The role of oxidative stress in Rett syndrome: an overview

The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl‐CpG binding protein 2 (MeCP2) gene. To date, no cure for RTT exists, although disease reversibility has been demonstrated in animal models. Emerging evidence from...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the New York Academy of Sciences Vol. 1259; no. 1; pp. 121 - 135
Main Authors De Felice, Claudio, Signorini, Cinzia, Leoncini, Silvia, Pecorelli, Alessandra, Durand, Thierry, Valacchi, Giuseppe, Ciccoli, Lucia, Hayek, Joussef
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.07.2012
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text
ISSN0077-8923
1749-6632
1749-6632
DOI10.1111/j.1749-6632.2012.06611.x

Cover

Loading…
Abstract The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl‐CpG binding protein 2 (MeCP2) gene. To date, no cure for RTT exists, although disease reversibility has been demonstrated in animal models. Emerging evidence from our and other laboratories indicates a potential role of oxidative stress (OS) in RTT. This review examines the current state of the knowledge on the role of OS in explaining the natural history, genotype–phenotype correlation, and clinical heterogeneity of the human disease. Biochemical evidence of OS appears to be related to neurological symptom severity, mutation type, and clinical presentation. These findings pave the way for potential new genetic downstream therapeutic strategies aimed at improving patient quality of life. Further efforts in the near future are needed for investigating the yet unexplored “black box” between the MeCP2 gene mutation and subsequent OS derangement.
AbstractList The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl-CpG binding protein 2 (MeCP2) gene. To date, no cure for RTT exists, although disease reversibility has been demonstrated in animal models. Emerging evidence from our and other laboratories indicates a potential role of oxidative stress (OS) in RTT. This review examines the current state of the knowledge on the role of OS in explaining the natural history, genotype-phenotype correlation, and clinical heterogeneity of the human disease. Biochemical evidence of OS appears to be related to neurological symptom severity, mutation type, and clinical presentation. These findings pave the way for potential new genetic downstream therapeutic strategies aimed at improving patient quality of life. Further efforts in the near future are needed for investigating the yet unexplored "black box" between the MeCP2 gene mutation and subsequent OS derangement.
The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl-CpG binding protein 2 (MeCP2) gene. To date, no cure for RTT exists, although disease reversibility has been demonstrated in animal models. Emerging evidence from our and other laboratories indicates a potential role of oxidative stress (OS) in RTT. This review examines the current state of the knowledge on the role of OS in explaining the natural history, genotype-phenotype correlation, and clinical heterogeneity of the human disease. Biochemical evidence of OS appears to be related to neurological symptom severity, mutation type, and clinical presentation. These findings pave the way for potential new genetic downstream therapeutic strategies aimed at improving patient quality of life. Further efforts in the near future are needed for investigating the yet unexplored "black box" between the MeCP2 gene mutation and subsequent OS derangement.The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl-CpG binding protein 2 (MeCP2) gene. To date, no cure for RTT exists, although disease reversibility has been demonstrated in animal models. Emerging evidence from our and other laboratories indicates a potential role of oxidative stress (OS) in RTT. This review examines the current state of the knowledge on the role of OS in explaining the natural history, genotype-phenotype correlation, and clinical heterogeneity of the human disease. Biochemical evidence of OS appears to be related to neurological symptom severity, mutation type, and clinical presentation. These findings pave the way for potential new genetic downstream therapeutic strategies aimed at improving patient quality of life. Further efforts in the near future are needed for investigating the yet unexplored "black box" between the MeCP2 gene mutation and subsequent OS derangement.
The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl‐CpG binding protein 2 ( MeCP2 ) gene. To date, no cure for RTT exists, although disease reversibility has been demonstrated in animal models. Emerging evidence from our and other laboratories indicates a potential role of oxidative stress (OS) in RTT. This review examines the current state of the knowledge on the role of OS in explaining the natural history, genotype–phenotype correlation, and clinical heterogeneity of the human disease. Biochemical evidence of OS appears to be related to neurological symptom severity, mutation type, and clinical presentation. These findings pave the way for potential new genetic downstream therapeutic strategies aimed at improving patient quality of life. Further efforts in the near future are needed for investigating the yet unexplored “black box” between the MeCP2 gene mutation and subsequent OS derangement.
Author Hayek, Joussef
Durand, Thierry
Valacchi, Giuseppe
Ciccoli, Lucia
Leoncini, Silvia
De Felice, Claudio
Signorini, Cinzia
Pecorelli, Alessandra
Author_xml – sequence: 1
  givenname: Claudio
  surname: De Felice
  fullname: De Felice, Claudio
  organization: Neonatal Intensive Care Unit University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS) of Siena, Siena, Italy
– sequence: 2
  givenname: Cinzia
  surname: Signorini
  fullname: Signorini, Cinzia
  organization: Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy
– sequence: 3
  givenname: Silvia
  surname: Leoncini
  fullname: Leoncini, Silvia
  organization: Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy
– sequence: 4
  givenname: Alessandra
  surname: Pecorelli
  fullname: Pecorelli, Alessandra
  organization: Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy
– sequence: 5
  givenname: Thierry
  surname: Durand
  fullname: Durand, Thierry
  organization: Institut des Biomolécules Max Mousseron (IBMM), Montpellier, France
– sequence: 6
  givenname: Giuseppe
  surname: Valacchi
  fullname: Valacchi, Giuseppe
  organization: Department of Evolutionary Biology, University of Ferrara, Ferrara, Italy
– sequence: 7
  givenname: Lucia
  surname: Ciccoli
  fullname: Ciccoli, Lucia
  organization: Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy
– sequence: 8
  givenname: Joussef
  surname: Hayek
  fullname: Hayek, Joussef
  organization: Child Neuropsychiatry Unit, University Hospital, AOUS, Siena, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22758644$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00714965$$DView record in HAL
BookMark eNqNkU1vEzEQhi1URNPCX0CWuNDDLv5Y2-sekKICLSgqCIoQXCyzO1YdNutib9Lk3-MlaQ49xRdbM8-845n3BB31oQeEMCUlzefNvKSq0oWUnJWMUFYSKSkt10_QZJ84QhNClCpqzfgxOklpTjJZV-oZOmZMiVpW1QSd39wCjqEDHBwOa9_awa8ApyFCStj3-CsMA06bvo1hAefY9jisIK483D9HT53tErzY3afo-4f3NxdXxezz5ceL6axohNS0cCAoaRvnqloRTQQHLhWTDpzmWticY1YJaxvlNACtNW2YANHaVlJwouWn6Gyre2s7cxf9wsaNCdabq-nMjLE8Jq20FCua2ddb9i6Gv0tIg1n41EDX2R7CMhlKeM14TWp5CKqkzDDP6KtH6DwsY5-HNlTJWmiS952plztq-XsB7f6rD8vOwNst0MSQUgRnGj_kfYd-iNZ3uaMZ3TVzM5poRhPN6K75765ZZ4H6kcBDjwNKd73vfQebg-vM9c_pt_GZBYqtgE8DrPcCNv4xUnElzI_rS6O_sF-fyDtqKP8H-QrHnQ
CODEN ANYAA9
CitedBy_id crossref_primary_10_1016_j_autrev_2016_01_011
crossref_primary_10_1155_2019_3279670
crossref_primary_10_1007_s00439_013_1271_x
crossref_primary_10_1016_j_neuroscience_2020_04_037
crossref_primary_10_1038_s41598_017_12293_8
crossref_primary_10_1042_BST20140071
crossref_primary_10_1155_2014_983178
crossref_primary_10_1038_s41598_020_80723_1
crossref_primary_10_1097_WCO_0b013e32835f19a7
crossref_primary_10_1007_s00404_014_3208_6
crossref_primary_10_2217_fnl_15_9
crossref_primary_10_1007_s40263_024_01106_y
crossref_primary_10_1007_s10286_023_00958_6
crossref_primary_10_3389_fphys_2016_00385
crossref_primary_10_1016_j_jprot_2016_12_010
crossref_primary_10_1016_j_celrep_2015_11_007
crossref_primary_10_1155_2017_9467819
crossref_primary_10_1016_j_plefa_2014_08_002
crossref_primary_10_1155_2014_195935
crossref_primary_10_1016_j_abb_2020_108666
crossref_primary_10_1016_j_neubiorev_2018_12_009
crossref_primary_10_3389_fphys_2019_00479
crossref_primary_10_1371_journal_pgen_1004676
crossref_primary_10_15252_embj_201489282
crossref_primary_10_1155_2013_723269
crossref_primary_10_1051_ocl_2015055
crossref_primary_10_1371_journal_pone_0104834
crossref_primary_10_1016_j_freeradbiomed_2016_12_045
crossref_primary_10_1186_s11689_020_09344_z
crossref_primary_10_1155_2014_480980
crossref_primary_10_1016_j_freeradbiomed_2015_02_014
crossref_primary_10_1155_2014_560120
crossref_primary_10_1113_JP275890
crossref_primary_10_1002_mnfr_201500436
crossref_primary_10_1051_ocl_2023008
crossref_primary_10_3390_brainsci4010150
crossref_primary_10_1016_j_febslet_2013_05_042
crossref_primary_10_3389_fnins_2019_00680
crossref_primary_10_3389_fneur_2024_1388506
crossref_primary_10_1093_hmg_ddy301
crossref_primary_10_3389_fncel_2016_00266
crossref_primary_10_1523_JNEUROSCI_3236_14_2014
crossref_primary_10_1152_physiol_00008_2020
crossref_primary_10_1155_2017_3064016
crossref_primary_10_1016_j_abb_2023_109860
crossref_primary_10_3390_antiox11071406
crossref_primary_10_1016_j_biocel_2016_07_015
crossref_primary_10_1016_j_ddmod_2019_11_001
crossref_primary_10_1155_2013_432616
crossref_primary_10_3389_fncel_2015_00055
crossref_primary_10_3389_fnins_2021_729757
crossref_primary_10_1007_s13311_015_0353_y
crossref_primary_10_1007_s11010_019_03633_5
crossref_primary_10_1016_j_nbd_2014_04_006
crossref_primary_10_3389_fnint_2020_00007
crossref_primary_10_1113_JP270369
crossref_primary_10_1155_2015_421624
crossref_primary_10_1515_hsz_2015_0117
crossref_primary_10_1007_s10803_020_04611_3
crossref_primary_10_1016_j_biocel_2016_08_001
crossref_primary_10_1016_j_freeradbiomed_2017_12_009
crossref_primary_10_3390_life12020146
crossref_primary_10_7763_IJCEA_2010_V1_6
crossref_primary_10_3390_epigenomes1020011
crossref_primary_10_4236_fns_2013_49A1012
crossref_primary_10_3390_ijms23105735
crossref_primary_10_3390_ijms21176253
crossref_primary_10_1016_j_expneurol_2024_114885
crossref_primary_10_1371_journal_pone_0150101
crossref_primary_10_3390_ijms22084240
crossref_primary_10_1016_j_neubiorev_2014_01_012
crossref_primary_10_1371_journal_pone_0056599
Cites_doi 10.1136/jmg.38.4.224
10.1111/j.1471-4159.2005.03572.x
10.1086/662453
10.1002/anie.200705122
10.1038/85899
10.1126/science.1138389
10.1177/0883073807309786
10.1002/ajmg.a.10053
10.1016/0887-8994(89)90027-1
10.1038/sj.ejhg.5200473
10.1016/S0887-8994(02)00624-0
10.1016/j.bbagen.2004.04.003
10.1016/j.neuron.2011.08.022
10.1055/s-2007-979735
10.1007/s003359900157
10.1194/jlr.P017798
10.1007/978-1-4614-0653-2_22
10.1016/j.freeradbiomed.2004.10.024
10.1136/adc.80.4.384
10.1134/S1819712411020024
10.1155/2012/724904
10.1002/ana.22124
10.1002/ppul.20866
10.1186/1471-2202-11-53
10.1378/chest.09-3021
10.1016/S1474-4422(09)70262-5
10.1038/85906
10.1006/nbdi.2001.0428
10.1001/archneurol.2011.149
10.1016/j.neuron.2007.10.001
10.1016/B978-0-12-385883-2.00005-9
10.1179/1351000211Y.0000000004
10.1042/BJ20110648
10.1002/mrdd.10020
10.1212/WNL.0b013e3181d6b852
10.1136/adc.85.1.29
10.1371/journal.pone.0003669
10.1523/JNEUROSCI.0169-11.2011
10.1016/j.jchromb.2003.10.036
10.1128/MCB.01665-05
10.1002/ana.410140412
10.1046/j.1471-4159.1999.0720734.x
10.1097/FBP.0b013e32830c3645
10.1002/ana.21715
10.1136/jmg.40.5.e52
10.1002/ana.410210410
10.1006/bbrc.1997.7883
10.1016/0748-5514(85)90134-5
10.1016/j.taap.2004.06.021
10.1073/pnas.93.18.9782
10.1016/j.bbagen.2011.12.002
10.1002/ajmg.a.20247
10.1016/S0387-7604(01)00369-2
10.1093/nar/gkh739
10.1016/S0891-5849(02)01360-6
10.1128/MCB.23.3.916-922.2003
10.1016/j.lfs.2011.08.006
10.1016/0387-7604(94)90129-5
10.1016/j.molcel.2010.01.030
10.1016/S0022-510X(98)00035-5
10.1146/annurev-cellbio-092910-154121
10.1016/j.freeradbiomed.2005.08.023
10.1016/j.tcb.2011.06.004
10.1002/prca.201000121
10.1016/j.ajhg.2008.05.015
10.1073/pnas.87.23.9383
10.1016/S0304-3940(98)00303-6
10.1194/jlr.M700503-JLR200
10.1212/01.wnl.0000291011.54508.aa
10.1016/j.nlm.2011.05.006
10.1194/jlr.M600327-JLR200
10.1136/jmg.2006.045260
10.1126/science.1153252
10.2174/187152710791556113
10.1007/s12263-012-0285-7
10.1212/01.wnl.0000223318.28938.45
10.1016/j.conb.2011.06.006
10.1055/s-2007-973480
10.1016/j.biocel.2006.07.001
10.1016/S0387-7604(87)80079-7
10.1177/088307389100600216
10.1016/B978-0-12-394317-0.00011-X
10.1038/nature09582
10.1038/nature10214
10.1016/j.freeradbiomed.2009.05.016
10.1016/j.resp.2010.07.006
10.1074/jbc.273.22.13605
10.1016/S0387-7604(85)80037-1
10.1016/S0387-7604(12)80283-X
10.1091/mbc.E11-09-0784
10.1002/ajmg.1320320131
10.1212/WNL.56.11.1486
10.1093/brain/awn197
10.1523/JNEUROSCI.5966-09.2010
10.1007/s11920-010-0097-7
10.1016/j.clinbiochem.2011.01.007
10.1093/hmg/9.9.1369
10.1021/cr200160h
10.1093/nar/20.19.5085
10.1038/nn0309-239
10.1016/0163-7827(85)90011-6
10.1371/journal.pgen.1000667
10.1016/j.bone.2007.12.003
10.1007/s10495-007-0756-2
10.1038/13810
10.1136/jmg.2004.026237
10.1002/biof.184
10.1002/ana.21562
10.1016/S0891-5849(02)00759-1
10.1093/hmg/ddi198
10.1002/humu.10194
10.1006/bbrc.1997.6869
10.1016/S0387-7604(01)00374-6
10.1038/nature10907
10.1042/bj2190001
10.1212/01.wnl.0000304752.50773.ec
10.1002/humu.10243
10.1086/302690
10.1016/S0387-7604(85)80030-9
10.1002/ajmg.10633
10.1093/hmg/9.7.1119
10.1152/japplphysiol.01266.2007
10.1111/j.1469-8749.2010.03636.x
10.1002/1531-8249(200005)47:5<670::AID-ANA20>3.0.CO;2-F
10.1016/j.braindev.2010.01.004
10.1016/j.clinph.2008.08.015
10.1007/s11064-008-9775-9
10.1002/ajmg.a.31314
10.1016/0387-7604(93)90045-A
10.1177/0883073811429859
10.1016/j.cca.2011.04.016
ContentType Journal Article
Copyright 2012 New York Academy of Sciences.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2012 New York Academy of Sciences.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7X8
1XC
DOI 10.1111/j.1749-6632.2012.06611.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts
Neurosciences Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1749-6632
EndPage 135
ExternalDocumentID oai_HAL_hal_00714965v1
3966402401
22758644
10_1111_j_1749_6632_2012_06611_x
NYAS6611
ark_67375_WNG_9P2ZJ0D1_1
Genre article
Journal Article
Review
GroupedDBID ---
--Z
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
23M
31~
33P
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
692
6J9
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMDK
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOJD
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFSWV
AFZJQ
AHBTC
AHEFC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IH2
IX1
J0M
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RAG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SJN
SUPJJ
SV3
TEORI
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
X7M
XG1
YBU
YOC
YSK
ZGI
ZKB
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AHDLI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7X8
1XC
UMC
ID FETCH-LOGICAL-c5691-fe510dcff48709053e36726fef9395a10d2a75aac7f9ee1891c25e5dad61ef5d3
IEDL.DBID DR2
ISSN 0077-8923
1749-6632
IngestDate Fri May 09 12:24:02 EDT 2025
Fri Jul 11 06:55:26 EDT 2025
Fri Jul 11 12:26:19 EDT 2025
Sun Jul 13 04:44:09 EDT 2025
Thu Apr 03 07:07:08 EDT 2025
Tue Jul 01 04:00:44 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Wed Jan 22 16:23:10 EST 2025
Wed Oct 30 10:03:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords MeCP2
isoprostanes
oxidative stress
Rett syndrome
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2012 New York Academy of Sciences.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5691-fe510dcff48709053e36726fef9395a10d2a75aac7f9ee1891c25e5dad61ef5d3
Notes ArticleID:NYAS6611
istex:CE51EEFF49F87A026BE6C97418BD0D4A3E617210
ark:/67375/WNG-9P2ZJ0D1-1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7027-1207
0000-0002-9881-3119
0000-0003-0006-9414
0000-0001-6086-7296
PMID 22758644
PQID 1768590632
PQPubID 946344
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_00714965v1
proquest_miscellaneous_1038238086
proquest_miscellaneous_1037662383
proquest_journals_1768590632
pubmed_primary_22758644
crossref_citationtrail_10_1111_j_1749_6632_2012_06611_x
crossref_primary_10_1111_j_1749_6632_2012_06611_x
wiley_primary_10_1111_j_1749_6632_2012_06611_x_NYAS6611
istex_primary_ark_67375_WNG_9P2ZJ0D1_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2012
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: July 2012
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: New York
PublicationTitle Annals of the New York Academy of Sciences
PublicationTitleAlternate Ann N Y Acad Sci
PublicationYear 2012
Publisher Blackwell Publishing Inc
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley Subscription Services, Inc
– name: Wiley
References De Bona, C., M. Zappella, J. Hayek, et al. 2000. Preserved speech variant is allelic of classic Rett syndrome. Europ. J. Hum. Genet. 8: 325-330.
Urdinguio, R.G., L. Lopez-Serra, P. Lopez-Nieva, et al . 2008. Mecp2-null mice provide new neuronal targets for Rett syndrome. PLoS One 3: e3669.
Mari, F., S. Azimonti, I. Bertani et al. 2005. CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum. Mol. Genet. 14: 1935-1946.
Perluigi, M., F. di Domenico, A. Fiorini, et al . 2011. Oxidative stress occurs early in Down syndrome pregnancy: a redox proteomics analysis of amniotic fluid. Proteomics Clin. Appl. 5: 167-178.
Leonard, H., L. Colvin, J. Christodoulou, et al . 2003. Patients with the R133C mutation: is their phenotype different from patients with Rett syndrome with other mutations? J. Med. Genet. 40: e52.
Coker, S.B. & A.R. Melnyk. 1991. Rett syndrome and mitochondrial enzyme deficiencies. J. Child. Neurol. 6: 164-166.
Neul, J.L., W.E. Kaufmann, D.G. Glaze, et al. 2010. Rett syndrome: revised diagnostic criteria and nomenclature. Ann. Neurol. 68: 944-950.
Gonzales, M.L. & J.M. LaSalle. 2010. The role of MeCP2 in brain development and neurodevelopmental disorders. Curr. Psychiatry Rep. 12: 127-134.
Skene P.J., R.S. Illingworth, S. Webb, et al. 2010. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37: 457-468.
Papanikolaou, G. & K. Pantopoulos 2005. Iron metabolism and toxicity. Toxicol. Appl. Pharmacol. 202: 199-211.
Lawson, J.A., S. Kim, W.S. Powell, et al . 2006. Oxidized derivatives of omega-3 fatty acids: identification of IPF3 alpha-VI in human urine. J. Lipid. Res. 47: 2515-2524.
Miltenberger-Miltenyi, G. & F. Laccone. 2003. Mutations and polymorphisms in the human methyl CpG-binding protein MECP2. Hum. Mutat. 22: 107-115.
Kadiiska, M.B., B.C. Gladen, D.D. Baird, et al . 2005. Biomarkers of oxidative stress study III. Effects of the nonsteroidal anti-inflammatory agents indomethacin and meclofenamic acid on measurements of oxidative products of lipids in CCl4 poisoning. Free Radic. Biol. Med. 38: 711-718.
Bebbington, A., A. Anderson, D. Ravine, et al . 2008. Investigating genotype-phenotype relationships in Rett syndrome using an international data set. Neurology 70: 868-875.
Donzel-Javouhey, A., C. Thauvin-Robinet, V. Cusin, et al. 2006. A new cohort of MECP2 mutation screening in unexplained mental retardation: careful re-evaluation is the best indicator for molecular diagnosis. Am. J. Med. Genet. A 140: 1603-1607.
Rolando, S. 1985. Rett syndrome: report of eight cases. Brain Dev. 7: 290-296.
Wan, M., S.S. Lee, X. Zhang, et al . 1999. Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am. J. Hum. Genet. 65: 1520-1529.
Kankirawatana, P., H. Leonard, C. Ellaway, et al . 2006. Early progressive encephalopathy in boys and MECP2 mutations. Neurology 67: 164-166.
Chao, H.T., H. Chen, R.C. Samaco, et al . 2010. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468: 263-269.
Shepherd, G.M. & D.M. Katz. 2011. Synaptic microcircuit dysfunction in genetic models of neurodevelopmental disorders: focus on Mecp2 and Met. Curr. Opin. Neurobiol. 21: 827-833.
Jahn, U., T. Durand & J.-M. Galano. 2008. Beyond prostaglandins-chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew. Chem. Int. Ed. 47: 5894-5955.
Downs, J., A. Bebbington, P. Jacoby, et al . 2010. Level of purposeful hand function as a marker of clinical severity in Rett syndrome. Dev. Med. Child Neurol. 52: 817-823.
Guy, J., J. Gan, J. Selfridge, et al . 2007. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315: 1143-1147.
Martin, LJ. 2012. Biology of mitochondria in neurodegenerative diseases. Prog. Mol Biol. Transl. Sci. 107: 355-415.
Temudo, T., M. Santos, E. Ramos, et al . 2011. Rett syndrome with and without detected MECP2 mutations: An attempt to redefine phenotypes. Brain Dev. 33: 69-76.
Boggio, E.M., G. Lonetti, T. Pizzorusso & M. Giustetto 2010. Synaptic determinants of Rett syndrome. Front, Synaptic Neurosci. 2: 28.
Sofić, E., P. Riederer, W. Killian, et al . 1987. Reduced concentrations of ascorbic acid and glutathione in a single case of Rett syndrome: a postmortem brain study. Brain Dev. 9: 529-531.
Ciccoli, L., C. De Felice, E. Paccagnini, et al . 2012. Morphological changes and oxidative damage in Rett syndrome erythrocytes. Biochim. Biophys. Acta 1820: 511-520.
Valko, M., D. Leibfritz, J. Moncol, et al . 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39: 44-84.
Valinluck V., H.H. Tsai, D.K. Rogstad, et al . 2004. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32: 4100-4108.
Corthals, A.P. 2011. Multiple sclerosis is not a disease of the immune system. Q. Rev. Biol. 86: 287-321.
Chen, R.Z., S. Akbarian, M. Tudor, et al. 2001. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet. 27: 327-33.
Berger-Sweeney, J. 2011. Cognitive deficits in Rett syndrome: what we know and what we need to know to treat them. Neurobiol. Learn Mem. 96: 637-646.
Yant, L.J., Q. Ran, L. Rao, et al . 2003. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34: 496-502.
Dotti, M.T., L. Manneschi, A. Malandrini. et al. 1993. Mitochondrial dysfunction in Rett syndrome. An ultrastructural and biochemical study. Brain Dev. 15: 103-106.
D'Esposito, M., N.A. Quaderi, A. Ciccodicola, et al . 1996. Isolation, physical mapping and northern analysis of the X-linked human gene encoding methyl CpG-binding protein, MECP2. Mamm. Gen. 7: 533-535.
Gitschier, J. 2009. On the tracks of DNA methylation: an interview to Adrian Bird. PLoS Genet. 5: e1000667.
Samaco, R.C. & J.L. Neul. 2011. Complexities of Rett syndrome and MeCP2. J. Neurosci. 31: 7951-7959.
Musiek, E.S., J.K. Cha, H. Yin, et al . 2004. Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay. J. Chrom. B: Analyt. Technol. Biomed. Life Sci. 799: 95-102.
Maezawa, I. & L.W. Jin. 2010. Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J. Neurosci. 30: 5346-5356.
Cardaioli, E., M.T. Dotti, J. Hayek, et al . 1999. Studies on mitochondrial pathogenesis of Rett syndrome: ultrastructural data from skin and muscle biopsies and mutational analysis at mtDNA nucleotides 10463 and 2835. J. Submicrosc. Cytol. Pathol. 31: 301-304.
Chahrour, M. & H.Y. Zoghbi. 2007. The story of Rett syndrome: from clinic to neurobiology. Neuron 56: 422-437.
Ott, M., V. Gogvadze, S. Orrenius, et al . 2007. Mitochondria, oxidative stress and cell death. Apoptosis 12: 913-922.
Percy, A.K. 2011. Rett syndrome: exploring the autism link. Arch. Neurol. 68: 985-989.
Thomas, C.E. & S.D. Aust. 1985. Rat liver microsomal NADPH-dependent release of iron from ferritin and lipid peroxidation. Free Radic. Biol. Med. 1: 293-300.
Ruch, A., T.W. Kurczynski & M.E. Velasco. 1989. Mitochondrial alterations in Rett syndrome. Pediatr. Neurol. 5: 320-323.
Aggarwal, S., L. Yurlova & M. Simons. 2011. Central nervous system myelin: structure, synthesis and assembly. Trends Cell Biol. 21: 585-593.
Hoffbuhr, K., J.M. Devaney, B. LaFleur, et al . 2001. MeCP2 mutations in children with and without the phenotype of Rett syndrome. Neurology 56: 1486-1495.
Hagberg, B., J. Aicardi, K. Dias, et al. 1983. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome:report of 35 cases. Ann. Neurol. 14: 471-479.
Squillaro, T., N. Alessio, M. Cipollaro, et al . 2012. Reduced expression of MECP2 affects cell commitment and maintenance in neurons by triggering senescence, new perspective for Rett syndrome. Mol. Biol. Cell. 23: 1435-1445.
Urdinguio, R.G., J.V. Sanchez-Mut & M. Esteller. 2009. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 8: 1056-1072.
Gomot, M., C. Gendrot, A. Verloes, et al. 2003. MECP2 gene mutations in non-syndromic X-linked mental retardation: phenotype-genotype correlation. Am. J. Med. Genet. A 123A: 129-139.
Morrow, J.D., K.E. Hill, R.F. Burk, et al . 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. USA 87: 9383-9387.
De Felice, C., S. Maffei, C. Signorini, et al. 2012. Subclinical myocardial dysfunction in Rett syndrome. Eur. Heart J. Echocardiogr. Imaging.
Cohen, S., H.W. Gabel, M. Hemberg, et al. 2011. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron 72: 72-85.
Weaving, L.S., S.L. Williamson, B. Bennetts, et al . 2003. Effects of MECP2 mutation type, location and X-inactivation in modulating Rett syndrome phenotype. Am. J. Med. Genet. 118A: 103-114.
Haas RH., F. Nasirian, X. Hua, et al. 1995. Oxidative metabolism in Rett syndrome: 2. Biochemical and molecular studies. Neuropediatrics 26: 95-99.
Gibson, J.H., B. Slobedman, H. KN, et al. 2010. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci. 11: 53.
Bahi-Buisson, N., J. Nectoux, H. Rosas-Vargas, et al . 2008. Key clinical features to identify girls with CDKL5 mutations. Brain 131: 2647-2661.
Nonn, L., R.R. Williams, R.P. Erickson, et al . 2003. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol. Cell Biol. 23: 916-922.
Sas
2010; 12
2010; 11
2012; 484
2010; 468
2011; 52
2008; 33
2008; 104
1997; 6
1998; 156
2011; 475
2011; 111
1983; 14
1985; 24
1998; 273
2009; 12
2004; 32
2003; 118A
1989; 32
1985; 219
1995; 26
2006; 26
2011; 72
2008; 119
2008; 23
2011; 68
2010; 2
2001; 56
2003; 40
2012; 23
2010; 30
2010; 9
2011; 412
2009; 66
1989; 5
2010; 37
2009; 65
2002; 8
1999; 23
1996; 93
2001; 27
2001; 23
2007; 12
2011; 5
2012; 107
2003; 34
2007; 315
2006; 40
2006; 47
2008; 49
2008; 47
2011; 86
2003; 28
1999; 31
2008; 43
1994; 16
2001; 38
2010; 173
2011; 89
1999; 30
2004; 1672
2008; 42
1992; 20
2008; 131
2010; 52
2004; 799
2003; 21
2003; 22
2003; 23
2005; 14
2007; 39
1997; 236
2009; 47
2011; 439
2012; 2012
1966; 116
2000; 47
1987; 9
2000; 9
2000; 8
2002; 111
2011; 96
1992; 14
2008; 3
2011; 16
2008; 70
1999; 80
2012; 56
2001; 85
2012; 724
1990; 87
2010; 68
2006; 67
2011; 21
1998; 248
2011; 27
2005; 38
1998; 242
2010; 74
1996; 7
1985; 1
2006; 96
2012
2008; 19
2002; 32
1985; 7
2012; 1820
2011; 31
2011; 33
2005; 42
1999; 65
2011; 37
2008; 320
2007; 56
2003; 123A
1991; 6
1993; 15
1987; 21
2010; 138
2005; 202
2001; 8
2006; 140
2011; 44
2009; 8
2009; 5
2001; 1
1999; 72
2008; 83
2007; 44
e_1_2_10_44_2
e_1_2_10_21_2
e_1_2_10_109_2
e_1_2_10_40_2
Julu P.O. (e_1_2_10_83_2) 1997; 6
e_1_2_10_131_2
e_1_2_10_70_2
Rett A (e_1_2_10_14_2) 1966; 116
e_1_2_10_116_2
e_1_2_10_139_2
e_1_2_10_93_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_74_2
e_1_2_10_112_2
e_1_2_10_135_2
e_1_2_10_37_2
e_1_2_10_97_2
e_1_2_10_55_2
e_1_2_10_78_2
e_1_2_10_6_2
e_1_2_10_79_2
e_1_2_10_32_2
e_1_2_10_51_2
e_1_2_10_120_2
e_1_2_10_143_2
e_1_2_10_105_2
e_1_2_10_128_2
e_1_2_10_29_2
e_1_2_10_63_2
Boggio E.M. (e_1_2_10_9_2) 2010; 2
e_1_2_10_101_2
e_1_2_10_124_2
e_1_2_10_48_2
e_1_2_10_86_2
e_1_2_10_25_2
e_1_2_10_67_2
e_1_2_10_22_2
e_1_2_10_45_2
e_1_2_10_68_2
e_1_2_10_41_2
e_1_2_10_129_2
e_1_2_10_90_2
e_1_2_10_19_2
e_1_2_10_71_2
e_1_2_10_94_2
e_1_2_10_117_2
e_1_2_10_3_2
e_1_2_10_52_2
e_1_2_10_136_2
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_75_2
e_1_2_10_98_2
e_1_2_10_113_2
e_1_2_10_7_2
e_1_2_10_56_2
De Felice C. (e_1_2_10_123_2) 2012
e_1_2_10_132_2
e_1_2_10_57_2
e_1_2_10_33_2
e_1_2_10_10_2
e_1_2_10_118_2
e_1_2_10_60_2
e_1_2_10_106_2
e_1_2_10_125_2
e_1_2_10_26_2
e_1_2_10_49_2
e_1_2_10_64_2
e_1_2_10_87_2
e_1_2_10_102_2
e_1_2_10_140_2
e_1_2_10_121_2
e_1_2_10_23_2
e_1_2_10_69_2
e_1_2_10_42_2
e_1_2_10_107_2
Cardaioli E. (e_1_2_10_80_2) 1999; 31
e_1_2_10_91_2
e_1_2_10_72_2
e_1_2_10_114_2
e_1_2_10_137_2
e_1_2_10_39_2
e_1_2_10_95_2
e_1_2_10_53_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_76_2
e_1_2_10_110_2
e_1_2_10_133_2
e_1_2_10_35_2
e_1_2_10_99_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_58_2
e_1_2_10_30_2
e_1_2_10_119_2
Kerr A.M. (e_1_2_10_82_2) 1992; 14
e_1_2_10_61_2
e_1_2_10_103_2
e_1_2_10_126_2
e_1_2_10_84_2
e_1_2_10_27_2
e_1_2_10_65_2
e_1_2_10_122_2
e_1_2_10_141_2
e_1_2_10_46_2
e_1_2_10_88_2
e_1_2_10_20_2
e_1_2_10_43_2
e_1_2_10_130_2
e_1_2_10_92_2
Witt Engerström I. (e_1_2_10_108_2) 1992; 14
e_1_2_10_138_2
e_1_2_10_17_2
e_1_2_10_73_2
e_1_2_10_96_2
e_1_2_10_115_2
e_1_2_10_5_2
e_1_2_10_54_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_77_2
e_1_2_10_111_2
e_1_2_10_12_2
e_1_2_10_59_2
e_1_2_10_31_2
e_1_2_10_50_2
e_1_2_10_81_2
Armostrong D.D. (e_1_2_10_134_2) 1992; 14
e_1_2_10_127_2
e_1_2_10_28_2
e_1_2_10_62_2
e_1_2_10_85_2
e_1_2_10_104_2
e_1_2_10_24_2
e_1_2_10_47_2
e_1_2_10_66_2
e_1_2_10_89_2
e_1_2_10_100_2
e_1_2_10_142_2
References_xml – reference: Cheadle, J.P., H. Gill, N. Fleming, et al . 2000. Long-read sequence analysis of the MECP2 gene in Rett syndrome patients: correlation of disease severity with mutation type and location. Hum. Mol. Genet. 9: 1119-1129.
– reference: Huppke, P., F. Laccone, N. Kramer, et al . 2000. Rett syndrome: analysis of MECP2 and clinical characterization of 31 patients. Hum. Mol. Genet. 9: 1369-1375.
– reference: Witt Engerström, I. 1992. Age-related occurrence of signs and symptoms in the Rett syndrome. Brain Dev. 14(Suppl): S11-S20.
– reference: Ramocki, M.B., S.U. Peters, Y.J. Tavyev, et al. 2009. Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann. Neurol. 66: 771-782.
– reference: Ricceri, L., B. De Filippis & G. Laviola. 2008. Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches. Behav. Pharmacol. 19: 501-517.
– reference: De Felice, C., G. Guazzi, M. Rossi, et al. 2010. Unrecognized lung disease in classic Rett syndrome: a physiologic and high-resolution CT imaging study. Chest 138: 386-392.
– reference: Morrow, J.D., K.E. Hill, R.F. Burk, et al . 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. USA 87: 9383-9387.
– reference: Chao, H.T., H. Chen, R.C. Samaco, et al. 2010. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468: 263-269.
– reference: Boggio, E.M., G. Lonetti, T. Pizzorusso & M. Giustetto 2010. Synaptic determinants of Rett syndrome. Front, Synaptic Neurosci. 2: 28.
– reference: De Felice, C., S. Maffei, C. Signorini, et al. 2012. Subclinical myocardial dysfunction in Rett syndrome. Eur. Heart J. Echocardiogr. Imaging.
– reference: Julu, P.O., A.M. Kerr, F. Apartopoulos, et al . 2001. Characterization of breathing and associated central autonomic dysfunction in the Rett disorder. Arch. Dis. Child. 85: 29-37.
– reference: Corthals, A.P. 2011. Multiple sclerosis is not a disease of the immune system. Q. Rev. Biol. 86: 287-321.
– reference: Neul, J.L., W.E. Kaufmann, D.G. Glaze, et al . 2010. Rett syndrome: revised diagnostic criteria and nomenclature. Ann. Neurol. 68: 944-950.
– reference: Downs, J., A. Bebbington, P. Jacoby, et al . 2010. Level of purposeful hand function as a marker of clinical severity in Rett syndrome. Dev. Med. Child Neurol. 52: 817-823.
– reference: Heilstedt, H.A., M.D. Shahbazian & B Lee. Infantile hypotonia as a presentation of Rett syndrome. 2002. Am. J. Med. Genet. 111: 238-242.
– reference: Amir, R.E., I.B. Van den Veyver, R. Schultz, et al . 2000. Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann. Neurol. 47: 670-679.
– reference: Lebovitz, R.M., H. Zhang, H. Vogel, et al . 1996. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. USA 93: 9782-9787.
– reference: Kerr, A.M. & P.O. Julu. 1999. Recent insights into hyperventilation from the study of Rett syndrome. Arch. Dis. Child. 80: 384-387.
– reference: Watson, P., G. Black, S. Ramsden, et al . 2001. Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein. J. Med. Genet. 38: 224-228.
– reference: Dotti, M.T., L. Manneschi, A. Malandrini. et al. 1993. Mitochondrial dysfunction in Rett syndrome. An ultrastructural and biochemical study. Brain Dev. 15: 103-106.
– reference: Nourooz-Zadeh, J., E.H. Liu, B. Yhlen, et al . 1999. F4-isoprostanes as specific marker of docosahexaenoic acdid peroxidation in Alzheimer's disease. J. Neurochem. 72: 734-740.
– reference: Ciccoli, L., C. De Felice, E. Paccagnini, et al . 2012. Morphological changes and oxidative damage in Rett syndrome erythrocytes. Biochim. Biophys. Acta 1820: 511-520.
– reference: Gadalla, K.K., M.E. Bailey & S.R. Cobb. 2011. MeCP2 and Rett syndrome: reversibility and potential avenues for therapy. Biochem. J. 439: 1-14.
– reference: Campos, C., R. Guzmán, E. López-Fernández, et al . 2011. Evaluation of urinary biomarkers of oxidative/nitrosative stress in children with Down syndrome. Life Sci. 89: 655-661.
– reference: Percy, A.K. 2011. Rett syndrome: exploring the autism link. Arch. Neurol. 68: 985-989.
– reference: Leoncini, S., C. De Felice, C. Signorini, et al . 2011. Oxidative stress in Rett syndrome: natural history, genotype, and variants. Redox Rep. 16: 145-153.
– reference: Guy, J., B. Hendrich, M. Holmes, et al. 2001. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27: 322-326.
– reference: Sofić, E., P. Riederer, W. Killian, et al . 1987. Reduced concentrations of ascorbic acid and glutathione in a single case of Rett syndrome: a postmortem brain study. Brain Dev. 9: 529-531.
– reference: Haas RH., F. Nasirian, X. Hua, et al. 1995. Oxidative metabolism in Rett syndrome: 2. Biochemical and molecular studies. Neuropediatrics 26: 95-99.
– reference: Tiano, L. & J. Busciglio. 2011. Mitochondrial dysfunction and Down's syndrome: is there a role for coenzyme Q(10)? Biofactors 37: 386-392.
– reference: Roberts, L.J., T.J. Montine, W.R. Markesbery, et al . 1998. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273: 13605-13612.
– reference: Donzel-Javouhey, A., C. Thauvin-Robinet, V. Cusin, et al. 2006. A new cohort of MECP2 mutation screening in unexplained mental retardation: careful re-evaluation is the best indicator for molecular diagnosis. Am. J. Med. Genet. A 140: 1603-1607.
– reference: Armostrong, D.D. 1992. The neuropathology of the Rett syndrome. Brain Dev. Suppl. 14: S89-98.
– reference: Rett, A. 1966. Uber ein eigartiges hirnatrophisches Syndrom bei Hyperammoniamie in Kindesalter. Wien Med. Wochenschr. 116: 723-738.
– reference: Gitschier, J. 2009. On the tracks of DNA methylation: an interview to Adrian Bird. PLoS Genet. 5: e1000667.
– reference: Samaco, R.C. & J.L. Neul. 2011. Complexities of Rett syndrome and MeCP2. J. Neurosci. 31: 7951-7959.
– reference: Leonard, H., L. Colvin, J. Christodoulou, et al . 2003. Patients with the R133C mutation: is their phenotype different from patients with Rett syndrome with other mutations? J. Med. Genet. 40: e52.
– reference: Weaving, L.S., S.L. Williamson, B. Bennetts, et al . 2003. Effects of MECP2 mutation type, location and X-inactivation in modulating Rett syndrome phenotype. Am. J. Med. Genet. 118A: 103-114.
– reference: Hanefeld, F. 1985. The clinical pattern of the Rett syndrome. Brain Dev. 7: 320-325.
– reference: Urdinguio, R.G., J.V. Sanchez-Mut & M. Esteller. 2009. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 8: 1056-1072.
– reference: Sierra, C., M.A. Vilaseca, N. Brandi, et al . 2001. Oxidative stress in Rett syndrome. Brain Dev. Suppl. 1: S236-S239.
– reference: Ruch, A., T.W. Kurczynski & M.E. Velasco. 1989. Mitochondrial alterations in Rett syndrome. Pediatr. Neurol. 5: 320-323.
– reference: Sastry, P.S. 1985. Lipids of nervous tissue: composition and metabolism. Prog. Lipid Res. 24: 69-176.
– reference: Zoghbi, H.Y. 2009. Rett syndrome: what do we know for sure? Nat. Neurosci. 12: 239-240.
– reference: Mari, F., S. Azimonti, I. Bertani et al. 2005. CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum. Mol. Genet. 14: 1935-1946.
– reference: Miltenberger-Miltenyi, G. & F. Laccone. 2003. Mutations and polymorphisms in the human methyl CpG-binding protein MECP2. Hum. Mutat. 22: 107-115.
– reference: Neul, J.L., P. Fang, J. Barrish, et al . 2008. Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology 70: 1313-1321.
– reference: Julu, P.O., A.M. Kerr, S. Hansen, et al . 1997. Functional evidence of brain stem immaturity in Rett syndrome. Eur. Child Adolesc. Psychiatry 6: 47-54.
– reference: Monros, E., J. Armstrong, E. Aibar, et al . 2001. Rett syndrome in Spain: mutation analysis and clinical correlations. Brain Dev. 23: S251-S253.
– reference: Valko, M., D. Leibfritz, J. Moncol, et al . 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39: 44-84.
– reference: Milne G.L., H. Yin, K.D. Hardy, et al . 2011. Isoprostane generation and function. Chem. Rev. 111: 5973-5996.
– reference: Comporti, M., C. Signorini, G. Buonocore, et al . 2002. Iron release, oxidative stress and erythrocyte ageing. Free Radic. Biol. Med. 32: 568-576.
– reference: Nourooz-Zadeh, J., B. Halliwell & E.E. Änggård. 1997. Evidence for the formation of F3-isoprostanes during peroxidation of eicosapentaenoic acid. Biochem. Biophys. Res. Commun. 236: 467-472.
– reference: Derecki, N.C., J.C. Cronk, Z. Lu, et al . 2012. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484: 105-109.
– reference: Aggarwal, S., L. Yurlova & M. Simons. 2011. Central nervous system myelin: structure, synthesis and assembly. Trends Cell Biol. 21: 585-593.
– reference: Voituron, N., C. Menuet, M. Dutschmann, et al . 2010. Physiological definition of upper airway obstructions in mouse model for Rett syndrome. Respir. Physiol. Neurobiol. 173: 146-156.
– reference: Halliwell, B. & J.M.C. Gutteridge. 1985. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1-14.
– reference: Chen, R.Z., S. Akbarian, M. Tudor, et al. 2001. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet. 27: 327-33.
– reference: Fernandez-Checa, J.C., A. Fernandez, A. Morales, et al . 2010. Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models. CNS Neurol. Disord. Drug Targets 9: 439-454.
– reference: Kankirawatana, P., H. Leonard, C. Ellaway, et al . 2006. Early progressive encephalopathy in boys and MECP2 mutations. Neurology 67: 164-166.
– reference: Bahi-Buisson, N., J. Nectoux, H. Rosas-Vargas, et al . 2008. Key clinical features to identify girls with CDKL5 mutations. Brain 131: 2647-2661.
– reference: Pagano, G. & G. Castello. 2012. Oxidative stress and mitochondrial dysfunction in Down syndrome. Adv. Exp. Med. Biol. 724: 291-299.
– reference: Christodoulou, J., A. Grimm, T. Maher, et al . 2003. RettBASE: the IRSA MECP2 variation database-a new mutation database in evolution. Hum. Mutat. 21: 466-472.
– reference: De Felice, C., C. Signorini, T. Durand, et al . 2011. F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome. J. Lipid Res. 52: 2287-2297.
– reference: Martin, LJ. 2012. Biology of mitochondria in neurodegenerative diseases. Prog. Mol Biol. Transl. Sci. 107: 355-415.
– reference: Guy, J., J. Gan, J. Selfridge, et al . 2007. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315: 1143-1147.
– reference: Maezawa, I. & L.W. Jin. 2010. Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J. Neurosci. 30: 5346-5356.
– reference: De Bona, C., M. Zappella, J. Hayek, et al. 2000. Preserved speech variant is allelic of classic Rett syndrome. Europ. J. Hum. Genet. 8: 325-330.
– reference: Urdinguio, R.G., L. Lopez-Serra, P. Lopez-Nieva, et al . 2008. Mecp2-null mice provide new neuronal targets for Rett syndrome. PLoS One 3: e3669.
– reference: Kriaucionis, S., A. Paterson, J. Curtis, et al . 2006. Gene expression analysis exposes mitochondrial abnormalities in a mouse model of Rett syndrome. Mol. Cell. Biol. 26: 5033-5042.
– reference: Thomas, C.E. & S.D. Aust. 1985. Rat liver microsomal NADPH-dependent release of iron from ferritin and lipid peroxidation. Free Radic. Biol. Med. 1: 293-300.
– reference: Bebbington, A., A. Anderson, D. Ravine, et al . 2008. Investigating genotype-phenotype relationships in Rett syndrome using an international data set. Neurology 70: 868-875.
– reference: Hoffbuhr, K., J.M. Devaney, B. LaFleur, et al . 2001. MeCP2 mutations in children with and without the phenotype of Rett syndrome. Neurology 56: 1486-1495.
– reference: Guideri F., M. Acampa, J. Hayek, et al. 1999. Reduced heart rate variability in patients affected with Rett syndrome. A possible explanation for sudden death. Neuropediatrics 30: 146-148.
– reference: Yant, L.J., Q. Ran, L. Rao, et al . 2003. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34: 496-502.
– reference: Rolando, S. 1985. Rett syndrome: report of eight cases. Brain Dev. 7: 290-296.
– reference: Glaze, D.G., J.D. Frost, H.Y. Zoghbi, et al . 1987. Rett's syndrome: characterization of respiratory patterns and sleep. Ann. Neurol. 21: 377-382.
– reference: Squillaro, T., N. Alessio, M. Cipollaro, et al . 2012. Reduced expression of MECP2 affects cell commitment and maintenance in neurons by triggering senescence, new perspective for Rett syndrome. Mol. Biol. Cell. 23: 1435-1445.
– reference: Gibson, J.H., B. Slobedman, H. KN, et al. 2010. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci. 11: 53.
– reference: Lawson, J.A., S. Kim, W.S. Powell, et al . 2006. Oxidized derivatives of omega-3 fatty acids: identification of IPF3 alpha-VI in human urine. J. Lipid. Res. 47: 2515-2524.
– reference: Berger-Sweeney, J. 2011. Cognitive deficits in Rett syndrome: what we know and what we need to know to treat them. Neurobiol. Learn Mem. 96: 637-646.
– reference: Nonn, L., R.R. Williams, R.P. Erickson, et al . 2003. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol. Cell Biol. 23: 916-922.
– reference: Nourooz-Zadeh, J., E.H.C. Liu, E.E. Änggärd, et al . 1998. F4-isoprostanes: a novel class of prostanoids formed during peroxidation of docosahexaenoic acid (DHA). Biochem. Biophys. Res. Commun. 242: 338-344.
– reference: Musiek, E.S., J.K. Cha, H. Yin, et al . 2004. Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay. J. Chrom. B: Analyt. Technol. Biomed. Life Sci. 799: 95-102.
– reference: Coker, S.B. & A.R. Melnyk. 1991. Rett syndrome and mitochondrial enzyme deficiencies. J. Child. Neurol. 6: 164-166.
– reference: Jahn, U., T. Durand & J.-M. Galano. 2008. Beyond prostaglandins-chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew. Chem. Int. Ed. 47: 5894-5955.
– reference: Wang, H., G. Yuan, N.R. Prabhakar, et al . 2006. Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling. J. Neurochem. 96: 694-705.
– reference: De Felice, C., L. Ciccoli, S. Leoncini, et al . 2009. Systemic oxidative stress in classic Rett syndrome. Free Radic. Biol. Med. 47: 440-448.
– reference: Gomot, M., C. Gendrot, A. Verloes, et al. 2003. MECP2 gene mutations in non-syndromic X-linked mental retardation: phenotype-genotype correlation. Am. J. Med. Genet. A 123A: 129-139.
– reference: Guy, J., H. Cheval, J. Selfridge & A. Bird. 2011. The role of MeCP2 in the brain. Annu. Rev. Cell Dev. Biol. 27: 631-652.
– reference: Pecorelli, A., L. Ciccoli, C. Signorini, et al. 2011. Increased levels of 4HNE-protein plasma adducts in Rett syndrome. 2011. Clin. Biochem. 44: 368.
– reference: Gaultier, C. & J. Gallego. 2008. Neural control of breathing: insights from genetic mouse models. J. Appl. Physiol. 104: 1522-1530.
– reference: Matsuishi, T., F. Urabe, H. Komori, et al. 1992. The Rett syndrome and CSF lactic acid patterns. Brain Dev. 14: 68-70.
– reference: Ott, M., V. Gogvadze, S. Orrenius, et al . 2007. Mitochondria, oxidative stress and cell death. Apoptosis 12: 913-922.
– reference: Carney, R.M., C.M. Wolpert, S.A. Ravan, et al . 2003. Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatr. Neurol. 28: 205-211.
– reference: VanRollins, M., R.L. Woltjer, H. Yin, et al . 2008. F2-dihomo-isoprostanes arise from free radical attack on adrenic acid. J. Lipid Res. 49: 995-1005.
– reference: Eeg-Olofsson, O., A.G. al-Zuhair, A.S. Teebi, et al. 1989. Rett syndrome: genetic clues based on mitochondrial changes in muscle. Am. J. Med. Genet. 32: 142-144.
– reference: Temudo, T., M. Santos, E. Ramos, et al . 2011. Rett syndrome with and without detected MECP2 mutations: An attempt to redefine phenotypes. Brain Dev. 33: 69-76.
– reference: Perluigi, M., F. di Domenico, A. Fiorini, et al . 2011. Oxidative stress occurs early in Down syndrome pregnancy: a redox proteomics analysis of amniotic fluid. Proteomics Clin. Appl. 5: 167-178.
– reference: Gonzales, M.L. & J.M. LaSalle. 2010. The role of MeCP2 in brain development and neurodevelopmental disorders. Curr. Psychiatry Rep. 12: 127-134.
– reference: Weese-Mayer, D.E., S.P. Lieske, C.M. Boothby, et al . 2008. Autonomic dysregulation in young girls with Rett syndrome during nighttime in-home recordings. Pediatr. Pulmonol. 43: 1045-1060.
– reference: Cardaioli, E., M.T. Dotti, J. Hayek, et al . 1999. Studies on mitochondrial pathogenesis of Rett syndrome: ultrastructural data from skin and muscle biopsies and mutational analysis at mtDNA nucleotides 10463 and 2835. J. Submicrosc. Cytol. Pathol. 31: 301-304.
– reference: Signorini, C., C. De Felice, S. Leoncini, et al . 2011. F4-neuroprostanes mediate neurological severity in Rett syndrome. Clin. Chim. Acta. 412: 1399-1406.
– reference: Hagebeuk, E.E., R.P. Bijlmer, J.H. Koelman, et al . 2012. Respiratory disturbances in Rett syndrome: don't forget to evaluate upper airway obstruction. J. Child. Neurol. Jan 30. [Epub ahead of print].
– reference: Chahrour, M. & H.Y. Zoghbi. 2007. The story of Rett syndrome: from clinic to neurobiology. Neuron 56: 422-437.
– reference: Pugazhenthi, S., K. Phansalkar, G. Audesirk, et al . 2006. Differential regulation of c-jun and CREB by acrolein and 4-hydroxynonenal. Free Radic. Biol. Med. 40: 21-34.
– reference: Scala, E., F. Ariani, F. Mari, et al. 2005. CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms. J. Med. Genet. 42: 103-107.
– reference: Horská, A., L. Farage, G. Bibat, et al . 2009. Brain metabolism in Rett syndrome: age, clinical, and genotype correlations. Ann. Neurol. 65: 90-97.
– reference: Gonnelli, S., C. Caffarelli, J. Hayek, et al. 2008. Bone ultrasonography at phalanxes in patients with Rett syndrome: a 3-year longitudinal study. Bone 42: 737-742.
– reference: Lappalainen, R. & R.S. Riikonen. 1994. Elevated CSF lactate in the Rett syndrome: cause or consequence? Brain Dev. 16:399-401.
– reference: Wan, M., S.S. Lee, X. Zhang, et al . 1999. Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am. J. Hum. Genet. 65: 1520-1529.
– reference: Meehan, R.R., J.D. Lewis, A.P. Bird. 1992. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res. 20: 5085-5092.
– reference: Valinluck V., H.H. Tsai, D.K. Rogstad, et al . 2004. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32: 4100-4108.
– reference: Chao, H.T., H. Chen, R.C. Samaco, et al . 2010. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468: 263-269.
– reference: Kadiiska, M.B., B.C. Gladen, D.D. Baird, et al . 2005. Biomarkers of oxidative stress study III. Effects of the nonsteroidal anti-inflammatory agents indomethacin and meclofenamic acid on measurements of oxidative products of lipids in CCl4 poisoning. Free Radic. Biol. Med. 38: 711-718.
– reference: Cohen, S., H.W. Gabel, M. Hemberg, et al. 2011. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron 72: 72-85.
– reference: Glaze, D.G., A.K. Percy, S. Skinner, et al. 2010. Epilepsy and the natural history of Rett syndrome. Neurology 74: 909-912.
– reference: Percy, A.K. 2008. Rett syndrome: recent research progress. J. Child. Neurol. 23: 543-549.
– reference: Lioy, D.T., S.K. Garg, C.E. Monaghan, et al . 2011. A role for glia in the progression of Rett's syndrome. Nature 475: 497-500.
– reference: Amir, R.E., I.B. Van den Veyver, M. Wan, et al . 1999. Rett syndrome is caused by mutation in X−linked MECP2, encoding methyl−CpG−binding protein 2. Nat. Genet. 23: 185-188.
– reference: Ariani, F., J. Hayek, D. Rondinella, et al . 2008. FOXG1 is responsible for the congenital variant of Rett syndrome. Am. J. Hum. Genet. 83: 89-93.
– reference: Neul, J.L., W.E. Kaufmann, D.G. Glaze, et al. 2010. Rett syndrome: revised diagnostic criteria and nomenclature. Ann. Neurol. 68: 944-950.
– reference: Hagberg, B., J. Aicardi, K. Dias, et al. 1983. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome:report of 35 cases. Ann. Neurol. 14: 471-479.
– reference: Shepherd, G.M. & D.M. Katz. 2011. Synaptic microcircuit dysfunction in genetic models of neurodevelopmental disorders: focus on Mecp2 and Met. Curr. Opin. Neurobiol. 21: 827-833.
– reference: Perluigi, M. & D.A. Butterfield. 2012. Oxidative stress and down syndrome: a route toward Alzheimer-like dementia. Curr. Gerontol. Geriatr. Res. 2012: 724904.
– reference: Carmeli, E., A. Bachar, R. Beiker. Expression of global oxidative stress and matrix metalloproteinases is associated with rett syndrome. 2011. Neurochemical J. 5: 141-145.
– reference: Buoni S., R. Zannolli, C.D. Felice, et al. 2008. Drug-resistant epilepsy and epileptic phenotype-EEG association in MECP2 mutated Rett syndrome. Clin. Neurophysiol. 119: 2455-2458.
– reference: Skene P.J., R.S. Illingworth, S. Webb, et al. 2010. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37: 457-468.
– reference: D'Esposito, M., N.A. Quaderi, A. Ciccodicola, et al . 1996. Isolation, physical mapping and northern analysis of the X-linked human gene encoding methyl CpG-binding protein, MECP2. Mamm. Gen. 7: 533-535.
– reference: Archer, H.L., J. Evans, H. Leonard, et al . 2007. Correlation between clinical severity in patients with Rett syndrome with a p.R168X or p.T158M MECP2 mutation, and the direction and degree of skewing of X-chromosome inactivation. J. Med. Genet. 44: 148-152.
– reference: Kerr, A.M. 1992. A review of the respiratory disorder in the Rett syndrome. Brain Dev. Suppl. 14: 43-45.
– reference: Colantuoni, C., O.H. Jeon, K. Hyder, et al. 2001. Gene expression profiling in postmortem Rett Syndrome brain: differential gene expression and patient classification. Neurobiol. Dis. 8: 847-865.
– reference: Papanikolaou, G. & K. Pantopoulos 2005. Iron metabolism and toxicity. Toxicol. Appl. Pharmacol. 202: 199-211.
– reference: Formichi, P., C. Battisti, M.T. Dotti, et al. 1998. Vitamin E serum levels in Rett syndrome. J. Neurol Sci. 156: 227-230.
– reference: Calabrese, V., C. Cornelius, C. Mancuso, et al . 2008. Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem. Res. 33: 2444-2471.
– reference: Ciccoli, L., V. Rossi, S. Leoncini, et al . 2004. Iron release, superoxide production and binding of autologous IgG to band 3 dimers in newborn and adult erythrocytes exposed to hypoxia and hypoxia-reoxygenation. Biochim. Biophys. Acta 1672: 203-213.
– reference: De Felice, C., C. Signorini, T. Durand, et al . 2012. Partial rescue of Rett syndrome by ω-3 polyunsaturated fatty acids (PUFAs) oil. Genes Nutr. Mar 8. [Epub ahead of print].
– reference: Wu, Z.C., J.T. Yu, Y. Li, et al . 2012. Clusterin in Alzheimer's disease. Adv. Clin. Chem. 56: 155-173.
– reference: Chahrour, M., S.Y. Jung, C. Shaw, et al. 2008. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320: 1224-1229.
– reference: Hagberg, B. 2002. Clinical manifestations and stages of Rett syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 8: 61-65.
– reference: Shadid, M., G. Buonocore, F. Groenendaal, et al . 1998. Effect of deferoxamine and allopurinol on non protein-bound iron concentrations in plasma and cortical brain tissue of newborn lambs following hypoxia ischemia. Neurosci. Lett. 248: 5-8.
– volume: 23
  start-page: 543
  year: 2008
  end-page: 549
  article-title: Rett syndrome: recent research progress
  publication-title: J. Child. Neurol.
– volume: 37
  start-page: 386
  year: 2011
  end-page: 392
  article-title: Mitochondrial dysfunction and Down's syndrome: is there a role for coenzyme Q(10)?
  publication-title: Biofactors
– volume: 37
  start-page: 457
  year: 2010
  end-page: 468
  article-title: Neuronal MeCP2 is expressed at near histone‐octamer levels and globally alters the chromatin state
  publication-title: Mol. Cell
– volume: 9
  start-page: 1369
  year: 2000
  end-page: 1375
  article-title: Rett syndrome: analysis of MECP2 and clinical characterization of 31 patients
  publication-title: Hum. Mol. Genet.
– volume: 42
  start-page: 737
  year: 2008
  end-page: 742
  article-title: Bone ultrasonography at phalanxes in patients with Rett syndrome: a 3‐year longitudinal study
  publication-title: Bone
– volume: 236
  start-page: 467
  year: 1997
  end-page: 472
  article-title: Evidence for the formation of F3‐isoprostanes during peroxidation of eicosapentaenoic acid
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 140
  start-page: 1603
  year: 2006
  end-page: 1607
  article-title: A new cohort of MECP2 mutation screening in unexplained mental retardation: careful re‐evaluation is the best indicator for molecular diagnosis
  publication-title: Am. J. Med. Genet. A
– volume: 38
  start-page: 711
  year: 2005
  end-page: 718
  article-title: Biomarkers of oxidative stress study III. Effects of the nonsteroidal anti‐inflammatory agents indomethacin and meclofenamic acid on measurements of oxidative products of lipids in CCl4 poisoning
  publication-title: Free Radic. Biol. Med.
– volume: 20
  start-page: 5085
  year: 1992
  end-page: 5092
  article-title: Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA
  publication-title: Nucleic Acids Res.
– volume: 96
  start-page: 694
  year: 2006
  end-page: 705
  article-title: Secretion of brain‐derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling
  publication-title: J. Neurochem.
– volume: 44
  start-page: 148
  year: 2007
  end-page: 152
  article-title: Correlation between clinical severity in patients with Rett syndrome with a p.R168X or p.T158M MECP2 mutation, and the direction and degree of skewing of X‐chromosome inactivation
  publication-title: J. Med. Genet.
– volume: 23
  start-page: 1435
  year: 2012
  end-page: 1445
  article-title: Reduced expression of MECP2 affects cell commitment and maintenance in neurons by triggering senescence, new perspective for Rett syndrome
  publication-title: Mol. Biol. Cell.
– volume: 65
  start-page: 90
  year: 2009
  end-page: 97
  article-title: Brain metabolism in Rett syndrome: age, clinical, and genotype correlations
  publication-title: Ann. Neurol.
– volume: 34
  start-page: 496
  year: 2003
  end-page: 502
  article-title: The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults
  publication-title: Free Radic. Biol. Med.
– volume: 11
  start-page: 53
  year: 2010
  article-title: Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain
  publication-title: BMC Neurosci.
– volume: 8
  start-page: 325
  year: 2000
  end-page: 330
  article-title: Preserved speech variant is allelic of classic Rett syndrome
  publication-title: Europ. J. Hum. Genet.
– volume: 27
  start-page: 327
  year: 2001
  end-page: 33
  article-title: Deficiency of methyl‐CpG binding protein‐2 in CNS neurons results in a Rett‐like phenotype in mice
  publication-title: Nat. Genet.
– volume: 6
  start-page: 164
  year: 1991
  end-page: 166
  article-title: Rett syndrome and mitochondrial enzyme deficiencies
  publication-title: J. Child. Neurol.
– volume: 40
  start-page: 21
  year: 2006
  end-page: 34
  article-title: Differential regulation of c‐jun and CREB by acrolein and 4‐hydroxynonenal
  publication-title: Free Radic. Biol. Med.
– volume: 47
  start-page: 2515
  year: 2006
  end-page: 2524
  article-title: Oxidized derivatives of omega‐3 fatty acids: identification of IPF3 alpha‐VI in human urine
  publication-title: J. Lipid. Res.
– volume: 242
  start-page: 338
  year: 1998
  end-page: 344
  article-title: F4‐isoprostanes: a novel class of prostanoids formed during peroxidation of docosahexaenoic acid (DHA)
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 70
  start-page: 1313
  year: 2008
  end-page: 1321
  article-title: Specific mutations in methyl‐CpG‐binding protein 2 confer different severity in Rett syndrome
  publication-title: Neurology
– volume: 15
  start-page: 103
  year: 1993
  end-page: 106
  article-title: Mitochondrial dysfunction in Rett syndrome. An ultrastructural and biochemical study
  publication-title: Brain Dev.
– volume: 93
  start-page: 9782
  year: 1996
  end-page: 9787
  article-title: Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase‐deficient mice
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2012
  article-title: Subclinical myocardial dysfunction in Rett syndrome. Eur. Heart
  publication-title: J. Echocardiogr. Imaging.
– volume: 116
  start-page: 723
  year: 1966
  end-page: 738
  article-title: Uber ein eigartiges hirnatrophisches Syndrom bei Hyperammoniamie in Kindesalter.
  publication-title: Wien Med. Wochenschr.
– volume: 111
  start-page: 5973
  year: 2011
  end-page: 5996
  article-title: Isoprostane generation and function
  publication-title: Chem. Rev.
– volume: 248
  start-page: 5
  year: 1998
  end-page: 8
  article-title: Effect of deferoxamine and allopurinol on non protein‐bound iron concentrations in plasma and cortical brain tissue of newborn lambs following hypoxia ischemia
  publication-title: Neurosci. Lett.
– volume: 96
  start-page: 637
  year: 2011
  end-page: 646
  article-title: Cognitive deficits in Rett syndrome: what we know and what we need to know to treat them
  publication-title: Neurobiol. Learn Mem.
– volume: 5
  start-page: 167
  year: 2011
  end-page: 178
  article-title: Oxidative stress occurs early in Down syndrome pregnancy: a redox proteomics analysis of amniotic fluid
  publication-title: Proteomics Clin. Appl.
– volume: 42
  start-page: 103
  year: 2005
  end-page: 107
  article-title: CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms
  publication-title: J. Med. Genet.
– volume: 7
  start-page: 533
  year: 1996
  end-page: 535
  article-title: Isolation, physical mapping and northern analysis of the X‐linked human gene encoding methyl CpG‐binding protein, MECP2
  publication-title: Mamm. Gen.
– volume: 28
  start-page: 205
  year: 2003
  end-page: 211
  article-title: Identification of MeCP2 mutations in a series of females with autistic disorder
  publication-title: Pediatr. Neurol.
– volume: 123A
  start-page: 129
  year: 2003
  end-page: 139
  article-title: MECP2 gene mutations in non‐syndromic X‐linked mental retardation: phenotype‐genotype correlation
  publication-title: Am. J. Med. Genet. A
– volume: 8
  start-page: 61
  year: 2002
  end-page: 65
  article-title: Clinical manifestations and stages of Rett syndrome
  publication-title: Ment. Retard. Dev. Disabil. Res. Rev.
– volume: 8
  start-page: 1056
  year: 2009
  end-page: 1072
  article-title: Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies
  publication-title: Lancet Neurol.
– volume: 56
  start-page: 422
  year: 2007
  end-page: 437
  article-title: The story of Rett syndrome: from clinic to neurobiology
  publication-title: Neuron
– volume: 32
  start-page: 4100
  year: 2004
  end-page: 4108
  article-title: Oxidative damage to methyl‐CpG sequences inhibits the binding of the methyl‐CpG binding domain (MBD) of methyl‐CpG binding protein 2 (MeCP2)
  publication-title: Nucleic Acids Res.
– volume: 8
  start-page: 847
  year: 2001
  end-page: 865
  article-title: Gene expression profiling in postmortem Rett Syndrome brain: differential gene expression and patient classification
  publication-title: Neurobiol. Dis.
– volume: 21
  start-page: 377
  year: 1987
  end-page: 382
  article-title: Rett's syndrome: characterization of respiratory patterns and sleep
  publication-title: Ann. Neurol.
– volume: 26
  start-page: 95
  year: 1995
  end-page: 99
  article-title: Oxidative metabolism in Rett syndrome: 2. Biochemical and molecular studies
  publication-title: Neuropediatrics
– volume: 14
  start-page: 68
  year: 1992
  end-page: 70
  article-title: The Rett syndrome and CSF lactic acid patterns
  publication-title: Brain Dev.
– volume: 68
  start-page: 944
  year: 2010
  end-page: 950
  article-title: Rett syndrome: revised diagnostic criteria and nomenclature
  publication-title: Ann. Neurol.
– volume: 68
  start-page: 985
  year: 2011
  end-page: 989
  article-title: Rett syndrome: exploring the autism link
  publication-title: Arch. Neurol.
– volume: 799
  start-page: 95
  year: 2004
  end-page: 102
  article-title: Quantification of F‐ring isoprostane‐like compounds (F4‐neuroprostanes) derived from docosahexaenoic acid in humans by a stable isotope dilution mass spectrometric assay
  publication-title: J. Chrom. B: Analyt. Technol. Biomed. Life Sci.
– volume: 1
  start-page: S236
  year: 2001
  end-page: S239
  article-title: Oxidative stress in Rett syndrome
  publication-title: Brain Dev. Suppl.
– volume: 70
  start-page: 868
  year: 2008
  end-page: 875
  article-title: Investigating genotype‐phenotype relationships in Rett syndrome using an international data set
  publication-title: Neurology
– volume: 6
  start-page: 47
  year: 1997
  end-page: 54
  article-title: Functional evidence of brain stem immaturity in Rett syndrome
  publication-title: Eur. Child Adolesc. Psychiatry
– volume: 21
  start-page: 585
  year: 2011
  end-page: 593
  article-title: Central nervous system myelin: structure, synthesis and assembly
  publication-title: Trends Cell Biol.
– volume: 2
  start-page: 28
  year: 2010
  article-title: Synaptic determinants of Rett syndrome
  publication-title: Front, Synaptic Neurosci.
– volume: 14
  start-page: 1935
  year: 2005
  end-page: 1946
  article-title: CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early‐onset seizure variant of Rett syndrome
  publication-title: Hum. Mol. Genet.
– volume: 104
  start-page: 1522
  year: 2008
  end-page: 1530
  article-title: Neural control of breathing: insights from genetic mouse models
  publication-title: J. Appl. Physiol.
– volume: 273
  start-page: 13605
  year: 1998
  end-page: 13612
  article-title: Formation of isoprostane‐like compounds (neuroprostanes) from docosahexaenoic acid
  publication-title: J. Biol. Chem
– volume: 89
  start-page: 655
  year: 2011
  end-page: 661
  article-title: Evaluation of urinary biomarkers of oxidative/nitrosative stress in children with Down syndrome
  publication-title: Life Sci.
– volume: 118A
  start-page: 103
  year: 2003
  end-page: 114
  article-title: Effects of MECP2 mutation type, location and X‐inactivation in modulating Rett syndrome phenotype
  publication-title: Am. J. Med. Genet.
– volume: 315
  start-page: 1143
  year: 2007
  end-page: 1147
  article-title: Reversal of neurological defects in a mouse model of Rett syndrome
  publication-title: Science
– volume: 412
  start-page: 1399
  year: 2011
  end-page: 1406
  article-title: F ‐neuroprostanes mediate neurological severity in Rett syndrome
  publication-title: Clin. Chim. Acta
– volume: 87
  start-page: 9383
  year: 1990
  end-page: 9387
  article-title: A series of prostaglandin F2‐like compounds are produced in humans by a non‐cyclooxygenase, free radical‐catalyzed mechanism
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: S11
  issue: Suppl
  year: 1992
  end-page: S20
  article-title: Age‐related occurrence of signs and symptoms in the Rett syndrome
  publication-title: Brain Dev.
– volume: 5
  start-page: e1000667
  year: 2009
  article-title: On the tracks of DNA methylation: an interview to Adrian Bird
  publication-title: PLoS Genet.
– volume: 49
  start-page: 995
  year: 2008
  end-page: 1005
  article-title: F2‐dihomo‐isoprostanes arise from free radical attack on adrenic acid
  publication-title: J. Lipid Res.
– year: 2012
  article-title: Partial rescue of Rett syndrome by ω‐3 polyunsaturated fatty acids (PUFAs) oil
  publication-title: Genes Nutr.
– volume: 320
  start-page: 1224
  year: 2008
  end-page: 1229
  article-title: MeCP2, a key contributor to neurological disease, activates and represses transcription
  publication-title: Science
– volume: 9
  start-page: 1119
  year: 2000
  end-page: 1129
  article-title: Long‐read sequence analysis of the MECP2 gene in Rett syndrome patients: correlation of disease severity with mutation type and location
  publication-title: Hum. Mol. Genet.
– volume: 16
  start-page: 145
  year: 2011
  end-page: 153
  article-title: Oxidative stress in Rett syndrome: natural history, genotype, and variants
  publication-title: Redox Rep.
– volume: 3
  start-page: e3669
  year: 2008
  article-title: Mecp2‐null mice provide new neuronal targets for Rett syndrome
  publication-title: PLoS One
– volume: 156
  start-page: 227
  year: 1998
  end-page: 230
  article-title: Vitamin E serum levels in Rett syndrome
  publication-title: J. Neurol Sci.
– volume: 74
  start-page: 909
  year: 2010
  end-page: 912
  article-title: Epilepsy and the natural history of Rett syndrome
  publication-title: Neurology
– volume: 5
  start-page: 141
  year: 2011
  end-page: 145
  article-title: Expression of global oxidative stress and matrix metalloproteinases is associated with rett syndrome
  publication-title: Neurochemical J.
– volume: 439
  start-page: 1
  year: 2011
  end-page: 14
  article-title: MeCP2 and Rett syndrome: reversibility and potential avenues for therapy
  publication-title: Biochem. J.
– volume: 47
  start-page: 440
  year: 2009
  end-page: 448
  article-title: Systemic oxidative stress in classic Rett syndrome
  publication-title: Free Radic. Biol. Med.
– volume: 724
  start-page: 291
  year: 2012
  end-page: 299
  article-title: Oxidative stress and mitochondrial dysfunction in Down syndrome
  publication-title: Adv. Exp. Med. Biol.
– volume: 33
  start-page: 69
  year: 2011
  end-page: 76
  article-title: Rett syndrome with and without detected MECP2 mutations: An attempt to redefine phenotypes
  publication-title: Brain Dev.
– volume: 32
  start-page: 568
  year: 2002
  end-page: 576
  article-title: Iron release, oxidative stress and erythrocyte ageing
  publication-title: Free Radic. Biol. Med.
– volume: 40
  start-page: e52
  year: 2003
  article-title: Patients with the R133C mutation: is their phenotype different from patients with Rett syndrome with other mutations?
  publication-title: J. Med. Genet.
– volume: 7
  start-page: 320
  year: 1985
  end-page: 325
  article-title: The clinical pattern of the Rett syndrome
  publication-title: Brain Dev.
– volume: 16
  start-page: 399
  year: 1994
  end-page: 401
  article-title: Elevated CSF lactate in the Rett syndrome: cause or consequence
  publication-title: Brain Dev.
– volume: 21
  start-page: 466
  year: 2003
  end-page: 472
  article-title: RettBASE: the IRSA MECP2 variation database—a new mutation database in evolution
  publication-title: Hum. Mutat.
– volume: 1
  start-page: 293
  year: 1985
  end-page: 300
  article-title: Rat liver microsomal NADPH‐dependent release of iron from ferritin and lipid peroxidation
  publication-title: Free Radic. Biol. Med.
– volume: 47
  start-page: 5894
  year: 2008
  end-page: 5955
  article-title: Beyond prostaglandins—chemistry and biology of cyclic oxygenated metabolites formed by free‐radical pathways from polyunsaturated fatty acids
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 631
  year: 2011
  end-page: 652
  article-title: The role of MeCP2 in the brain
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 14
  start-page: S89
  year: 1992
  end-page: 98
  article-title: The neuropathology of the Rett syndrome
  publication-title: Brain Dev. Suppl.
– year: 2012
  article-title: Respiratory disturbances in Rett syndrome: don't forget to evaluate upper airway obstruction
  publication-title: J. Child. Neurol.
– volume: 219
  start-page: 1
  year: 1985
  end-page: 14
  article-title: Oxygen toxicity, oxygen radicals, transition metals and disease
  publication-title: Biochem. J.
– volume: 85
  start-page: 29
  year: 2001
  end-page: 37
  article-title: Characterization of breathing and associated central autonomic dysfunction in the Rett disorder
  publication-title: Arch. Dis. Child.
– volume: 9
  start-page: 529
  year: 1987
  end-page: 531
  article-title: Reduced concentrations of ascorbic acid and glutathione in a single case of Rett syndrome: a postmortem brain study
  publication-title: Brain Dev.
– volume: 202
  start-page: 199
  year: 2005
  end-page: 211
  article-title: Iron metabolism and toxicity
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 23
  start-page: S251
  year: 2001
  end-page: S253
  article-title: Rett syndrome in Spain: mutation analysis and clinical correlations
  publication-title: Brain Dev.
– volume: 24
  start-page: 69
  year: 1985
  end-page: 176
  article-title: Lipids of nervous tissue: composition and metabolism
  publication-title: Prog. Lipid Res.
– volume: 30
  start-page: 146
  year: 1999
  end-page: 148
  article-title: Reduced heart rate variability in patients affected with Rett syndrome. A possible explanation for sudden death
  publication-title: Neuropediatrics
– volume: 31
  start-page: 7951
  year: 2011
  end-page: 7959
  article-title: Complexities of Rett syndrome and MeCP2
  publication-title: J. Neurosci.
– volume: 475
  start-page: 497
  year: 2011
  end-page: 500
  article-title: A role for glia in the progression of Rett's syndrome
  publication-title: Nature
– volume: 1672
  start-page: 203
  year: 2004
  end-page: 213
  article-title: Iron release, superoxide production and binding of autologous IgG to band 3 dimers in newborn and adult erythrocytes exposed to hypoxia and hypoxia–reoxygenation
  publication-title: Biochim. Biophys. Acta
– volume: 52
  start-page: 817
  year: 2010
  end-page: 823
  article-title: Level of purposeful hand function as a marker of clinical severity in Rett syndrome
  publication-title: Dev. Med. Child Neurol.
– volume: 2012
  start-page: 724904
  year: 2012
  article-title: Oxidative stress and down syndrome: a route toward Alzheimer‐like dementia
  publication-title: Curr. Gerontol. Geriatr. Res.
– volume: 12
  start-page: 913
  year: 2007
  end-page: 922
  article-title: Mitochondria, oxidative stress and cell death
  publication-title: Apoptosis
– volume: 27
  start-page: 322
  year: 2001
  end-page: 326
  article-title: A mouse Mecp2‐null mutation causes neurological symptoms that mimic Rett syndrome
  publication-title: Nat. Genet.
– volume: 1820
  start-page: 511
  year: 2012
  end-page: 520
  article-title: Morphological changes and oxidative damage in Rett syndrome erythrocytes
  publication-title: Biochim. Biophys. Acta
– volume: 66
  start-page: 771
  year: 2009
  end-page: 782
  article-title: Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome
  publication-title: Ann. Neurol.
– volume: 47
  start-page: 670
  year: 2000
  end-page: 679
  article-title: Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes
  publication-title: Ann. Neurol.
– volume: 26
  start-page: 5033
  year: 2006
  end-page: 5042
  article-title: Gene expression analysis exposes mitochondrial abnormalities in a mouse model of Rett syndrome
  publication-title: Mol. Cell. Biol.
– volume: 19
  start-page: 501
  year: 2008
  end-page: 517
  article-title: Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches
  publication-title: Behav. Pharmacol.
– volume: 43
  start-page: 1045
  year: 2008
  end-page: 1060
  article-title: Autonomic dysregulation in young girls with Rett syndrome during nighttime in‐home recordings
  publication-title: Pediatr. Pulmonol.
– volume: 9
  start-page: 439
  year: 2010
  end-page: 454
  article-title: Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models
  publication-title: CNS Neurol. Disord. Drug Targets
– volume: 119
  start-page: 2455
  year: 2008
  end-page: 2458
  article-title: Drug‐resistant epilepsy and epileptic phenotype‐EEG association in MECP2 mutated Rett syndrome
  publication-title: Clin. Neurophysiol.
– volume: 83
  start-page: 89
  year: 2008
  end-page: 93
  article-title: FOXG1 is responsible for the congenital variant of Rett syndrome
  publication-title: Am. J. Hum. Genet.
– volume: 131
  start-page: 2647
  year: 2008
  end-page: 2661
  article-title: Key clinical features to identify girls with CDKL5 mutations
  publication-title: Brain
– volume: 111
  start-page: 238
  year: 2002
  end-page: 242
  article-title: Infantile hypotonia as a presentation of Rett syndrome
  publication-title: Am. J. Med. Genet.
– volume: 56
  start-page: 155
  year: 2012
  end-page: 173
  article-title: Clusterin in Alzheimer's disease
  publication-title: Adv. Clin. Chem.
– volume: 33
  start-page: 2444
  year: 2008
  end-page: 2471
  article-title: Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity
  publication-title: Neurochem. Res.
– volume: 23
  start-page: 185
  year: 1999
  end-page: 188
  article-title: Rett syndrome is caused by mutation in X−linked MECP2, encoding methyl−CpG−binding protein 2
  publication-title: Nat. Genet.
– volume: 5
  start-page: 320
  year: 1989
  end-page: 323
  article-title: Mitochondrial alterations in Rett syndrome
  publication-title: Pediatr. Neurol.
– volume: 12
  start-page: 239
  year: 2009
  end-page: 240
  article-title: Rett syndrome: what do we know for sure?
  publication-title: Nat. Neurosci.
– volume: 65
  start-page: 1520
  year: 1999
  end-page: 1529
  article-title: Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots.
  publication-title: Am. J. Hum. Genet.
– volume: 30
  start-page: 5346
  year: 2010
  end-page: 5356
  article-title: Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate
  publication-title: J. Neurosci.
– volume: 80
  start-page: 384
  year: 1999
  end-page: 387
  article-title: Recent insights into hyperventilation from the study of Rett syndrome
  publication-title: Arch. Dis. Child.
– volume: 22
  start-page: 107
  year: 2003
  end-page: 115
  article-title: Mutations and polymorphisms in the human methyl CpG‐binding protein MECP2
  publication-title: Hum. Mutat.
– volume: 7
  start-page: 290
  year: 1985
  end-page: 296
  article-title: Rett syndrome: report of eight cases
  publication-title: Brain Dev.
– volume: 468
  start-page: 263
  year: 2010
  end-page: 269
  article-title: Dysfunction in GABA signalling mediates autism‐like stereotypies and Rett syndrome phenotypes
  publication-title: Nature
– volume: 56
  start-page: 1486
  year: 2001
  end-page: 1495
  article-title: MeCP2 mutations in children with and without the phenotype of Rett syndrome
  publication-title: Neurology
– volume: 14
  start-page: 43
  year: 1992
  end-page: 45
  article-title: A review of the respiratory disorder in the Rett syndrome
  publication-title: Brain Dev. Suppl.
– volume: 138
  start-page: 386
  year: 2010
  end-page: 392
  article-title: Unrecognized lung disease in classic Rett syndrome: a physiologic and high‐resolution CT imaging study
  publication-title: Chest
– volume: 72
  start-page: 72
  year: 2011
  end-page: 85
  article-title: Genome‐wide activity‐dependent MeCP2 phosphorylation regulates nervous system development and function
  publication-title: Neuron
– volume: 484
  start-page: 105
  year: 2012
  end-page: 109
  article-title: Wild‐type microglia arrest pathology in a mouse model of Rett syndrome
  publication-title: Nature
– volume: 72
  start-page: 734
  year: 1999
  end-page: 740
  article-title: F4‐isoprostanes as specific marker of docosahexaenoic acdid peroxidation in Alzheimer's disease
  publication-title: J. Neurochem.
– volume: 107
  start-page: 355
  year: 2012
  end-page: 415
  article-title: Biology of mitochondria in neurodegenerative diseases
  publication-title: Prog. Mol Biol. Transl. Sci.
– volume: 86
  start-page: 287
  year: 2011
  end-page: 321
  article-title: Multiple sclerosis is not a disease of the immune system
  publication-title: Q. Rev. Biol.
– volume: 32
  start-page: 142
  year: 1989
  end-page: 144
  article-title: Rett syndrome: genetic clues based on mitochondrial changes in muscle
  publication-title: Am. J. Med. Genet.
– volume: 12
  start-page: 127
  year: 2010
  end-page: 134
  article-title: The role of MeCP2 in brain development and neurodevelopmental disorders
  publication-title: Curr. Psychiatry Rep.
– volume: 44
  start-page: 368
  year: 2011
  article-title: Increased levels of 4HNE‐protein plasma adducts in Rett syndrome
  publication-title: Clin. Biochem.
– volume: 31
  start-page: 301
  year: 1999
  end-page: 304
  article-title: Studies on mitochondrial pathogenesis of Rett syndrome: ultrastructural data from skin and muscle biopsies and mutational analysis at mtDNA nucleotides 10463 and 2835
  publication-title: J. Submicrosc. Cytol. Pathol.
– volume: 52
  start-page: 2287
  year: 2011
  end-page: 2297
  article-title: F2‐dihomo‐isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome
  publication-title: J. Lipid Res.
– volume: 23
  start-page: 916
  year: 2003
  end-page: 922
  article-title: The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice
  publication-title: Mol. Cell Biol.
– volume: 38
  start-page: 224
  year: 2001
  end-page: 228
  article-title: Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein
  publication-title: J. Med. Genet.
– volume: 67
  start-page: 164
  year: 2006
  end-page: 166
  article-title: Early progressive encephalopathy in boys and MECP2 mutations
  publication-title: Neurology
– volume: 173
  start-page: 146
  year: 2010
  end-page: 156
  article-title: Physiological definition of upper airway obstructions in mouse model for Rett syndrome
  publication-title: Respir. Physiol. Neurobiol.
– volume: 39
  start-page: 44
  year: 2007
  end-page: 84
  article-title: Free radicals and antioxidants in normal physiological functions and human disease
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 14
  start-page: 471
  year: 1983
  end-page: 479
  article-title: A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome:report of 35 cases
  publication-title: Ann. Neurol.
– volume: 21
  start-page: 827
  year: 2011
  end-page: 833
  article-title: Synaptic microcircuit dysfunction in genetic models of neurodevelopmental disorders: focus on Mecp2 and Met
  publication-title: Curr. Opin. Neurobiol.
– ident: e_1_2_10_39_2
  doi: 10.1136/jmg.38.4.224
– ident: e_1_2_10_77_2
  doi: 10.1111/j.1471-4159.2005.03572.x
– ident: e_1_2_10_99_2
  doi: 10.1086/662453
– ident: e_1_2_10_63_2
  doi: 10.1002/anie.200705122
– ident: e_1_2_10_113_2
  doi: 10.1038/85899
– ident: e_1_2_10_42_2
  doi: 10.1126/science.1138389
– ident: e_1_2_10_13_2
  doi: 10.1177/0883073807309786
– ident: e_1_2_10_30_2
  doi: 10.1002/ajmg.a.10053
– ident: e_1_2_10_136_2
  doi: 10.1016/0887-8994(89)90027-1
– ident: e_1_2_10_112_2
  doi: 10.1038/sj.ejhg.5200473
– ident: e_1_2_10_38_2
  doi: 10.1016/S0887-8994(02)00624-0
– ident: e_1_2_10_57_2
  doi: 10.1016/j.bbagen.2004.04.003
– ident: e_1_2_10_124_2
  doi: 10.1016/j.neuron.2011.08.022
– ident: e_1_2_10_133_2
  doi: 10.1055/s-2007-979735
– ident: e_1_2_10_22_2
  doi: 10.1007/s003359900157
– ident: e_1_2_10_92_2
  doi: 10.1194/jlr.P017798
– ident: e_1_2_10_100_2
  doi: 10.1007/978-1-4614-0653-2_22
– ident: e_1_2_10_62_2
  doi: 10.1016/j.freeradbiomed.2004.10.024
– ident: e_1_2_10_84_2
  doi: 10.1136/adc.80.4.384
– ident: e_1_2_10_129_2
  doi: 10.1134/S1819712411020024
– ident: e_1_2_10_101_2
  doi: 10.1155/2012/724904
– ident: e_1_2_10_16_2
  doi: 10.1002/ana.22124
– ident: e_1_2_10_87_2
  doi: 10.1002/ppul.20866
– ident: e_1_2_10_140_2
  doi: 10.1186/1471-2202-11-53
– volume: 14
  start-page: S89
  year: 1992
  ident: e_1_2_10_134_2
  article-title: The neuropathology of the Rett syndrome
  publication-title: Brain Dev. Suppl.
– ident: e_1_2_10_120_2
  doi: 10.1378/chest.09-3021
– volume: 116
  start-page: 723
  year: 1966
  ident: e_1_2_10_14_2
  article-title: Uber ein eigartiges hirnatrophisches Syndrom bei Hyperammoniamie in Kindesalter.
  publication-title: Wien Med. Wochenschr.
– ident: e_1_2_10_119_2
  doi: 10.1002/ana.22124
– ident: e_1_2_10_10_2
  doi: 10.1016/S1474-4422(09)70262-5
– ident: e_1_2_10_114_2
  doi: 10.1038/85906
– ident: e_1_2_10_128_2
  doi: 10.1006/nbdi.2001.0428
– ident: e_1_2_10_4_2
  doi: 10.1001/archneurol.2011.149
– ident: e_1_2_10_12_2
  doi: 10.1016/j.neuron.2007.10.001
– ident: e_1_2_10_143_2
– ident: e_1_2_10_97_2
  doi: 10.1016/B978-0-12-385883-2.00005-9
– ident: e_1_2_10_95_2
  doi: 10.1179/1351000211Y.0000000004
– ident: e_1_2_10_3_2
  doi: 10.1042/BJ20110648
– ident: e_1_2_10_17_2
  doi: 10.1002/mrdd.10020
– ident: e_1_2_10_141_2
  doi: 10.1212/WNL.0b013e3181d6b852
– ident: e_1_2_10_85_2
  doi: 10.1136/adc.85.1.29
– ident: e_1_2_10_79_2
  doi: 10.1371/journal.pone.0003669
– ident: e_1_2_10_6_2
  doi: 10.1523/JNEUROSCI.0169-11.2011
– ident: e_1_2_10_68_2
  doi: 10.1016/j.jchromb.2003.10.036
– ident: e_1_2_10_81_2
  doi: 10.1128/MCB.01665-05
– ident: e_1_2_10_105_2
  doi: 10.1002/ana.410140412
– ident: e_1_2_10_69_2
  doi: 10.1046/j.1471-4159.1999.0720734.x
– ident: e_1_2_10_11_2
  doi: 10.1097/FBP.0b013e32830c3645
– ident: e_1_2_10_125_2
  doi: 10.1002/ana.21715
– volume: 2
  start-page: 28
  year: 2010
  ident: e_1_2_10_9_2
  article-title: Synaptic determinants of Rett syndrome
  publication-title: Front, Synaptic Neurosci.
– ident: e_1_2_10_35_2
  doi: 10.1136/jmg.40.5.e52
– ident: e_1_2_10_86_2
  doi: 10.1002/ana.410210410
– ident: e_1_2_10_65_2
  doi: 10.1006/bbrc.1997.7883
– ident: e_1_2_10_59_2
  doi: 10.1016/0748-5514(85)90134-5
– ident: e_1_2_10_58_2
  doi: 10.1016/j.taap.2004.06.021
– ident: e_1_2_10_50_2
  doi: 10.1073/pnas.93.18.9782
– ident: e_1_2_10_91_2
  doi: 10.1016/j.bbagen.2011.12.002
– ident: e_1_2_10_127_2
  doi: 10.1002/ajmg.a.20247
– ident: e_1_2_10_74_2
  doi: 10.1016/S0387-7604(01)00369-2
– ident: e_1_2_10_76_2
  doi: 10.1093/nar/gkh739
– ident: e_1_2_10_48_2
  doi: 10.1016/S0891-5849(02)01360-6
– ident: e_1_2_10_49_2
  doi: 10.1128/MCB.23.3.916-922.2003
– ident: e_1_2_10_103_2
  doi: 10.1016/j.lfs.2011.08.006
– ident: e_1_2_10_131_2
  doi: 10.1016/0387-7604(94)90129-5
– ident: e_1_2_10_121_2
  doi: 10.1016/j.molcel.2010.01.030
– ident: e_1_2_10_110_2
  doi: 10.1016/S0022-510X(98)00035-5
– ident: e_1_2_10_2_2
  doi: 10.1146/annurev-cellbio-092910-154121
– ident: e_1_2_10_78_2
  doi: 10.1016/j.freeradbiomed.2005.08.023
– ident: e_1_2_10_93_2
  doi: 10.1016/j.tcb.2011.06.004
– ident: e_1_2_10_104_2
  doi: 10.1002/prca.201000121
– ident: e_1_2_10_41_2
  doi: 10.1016/j.ajhg.2008.05.015
– ident: e_1_2_10_61_2
  doi: 10.1073/pnas.87.23.9383
– ident: e_1_2_10_60_2
  doi: 10.1016/S0304-3940(98)00303-6
– ident: e_1_2_10_72_2
  doi: 10.1194/jlr.M700503-JLR200
– ident: e_1_2_10_24_2
  doi: 10.1212/01.wnl.0000291011.54508.aa
– ident: e_1_2_10_7_2
  doi: 10.1016/j.nlm.2011.05.006
– ident: e_1_2_10_71_2
  doi: 10.1194/jlr.M600327-JLR200
– ident: e_1_2_10_23_2
  doi: 10.1136/jmg.2006.045260
– ident: e_1_2_10_117_2
  doi: 10.1126/science.1153252
– ident: e_1_2_10_47_2
  doi: 10.2174/187152710791556113
– ident: e_1_2_10_96_2
  doi: 10.1007/s12263-012-0285-7
– ident: e_1_2_10_37_2
  doi: 10.1212/01.wnl.0000223318.28938.45
– ident: e_1_2_10_5_2
  doi: 10.1016/j.conb.2011.06.006
– ident: e_1_2_10_111_2
  doi: 10.1055/s-2007-973480
– ident: e_1_2_10_46_2
  doi: 10.1016/j.biocel.2006.07.001
– ident: e_1_2_10_73_2
  doi: 10.1016/S0387-7604(87)80079-7
– ident: e_1_2_10_138_2
  doi: 10.1177/088307389100600216
– ident: e_1_2_10_98_2
  doi: 10.1016/B978-0-12-394317-0.00011-X
– ident: e_1_2_10_122_2
  doi: 10.1038/nature09582
– ident: e_1_2_10_53_2
  doi: 10.1038/nature10214
– ident: e_1_2_10_75_2
  doi: 10.1016/j.freeradbiomed.2009.05.016
– ident: e_1_2_10_90_2
  doi: 10.1016/j.resp.2010.07.006
– ident: e_1_2_10_66_2
  doi: 10.1074/jbc.273.22.13605
– ident: e_1_2_10_106_2
  doi: 10.1016/S0387-7604(85)80037-1
– ident: e_1_2_10_132_2
  doi: 10.1016/S0387-7604(12)80283-X
– ident: e_1_2_10_51_2
  doi: 10.1091/mbc.E11-09-0784
– volume: 14
  start-page: 43
  year: 1992
  ident: e_1_2_10_82_2
  article-title: A review of the respiratory disorder in the Rett syndrome
  publication-title: Brain Dev. Suppl.
– ident: e_1_2_10_135_2
  doi: 10.1002/ajmg.1320320131
– ident: e_1_2_10_28_2
  doi: 10.1212/WNL.56.11.1486
– ident: e_1_2_10_40_2
  doi: 10.1093/brain/awn197
– ident: e_1_2_10_52_2
  doi: 10.1523/JNEUROSCI.5966-09.2010
– ident: e_1_2_10_8_2
  doi: 10.1007/s11920-010-0097-7
– ident: e_1_2_10_130_2
  doi: 10.1016/j.clinbiochem.2011.01.007
– ident: e_1_2_10_27_2
  doi: 10.1093/hmg/9.9.1369
– ident: e_1_2_10_64_2
  doi: 10.1021/cr200160h
– ident: e_1_2_10_109_2
  doi: 10.1093/nar/20.19.5085
– ident: e_1_2_10_19_2
  doi: 10.1038/nn0309-239
– ident: e_1_2_10_67_2
  doi: 10.1016/0163-7827(85)90011-6
– ident: e_1_2_10_43_2
  doi: 10.1371/journal.pgen.1000667
– year: 2012
  ident: e_1_2_10_123_2
  article-title: Subclinical myocardial dysfunction in Rett syndrome. Eur. Heart
  publication-title: J. Echocardiogr. Imaging.
– ident: e_1_2_10_118_2
  doi: 10.1016/j.bone.2007.12.003
– ident: e_1_2_10_44_2
  doi: 10.1007/s10495-007-0756-2
– ident: e_1_2_10_15_2
  doi: 10.1038/13810
– ident: e_1_2_10_116_2
  doi: 10.1136/jmg.2004.026237
– ident: e_1_2_10_102_2
  doi: 10.1002/biof.184
– volume: 31
  start-page: 301
  year: 1999
  ident: e_1_2_10_80_2
  article-title: Studies on mitochondrial pathogenesis of Rett syndrome: ultrastructural data from skin and muscle biopsies and mutational analysis at mtDNA nucleotides 10463 and 2835
  publication-title: J. Submicrosc. Cytol. Pathol.
– ident: e_1_2_10_34_2
  doi: 10.1002/ana.21562
– ident: e_1_2_10_56_2
  doi: 10.1016/S0891-5849(02)00759-1
– ident: e_1_2_10_115_2
  doi: 10.1093/hmg/ddi198
– volume: 6
  start-page: 47
  year: 1997
  ident: e_1_2_10_83_2
  article-title: Functional evidence of brain stem immaturity in Rett syndrome
  publication-title: Eur. Child Adolesc. Psychiatry
– ident: e_1_2_10_21_2
  doi: 10.1002/humu.10194
– ident: e_1_2_10_70_2
  doi: 10.1006/bbrc.1997.6869
– ident: e_1_2_10_29_2
  doi: 10.1016/S0387-7604(01)00374-6
– ident: e_1_2_10_54_2
  doi: 10.1038/nature10907
– ident: e_1_2_10_55_2
  doi: 10.1042/bj2190001
– ident: e_1_2_10_31_2
  doi: 10.1212/01.wnl.0000304752.50773.ec
– ident: e_1_2_10_20_2
  doi: 10.1002/humu.10243
– ident: e_1_2_10_36_2
  doi: 10.1086/302690
– ident: e_1_2_10_107_2
  doi: 10.1016/S0387-7604(85)80030-9
– volume: 14
  start-page: S11
  year: 1992
  ident: e_1_2_10_108_2
  article-title: Age‐related occurrence of signs and symptoms in the Rett syndrome
  publication-title: Brain Dev.
– ident: e_1_2_10_139_2
  doi: 10.1002/ajmg.10633
– ident: e_1_2_10_26_2
  doi: 10.1093/hmg/9.7.1119
– ident: e_1_2_10_88_2
  doi: 10.1152/japplphysiol.01266.2007
– ident: e_1_2_10_33_2
  doi: 10.1111/j.1469-8749.2010.03636.x
– ident: e_1_2_10_25_2
  doi: 10.1002/1531-8249(200005)47:5<670::AID-ANA20>3.0.CO;2-F
– ident: e_1_2_10_32_2
  doi: 10.1016/j.braindev.2010.01.004
– ident: e_1_2_10_142_2
  doi: 10.1016/j.clinph.2008.08.015
– ident: e_1_2_10_45_2
  doi: 10.1007/s11064-008-9775-9
– ident: e_1_2_10_126_2
  doi: 10.1002/ajmg.a.31314
– ident: e_1_2_10_137_2
  doi: 10.1016/0387-7604(93)90045-A
– ident: e_1_2_10_89_2
  doi: 10.1177/0883073811429859
– ident: e_1_2_10_94_2
  doi: 10.1016/j.cca.2011.04.016
– ident: e_1_2_10_18_2
  doi: 10.1038/nature09582
SSID ssj0012847
Score 2.3532882
SecondaryResourceType review_article
Snippet The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl‐CpG binding protein 2...
The main cause of Rett syndrome (RTT), a pervasive development disorder almost exclusively affecting females, is a mutation in the methyl-CpG binding protein 2...
SourceID hal
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121
SubjectTerms Animal models
Animals
Chemical Sciences
Female
Genetic Association Studies
Heterogeneity
Humans
isoprostanes
MeCP2
Molecular Targeted Therapy - trends
Mutation
Organic chemistry
Oxidative stress
Oxidative Stress - genetics
Oxidative Stress - physiology
Quality of life
Rett syndrome
Rett Syndrome - etiology
Rett Syndrome - genetics
Rett Syndrome - metabolism
Rett Syndrome - therapy
Title The role of oxidative stress in Rett syndrome: an overview
URI https://api.istex.fr/ark:/67375/WNG-9P2ZJ0D1-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1749-6632.2012.06611.x
https://www.ncbi.nlm.nih.gov/pubmed/22758644
https://www.proquest.com/docview/1768590632
https://www.proquest.com/docview/1037662383
https://www.proquest.com/docview/1038238086
https://hal.science/hal-00714965
Volume 1259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCIkXYOMrMJBBCMFDqtiJ7XhvFTCqCSo0mBi8WI5ji6koRWuKCn89d04a0WlCE-ItSs5NfbmP3yXnnwl5musCUK0C_w4CChQXqtQWnKVSiLwIUBNlDgvFd1M5OSoOjsVx3_-Ea2E6fojhhRt6RozX6OC2Wmw6uSp0ChkT11PhKz1INWyEeBJbtxAfHQ5MUjEKx6CsICgDqDnb1HPOD21kqstfsU_yCqp-dR4Y3cS2MTnt3yCz9bS6npTZaNlWI_frDOPj_5n3TXK9x7B03BndNrnkmx1ytdvV8ucO2e7jxYI-70mtX9wie2CPFFsZ6TzQ-eqkjoTjtFuqQk8aeujblq75E_aobSg2l-KHi9vkaP_1x5eTtN-3IXVCapYGD45euxCgGMo0eLnPpeIy-KBzLSxc41YJa50K2ntWaua48KK2tWQ-iDq_Q7aaeePvwTMqnS3yANFcZkVVq5JlZZ0HngUvfWZ1QtT6GRnXk5rj3hrfzB_FDajLoLoMqstEdZlVQtgw8ntH7HGBMU_ADAZxZOaejN8aPIdQDan3f7CEPItWMojZ0xl2zylhPk3fGP2efznIXjEDgrtrMzJ94FjAjWUpNOBGnpDHw2VwefyOYxs_X4JMBlkBYGuZ_1WmBAkoWBNytzPR4Q9xDkUi4GBQXjS0C8_fTD-PP-Dh_X8e-YBcw_Ndw_Mu2WpPl_4hwLq2ehQd9jc9RDbB
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgE4IXxsavsAEGIQQPqWInjuO9VYNRRlehsWmDF8t1bDFtStGWosJfvzsnjeg0oQnxVjXnNr7cnb9zzt8R8ipVGaBaCf7tBSQo1o9jk3EW50KkmYecKLGYKO6O8sFBtnMkjtp2QHgWpuGH6Dbc0DNCvEYHxw3pRS-XmYphycQDVbinB2sN6wGgXMYG3yG_2uu4pEIcDmFZQlgGWHO5rOeKX1pYq25-x0rJZVT-7Co4uohuw_K0vUJO5xNrqlJOetN63LO_L3E-_qeZ3yN3WxhL-43drZIbrlojt5rGlr_WyGobMs7pm5bX-u19sgkmSbGakU48ncyOy8A5TpvTKvS4onuurumcQmGTmopifSm-u3hADrbf728N4rZ1Q2xFrljsHfh6ab2HfChR4OguzSXPvfMqVcLANW6kMMZKr5xjhWKWCydKU-bMeVGmD8lSNancY3hIhTVZ6iGg50k2LmXBkqJMPU-8y11iVETk_CFp2_KaY3uNU_1HfgPq0qgujerSQV16FhHWjfzRcHtcY8xLsINOHMm5B_2hxu8QrSH7_k8WkdfBTDoxc3aCBXRS6MPRB60-8287yTumQXBjbke6jR3n8Md5IRRARx6RF91l8Hp8lWMqN5mCTAILAyDXIv2rTAESkLNG5FFjo90NcQ55IkBhUF6wtGvPX4--9r_gxyf_PPI5uT3Y3x3q4cfRp3VyB2Wa-ucNslSfTd1TQHn1-Fnw3gu2vzrc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgE4gXYOMrMMAghOAhlZ3Edry3ilLKGNU0mDZ4sVzHFlNROm0pKvz13CVpRKcJTYi3Kjmn8eU-fpecfybkRaozQLUK_DsIKFBcmMQ2S3gshUizADURc1gofhzL0UG2cySO2v4nXAvT8EN0L9zQM-p4jQ5-UoRVJ1eZjiFj4noqfKUHqYb3AE-uZ5LlaOGD_Y5Kqg7DdVRWEJUB1Zzv6rngSiup6uo3bJRcR90vLkKjq-C2zk7DW2S6nFfTlDLtzatJz_06R_n4fyZ-m9xsQSztN1a3Qa74cpNca7a1_LlJNtqAcUZftazWr--QbTBIir2MdBbobHFc1IzjtFmrQo9Luu-rii4JFLapLSl2l-KXi7vkYPj285tR3G7cEDshNY-DB08vXAhQDTENbu5TqRIZfNCpFhbOJVYJa50K2nuea-4S4UVhC8l9EEV6j6yVs9I_gGeUO5ulAcK5ZNmkUDlneZGGhAUvPbM6Imr5jIxrWc1xc43v5o_qBtRlUF0G1WVqdZlFRHg38qRh9rjEmOdgBp04UnOP-rsGjyFWQ-79HzwiL2sr6cTs6RTb55Qwh-N3Ru8lX3fYgBsQ3FqakWkjxxn8scyFBuCYRORZdxp8Hj_k2NLP5iDDIC0Abs3Tv8rkIAEVa0TuNyba3VCSQJUIQBiUVxvapedvxl_6n_Dnw38e-ZRc3xsMze778YdH5AaKNM3PW2StOp37xwDxqsmT2nd_A9VCOZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+oxidative+stress+in+Rett+syndrome%3A+an+overview&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=De+Felice%2C+Claudio&rft.au=Signorini%2C+Cinzia&rft.au=Leoncini%2C+Silvia&rft.au=Pecorelli%2C+Alessandra&rft.date=2012-07-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1259&rft.issue=1&rft.spage=121&rft.epage=135&rft_id=info:doi/10.1111%2Fj.1749-6632.2012.06611.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_9P2ZJ0D1_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon