S89-98. – reference: Rett, A. 1966. Uber ein eigartiges hirnatrophisches Syndrom bei Hyperammoniamie in Kindesalter. Wien Med. Wochenschr. 116: 723-738. – reference: Gitschier, J. 2009. On the tracks of DNA methylation: an interview to Adrian Bird. PLoS Genet. 5: e1000667. – reference: Samaco, R.C. & J.L. Neul. 2011. Complexities of Rett syndrome and MeCP2. J. Neurosci. 31: 7951-7959. – reference: Leonard, H., L. Colvin, J. Christodoulou, et al . 2003. Patients with the R133C mutation: is their phenotype different from patients with Rett syndrome with other mutations? J. Med. Genet. 40: e52. – reference: Weaving, L.S., S.L. Williamson, B. Bennetts, et al . 2003. Effects of MECP2 mutation type, location and X-inactivation in modulating Rett syndrome phenotype. Am. J. Med. Genet. 118A: 103-114. – reference: Hanefeld, F. 1985. The clinical pattern of the Rett syndrome. Brain Dev. 7: 320-325. – reference: Urdinguio, R.G., J.V. Sanchez-Mut & M. Esteller. 2009. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 8: 1056-1072. – reference: Sierra, C., M.A. Vilaseca, N. Brandi, et al . 2001. Oxidative stress in Rett syndrome. Brain Dev. Suppl. 1: S236-S239. – reference: Ruch, A., T.W. Kurczynski & M.E. Velasco. 1989. Mitochondrial alterations in Rett syndrome. Pediatr. Neurol. 5: 320-323. – reference: Sastry, P.S. 1985. Lipids of nervous tissue: composition and metabolism. Prog. Lipid Res. 24: 69-176. – reference: Zoghbi, H.Y. 2009. Rett syndrome: what do we know for sure? Nat. Neurosci. 12: 239-240. – reference: Mari, F., S. Azimonti, I. Bertani et al. 2005. CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum. Mol. Genet. 14: 1935-1946. – reference: Miltenberger-Miltenyi, G. & F. Laccone. 2003. Mutations and polymorphisms in the human methyl CpG-binding protein MECP2. Hum. Mutat. 22: 107-115. – reference: Neul, J.L., P. Fang, J. Barrish, et al . 2008. Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology 70: 1313-1321. – reference: Julu, P.O., A.M. Kerr, S. Hansen, et al . 1997. Functional evidence of brain stem immaturity in Rett syndrome. Eur. Child Adolesc. Psychiatry 6: 47-54. – reference: Monros, E., J. Armstrong, E. Aibar, et al . 2001. Rett syndrome in Spain: mutation analysis and clinical correlations. Brain Dev. 23: S251-S253. – reference: Valko, M., D. Leibfritz, J. Moncol, et al . 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39: 44-84. – reference: Milne G.L., H. Yin, K.D. Hardy, et al . 2011. Isoprostane generation and function. Chem. Rev. 111: 5973-5996. – reference: Comporti, M., C. Signorini, G. Buonocore, et al . 2002. Iron release, oxidative stress and erythrocyte ageing. Free Radic. Biol. Med. 32: 568-576. – reference: Nourooz-Zadeh, J., B. Halliwell & E.E. Änggård. 1997. Evidence for the formation of F3-isoprostanes during peroxidation of eicosapentaenoic acid. Biochem. Biophys. Res. Commun. 236: 467-472. – reference: Derecki, N.C., J.C. Cronk, Z. Lu, et al . 2012. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484: 105-109. – reference: Aggarwal, S., L. Yurlova & M. Simons. 2011. Central nervous system myelin: structure, synthesis and assembly. Trends Cell Biol. 21: 585-593. – reference: Voituron, N., C. Menuet, M. Dutschmann, et al . 2010. Physiological definition of upper airway obstructions in mouse model for Rett syndrome. Respir. Physiol. Neurobiol. 173: 146-156. – reference: Halliwell, B. & J.M.C. Gutteridge. 1985. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1-14. – reference: Chen, R.Z., S. Akbarian, M. Tudor, et al. 2001. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet. 27: 327-33. – reference: Fernandez-Checa, J.C., A. Fernandez, A. Morales, et al . 2010. Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models. CNS Neurol. Disord. Drug Targets 9: 439-454. – reference: Kankirawatana, P., H. Leonard, C. Ellaway, et al . 2006. Early progressive encephalopathy in boys and MECP2 mutations. Neurology 67: 164-166. – reference: Bahi-Buisson, N., J. Nectoux, H. Rosas-Vargas, et al . 2008. Key clinical features to identify girls with CDKL5 mutations. Brain 131: 2647-2661. – reference: Pagano, G. & G. Castello. 2012. Oxidative stress and mitochondrial dysfunction in Down syndrome. Adv. Exp. Med. Biol. 724: 291-299. – reference: Christodoulou, J., A. Grimm, T. Maher, et al . 2003. RettBASE: the IRSA MECP2 variation database-a new mutation database in evolution. Hum. Mutat. 21: 466-472. – reference: De Felice, C., C. Signorini, T. Durand, et al . 2011. F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome. J. Lipid Res. 52: 2287-2297. – reference: Martin, LJ. 2012. Biology of mitochondria in neurodegenerative diseases. Prog. Mol Biol. Transl. Sci. 107: 355-415. – reference: Guy, J., J. Gan, J. Selfridge, et al . 2007. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315: 1143-1147. – reference: Maezawa, I. & L.W. Jin. 2010. Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J. Neurosci. 30: 5346-5356. – reference: De Bona, C., M. Zappella, J. Hayek, et al. 2000. Preserved speech variant is allelic of classic Rett syndrome. Europ. J. Hum. Genet. 8: 325-330. – reference: Urdinguio, R.G., L. Lopez-Serra, P. Lopez-Nieva, et al . 2008. Mecp2-null mice provide new neuronal targets for Rett syndrome. PLoS One 3: e3669. – reference: Kriaucionis, S., A. Paterson, J. Curtis, et al . 2006. Gene expression analysis exposes mitochondrial abnormalities in a mouse model of Rett syndrome. Mol. Cell. Biol. 26: 5033-5042. – reference: Thomas, C.E. & S.D. Aust. 1985. Rat liver microsomal NADPH-dependent release of iron from ferritin and lipid peroxidation. Free Radic. Biol. Med. 1: 293-300. – reference: Bebbington, A., A. Anderson, D. Ravine, et al . 2008. Investigating genotype-phenotype relationships in Rett syndrome using an international data set. Neurology 70: 868-875. – reference: Hoffbuhr, K., J.M. Devaney, B. LaFleur, et al . 2001. MeCP2 mutations in children with and without the phenotype of Rett syndrome. Neurology 56: 1486-1495. – reference: Guideri F., M. Acampa, J. Hayek, et al. 1999. Reduced heart rate variability in patients affected with Rett syndrome. A possible explanation for sudden death. Neuropediatrics 30: 146-148. – reference: Yant, L.J., Q. Ran, L. Rao, et al . 2003. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34: 496-502. – reference: Rolando, S. 1985. Rett syndrome: report of eight cases. Brain Dev. 7: 290-296. – reference: Glaze, D.G., J.D. Frost, H.Y. Zoghbi, et al . 1987. Rett's syndrome: characterization of respiratory patterns and sleep. Ann. Neurol. 21: 377-382. – reference: Squillaro, T., N. Alessio, M. Cipollaro, et al . 2012. Reduced expression of MECP2 affects cell commitment and maintenance in neurons by triggering senescence, new perspective for Rett syndrome. Mol. Biol. Cell. 23: 1435-1445. – reference: Gibson, J.H., B. Slobedman, H. KN, et al. 2010. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci. 11: 53. – reference: Lawson, J.A., S. Kim, W.S. Powell, et al . 2006. Oxidized derivatives of omega-3 fatty acids: identification of IPF3 alpha-VI in human urine. J. Lipid. Res. 47: 2515-2524. – reference: Berger-Sweeney, J. 2011. Cognitive deficits in Rett syndrome: what we know and what we need to know to treat them. Neurobiol. Learn Mem. 96: 637-646. – reference: Nonn, L., R.R. Williams, R.P. Erickson, et al . 2003. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol. Cell Biol. 23: 916-922. – reference: Nourooz-Zadeh, J., E.H.C. Liu, E.E. Änggärd, et al . 1998. F4-isoprostanes: a novel class of prostanoids formed during peroxidation of docosahexaenoic acid (DHA). Biochem. Biophys. Res. Commun. 242: 338-344. – reference: Musiek, E.S., J.K. Cha, H. Yin, et al . 2004. Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay. J. Chrom. B: Analyt. Technol. Biomed. Life Sci. 799: 95-102. – reference: Coker, S.B. & A.R. Melnyk. 1991. Rett syndrome and mitochondrial enzyme deficiencies. J. Child. Neurol. 6: 164-166. – reference: Jahn, U., T. Durand & J.-M. Galano. 2008. Beyond prostaglandins-chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew. Chem. Int. Ed. 47: 5894-5955. – reference: Wang, H., G. Yuan, N.R. Prabhakar, et al . 2006. Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling. J. Neurochem. 96: 694-705. – reference: De Felice, C., L. Ciccoli, S. Leoncini, et al . 2009. Systemic oxidative stress in classic Rett syndrome. Free Radic. Biol. Med. 47: 440-448. – reference: Gomot, M., C. Gendrot, A. Verloes, et al. 2003. MECP2 gene mutations in non-syndromic X-linked mental retardation: phenotype-genotype correlation. Am. J. Med. Genet. A 123A: 129-139. – reference: Guy, J., H. Cheval, J. Selfridge & A. Bird. 2011. The role of MeCP2 in the brain. Annu. Rev. Cell Dev. Biol. 27: 631-652. – reference: Pecorelli, A., L. Ciccoli, C. Signorini, et al. 2011. Increased levels of 4HNE-protein plasma adducts in Rett syndrome. 2011. Clin. Biochem. 44: 368. – reference: Gaultier, C. & J. Gallego. 2008. Neural control of breathing: insights from genetic mouse models. J. Appl. Physiol. 104: 1522-1530. – reference: Matsuishi, T., F. Urabe, H. Komori, et al. 1992. The Rett syndrome and CSF lactic acid patterns. Brain Dev. 14: 68-70. – reference: Ott, M., V. Gogvadze, S. Orrenius, et al . 2007. Mitochondria, oxidative stress and cell death. Apoptosis 12: 913-922. – reference: Carney, R.M., C.M. Wolpert, S.A. Ravan, et al . 2003. Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatr. Neurol. 28: 205-211. – reference: VanRollins, M., R.L. Woltjer, H. Yin, et al . 2008. F2-dihomo-isoprostanes arise from free radical attack on adrenic acid. J. Lipid Res. 49: 995-1005. – reference: Eeg-Olofsson, O., A.G. al-Zuhair, A.S. Teebi, et al. 1989. Rett syndrome: genetic clues based on mitochondrial changes in muscle. Am. J. Med. Genet. 32: 142-144. – reference: Temudo, T., M. Santos, E. Ramos, et al . 2011. Rett syndrome with and without detected MECP2 mutations: An attempt to redefine phenotypes. Brain Dev. 33: 69-76. – reference: Perluigi, M., F. di Domenico, A. Fiorini, et al . 2011. Oxidative stress occurs early in Down syndrome pregnancy: a redox proteomics analysis of amniotic fluid. Proteomics Clin. Appl. 5: 167-178. – reference: Gonzales, M.L. & J.M. LaSalle. 2010. The role of MeCP2 in brain development and neurodevelopmental disorders. Curr. Psychiatry Rep. 12: 127-134. – reference: Weese-Mayer, D.E., S.P. Lieske, C.M. Boothby, et al . 2008. Autonomic dysregulation in young girls with Rett syndrome during nighttime in-home recordings. Pediatr. Pulmonol. 43: 1045-1060. – reference: Cardaioli, E., M.T. Dotti, J. Hayek, et al . 1999. Studies on mitochondrial pathogenesis of Rett syndrome: ultrastructural data from skin and muscle biopsies and mutational analysis at mtDNA nucleotides 10463 and 2835. J. Submicrosc. Cytol. Pathol. 31: 301-304. – reference: Signorini, C., C. De Felice, S. Leoncini, et al . 2011. F4-neuroprostanes mediate neurological severity in Rett syndrome. Clin. Chim. Acta. 412: 1399-1406. – reference: Hagebeuk, E.E., R.P. Bijlmer, J.H. Koelman, et al . 2012. Respiratory disturbances in Rett syndrome: don't forget to evaluate upper airway obstruction. J. Child. Neurol. Jan 30. [Epub ahead of print]. – reference: Chahrour, M. & H.Y. Zoghbi. 2007. The story of Rett syndrome: from clinic to neurobiology. Neuron 56: 422-437. – reference: Pugazhenthi, S., K. Phansalkar, G. Audesirk, et al . 2006. Differential regulation of c-jun and CREB by acrolein and 4-hydroxynonenal. Free Radic. Biol. Med. 40: 21-34. – reference: Scala, E., F. Ariani, F. Mari, et al. 2005. CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms. J. Med. Genet. 42: 103-107. – reference: Horská, A., L. Farage, G. Bibat, et al . 2009. Brain metabolism in Rett syndrome: age, clinical, and genotype correlations. Ann. Neurol. 65: 90-97. – reference: Gonnelli, S., C. Caffarelli, J. Hayek, et al. 2008. Bone ultrasonography at phalanxes in patients with Rett syndrome: a 3-year longitudinal study. Bone 42: 737-742. – reference: Lappalainen, R. & R.S. Riikonen. 1994. Elevated CSF lactate in the Rett syndrome: cause or consequence? Brain Dev. 16:399-401. – reference: Wan, M., S.S. Lee, X. Zhang, et al . 1999. Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am. J. Hum. Genet. 65: 1520-1529. – reference: Meehan, R.R., J.D. Lewis, A.P. Bird. 1992. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res. 20: 5085-5092. – reference: Valinluck V., H.H. Tsai, D.K. Rogstad, et al . 2004. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32: 4100-4108. – reference: Chao, H.T., H. Chen, R.C. Samaco, et al . 2010. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468: 263-269. – reference: Kadiiska, M.B., B.C. Gladen, D.D. Baird, et al . 2005. Biomarkers of oxidative stress study III. Effects of the nonsteroidal anti-inflammatory agents indomethacin and meclofenamic acid on measurements of oxidative products of lipids in CCl4 poisoning. Free Radic. Biol. Med. 38: 711-718. – reference: Cohen, S., H.W. Gabel, M. Hemberg, et al. 2011. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron 72: 72-85. – reference: Glaze, D.G., A.K. Percy, S. Skinner, et al. 2010. Epilepsy and the natural history of Rett syndrome. Neurology 74: 909-912. – reference: Percy, A.K. 2008. Rett syndrome: recent research progress. J. Child. Neurol. 23: 543-549. – reference: Lioy, D.T., S.K. Garg, C.E. Monaghan, et al . 2011. A role for glia in the progression of Rett's syndrome. Nature 475: 497-500. – reference: Amir, R.E., I.B. Van den Veyver, M. Wan, et al . 1999. Rett syndrome is caused by mutation in X−linked MECP2, encoding methyl−CpG−binding protein 2. Nat. Genet. 23: 185-188. – reference: Ariani, F., J. Hayek, D. Rondinella, et al . 2008. FOXG1 is responsible for the congenital variant of Rett syndrome. Am. J. Hum. Genet. 83: 89-93. – reference: Neul, J.L., W.E. Kaufmann, D.G. Glaze, et al. 2010. Rett syndrome: revised diagnostic criteria and nomenclature. Ann. Neurol. 68: 944-950. – reference: Hagberg, B., J. Aicardi, K. Dias, et al. 1983. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome:report of 35 cases. Ann. Neurol. 14: 471-479. – reference: Shepherd, G.M. & D.M. Katz. 2011. Synaptic microcircuit dysfunction in genetic models of neurodevelopmental disorders: focus on Mecp2 and Met. Curr. Opin. Neurobiol. 21: 827-833. – reference: Perluigi, M. & D.A. Butterfield. 2012. Oxidative stress and down syndrome: a route toward Alzheimer-like dementia. Curr. Gerontol. Geriatr. Res. 2012: 724904. – reference: Carmeli, E., A. Bachar, R. Beiker. Expression of global oxidative stress and matrix metalloproteinases is associated with rett syndrome. 2011. Neurochemical J. 5: 141-145. – reference: Buoni S., R. Zannolli, C.D. Felice, et al. 2008. Drug-resistant epilepsy and epileptic phenotype-EEG association in MECP2 mutated Rett syndrome. Clin. Neurophysiol. 119: 2455-2458. – reference: Skene P.J., R.S. Illingworth, S. Webb, et al. 2010. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37: 457-468. – reference: D'Esposito, M., N.A. Quaderi, A. Ciccodicola, et al . 1996. Isolation, physical mapping and northern analysis of the X-linked human gene encoding methyl CpG-binding protein, MECP2. Mamm. Gen. 7: 533-535. – reference: Archer, H.L., J. Evans, H. Leonard, et al . 2007. Correlation between clinical severity in patients with Rett syndrome with a p.R168X or p.T158M MECP2 mutation, and the direction and degree of skewing of X-chromosome inactivation. J. Med. Genet. 44: 148-152. – reference: Kerr, A.M. 1992. A review of the respiratory disorder in the Rett syndrome. Brain Dev. Suppl. 14: 43-45. – reference: Colantuoni, C., O.H. Jeon, K. Hyder, et al. 2001. Gene expression profiling in postmortem Rett Syndrome brain: differential gene expression and patient classification. Neurobiol. Dis. 8: 847-865. – reference: Papanikolaou, G. & K. Pantopoulos 2005. Iron metabolism and toxicity. Toxicol. Appl. Pharmacol. 202: 199-211. – reference: Formichi, P., C. Battisti, M.T. Dotti, et al. 1998. Vitamin E serum levels in Rett syndrome. J. Neurol Sci. 156: 227-230. – reference: Calabrese, V., C. Cornelius, C. Mancuso, et al . 2008. Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem. Res. 33: 2444-2471. – reference: Ciccoli, L., V. Rossi, S. Leoncini, et al . 2004. Iron release, superoxide production and binding of autologous IgG to band 3 dimers in newborn and adult erythrocytes exposed to hypoxia and hypoxia-reoxygenation. Biochim. Biophys. Acta 1672: 203-213. – reference: De Felice, C., C. Signorini, T. Durand, et al . 2012. Partial rescue of Rett syndrome by ω-3 polyunsaturated fatty acids (PUFAs) oil. Genes Nutr. Mar 8. [Epub ahead of print]. – reference: Wu, Z.C., J.T. Yu, Y. Li, et al . 2012. Clusterin in Alzheimer's disease. Adv. Clin. Chem. 56: 155-173. – reference: Chahrour, M., S.Y. Jung, C. Shaw, et al. 2008. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320: 1224-1229. – reference: Hagberg, B. 2002. Clinical manifestations and stages of Rett syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 8: 61-65. – reference: Shadid, M., G. Buonocore, F. Groenendaal, et al . 1998. Effect of deferoxamine and allopurinol on non protein-bound iron concentrations in plasma and cortical brain tissue of newborn lambs following hypoxia ischemia. Neurosci. Lett. 248: 5-8. – volume: 23 start-page: 543 year: 2008 end-page: 549 article-title: Rett syndrome: recent research progress publication-title: J. Child. Neurol. – volume: 37 start-page: 386 year: 2011 end-page: 392 article-title: Mitochondrial dysfunction and Down's syndrome: is there a role for coenzyme Q(10)? publication-title: Biofactors – volume: 37 start-page: 457 year: 2010 end-page: 468 article-title: Neuronal MeCP2 is expressed at near histone‐octamer levels and globally alters the chromatin state publication-title: Mol. Cell – volume: 9 start-page: 1369 year: 2000 end-page: 1375 article-title: Rett syndrome: analysis of MECP2 and clinical characterization of 31 patients publication-title: Hum. Mol. Genet. – volume: 42 start-page: 737 year: 2008 end-page: 742 article-title: Bone ultrasonography at phalanxes in patients with Rett syndrome: a 3‐year longitudinal study publication-title: Bone – volume: 236 start-page: 467 year: 1997 end-page: 472 article-title: Evidence for the formation of F3‐isoprostanes during peroxidation of eicosapentaenoic acid publication-title: Biochem. Biophys. Res. Commun. – volume: 140 start-page: 1603 year: 2006 end-page: 1607 article-title: A new cohort of MECP2 mutation screening in unexplained mental retardation: careful re‐evaluation is the best indicator for molecular diagnosis publication-title: Am. J. Med. Genet. A – volume: 38 start-page: 711 year: 2005 end-page: 718 article-title: Biomarkers of oxidative stress study III. Effects of the nonsteroidal anti‐inflammatory agents indomethacin and meclofenamic acid on measurements of oxidative products of lipids in CCl4 poisoning publication-title: Free Radic. Biol. Med. – volume: 20 start-page: 5085 year: 1992 end-page: 5092 article-title: Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA publication-title: Nucleic Acids Res. – volume: 96 start-page: 694 year: 2006 end-page: 705 article-title: Secretion of brain‐derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling publication-title: J. Neurochem. – volume: 44 start-page: 148 year: 2007 end-page: 152 article-title: Correlation between clinical severity in patients with Rett syndrome with a p.R168X or p.T158M MECP2 mutation, and the direction and degree of skewing of X‐chromosome inactivation publication-title: J. Med. Genet. – volume: 23 start-page: 1435 year: 2012 end-page: 1445 article-title: Reduced expression of MECP2 affects cell commitment and maintenance in neurons by triggering senescence, new perspective for Rett syndrome publication-title: Mol. Biol. Cell. – volume: 65 start-page: 90 year: 2009 end-page: 97 article-title: Brain metabolism in Rett syndrome: age, clinical, and genotype correlations publication-title: Ann. Neurol. – volume: 34 start-page: 496 year: 2003 end-page: 502 article-title: The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults publication-title: Free Radic. Biol. Med. – volume: 11 start-page: 53 year: 2010 article-title: Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain publication-title: BMC Neurosci. – volume: 8 start-page: 325 year: 2000 end-page: 330 article-title: Preserved speech variant is allelic of classic Rett syndrome publication-title: Europ. J. Hum. Genet. – volume: 27 start-page: 327 year: 2001 end-page: 33 article-title: Deficiency of methyl‐CpG binding protein‐2 in CNS neurons results in a Rett‐like phenotype in mice publication-title: Nat. Genet. – volume: 6 start-page: 164 year: 1991 end-page: 166 article-title: Rett syndrome and mitochondrial enzyme deficiencies publication-title: J. Child. Neurol. – volume: 40 start-page: 21 year: 2006 end-page: 34 article-title: Differential regulation of c‐jun and CREB by acrolein and 4‐hydroxynonenal publication-title: Free Radic. Biol. Med. – volume: 47 start-page: 2515 year: 2006 end-page: 2524 article-title: Oxidized derivatives of omega‐3 fatty acids: identification of IPF3 alpha‐VI in human urine publication-title: J. Lipid. Res. – volume: 242 start-page: 338 year: 1998 end-page: 344 article-title: F4‐isoprostanes: a novel class of prostanoids formed during peroxidation of docosahexaenoic acid (DHA) publication-title: Biochem. Biophys. Res. Commun. – volume: 70 start-page: 1313 year: 2008 end-page: 1321 article-title: Specific mutations in methyl‐CpG‐binding protein 2 confer different severity in Rett syndrome publication-title: Neurology – volume: 15 start-page: 103 year: 1993 end-page: 106 article-title: Mitochondrial dysfunction in Rett syndrome. An ultrastructural and biochemical study publication-title: Brain Dev. – volume: 93 start-page: 9782 year: 1996 end-page: 9787 article-title: Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase‐deficient mice publication-title: Proc. Natl. Acad. Sci. USA – year: 2012 article-title: Subclinical myocardial dysfunction in Rett syndrome. Eur. Heart publication-title: J. Echocardiogr. Imaging. – volume: 116 start-page: 723 year: 1966 end-page: 738 article-title: Uber ein eigartiges hirnatrophisches Syndrom bei Hyperammoniamie in Kindesalter. publication-title: Wien Med. Wochenschr. – volume: 111 start-page: 5973 year: 2011 end-page: 5996 article-title: Isoprostane generation and function publication-title: Chem. Rev. – volume: 248 start-page: 5 year: 1998 end-page: 8 article-title: Effect of deferoxamine and allopurinol on non protein‐bound iron concentrations in plasma and cortical brain tissue of newborn lambs following hypoxia ischemia publication-title: Neurosci. Lett. – volume: 96 start-page: 637 year: 2011 end-page: 646 article-title: Cognitive deficits in Rett syndrome: what we know and what we need to know to treat them publication-title: Neurobiol. Learn Mem. – volume: 5 start-page: 167 year: 2011 end-page: 178 article-title: Oxidative stress occurs early in Down syndrome pregnancy: a redox proteomics analysis of amniotic fluid publication-title: Proteomics Clin. Appl. – volume: 42 start-page: 103 year: 2005 end-page: 107 article-title: CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms publication-title: J. Med. Genet. – volume: 7 start-page: 533 year: 1996 end-page: 535 article-title: Isolation, physical mapping and northern analysis of the X‐linked human gene encoding methyl CpG‐binding protein, MECP2 publication-title: Mamm. Gen. – volume: 28 start-page: 205 year: 2003 end-page: 211 article-title: Identification of MeCP2 mutations in a series of females with autistic disorder publication-title: Pediatr. Neurol. – volume: 123A start-page: 129 year: 2003 end-page: 139 article-title: MECP2 gene mutations in non‐syndromic X‐linked mental retardation: phenotype‐genotype correlation publication-title: Am. J. Med. Genet. A – volume: 8 start-page: 61 year: 2002 end-page: 65 article-title: Clinical manifestations and stages of Rett syndrome publication-title: Ment. Retard. Dev. Disabil. Res. Rev. – volume: 8 start-page: 1056 year: 2009 end-page: 1072 article-title: Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies publication-title: Lancet Neurol. – volume: 56 start-page: 422 year: 2007 end-page: 437 article-title: The story of Rett syndrome: from clinic to neurobiology publication-title: Neuron – volume: 32 start-page: 4100 year: 2004 end-page: 4108 article-title: Oxidative damage to methyl‐CpG sequences inhibits the binding of the methyl‐CpG binding domain (MBD) of methyl‐CpG binding protein 2 (MeCP2) publication-title: Nucleic Acids Res. – volume: 8 start-page: 847 year: 2001 end-page: 865 article-title: Gene expression profiling in postmortem Rett Syndrome brain: differential gene expression and patient classification publication-title: Neurobiol. Dis. – volume: 21 start-page: 377 year: 1987 end-page: 382 article-title: Rett's syndrome: characterization of respiratory patterns and sleep publication-title: Ann. Neurol. – volume: 26 start-page: 95 year: 1995 end-page: 99 article-title: Oxidative metabolism in Rett syndrome: 2. Biochemical and molecular studies publication-title: Neuropediatrics – volume: 14 start-page: 68 year: 1992 end-page: 70 article-title: The Rett syndrome and CSF lactic acid patterns publication-title: Brain Dev. – volume: 68 start-page: 944 year: 2010 end-page: 950 article-title: Rett syndrome: revised diagnostic criteria and nomenclature publication-title: Ann. Neurol. – volume: 68 start-page: 985 year: 2011 end-page: 989 article-title: Rett syndrome: exploring the autism link publication-title: Arch. Neurol. – volume: 799 start-page: 95 year: 2004 end-page: 102 article-title: Quantification of F‐ring isoprostane‐like compounds (F4‐neuroprostanes) derived from docosahexaenoic acid in humans by a stable isotope dilution mass spectrometric assay publication-title: J. Chrom. B: Analyt. Technol. Biomed. Life Sci. – volume: 1 start-page: S236 year: 2001 end-page: S239 article-title: Oxidative stress in Rett syndrome publication-title: Brain Dev. Suppl. – volume: 70 start-page: 868 year: 2008 end-page: 875 article-title: Investigating genotype‐phenotype relationships in Rett syndrome using an international data set publication-title: Neurology – volume: 6 start-page: 47 year: 1997 end-page: 54 article-title: Functional evidence of brain stem immaturity in Rett syndrome publication-title: Eur. Child Adolesc. Psychiatry – volume: 21 start-page: 585 year: 2011 end-page: 593 article-title: Central nervous system myelin: structure, synthesis and assembly publication-title: Trends Cell Biol. – volume: 2 start-page: 28 year: 2010 article-title: Synaptic determinants of Rett syndrome publication-title: Front, Synaptic Neurosci. – volume: 14 start-page: 1935 year: 2005 end-page: 1946 article-title: CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early‐onset seizure variant of Rett syndrome publication-title: Hum. Mol. Genet. – volume: 104 start-page: 1522 year: 2008 end-page: 1530 article-title: Neural control of breathing: insights from genetic mouse models publication-title: J. Appl. Physiol. – volume: 273 start-page: 13605 year: 1998 end-page: 13612 article-title: Formation of isoprostane‐like compounds (neuroprostanes) from docosahexaenoic acid publication-title: J. Biol. Chem – volume: 89 start-page: 655 year: 2011 end-page: 661 article-title: Evaluation of urinary biomarkers of oxidative/nitrosative stress in children with Down syndrome publication-title: Life Sci. – volume: 118A start-page: 103 year: 2003 end-page: 114 article-title: Effects of MECP2 mutation type, location and X‐inactivation in modulating Rett syndrome phenotype publication-title: Am. J. Med. Genet. – volume: 315 start-page: 1143 year: 2007 end-page: 1147 article-title: Reversal of neurological defects in a mouse model of Rett syndrome publication-title: Science – volume: 412 start-page: 1399 year: 2011 end-page: 1406 article-title: F ‐neuroprostanes mediate neurological severity in Rett syndrome publication-title: Clin. Chim. Acta – volume: 87 start-page: 9383 year: 1990 end-page: 9387 article-title: A series of prostaglandin F2‐like compounds are produced in humans by a non‐cyclooxygenase, free radical‐catalyzed mechanism publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: S11 issue: Suppl year: 1992 end-page: S20 article-title: Age‐related occurrence of signs and symptoms in the Rett syndrome publication-title: Brain Dev. – volume: 5 start-page: e1000667 year: 2009 article-title: On the tracks of DNA methylation: an interview to Adrian Bird publication-title: PLoS Genet. – volume: 49 start-page: 995 year: 2008 end-page: 1005 article-title: F2‐dihomo‐isoprostanes arise from free radical attack on adrenic acid publication-title: J. Lipid Res. – year: 2012 article-title: Partial rescue of Rett syndrome by ω‐3 polyunsaturated fatty acids (PUFAs) oil publication-title: Genes Nutr. – volume: 320 start-page: 1224 year: 2008 end-page: 1229 article-title: MeCP2, a key contributor to neurological disease, activates and represses transcription publication-title: Science – volume: 9 start-page: 1119 year: 2000 end-page: 1129 article-title: Long‐read sequence analysis of the MECP2 gene in Rett syndrome patients: correlation of disease severity with mutation type and location publication-title: Hum. Mol. Genet. – volume: 16 start-page: 145 year: 2011 end-page: 153 article-title: Oxidative stress in Rett syndrome: natural history, genotype, and variants publication-title: Redox Rep. – volume: 3 start-page: e3669 year: 2008 article-title: Mecp2‐null mice provide new neuronal targets for Rett syndrome publication-title: PLoS One – volume: 156 start-page: 227 year: 1998 end-page: 230 article-title: Vitamin E serum levels in Rett syndrome publication-title: J. Neurol Sci. – volume: 74 start-page: 909 year: 2010 end-page: 912 article-title: Epilepsy and the natural history of Rett syndrome publication-title: Neurology – volume: 5 start-page: 141 year: 2011 end-page: 145 article-title: Expression of global oxidative stress and matrix metalloproteinases is associated with rett syndrome publication-title: Neurochemical J. – volume: 439 start-page: 1 year: 2011 end-page: 14 article-title: MeCP2 and Rett syndrome: reversibility and potential avenues for therapy publication-title: Biochem. J. – volume: 47 start-page: 440 year: 2009 end-page: 448 article-title: Systemic oxidative stress in classic Rett syndrome publication-title: Free Radic. Biol. Med. – volume: 724 start-page: 291 year: 2012 end-page: 299 article-title: Oxidative stress and mitochondrial dysfunction in Down syndrome publication-title: Adv. Exp. Med. Biol. – volume: 33 start-page: 69 year: 2011 end-page: 76 article-title: Rett syndrome with and without detected MECP2 mutations: An attempt to redefine phenotypes publication-title: Brain Dev. – volume: 32 start-page: 568 year: 2002 end-page: 576 article-title: Iron release, oxidative stress and erythrocyte ageing publication-title: Free Radic. Biol. Med. – volume: 40 start-page: e52 year: 2003 article-title: Patients with the R133C mutation: is their phenotype different from patients with Rett syndrome with other mutations? publication-title: J. Med. Genet. – volume: 7 start-page: 320 year: 1985 end-page: 325 article-title: The clinical pattern of the Rett syndrome publication-title: Brain Dev. – volume: 16 start-page: 399 year: 1994 end-page: 401 article-title: Elevated CSF lactate in the Rett syndrome: cause or consequence publication-title: Brain Dev. – volume: 21 start-page: 466 year: 2003 end-page: 472 article-title: RettBASE: the IRSA MECP2 variation database—a new mutation database in evolution publication-title: Hum. Mutat. – volume: 1 start-page: 293 year: 1985 end-page: 300 article-title: Rat liver microsomal NADPH‐dependent release of iron from ferritin and lipid peroxidation publication-title: Free Radic. Biol. Med. – volume: 47 start-page: 5894 year: 2008 end-page: 5955 article-title: Beyond prostaglandins—chemistry and biology of cyclic oxygenated metabolites formed by free‐radical pathways from polyunsaturated fatty acids publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 631 year: 2011 end-page: 652 article-title: The role of MeCP2 in the brain publication-title: Annu. Rev. Cell Dev. Biol. – volume: 14 start-page: S89 year: 1992 end-page: 98 article-title: The neuropathology of the Rett syndrome publication-title: Brain Dev. Suppl. – year: 2012 article-title: Respiratory disturbances in Rett syndrome: don't forget to evaluate upper airway obstruction publication-title: J. Child. Neurol. – volume: 219 start-page: 1 year: 1985 end-page: 14 article-title: Oxygen toxicity, oxygen radicals, transition metals and disease publication-title: Biochem. J. – volume: 85 start-page: 29 year: 2001 end-page: 37 article-title: Characterization of breathing and associated central autonomic dysfunction in the Rett disorder publication-title: Arch. Dis. Child. – volume: 9 start-page: 529 year: 1987 end-page: 531 article-title: Reduced concentrations of ascorbic acid and glutathione in a single case of Rett syndrome: a postmortem brain study publication-title: Brain Dev. – volume: 202 start-page: 199 year: 2005 end-page: 211 article-title: Iron metabolism and toxicity publication-title: Toxicol. Appl. Pharmacol. – volume: 23 start-page: S251 year: 2001 end-page: S253 article-title: Rett syndrome in Spain: mutation analysis and clinical correlations publication-title: Brain Dev. – volume: 24 start-page: 69 year: 1985 end-page: 176 article-title: Lipids of nervous tissue: composition and metabolism publication-title: Prog. Lipid Res. – volume: 30 start-page: 146 year: 1999 end-page: 148 article-title: Reduced heart rate variability in patients affected with Rett syndrome. A possible explanation for sudden death publication-title: Neuropediatrics – volume: 31 start-page: 7951 year: 2011 end-page: 7959 article-title: Complexities of Rett syndrome and MeCP2 publication-title: J. Neurosci. – volume: 475 start-page: 497 year: 2011 end-page: 500 article-title: A role for glia in the progression of Rett's syndrome publication-title: Nature – volume: 1672 start-page: 203 year: 2004 end-page: 213 article-title: Iron release, superoxide production and binding of autologous IgG to band 3 dimers in newborn and adult erythrocytes exposed to hypoxia and hypoxia–reoxygenation publication-title: Biochim. Biophys. Acta – volume: 52 start-page: 817 year: 2010 end-page: 823 article-title: Level of purposeful hand function as a marker of clinical severity in Rett syndrome publication-title: Dev. Med. Child Neurol. – volume: 2012 start-page: 724904 year: 2012 article-title: Oxidative stress and down syndrome: a route toward Alzheimer‐like dementia publication-title: Curr. Gerontol. Geriatr. Res. – volume: 12 start-page: 913 year: 2007 end-page: 922 article-title: Mitochondria, oxidative stress and cell death publication-title: Apoptosis – volume: 27 start-page: 322 year: 2001 end-page: 326 article-title: A mouse Mecp2‐null mutation causes neurological symptoms that mimic Rett syndrome publication-title: Nat. Genet. – volume: 1820 start-page: 511 year: 2012 end-page: 520 article-title: Morphological changes and oxidative damage in Rett syndrome erythrocytes publication-title: Biochim. Biophys. Acta – volume: 66 start-page: 771 year: 2009 end-page: 782 article-title: Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome publication-title: Ann. Neurol. – volume: 47 start-page: 670 year: 2000 end-page: 679 article-title: Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes publication-title: Ann. Neurol. – volume: 26 start-page: 5033 year: 2006 end-page: 5042 article-title: Gene expression analysis exposes mitochondrial abnormalities in a mouse model of Rett syndrome publication-title: Mol. Cell. Biol. – volume: 19 start-page: 501 year: 2008 end-page: 517 article-title: Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches publication-title: Behav. Pharmacol. – volume: 43 start-page: 1045 year: 2008 end-page: 1060 article-title: Autonomic dysregulation in young girls with Rett syndrome during nighttime in‐home recordings publication-title: Pediatr. Pulmonol. – volume: 9 start-page: 439 year: 2010 end-page: 454 article-title: Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models publication-title: CNS Neurol. Disord. Drug Targets – volume: 119 start-page: 2455 year: 2008 end-page: 2458 article-title: Drug‐resistant epilepsy and epileptic phenotype‐EEG association in MECP2 mutated Rett syndrome publication-title: Clin. Neurophysiol. – volume: 83 start-page: 89 year: 2008 end-page: 93 article-title: FOXG1 is responsible for the congenital variant of Rett syndrome publication-title: Am. J. Hum. Genet. – volume: 131 start-page: 2647 year: 2008 end-page: 2661 article-title: Key clinical features to identify girls with CDKL5 mutations publication-title: Brain – volume: 111 start-page: 238 year: 2002 end-page: 242 article-title: Infantile hypotonia as a presentation of Rett syndrome publication-title: Am. J. Med. Genet. – volume: 56 start-page: 155 year: 2012 end-page: 173 article-title: Clusterin in Alzheimer's disease publication-title: Adv. Clin. Chem. – volume: 33 start-page: 2444 year: 2008 end-page: 2471 article-title: Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity publication-title: Neurochem. Res. – volume: 23 start-page: 185 year: 1999 end-page: 188 article-title: Rett syndrome is caused by mutation in X−linked MECP2, encoding methyl−CpG−binding protein 2 publication-title: Nat. Genet. – volume: 5 start-page: 320 year: 1989 end-page: 323 article-title: Mitochondrial alterations in Rett syndrome publication-title: Pediatr. Neurol. – volume: 12 start-page: 239 year: 2009 end-page: 240 article-title: Rett syndrome: what do we know for sure? publication-title: Nat. Neurosci. – volume: 65 start-page: 1520 year: 1999 end-page: 1529 article-title: Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. publication-title: Am. J. Hum. Genet. – volume: 30 start-page: 5346 year: 2010 end-page: 5356 article-title: Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate publication-title: J. Neurosci. – volume: 80 start-page: 384 year: 1999 end-page: 387 article-title: Recent insights into hyperventilation from the study of Rett syndrome publication-title: Arch. Dis. Child. – volume: 22 start-page: 107 year: 2003 end-page: 115 article-title: Mutations and polymorphisms in the human methyl CpG‐binding protein MECP2 publication-title: Hum. Mutat. – volume: 7 start-page: 290 year: 1985 end-page: 296 article-title: Rett syndrome: report of eight cases publication-title: Brain Dev. – volume: 468 start-page: 263 year: 2010 end-page: 269 article-title: Dysfunction in GABA signalling mediates autism‐like stereotypies and Rett syndrome phenotypes publication-title: Nature – volume: 56 start-page: 1486 year: 2001 end-page: 1495 article-title: MeCP2 mutations in children with and without the phenotype of Rett syndrome publication-title: Neurology – volume: 14 start-page: 43 year: 1992 end-page: 45 article-title: A review of the respiratory disorder in the Rett syndrome publication-title: Brain Dev. Suppl. – volume: 138 start-page: 386 year: 2010 end-page: 392 article-title: Unrecognized lung disease in classic Rett syndrome: a physiologic and high‐resolution CT imaging study publication-title: Chest – volume: 72 start-page: 72 year: 2011 end-page: 85 article-title: Genome‐wide activity‐dependent MeCP2 phosphorylation regulates nervous system development and function publication-title: Neuron – volume: 484 start-page: 105 year: 2012 end-page: 109 article-title: Wild‐type microglia arrest pathology in a mouse model of Rett syndrome publication-title: Nature – volume: 72 start-page: 734 year: 1999 end-page: 740 article-title: F4‐isoprostanes as specific marker of docosahexaenoic acdid peroxidation in Alzheimer's disease publication-title: J. Neurochem. – volume: 107 start-page: 355 year: 2012 end-page: 415 article-title: Biology of mitochondria in neurodegenerative diseases publication-title: Prog. Mol Biol. Transl. Sci. – volume: 86 start-page: 287 year: 2011 end-page: 321 article-title: Multiple sclerosis is not a disease of the immune system publication-title: Q. Rev. Biol. – volume: 32 start-page: 142 year: 1989 end-page: 144 article-title: Rett syndrome: genetic clues based on mitochondrial changes in muscle publication-title: Am. J. Med. Genet. – volume: 12 start-page: 127 year: 2010 end-page: 134 article-title: The role of MeCP2 in brain development and neurodevelopmental disorders publication-title: Curr. Psychiatry Rep. – volume: 44 start-page: 368 year: 2011 article-title: Increased levels of 4HNE‐protein plasma adducts in Rett syndrome publication-title: Clin. Biochem. – volume: 31 start-page: 301 year: 1999 end-page: 304 article-title: Studies on mitochondrial pathogenesis of Rett syndrome: ultrastructural data from skin and muscle biopsies and mutational analysis at mtDNA nucleotides 10463 and 2835 publication-title: J. Submicrosc. Cytol. Pathol. – volume: 52 start-page: 2287 year: 2011 end-page: 2297 article-title: F2‐dihomo‐isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome publication-title: J. Lipid Res. – volume: 23 start-page: 916 year: 2003 end-page: 922 article-title: The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice publication-title: Mol. Cell Biol. – volume: 38 start-page: 224 year: 2001 end-page: 228 article-title: Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein publication-title: J. Med. Genet. – volume: 67 start-page: 164 year: 2006 end-page: 166 article-title: Early progressive encephalopathy in boys and MECP2 mutations publication-title: Neurology – volume: 173 start-page: 146 year: 2010 end-page: 156 article-title: Physiological definition of upper airway obstructions in mouse model for Rett syndrome publication-title: Respir. Physiol. Neurobiol. – volume: 39 start-page: 44 year: 2007 end-page: 84 article-title: Free radicals and antioxidants in normal physiological functions and human disease publication-title: Int. J. Biochem. Cell Biol. – volume: 14 start-page: 471 year: 1983 end-page: 479 article-title: A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome:report of 35 cases publication-title: Ann. Neurol. – volume: 21 start-page: 827 year: 2011 end-page: 833 article-title: Synaptic microcircuit dysfunction in genetic models of neurodevelopmental disorders: focus on Mecp2 and Met publication-title: Curr. Opin. Neurobiol. – ident: e_1_2_10_39_2 doi: 10.1136/jmg.38.4.224 – ident: e_1_2_10_77_2 doi: 10.1111/j.1471-4159.2005.03572.x – ident: e_1_2_10_99_2 doi: 10.1086/662453 – ident: e_1_2_10_63_2 doi: 10.1002/anie.200705122 – ident: e_1_2_10_113_2 doi: 10.1038/85899 – ident: e_1_2_10_42_2 doi: 10.1126/science.1138389 – ident: e_1_2_10_13_2 doi: 10.1177/0883073807309786 – ident: e_1_2_10_30_2 doi: 10.1002/ajmg.a.10053 – ident: e_1_2_10_136_2 doi: 10.1016/0887-8994(89)90027-1 – ident: e_1_2_10_112_2 doi: 10.1038/sj.ejhg.5200473 – ident: e_1_2_10_38_2 doi: 10.1016/S0887-8994(02)00624-0 – ident: e_1_2_10_57_2 doi: 10.1016/j.bbagen.2004.04.003 – ident: e_1_2_10_124_2 doi: 10.1016/j.neuron.2011.08.022 – ident: e_1_2_10_133_2 doi: 10.1055/s-2007-979735 – ident: e_1_2_10_22_2 doi: 10.1007/s003359900157 – ident: e_1_2_10_92_2 doi: 10.1194/jlr.P017798 – ident: e_1_2_10_100_2 doi: 10.1007/978-1-4614-0653-2_22 – ident: e_1_2_10_62_2 doi: 10.1016/j.freeradbiomed.2004.10.024 – ident: e_1_2_10_84_2 doi: 10.1136/adc.80.4.384 – ident: e_1_2_10_129_2 doi: 10.1134/S1819712411020024 – ident: e_1_2_10_101_2 doi: 10.1155/2012/724904 – ident: e_1_2_10_16_2 doi: 10.1002/ana.22124 – ident: e_1_2_10_87_2 doi: 10.1002/ppul.20866 – ident: e_1_2_10_140_2 doi: 10.1186/1471-2202-11-53 – volume: 14 start-page: S89 year: 1992 ident: e_1_2_10_134_2 article-title: The neuropathology of the Rett syndrome publication-title: Brain Dev. Suppl. – ident: e_1_2_10_120_2 doi: 10.1378/chest.09-3021 – volume: 116 start-page: 723 year: 1966 ident: e_1_2_10_14_2 article-title: Uber ein eigartiges hirnatrophisches Syndrom bei Hyperammoniamie in Kindesalter. publication-title: Wien Med. Wochenschr. – ident: e_1_2_10_119_2 doi: 10.1002/ana.22124 – ident: e_1_2_10_10_2 doi: 10.1016/S1474-4422(09)70262-5 – ident: e_1_2_10_114_2 doi: 10.1038/85906 – ident: e_1_2_10_128_2 doi: 10.1006/nbdi.2001.0428 – ident: e_1_2_10_4_2 doi: 10.1001/archneurol.2011.149 – ident: e_1_2_10_12_2 doi: 10.1016/j.neuron.2007.10.001 – ident: e_1_2_10_143_2 – ident: e_1_2_10_97_2 doi: 10.1016/B978-0-12-385883-2.00005-9 – ident: e_1_2_10_95_2 doi: 10.1179/1351000211Y.0000000004 – ident: e_1_2_10_3_2 doi: 10.1042/BJ20110648 – ident: e_1_2_10_17_2 doi: 10.1002/mrdd.10020 – ident: e_1_2_10_141_2 doi: 10.1212/WNL.0b013e3181d6b852 – ident: e_1_2_10_85_2 doi: 10.1136/adc.85.1.29 – ident: e_1_2_10_79_2 doi: 10.1371/journal.pone.0003669 – ident: e_1_2_10_6_2 doi: 10.1523/JNEUROSCI.0169-11.2011 – ident: e_1_2_10_68_2 doi: 10.1016/j.jchromb.2003.10.036 – ident: e_1_2_10_81_2 doi: 10.1128/MCB.01665-05 – ident: e_1_2_10_105_2 doi: 10.1002/ana.410140412 – ident: e_1_2_10_69_2 doi: 10.1046/j.1471-4159.1999.0720734.x – ident: e_1_2_10_11_2 doi: 10.1097/FBP.0b013e32830c3645 – ident: e_1_2_10_125_2 doi: 10.1002/ana.21715 – volume: 2 start-page: 28 year: 2010 ident: e_1_2_10_9_2 article-title: Synaptic determinants of Rett syndrome publication-title: Front, Synaptic Neurosci. – ident: e_1_2_10_35_2 doi: 10.1136/jmg.40.5.e52 – ident: e_1_2_10_86_2 doi: 10.1002/ana.410210410 – ident: e_1_2_10_65_2 doi: 10.1006/bbrc.1997.7883 – ident: e_1_2_10_59_2 doi: 10.1016/0748-5514(85)90134-5 – ident: e_1_2_10_58_2 doi: 10.1016/j.taap.2004.06.021 – ident: e_1_2_10_50_2 doi: 10.1073/pnas.93.18.9782 – ident: e_1_2_10_91_2 doi: 10.1016/j.bbagen.2011.12.002 – ident: e_1_2_10_127_2 doi: 10.1002/ajmg.a.20247 – ident: e_1_2_10_74_2 doi: 10.1016/S0387-7604(01)00369-2 – ident: e_1_2_10_76_2 doi: 10.1093/nar/gkh739 – ident: e_1_2_10_48_2 doi: 10.1016/S0891-5849(02)01360-6 – ident: e_1_2_10_49_2 doi: 10.1128/MCB.23.3.916-922.2003 – ident: e_1_2_10_103_2 doi: 10.1016/j.lfs.2011.08.006 – ident: e_1_2_10_131_2 doi: 10.1016/0387-7604(94)90129-5 – ident: e_1_2_10_121_2 doi: 10.1016/j.molcel.2010.01.030 – ident: e_1_2_10_110_2 doi: 10.1016/S0022-510X(98)00035-5 – ident: e_1_2_10_2_2 doi: 10.1146/annurev-cellbio-092910-154121 – ident: e_1_2_10_78_2 doi: 10.1016/j.freeradbiomed.2005.08.023 – ident: e_1_2_10_93_2 doi: 10.1016/j.tcb.2011.06.004 – ident: e_1_2_10_104_2 doi: 10.1002/prca.201000121 – ident: e_1_2_10_41_2 doi: 10.1016/j.ajhg.2008.05.015 – ident: e_1_2_10_61_2 doi: 10.1073/pnas.87.23.9383 – ident: e_1_2_10_60_2 doi: 10.1016/S0304-3940(98)00303-6 – ident: e_1_2_10_72_2 doi: 10.1194/jlr.M700503-JLR200 – ident: e_1_2_10_24_2 doi: 10.1212/01.wnl.0000291011.54508.aa – ident: e_1_2_10_7_2 doi: 10.1016/j.nlm.2011.05.006 – ident: e_1_2_10_71_2 doi: 10.1194/jlr.M600327-JLR200 – ident: e_1_2_10_23_2 doi: 10.1136/jmg.2006.045260 – ident: e_1_2_10_117_2 doi: 10.1126/science.1153252 – ident: e_1_2_10_47_2 doi: 10.2174/187152710791556113 – ident: e_1_2_10_96_2 doi: 10.1007/s12263-012-0285-7 – ident: e_1_2_10_37_2 doi: 10.1212/01.wnl.0000223318.28938.45 – ident: e_1_2_10_5_2 doi: 10.1016/j.conb.2011.06.006 – ident: e_1_2_10_111_2 doi: 10.1055/s-2007-973480 – ident: e_1_2_10_46_2 doi: 10.1016/j.biocel.2006.07.001 – ident: e_1_2_10_73_2 doi: 10.1016/S0387-7604(87)80079-7 – ident: e_1_2_10_138_2 doi: 10.1177/088307389100600216 – ident: e_1_2_10_98_2 doi: 10.1016/B978-0-12-394317-0.00011-X – ident: e_1_2_10_122_2 doi: 10.1038/nature09582 – ident: e_1_2_10_53_2 doi: 10.1038/nature10214 – ident: e_1_2_10_75_2 doi: 10.1016/j.freeradbiomed.2009.05.016 – ident: e_1_2_10_90_2 doi: 10.1016/j.resp.2010.07.006 – ident: e_1_2_10_66_2 doi: 10.1074/jbc.273.22.13605 – ident: e_1_2_10_106_2 doi: 10.1016/S0387-7604(85)80037-1 – ident: e_1_2_10_132_2 doi: 10.1016/S0387-7604(12)80283-X – ident: e_1_2_10_51_2 doi: 10.1091/mbc.E11-09-0784 – volume: 14 start-page: 43 year: 1992 ident: e_1_2_10_82_2 article-title: A review of the respiratory disorder in the Rett syndrome publication-title: Brain Dev. Suppl. – ident: e_1_2_10_135_2 doi: 10.1002/ajmg.1320320131 – ident: e_1_2_10_28_2 doi: 10.1212/WNL.56.11.1486 – ident: e_1_2_10_40_2 doi: 10.1093/brain/awn197 – ident: e_1_2_10_52_2 doi: 10.1523/JNEUROSCI.5966-09.2010 – ident: e_1_2_10_8_2 doi: 10.1007/s11920-010-0097-7 – ident: e_1_2_10_130_2 doi: 10.1016/j.clinbiochem.2011.01.007 – ident: e_1_2_10_27_2 doi: 10.1093/hmg/9.9.1369 – ident: e_1_2_10_64_2 doi: 10.1021/cr200160h – ident: e_1_2_10_109_2 doi: 10.1093/nar/20.19.5085 – ident: e_1_2_10_19_2 doi: 10.1038/nn0309-239 – ident: e_1_2_10_67_2 doi: 10.1016/0163-7827(85)90011-6 – ident: e_1_2_10_43_2 doi: 10.1371/journal.pgen.1000667 – year: 2012 ident: e_1_2_10_123_2 article-title: Subclinical myocardial dysfunction in Rett syndrome. Eur. Heart publication-title: J. Echocardiogr. Imaging. – ident: e_1_2_10_118_2 doi: 10.1016/j.bone.2007.12.003 – ident: e_1_2_10_44_2 doi: 10.1007/s10495-007-0756-2 – ident: e_1_2_10_15_2 doi: 10.1038/13810 – ident: e_1_2_10_116_2 doi: 10.1136/jmg.2004.026237 – ident: e_1_2_10_102_2 doi: 10.1002/biof.184 – volume: 31 start-page: 301 year: 1999 ident: e_1_2_10_80_2 article-title: Studies on mitochondrial pathogenesis of Rett syndrome: ultrastructural data from skin and muscle biopsies and mutational analysis at mtDNA nucleotides 10463 and 2835 publication-title: J. Submicrosc. Cytol. Pathol. – ident: e_1_2_10_34_2 doi: 10.1002/ana.21562 – ident: e_1_2_10_56_2 doi: 10.1016/S0891-5849(02)00759-1 – ident: e_1_2_10_115_2 doi: 10.1093/hmg/ddi198 – volume: 6 start-page: 47 year: 1997 ident: e_1_2_10_83_2 article-title: Functional evidence of brain stem immaturity in Rett syndrome publication-title: Eur. Child Adolesc. Psychiatry – ident: e_1_2_10_21_2 doi: 10.1002/humu.10194 – ident: e_1_2_10_70_2 doi: 10.1006/bbrc.1997.6869 – ident: e_1_2_10_29_2 doi: 10.1016/S0387-7604(01)00374-6 – ident: e_1_2_10_54_2 doi: 10.1038/nature10907 – ident: e_1_2_10_55_2 doi: 10.1042/bj2190001 – ident: e_1_2_10_31_2 doi: 10.1212/01.wnl.0000304752.50773.ec – ident: e_1_2_10_20_2 doi: 10.1002/humu.10243 – ident: e_1_2_10_36_2 doi: 10.1086/302690 – ident: e_1_2_10_107_2 doi: 10.1016/S0387-7604(85)80030-9 – volume: 14 start-page: S11 year: 1992 ident: e_1_2_10_108_2 article-title: Age‐related occurrence of signs and symptoms in the Rett syndrome publication-title: Brain Dev. – ident: e_1_2_10_139_2 doi: 10.1002/ajmg.10633 – ident: e_1_2_10_26_2 doi: 10.1093/hmg/9.7.1119 – ident: e_1_2_10_88_2 doi: 10.1152/japplphysiol.01266.2007 – ident: e_1_2_10_33_2 doi: 10.1111/j.1469-8749.2010.03636.x – ident: e_1_2_10_25_2 doi: 10.1002/1531-8249(200005)47:5<670::AID-ANA20>3.0.CO;2-F – ident: e_1_2_10_32_2 doi: 10.1016/j.braindev.2010.01.004 – ident: e_1_2_10_142_2 doi: 10.1016/j.clinph.2008.08.015 – ident: e_1_2_10_45_2 doi: 10.1007/s11064-008-9775-9 – ident: e_1_2_10_126_2 doi: 10.1002/ajmg.a.31314 – ident: e_1_2_10_137_2 doi: 10.1016/0387-7604(93)90045-A – ident: e_1_2_10_89_2 doi: 10.1177/0883073811429859 – ident: e_1_2_10_94_2 doi: 10.1016/j.cca.2011.04.016 – ident: e_1_2_10_18_2 doi: 10.1038/nature09582 |
SSID | ssj0012847 |
Score | 2.3532882 |
SecondaryResourceType | review_article |
Snippet | The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl‐CpG binding protein 2... The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl-CpG binding protein 2... |
SourceID | hal proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121 |
SubjectTerms | Animal models Animals Chemical Sciences Female Genetic Association Studies Heterogeneity Humans isoprostanes MeCP2 Molecular Targeted Therapy - trends Mutation Organic chemistry Oxidative stress Oxidative Stress - genetics Oxidative Stress - physiology Quality of life Rett syndrome Rett Syndrome - etiology Rett Syndrome - genetics Rett Syndrome - metabolism Rett Syndrome - therapy |
Title | The role of oxidative stress in Rett syndrome: an overview |
URI | https://api.istex.fr/ark:/67375/WNG-9P2ZJ0D1-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1749-6632.2012.06611.x https://www.ncbi.nlm.nih.gov/pubmed/22758644 https://www.proquest.com/docview/1768590632 https://www.proquest.com/docview/1037662383 https://www.proquest.com/docview/1038238086 https://hal.science/hal-00714965 |
Volume | 1259 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCIkXYOMrMJBBCMFDqtiJ7XhvFTCqCSo0mBi8WI5ji6koRWuKCn89d04a0WlCE-ItSs5NfbmP3yXnnwl5musCUK0C_w4CChQXqtQWnKVSiLwIUBNlDgvFd1M5OSoOjsVx3_-Ea2E6fojhhRt6RozX6OC2Wmw6uSp0ChkT11PhKz1INWyEeBJbtxAfHQ5MUjEKx6CsICgDqDnb1HPOD21kqstfsU_yCqp-dR4Y3cS2MTnt3yCz9bS6npTZaNlWI_frDOPj_5n3TXK9x7B03BndNrnkmx1ytdvV8ucO2e7jxYI-70mtX9wie2CPFFsZ6TzQ-eqkjoTjtFuqQk8aeujblq75E_aobSg2l-KHi9vkaP_1x5eTtN-3IXVCapYGD45euxCgGMo0eLnPpeIy-KBzLSxc41YJa50K2ntWaua48KK2tWQ-iDq_Q7aaeePvwTMqnS3yANFcZkVVq5JlZZ0HngUvfWZ1QtT6GRnXk5rj3hrfzB_FDajLoLoMqstEdZlVQtgw8ntH7HGBMU_ADAZxZOaejN8aPIdQDan3f7CEPItWMojZ0xl2zylhPk3fGP2efznIXjEDgrtrMzJ94FjAjWUpNOBGnpDHw2VwefyOYxs_X4JMBlkBYGuZ_1WmBAkoWBNytzPR4Q9xDkUi4GBQXjS0C8_fTD-PP-Dh_X8e-YBcw_Ndw_Mu2WpPl_4hwLq2ehQd9jc9RDbB |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgE4IXxsavsAEGIQQPqWInjuO9VYNRRlehsWmDF8t1bDFtStGWosJfvzsnjeg0oQnxVjXnNr7cnb9zzt8R8ipVGaBaCf7tBSQo1o9jk3EW50KkmYecKLGYKO6O8sFBtnMkjtp2QHgWpuGH6Dbc0DNCvEYHxw3pRS-XmYphycQDVbinB2sN6wGgXMYG3yG_2uu4pEIcDmFZQlgGWHO5rOeKX1pYq25-x0rJZVT-7Co4uohuw_K0vUJO5xNrqlJOetN63LO_L3E-_qeZ3yN3WxhL-43drZIbrlojt5rGlr_WyGobMs7pm5bX-u19sgkmSbGakU48ncyOy8A5TpvTKvS4onuurumcQmGTmopifSm-u3hADrbf728N4rZ1Q2xFrljsHfh6ab2HfChR4OguzSXPvfMqVcLANW6kMMZKr5xjhWKWCydKU-bMeVGmD8lSNancY3hIhTVZ6iGg50k2LmXBkqJMPU-8y11iVETk_CFp2_KaY3uNU_1HfgPq0qgujerSQV16FhHWjfzRcHtcY8xLsINOHMm5B_2hxu8QrSH7_k8WkdfBTDoxc3aCBXRS6MPRB60-8287yTumQXBjbke6jR3n8Md5IRRARx6RF91l8Hp8lWMqN5mCTAILAyDXIv2rTAESkLNG5FFjo90NcQ55IkBhUF6wtGvPX4--9r_gxyf_PPI5uT3Y3x3q4cfRp3VyB2Wa-ucNslSfTd1TQHn1-Fnw3gu2vzrc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgE4gXYOMrMMAghOAhlZ3Edry3ilLKGNU0mDZ4sVzHFlNROm0pKvz13CVpRKcJTYi3Kjmn8eU-fpecfybkRaozQLUK_DsIKFBcmMQ2S3gshUizADURc1gofhzL0UG2cySO2v4nXAvT8EN0L9zQM-p4jQ5-UoRVJ1eZjiFj4noqfKUHqYb3AE-uZ5LlaOGD_Y5Kqg7DdVRWEJUB1Zzv6rngSiup6uo3bJRcR90vLkKjq-C2zk7DW2S6nFfTlDLtzatJz_06R_n4fyZ-m9xsQSztN1a3Qa74cpNca7a1_LlJNtqAcUZftazWr--QbTBIir2MdBbobHFc1IzjtFmrQo9Luu-rii4JFLapLSl2l-KXi7vkYPj285tR3G7cEDshNY-DB08vXAhQDTENbu5TqRIZfNCpFhbOJVYJa50K2nuea-4S4UVhC8l9EEV6j6yVs9I_gGeUO5ulAcK5ZNmkUDlneZGGhAUvPbM6Imr5jIxrWc1xc43v5o_qBtRlUF0G1WVqdZlFRHg38qRh9rjEmOdgBp04UnOP-rsGjyFWQ-79HzwiL2sr6cTs6RTb55Qwh-N3Ru8lX3fYgBsQ3FqakWkjxxn8scyFBuCYRORZdxp8Hj_k2NLP5iDDIC0Abs3Tv8rkIAEVa0TuNyba3VCSQJUIQBiUVxvapedvxl_6n_Dnw38e-ZRc3xsMze778YdH5AaKNM3PW2StOp37xwDxqsmT2nd_A9VCOZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+oxidative+stress+in+Rett+syndrome%3A+an+overview&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=De+Felice%2C+Claudio&rft.au=Signorini%2C+Cinzia&rft.au=Leoncini%2C+Silvia&rft.au=Pecorelli%2C+Alessandra&rft.date=2012-07-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1259&rft.issue=1&rft.spage=121&rft.epage=135&rft_id=info:doi/10.1111%2Fj.1749-6632.2012.06611.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_9P2ZJ0D1_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon |