Rational Design of Three Dimensional Hollow Heterojunctions for Efficient Photocatalytic Hydrogen Evolution Applications
The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built‐in electric fields and m...
Saved in:
Published in | Advanced science Vol. 11; no. 13; pp. e2309293 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.04.2024
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built‐in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g−1 h−1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g−1 h−1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p‐n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials‐by‐design of high‐performance heterojunctions.
Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S 3D hollow heterostructure is designed to realize the spatial separation and effective transfer of photogenerated charges. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth through in situ characterization and theoretical calculations but also provides a universal strategy for the rational construction of excellent hollow heterojunctions. |
---|---|
AbstractList | Abstract The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built‐in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g−1 h−1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g−1 h−1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p‐n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials‐by‐design of high‐performance heterojunctions. The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built‐in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu 2 O─S@graphene oxide (GO)@Zn 0.67 Cd 0.33 S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H 2 production rate reached 48.5 mmol g −1 h −1 under visible light after loading Ni 2+ on the heterojunction surface, which is 97 times higher than that of pure Zn 0.67 Cd 0.33 S nanospheres. Furthermore, the H 2 production rate can reach 77.3 mmol g −1 h −1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p‐n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials‐by‐design of high‐performance heterojunctions. Herein, a unique Cu 2 O─S@graphene oxide (GO)@Zn 0.67 Cd 0.33 S 3D hollow heterostructure is designed to realize the spatial separation and effective transfer of photogenerated charges. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth through in situ characterization and theoretical calculations but also provides a universal strategy for the rational construction of excellent hollow heterojunctions. The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built-in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g−1 h−1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g−1 h−1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p-n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials-by-design of high-performance heterojunctions. The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built-in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g-1 h-1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g-1 h-1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p-n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials-by-design of high-performance heterojunctions.The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built-in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g-1 h-1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g-1 h-1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p-n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials-by-design of high-performance heterojunctions. The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built‐in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g−1 h−1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g−1 h−1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p‐n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials‐by‐design of high‐performance heterojunctions. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S 3D hollow heterostructure is designed to realize the spatial separation and effective transfer of photogenerated charges. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth through in situ characterization and theoretical calculations but also provides a universal strategy for the rational construction of excellent hollow heterojunctions. The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built-in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu O─S@graphene oxide (GO)@Zn Cd S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H production rate reached 48.5 mmol g h under visible light after loading Ni on the heterojunction surface, which is 97 times higher than that of pure Zn Cd S nanospheres. Furthermore, the H production rate can reach 77.3 mmol g h without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p-n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials-by-design of high-performance heterojunctions. The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built‐in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu 2 O─S@graphene oxide (GO)@Zn 0.67 Cd 0.33 S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H 2 production rate reached 48.5 mmol g −1 h −1 under visible light after loading Ni 2+ on the heterojunction surface, which is 97 times higher than that of pure Zn 0.67 Cd 0.33 S nanospheres. Furthermore, the H 2 production rate can reach 77.3 mmol g −1 h −1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p‐n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials‐by‐design of high‐performance heterojunctions. |
Author | Liu, Gang Xu, Zhikun Zhao, Chenchen Zhang, Bingke Pan, Jingwen Wang, Jinzhong Zeng, Zhi Jiao, Shujie Liu, Sihang Liu, Donghao Zhao, Liancheng Wu, Donghai Wang, Dongbo Fang, Xuan Cao, Jiamu |
AuthorAffiliation | 2 Henan Key Laboratory of Nanocomposites and Applications Huanghe Science and Technology College Institute of Nanostructured Functional Materials Zhengzhou 450006 China 4 State Key Lab High Power Semicond Lasers Changchun University Science and Technology, Sch Sci Changchun 130022 China 1 School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China 3 School of Astronautics Harbin Institute of Technology Harbin 150001 China 6 Guangdong University of Petrochemical Technology Maoming 525000 China 5 Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China |
AuthorAffiliation_xml | – name: 6 Guangdong University of Petrochemical Technology Maoming 525000 China – name: 1 School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China – name: 4 State Key Lab High Power Semicond Lasers Changchun University Science and Technology, Sch Sci Changchun 130022 China – name: 2 Henan Key Laboratory of Nanocomposites and Applications Huanghe Science and Technology College Institute of Nanostructured Functional Materials Zhengzhou 450006 China – name: 5 Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China – name: 3 School of Astronautics Harbin Institute of Technology Harbin 150001 China |
Author_xml | – sequence: 1 givenname: Jingwen surname: Pan fullname: Pan, Jingwen organization: Harbin Institute of Technology – sequence: 2 givenname: Dongbo orcidid: 0000-0001-6058-9660 surname: Wang fullname: Wang, Dongbo email: wangdongbo@hit.edu.cn organization: Harbin Institute of Technology – sequence: 3 givenname: Donghai surname: Wu fullname: Wu, Donghai email: donghaiwu@hhstu.edu.cn organization: Institute of Nanostructured Functional Materials – sequence: 4 givenname: Jiamu surname: Cao fullname: Cao, Jiamu email: caojiamu@hit.edu.cn organization: Harbin Institute of Technology – sequence: 5 givenname: Xuan surname: Fang fullname: Fang, Xuan email: fangx@cust.edu.cn organization: Changchun University Science and Technology, Sch Sci – sequence: 6 givenname: Chenchen surname: Zhao fullname: Zhao, Chenchen organization: Harbin Institute of Technology – sequence: 7 givenname: Zhi surname: Zeng fullname: Zeng, Zhi organization: Harbin Institute of Technology – sequence: 8 givenname: Bingke surname: Zhang fullname: Zhang, Bingke organization: Harbin Institute of Technology – sequence: 9 givenname: Donghao surname: Liu fullname: Liu, Donghao organization: Harbin Institute of Technology – sequence: 10 givenname: Sihang surname: Liu fullname: Liu, Sihang organization: Harbin Institute of Technology – sequence: 11 givenname: Gang surname: Liu fullname: Liu, Gang email: liugang@hpstar.ac.cn organization: Center for High Pressure Science and Technology Advanced Research – sequence: 12 givenname: Shujie surname: Jiao fullname: Jiao, Shujie organization: Harbin Institute of Technology – sequence: 13 givenname: Zhikun surname: Xu fullname: Xu, Zhikun email: xuzhikunnano@163.com organization: Guangdong University of Petrochemical Technology – sequence: 14 givenname: Liancheng surname: Zhao fullname: Zhao, Liancheng email: lczhao@hit.edu.cn organization: Harbin Institute of Technology – sequence: 15 givenname: Jinzhong surname: Wang fullname: Wang, Jinzhong email: jinzhong_wang@hit.edu.cn organization: Harbin Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38258489$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUktvEzEYtFARLaVXjsgSFy4Jfu2ufUJVE0ilSiAoXC2vH4kjZx3s3ZT8e5xHq7YS4mTL38x8Y828Bidd7CwAbzEaY4TIR2U2eUwQoUgQQV-AM4IFH1HO2Mmj-ym4yHmJEMIVbRjmr8Ap5aTijIsz8Oe76n3sVIATm_28g9HB20WyFk78ynb5MJvFEOIdnNneprgcOr3jZOhiglPnvPa26-G3ReyjVr0K295rONuaFOe2g9NNDMOOAC_X6-D1fmF-A146FbK9OJ7n4Ofn6e3VbHTz9cv11eXNSFe1wCOmKNWUCVS8a2MdagRvCcO4aRB1tK4IU0abujZO8JqqVrCatFZrhYiu2paeg-uDrolqKdfJr1Tayqi83D_ENJcqFb_BSqOFsRWtudWOGUp4W3FKjXYCuaYhTdH6dNBaD-3KGl1-nVR4Ivp00vmFnMeNxEjwBtesKHw4KqT4e7C5lyuftQ1BdTYOWRKBG16TklqBvn8GXcYhlTSypIgizksDUEG9e2zpwct9wgXADgCdYs7JOql9v4-gOPShWJO7Lsldl-RDlwpt_Ix2r_xPwnHPnQ92-x-0vJz8-tGwCtO_biLdjw |
CitedBy_id | crossref_primary_10_1021_acscatal_4c03916 crossref_primary_10_1016_j_apmate_2024_100243 crossref_primary_10_1021_acsanm_4c03584 crossref_primary_10_1016_j_apsusc_2024_160893 crossref_primary_10_1016_j_jcis_2025_01_038 crossref_primary_10_1016_j_jcis_2024_10_151 crossref_primary_10_1002_smll_202405712 crossref_primary_10_1016_j_jcis_2024_12_004 crossref_primary_10_1016_j_ijhydene_2024_06_056 crossref_primary_10_1016_j_seppur_2024_129479 crossref_primary_10_1016_j_jallcom_2024_177619 crossref_primary_10_1016_j_seppur_2024_128666 crossref_primary_10_1039_D4QI02452D crossref_primary_10_1002_adfm_202412527 crossref_primary_10_1016_j_seppur_2024_131192 |
Cites_doi | 10.1016/j.seppur.2023.123708 10.1021/cs4002089 10.1007/s10854-018-8860-3 10.1021/acsami.7b19530 10.1021/jacs.5b12666 10.1039/C8NR02936A 10.1002/adfm.201200922 10.1016/j.renene.2019.01.103 10.1021/ja107871r 10.1002/smll.202102307 10.1016/j.apcatb.2018.03.017 10.1016/j.apcatb.2021.119994 10.1016/j.cej.2019.122342 10.1002/anie.201703827 10.1021/acs.jpcc.0c02214 10.1039/C9TA13836F 10.1088/1361-6463/ac4b56 10.1002/adfm.201101927 10.1039/C6TA03803D 10.1021/cs4000975 10.1039/C5CS00838G 10.1038/s41467-021-24105-9 10.1103/PhysRevB.50.17953 10.1063/1.3382344 10.1103/PhysRevB.46.6671 10.1103/PhysRevB.54.11169 10.1016/j.cej.2021.131478 10.1039/D0CS00357C 10.1016/j.cej.2022.137138 10.1021/ja401060q 10.1038/nmat2533 10.1021/acscatal.9b01786 10.1002/smll.202103447 10.1103/PhysRevB.13.5188 10.1039/C4TA04461D 10.1016/j.jcis.2019.06.080 10.1002/solr.202000722 10.1016/j.cej.2021.134001 10.1002/adma.201705369 10.1002/smll.202202544 10.1016/j.jhazmat.2021.127128 10.1002/advs.201500140 10.1021/acs.analchem.5b02644 10.1002/adma.201802981 10.1002/adfm.200700356 10.1016/j.cej.2021.134474 10.1016/j.cej.2021.129157 10.1002/adma.201801369 10.1016/j.apcatb.2018.10.051 10.1039/D0NR04007J 10.1002/advs.202205020 10.1016/j.apcatb.2019.01.042 10.1021/jp047349j 10.1088/0953-8984/21/8/084204 10.1002/smll.202006952 10.1002/smll.201604115 10.1038/s41467-019-12853-8 10.1039/C3CS60425J 10.1039/D2TA08027C 10.1002/smll.201702407 10.1002/sia.2322 10.1002/adma.201400288 10.1016/j.cej.2021.132628 10.1039/b821452b 10.1002/adfm.202003731 10.1039/C9CE00039A |
ContentType | Journal Article |
Copyright | 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202309293 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_dc9de5368ecf4d328b5833dcf90f7727 PMC10987164 38258489 10_1002_advs_202309293 ADVS7451 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: U2032129 – fundername: National Key Research and Development Program of China funderid: 2019YFA0705201 – fundername: National Key Research and Development Program of China grantid: 2019YFA0705201 – fundername: National Natural Science Foundation of China grantid: U2032129 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5691-4a33c3490537cdef0798b24117703f36524adcd66df9863ab9462becca02c5bb3 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 00:44:48 EDT 2025 Thu Aug 21 18:34:49 EDT 2025 Fri Jul 11 10:18:08 EDT 2025 Wed Aug 13 04:31:50 EDT 2025 Mon Jul 21 06:02:45 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Tue Jul 01 04:00:03 EDT 2025 Wed Jan 22 16:12:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | built‐in electric field Cu2O─S@GO@Zn0.67Cd0.33S 3D hollow heterojunctions photocatalysis photothermal effect |
Language | English |
License | Attribution 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5691-4a33c3490537cdef0798b24117703f36524adcd66df9863ab9462becca02c5bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6058-9660 |
OpenAccessLink | https://www.proquest.com/docview/3030880020?pq-origsite=%requestingapplication% |
PMID | 38258489 |
PQID | 3030880020 |
PQPubID | 4365299 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dc9de5368ecf4d328b5833dcf90f7727 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10987164 proquest_miscellaneous_2917862844 proquest_journals_3030880020 pubmed_primary_38258489 crossref_citationtrail_10_1002_advs_202309293 crossref_primary_10_1002_advs_202309293 wiley_primary_10_1002_advs_202309293_ADVS7451 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2013; 3 2021; 288 2019; 10 2006; 38 2014; 26 2019; 246 2020; 12 2020; 124 2020; 8 2009; 11 2019; 21 2019; 24 2015; 87 2020; 379 2019; 554 2018; 30 1992; 46 2012; 22 2022; 446 2016; 45 2007; 17 2015; 2 2023; 10 2018; 29 2019; 9 2021; 5 2023; 11 2009; 21 2015; 3 2019; 31 2021; 425 2022; 43 2021; 50 2004; 108 1996; 54 2014; 43 2022; 433 2016; 4 2018; 232 1976; 13 2021; 12 2020; 30 2021; 414 2021; 17 2017; 13 2017; 56 2010; 132 2023; 315 2019; 138 2009; 8 2013; 135 2016; 138 2022; 55 2022; 428 2018; 10 1994; 50 2022; 423 2018; 14 2022; 18 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 21 start-page: 1903 year: 2019 publication-title: CrystEngComm. – volume: 18 year: 2022 publication-title: Small – volume: 428 year: 2022 publication-title: Chem. Eng. J – volume: 425 year: 2021 publication-title: Chem. Eng. J – volume: 3 start-page: 882 year: 2013 publication-title: ACS Catal. – volume: 22 start-page: 166 year: 2012 publication-title: Adv. Funct. Mater. – volume: 315 year: 2023 publication-title: Sep. Purif. Technol. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 124 year: 2020 publication-title: J. Phys. Chem. C – volume: 14 year: 2018 publication-title: Small – volume: 29 start-page: 8473 year: 2018 publication-title: J Mater. Sci. Mater. El. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 11 start-page: 1817 year: 2023 publication-title: J. Mater. Chem. A – volume: 8 start-page: 818 year: 2009 publication-title: Nat. Mater. – volume: 423 year: 2022 publication-title: J. Hazard. Mater. – volume: 132 year: 2010 publication-title: J Am. Chem. Soc. – volume: 50 year: 1994 publication-title: Phys. Rev. B – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 232 start-page: 164 year: 2018 publication-title: Appl. Catal. B Environ. – volume: 17 start-page: 3773 year: 2007 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 8346 year: 2019 publication-title: ACS Catal. – volume: 55 year: 2022 publication-title: J. Phys. D – volume: 3 start-page: 1486 year: 2013 publication-title: ACS Catal. – volume: 38 start-page: 238 year: 2006 publication-title: Surf. Interface Anal. – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 22 start-page: 4763 year: 2012 publication-title: Adv. Funct. Mater. – volume: 554 start-page: 113 year: 2019 publication-title: J. Colloid In. Sci. – volume: 288 year: 2021 publication-title: Appl. Catal. B Environ. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 11 start-page: 6263 year: 2009 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 3882 year: 2020 publication-title: J. Mater. Chem. A. – volume: 246 start-page: 202 year: 2019 publication-title: Appl. Catal. B Environ. – volume: 17 year: 2021 publication-title: Small – volume: 12 year: 2020 publication-title: Nanoscale – volume: 10 year: 2018 publication-title: Nanoscale – volume: 379 year: 2020 publication-title: Chem. Eng. J – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 43 year: 2022 publication-title: Chem. Eng. J – volume: 24 start-page: 253 year: 2019 publication-title: Appl. Catal. B Environ. – volume: 46 start-page: 6671 year: 1992 publication-title: Phys. Rev. B – volume: 108 year: 2004 publication-title: J. Phys. Chem. B – volume: 45 start-page: 2603 year: 2016 publication-title: Chem. Soc. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 13 start-page: 5188 year: 1976 publication-title: Phys. Rev. B – volume: 138 start-page: 4286 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 87 year: 2015 publication-title: Anal. Chem. – volume: 3 start-page: 2485 year: 2015 publication-title: J. Mater. Chem. A. – volume: 26 start-page: 4920 year: 2014 publication-title: Adv. Mater. – volume: 10 start-page: 4912 year: 2019 publication-title: Nat. Commun. – volume: 12 start-page: 3765 year: 2021 publication-title: Nat. Commun. – volume: 414 year: 2021 publication-title: Chem. Eng. J – volume: 21 year: 2009 publication-title: J. Phys.‐condens. Mat. – volume: 446 year: 2022 publication-title: Chem. Eng. J. – volume: 43 start-page: 7787 year: 2014 publication-title: Chem. Soc. Rev. – volume: 135 start-page: 8097 year: 2013 publication-title: Am. Chem. Soc. – volume: 433 year: 2022 publication-title: Chem. Eng. J – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 13 year: 2017 publication-title: Small – volume: 5 year: 2021 publication-title: Sol. RRL – volume: 50 start-page: 2173 year: 2021 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 434 year: 2019 publication-title: Renew. Energ. – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_8_21_1 doi: 10.1016/j.seppur.2023.123708 – ident: e_1_2_8_6_1 doi: 10.1021/cs4002089 – ident: e_1_2_8_33_1 doi: 10.1007/s10854-018-8860-3 – ident: e_1_2_8_36_1 doi: 10.1021/acsami.7b19530 – ident: e_1_2_8_46_1 doi: 10.1021/jacs.5b12666 – ident: e_1_2_8_9_1 doi: 10.1039/C8NR02936A – ident: e_1_2_8_4_1 doi: 10.1002/adfm.201200922 – ident: e_1_2_8_39_1 doi: 10.1016/j.renene.2019.01.103 – ident: e_1_2_8_20_1 doi: 10.1021/ja107871r – ident: e_1_2_8_23_1 doi: 10.1002/smll.202102307 – ident: e_1_2_8_14_1 doi: 10.1016/j.apcatb.2018.03.017 – ident: e_1_2_8_22_1 doi: 10.1016/j.apcatb.2021.119994 – ident: e_1_2_8_51_1 doi: 10.1016/j.cej.2019.122342 – ident: e_1_2_8_47_1 doi: 10.1002/anie.201703827 – ident: e_1_2_8_56_1 doi: 10.1021/acs.jpcc.0c02214 – ident: e_1_2_8_25_1 doi: 10.1039/C9TA13836F – ident: e_1_2_8_41_1 doi: 10.1088/1361-6463/ac4b56 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.201101927 – ident: e_1_2_8_43_1 doi: 10.1039/C6TA03803D – ident: e_1_2_8_26_1 doi: 10.1021/cs4000975 – ident: e_1_2_8_1_1 doi: 10.1039/C5CS00838G – ident: e_1_2_8_53_1 doi: 10.1038/s41467-021-24105-9 – ident: e_1_2_8_61_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_8_63_1 doi: 10.1063/1.3382344 – ident: e_1_2_8_62_1 doi: 10.1103/PhysRevB.46.6671 – ident: e_1_2_8_60_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_27_1 doi: 10.1016/j.cej.2021.131478 – ident: e_1_2_8_40_1 doi: 10.1039/D0CS00357C – ident: e_1_2_8_10_1 doi: 10.1016/j.cej.2022.137138 – ident: e_1_2_8_29_1 doi: 10.1021/ja401060q – ident: e_1_2_8_15_1 doi: 10.1038/nmat2533 – ident: e_1_2_8_48_1 doi: 10.1021/acscatal.9b01786 – ident: e_1_2_8_44_1 doi: 10.1002/smll.202103447 – ident: e_1_2_8_64_1 doi: 10.1103/PhysRevB.13.5188 – ident: e_1_2_8_5_1 doi: 10.1039/C4TA04461D – ident: e_1_2_8_58_1 doi: 10.1016/j.jcis.2019.06.080 – ident: e_1_2_8_59_1 doi: 10.1002/solr.202000722 – ident: e_1_2_8_57_1 doi: 10.1016/j.cej.2021.134001 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201705369 – ident: e_1_2_8_24_1 doi: 10.1002/smll.202202544 – ident: e_1_2_8_28_1 doi: 10.1016/j.jhazmat.2021.127128 – ident: e_1_2_8_35_1 doi: 10.1002/advs.201500140 – ident: e_1_2_8_49_1 doi: 10.1021/acs.analchem.5b02644 – ident: e_1_2_8_55_1 doi: 10.1002/adma.201802981 – ident: e_1_2_8_19_1 doi: 10.1002/adfm.200700356 – ident: e_1_2_8_45_1 doi: 10.1016/j.cej.2021.134474 – ident: e_1_2_8_31_1 doi: 10.1016/j.cej.2021.129157 – ident: e_1_2_8_12_1 doi: 10.1002/adma.201801369 – ident: e_1_2_8_30_1 doi: 10.1016/j.apcatb.2018.10.051 – ident: e_1_2_8_50_1 doi: 10.1039/D0NR04007J – ident: e_1_2_8_54_1 doi: 10.1002/advs.202205020 – ident: e_1_2_8_37_1 doi: 10.1016/j.apcatb.2019.01.042 – ident: e_1_2_8_66_1 doi: 10.1021/jp047349j – ident: e_1_2_8_65_1 doi: 10.1088/0953-8984/21/8/084204 – ident: e_1_2_8_11_1 doi: 10.1002/smll.202006952 – ident: e_1_2_8_7_1 doi: 10.1002/smll.201604115 – ident: e_1_2_8_32_1 doi: 10.1038/s41467-019-12853-8 – ident: e_1_2_8_3_1 doi: 10.1039/C3CS60425J – ident: e_1_2_8_42_1 doi: 10.1039/D2TA08027C – ident: e_1_2_8_17_1 doi: 10.1002/smll.201702407 – ident: e_1_2_8_52_1 doi: 10.1002/sia.2322 – ident: e_1_2_8_2_1 doi: 10.1002/adma.201400288 – ident: e_1_2_8_38_1 doi: 10.1016/j.cej.2021.132628 – ident: e_1_2_8_34_1 doi: 10.1039/b821452b – ident: e_1_2_8_13_1 doi: 10.1002/adfm.202003731 – ident: e_1_2_8_18_1 doi: 10.1039/C9CE00039A |
SSID | ssj0001537418 |
Score | 2.405294 |
Snippet | The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and... Abstract The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2309293 |
SubjectTerms | 3D hollow heterojunctions Alternative energy sources built‐in electric field Carbon Cu2O─S@GO@Zn0.67Cd0.33S Efficiency Electric fields Energy resources Graphene Hydrogen Interfaces Light Photocatalysis photothermal effect Solar energy Solid solutions |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnrhULfQjUJArIUEPUbO249jHQreKkEAIWqk3y19RQShB7bbQf8_Y8Ua7AtQLt9XGyo5m3uy8ScbPAK9UVTsqpC8bz3jJa9eUtlESP80aZqkxwsTNyR8-ivaCv7-sL1eO-oozYaM88Oi4Y--UDzUTMriOe0aljfuEvOtU1SEzTPvIseatNFPj_mAWZVmWKo0VPTb-LqpzI-NGQsDWqlAS6_8bw_xzUHKVwKYKdLYFm5k6kpPR5G14FPonsJ2T84a8yQrSR0_h1-f8iI-cpgENMnTkHIMWyGkU8x-FOEiLEBh-kjYOxAzfsL4lCBJksWSehCXQHPLpalgM6RnPPf4sae_99YCYI_O7jFlysvIKfAcuzubn79oyH7FQuloo7B4NY45xFVVdnA9dhXGyWNRnDf4TdEzUlBvvvBC-U1IwYxUXNIW9oq62lu3CRj_0YR-I8Z1hDtmfNIFTazFQDUZKIUlwFBu7Asqly7XL-uPxGIzvelROpjqGSE8hKuD1tP7HqLzxz5VvYwSnVVExO32BONIZR_ohHBVwsIy_zml8o1lU80mUuoDD6TImYHyrYvow3KIZ2PBiWyg5L2BvhMtkCcP-W3KpCpBrQFozdf1K__UqiXzPKpV6WXRbwtwDPtDIYr40mGHP_ocznsNjvHOeUDqAjcX1bXiB5GthX6Y8-w12yi2Y priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLiglmdoQUZCAg5Rs7bj2MdCt4qQQBW0Um-WX6FFKEa720L_PWPHm24ECHGLHCsZeWY839jjzwi9lFVtCReubBxlJattU5pGCniaNdQQrbmOh5M_fOTtKXt_Vp9tnOIf-CHGBbfoGWm-jg6uzXL_hjRUu6tItw0QGiI8vY3uxPO1saiPsOObVZaaRnqWeMMcZNclFYytmRsrsj_9xCQyJQL_P6HO34snN0FtikpH2-hehpP4YND_Drrl-_toJzvsEr_OrNJvHqCfn_KyHz5MRRs4dPgEFOnxYST4H8g5cAtmEX7gNhbJhK8Q85JZYkC2eJ7IJkAcfHweViGt-1zDb3F77RYB7BDPr7Id44ONbfGH6PRofvKuLfO1C6WtuYSMUlNqKZOR6cU631WgOwOBftbA7NBRXhOmnXWcu04KTrWRjJNkChWxtTH0EdrqQ--fIKxdp6kFRCi0Z8QYYWCCoFQCcLAEkr0CleshVzZzkserMb6pgU2ZqKgiNaqoQK_G_t8HNo6_9nwbNTj2iizaqSEsvqjslMpZ6XxNufC2Y44SEA-kc7aTVQdZR1OgvbX-VXbtpaKR4SfB7AK9GF-DU8adFt37cAliQBIMqSJYW4EeD-YySkIhJxdMyAKJiSFNRJ2-6S_OE_H3rJIpv4VhSzb3jzFQgGw-N-B1T_-z_y66C425QGkPba0Wl_4ZYK-VeZ7c6xf5dij8 priority: 102 providerName: Wiley-Blackwell |
Title | Rational Design of Three Dimensional Hollow Heterojunctions for Efficient Photocatalytic Hydrogen Evolution Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202309293 https://www.ncbi.nlm.nih.gov/pubmed/38258489 https://www.proquest.com/docview/3030880020 https://www.proquest.com/docview/2917862844 https://pubmed.ncbi.nlm.nih.gov/PMC10987164 https://doaj.org/article/dc9de5368ecf4d328b5833dcf90f7727 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFD5i7QsviHENjMpISMBDtNR2EvsJdbRThNhU7SLtLXLsZAOheLTdYP-eY8fNVnF7ixJHOfW5-DvHp58B3sgk1TQTJs4N4zFPdR5XuRR4Nc5ZRZXKlPtz8sFhVpzyT2fpWSi4LUNb5Tom-kBtrHY18l3miFU8uvlw-T12p0a53dVwhMYWDDEECzGA4d7scH50W2VJmaNnWbM1JnRXmWvH0o3IG4EB21iNPGn_n5Dm7w2Td4GsX4n2H8KDACHJpNP5Ntyr20ewHZx0Sd4FJun3j-HnUSj1kalv1CC2ISeovJpMHal_R8hBCjQF-4MUrjHGfsV1zpsiQTRLZp5gAsUh8wu7sr7Wc4OfJcWNWVi0PTK7DrZLJne2wp_A6f7s5GMRh6MWYp1mErNIxZhmXDp2F23qJkF9Vbi4j3OMCA3LUsqV0SbLTCNFxlQleUa9-hOq06piT2HQ2rZ-DkSZRjGNKFComtOqEhUGBcYkggVNMcGLIF5PeakDD7k7DuNb2TEo09KpqOxVFMHbfvxlx8Dx15F7ToP9KMec7W_YxXkZHLE0Wpo6ZZmodcMNoygeSmd0I5MGM408gp21_svgzsvy1vgieN0_Rkd0uyuqre0VioGJL6aHgvMInnXm0kvCMA8XXMgIxIYhbYi6-aT9cuHJvseJ9DktTpu3uf_MQYlo5jhHT3vx79_xEu7jO6EHaQcGq8VV_Qrh1aoawRbl8xEMJ9ODz8ej4FEjX6z4BUZ8KRI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL0a3QO8IMZnxgAjgYCHaKntOM4DQhvtlLGtmkYn7S1z7IQxoWa03Ub_FL-Ra8fpVvH1tLeqcdMb33Ptc23nXIBXaRRrKqQJE8N4yGOdhEWSSvzUTVhBlRLKvpy8NxDZIf90FB8twc_2XRh7rLIdE91AbWpt18jXmRVWcezmw9n30FaNsrurbQmNBhY75ewSU7bJ--0e-vc1pVv94ccs9FUFQh2LFBMmxZhmPLVCJtqUVYSmFTiPdRMEf8VETLky2ghhqlQKpoqUC-qeNKI6LgqG970Fy5yJiHZgebM_2D-4WtXBm_KubNUhI7quzIVVBUemj0SELcx-rkjAn5jt7wc0rxNnN_Nt3YO7nrKSjQZjK7BUju7Dih8UJuStV65-9wB-HPilRdJzB0NIXZEhgqUkPVtEoBEAIRlCr74kmT2IU5_ivOqgT5A9k74TtEBzyP5JPa3d2tIM_5ZkMzOuEeukf-FjhWxc23p_CIc34oRH0BnVo_IJEGUqxTSyTqlKTotCFjgIMZYiOdEUE8oAwrbLc-11z235jW95o9hMc-uifO6iAN7M2581ih9_bblpPThvZZW63Rf1-EvuAz83OjVlzIQsdcUNo2geWmd0lUYVZjZJAGut_3M_fEzyK7AH8HJ-GQPf7uaoUVmfoxmYaGM6KjkP4HEDl7klDPN-yWUagFwA0oKpi1dGX0-cuHg3Sl0Ojd3mMPefPsiRPX1OMLJX__0cL-B2NtzbzXe3BztP4Q7-3p9_WoPOdHxePkNqNy2e-3gicHzTIfwLNuphzQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYR4QYxrYICRQMBD1NR2EvsBoY226hhU1dikvWWOnTAQSkbbbfSv8es4dpxuFbenvVWNm574XPwd--Q7AM9lFGuaCBOmhvGQxzoN81QK_NRLWU6VSpR9OfnjOBkd8PeH8eEa_GzfhbFllW1MdIHa1NrukXeZJVZx6KZb-rKISX_49uR7aDtI2ZPWtp1GYyK7xeIc07fZm50-6voFpcPB_rtR6DsMhDpOJCZPijHNuLSkJtoUZYRi5rim9VJ0hJIlMeXKaJMkppQiYSqXPKHuqSOq4zxneN9rsJ7arKgD69uD8WTvYocHb8p7omWKjGhXmTPLEI6oH0EJW1kJXcOAP6Hc34s1L4NotwoOb8FND1_JVmNvG7BWVLdhwweIGXnlWaxf34Efe36bkfRdkQipS7KPhlOQvm0o0JCBkBGaYX1ORrYop_6Ka6xzA4JImgwcuQWKQybH9bx2-0wL_FsyWphpjXZPBmfeb8jWpWP4u3BwJUq4B52qrooHQJQpFdOIQIUqOM1zkWNAYkwiUNEUk8sAwnbKM-050G0rjm9Zw95MM6uibKmiAF4ux5807B9_HbltNbgcZVm73Rf19HPmg0BmtDRFzBJR6JIbRlE8lM7oUkYlZjlpAJut_jMfSmbZheEH8Gx5GYOAPdlRVVGfohiYdGNqKjgP4H5jLktJmKAIMoUMQKwY0oqoq1eqL8eOaLwXSZdP47Q5m_vPHGSIpD6l6OUP__0cT-E6um72YWe8-whu4M99KdQmdObT0-Ixorx5_sS7E4Gjq_bgX6yaZgI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+Three+Dimensional+Hollow+Heterojunctions+for+Efficient+Photocatalytic+Hydrogen+Evolution+Applications&rft.jtitle=Advanced+science&rft.au=Pan%2C+Jingwen&rft.au=Wang%2C+Dongbo&rft.au=Wu%2C+Donghai&rft.au=Cao%2C+Jiamu&rft.date=2024-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=11&rft.issue=13&rft_id=info:doi/10.1002%2Fadvs.202309293&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |