Rational Design of Three Dimensional Hollow Heterojunctions for Efficient Photocatalytic Hydrogen Evolution Applications

The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built‐in electric fields and m...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 11; no. 13; pp. e2309293 - n/a
Main Authors Pan, Jingwen, Wang, Dongbo, Wu, Donghai, Cao, Jiamu, Fang, Xuan, Zhao, Chenchen, Zeng, Zhi, Zhang, Bingke, Liu, Donghao, Liu, Sihang, Liu, Gang, Jiao, Shujie, Xu, Zhikun, Zhao, Liancheng, Wang, Jinzhong
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.04.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built‐in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g−1 h−1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g−1 h−1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p‐n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials‐by‐design of high‐performance heterojunctions. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S 3D hollow heterostructure is designed to realize the spatial separation and effective transfer of photogenerated charges. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth through in situ characterization and theoretical calculations but also provides a universal strategy for the rational construction of excellent hollow heterojunctions.
AbstractList Abstract The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built‐in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g−1 h−1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g−1 h−1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p‐n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials‐by‐design of high‐performance heterojunctions.
The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built‐in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu 2 O─S@graphene oxide (GO)@Zn 0.67 Cd 0.33 S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H 2 production rate reached 48.5 mmol g −1  h −1 under visible light after loading Ni 2+ on the heterojunction surface, which is 97 times higher than that of pure Zn 0.67 Cd 0.33 S nanospheres. Furthermore, the H 2 production rate can reach 77.3 mmol g −1  h −1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p‐n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials‐by‐design of high‐performance heterojunctions. Herein, a unique Cu 2 O─S@graphene oxide (GO)@Zn 0.67 Cd 0.33 S 3D hollow heterostructure is designed to realize the spatial separation and effective transfer of photogenerated charges. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth through in situ characterization and theoretical calculations but also provides a universal strategy for the rational construction of excellent hollow heterojunctions.
The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built-in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g−1 h−1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g−1 h−1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p-n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials-by-design of high-performance heterojunctions.
The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built-in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g-1 h-1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g-1 h-1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p-n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials-by-design of high-performance heterojunctions.The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built-in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g-1 h-1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g-1 h-1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p-n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials-by-design of high-performance heterojunctions.
The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built‐in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g−1 h−1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g−1 h−1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p‐n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials‐by‐design of high‐performance heterojunctions. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S 3D hollow heterostructure is designed to realize the spatial separation and effective transfer of photogenerated charges. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth through in situ characterization and theoretical calculations but also provides a universal strategy for the rational construction of excellent hollow heterojunctions.
The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built-in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu O─S@graphene oxide (GO)@Zn Cd S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H production rate reached 48.5 mmol g  h under visible light after loading Ni on the heterojunction surface, which is 97 times higher than that of pure Zn Cd S nanospheres. Furthermore, the H production rate can reach 77.3 mmol g  h without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p-n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials-by-design of high-performance heterojunctions.
The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built‐in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu 2 O─S@graphene oxide (GO)@Zn 0.67 Cd 0.33 S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H 2 production rate reached 48.5 mmol g −1  h −1 under visible light after loading Ni 2+ on the heterojunction surface, which is 97 times higher than that of pure Zn 0.67 Cd 0.33 S nanospheres. Furthermore, the H 2 production rate can reach 77.3 mmol g −1  h −1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p‐n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials‐by‐design of high‐performance heterojunctions.
Author Liu, Gang
Xu, Zhikun
Zhao, Chenchen
Zhang, Bingke
Pan, Jingwen
Wang, Jinzhong
Zeng, Zhi
Jiao, Shujie
Liu, Sihang
Liu, Donghao
Zhao, Liancheng
Wu, Donghai
Wang, Dongbo
Fang, Xuan
Cao, Jiamu
AuthorAffiliation 2 Henan Key Laboratory of Nanocomposites and Applications Huanghe Science and Technology College Institute of Nanostructured Functional Materials Zhengzhou 450006 China
4 State Key Lab High Power Semicond Lasers Changchun University Science and Technology, Sch Sci Changchun 130022 China
1 School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
3 School of Astronautics Harbin Institute of Technology Harbin 150001 China
6 Guangdong University of Petrochemical Technology Maoming 525000 China
5 Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China
AuthorAffiliation_xml – name: 6 Guangdong University of Petrochemical Technology Maoming 525000 China
– name: 1 School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 China
– name: 4 State Key Lab High Power Semicond Lasers Changchun University Science and Technology, Sch Sci Changchun 130022 China
– name: 2 Henan Key Laboratory of Nanocomposites and Applications Huanghe Science and Technology College Institute of Nanostructured Functional Materials Zhengzhou 450006 China
– name: 5 Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China
– name: 3 School of Astronautics Harbin Institute of Technology Harbin 150001 China
Author_xml – sequence: 1
  givenname: Jingwen
  surname: Pan
  fullname: Pan, Jingwen
  organization: Harbin Institute of Technology
– sequence: 2
  givenname: Dongbo
  orcidid: 0000-0001-6058-9660
  surname: Wang
  fullname: Wang, Dongbo
  email: wangdongbo@hit.edu.cn
  organization: Harbin Institute of Technology
– sequence: 3
  givenname: Donghai
  surname: Wu
  fullname: Wu, Donghai
  email: donghaiwu@hhstu.edu.cn
  organization: Institute of Nanostructured Functional Materials
– sequence: 4
  givenname: Jiamu
  surname: Cao
  fullname: Cao, Jiamu
  email: caojiamu@hit.edu.cn
  organization: Harbin Institute of Technology
– sequence: 5
  givenname: Xuan
  surname: Fang
  fullname: Fang, Xuan
  email: fangx@cust.edu.cn
  organization: Changchun University Science and Technology, Sch Sci
– sequence: 6
  givenname: Chenchen
  surname: Zhao
  fullname: Zhao, Chenchen
  organization: Harbin Institute of Technology
– sequence: 7
  givenname: Zhi
  surname: Zeng
  fullname: Zeng, Zhi
  organization: Harbin Institute of Technology
– sequence: 8
  givenname: Bingke
  surname: Zhang
  fullname: Zhang, Bingke
  organization: Harbin Institute of Technology
– sequence: 9
  givenname: Donghao
  surname: Liu
  fullname: Liu, Donghao
  organization: Harbin Institute of Technology
– sequence: 10
  givenname: Sihang
  surname: Liu
  fullname: Liu, Sihang
  organization: Harbin Institute of Technology
– sequence: 11
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
  email: liugang@hpstar.ac.cn
  organization: Center for High Pressure Science and Technology Advanced Research
– sequence: 12
  givenname: Shujie
  surname: Jiao
  fullname: Jiao, Shujie
  organization: Harbin Institute of Technology
– sequence: 13
  givenname: Zhikun
  surname: Xu
  fullname: Xu, Zhikun
  email: xuzhikunnano@163.com
  organization: Guangdong University of Petrochemical Technology
– sequence: 14
  givenname: Liancheng
  surname: Zhao
  fullname: Zhao, Liancheng
  email: lczhao@hit.edu.cn
  organization: Harbin Institute of Technology
– sequence: 15
  givenname: Jinzhong
  surname: Wang
  fullname: Wang, Jinzhong
  email: jinzhong_wang@hit.edu.cn
  organization: Harbin Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38258489$$D View this record in MEDLINE/PubMed
BookMark eNqFUktvEzEYtFARLaVXjsgSFy4Jfu2ufUJVE0ilSiAoXC2vH4kjZx3s3ZT8e5xHq7YS4mTL38x8Y828Bidd7CwAbzEaY4TIR2U2eUwQoUgQQV-AM4IFH1HO2Mmj-ym4yHmJEMIVbRjmr8Ap5aTijIsz8Oe76n3sVIATm_28g9HB20WyFk78ynb5MJvFEOIdnNneprgcOr3jZOhiglPnvPa26-G3ReyjVr0K295rONuaFOe2g9NNDMOOAC_X6-D1fmF-A146FbK9OJ7n4Ofn6e3VbHTz9cv11eXNSFe1wCOmKNWUCVS8a2MdagRvCcO4aRB1tK4IU0abujZO8JqqVrCatFZrhYiu2paeg-uDrolqKdfJr1Tayqi83D_ENJcqFb_BSqOFsRWtudWOGUp4W3FKjXYCuaYhTdH6dNBaD-3KGl1-nVR4Ivp00vmFnMeNxEjwBtesKHw4KqT4e7C5lyuftQ1BdTYOWRKBG16TklqBvn8GXcYhlTSypIgizksDUEG9e2zpwct9wgXADgCdYs7JOql9v4-gOPShWJO7Lsldl-RDlwpt_Ix2r_xPwnHPnQ92-x-0vJz8-tGwCtO_biLdjw
CitedBy_id crossref_primary_10_1021_acscatal_4c03916
crossref_primary_10_1016_j_apmate_2024_100243
crossref_primary_10_1021_acsanm_4c03584
crossref_primary_10_1016_j_apsusc_2024_160893
crossref_primary_10_1016_j_jcis_2025_01_038
crossref_primary_10_1016_j_jcis_2024_10_151
crossref_primary_10_1002_smll_202405712
crossref_primary_10_1016_j_jcis_2024_12_004
crossref_primary_10_1016_j_ijhydene_2024_06_056
crossref_primary_10_1016_j_seppur_2024_129479
crossref_primary_10_1016_j_jallcom_2024_177619
crossref_primary_10_1016_j_seppur_2024_128666
crossref_primary_10_1039_D4QI02452D
crossref_primary_10_1002_adfm_202412527
crossref_primary_10_1016_j_seppur_2024_131192
Cites_doi 10.1016/j.seppur.2023.123708
10.1021/cs4002089
10.1007/s10854-018-8860-3
10.1021/acsami.7b19530
10.1021/jacs.5b12666
10.1039/C8NR02936A
10.1002/adfm.201200922
10.1016/j.renene.2019.01.103
10.1021/ja107871r
10.1002/smll.202102307
10.1016/j.apcatb.2018.03.017
10.1016/j.apcatb.2021.119994
10.1016/j.cej.2019.122342
10.1002/anie.201703827
10.1021/acs.jpcc.0c02214
10.1039/C9TA13836F
10.1088/1361-6463/ac4b56
10.1002/adfm.201101927
10.1039/C6TA03803D
10.1021/cs4000975
10.1039/C5CS00838G
10.1038/s41467-021-24105-9
10.1103/PhysRevB.50.17953
10.1063/1.3382344
10.1103/PhysRevB.46.6671
10.1103/PhysRevB.54.11169
10.1016/j.cej.2021.131478
10.1039/D0CS00357C
10.1016/j.cej.2022.137138
10.1021/ja401060q
10.1038/nmat2533
10.1021/acscatal.9b01786
10.1002/smll.202103447
10.1103/PhysRevB.13.5188
10.1039/C4TA04461D
10.1016/j.jcis.2019.06.080
10.1002/solr.202000722
10.1016/j.cej.2021.134001
10.1002/adma.201705369
10.1002/smll.202202544
10.1016/j.jhazmat.2021.127128
10.1002/advs.201500140
10.1021/acs.analchem.5b02644
10.1002/adma.201802981
10.1002/adfm.200700356
10.1016/j.cej.2021.134474
10.1016/j.cej.2021.129157
10.1002/adma.201801369
10.1016/j.apcatb.2018.10.051
10.1039/D0NR04007J
10.1002/advs.202205020
10.1016/j.apcatb.2019.01.042
10.1021/jp047349j
10.1088/0953-8984/21/8/084204
10.1002/smll.202006952
10.1002/smll.201604115
10.1038/s41467-019-12853-8
10.1039/C3CS60425J
10.1039/D2TA08027C
10.1002/smll.201702407
10.1002/sia.2322
10.1002/adma.201400288
10.1016/j.cej.2021.132628
10.1039/b821452b
10.1002/adfm.202003731
10.1039/C9CE00039A
ContentType Journal Article
Copyright 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH
2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202309293
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_dc9de5368ecf4d328b5833dcf90f7727
PMC10987164
38258489
10_1002_advs_202309293
ADVS7451
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: U2032129
– fundername: National Key Research and Development Program of China
  funderid: 2019YFA0705201
– fundername: National Key Research and Development Program of China
  grantid: 2019YFA0705201
– fundername: National Natural Science Foundation of China
  grantid: U2032129
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5691-4a33c3490537cdef0798b24117703f36524adcd66df9863ab9462becca02c5bb3
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 00:44:48 EDT 2025
Thu Aug 21 18:34:49 EDT 2025
Fri Jul 11 10:18:08 EDT 2025
Wed Aug 13 04:31:50 EDT 2025
Mon Jul 21 06:02:45 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Tue Jul 01 04:00:03 EDT 2025
Wed Jan 22 16:12:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords built‐in electric field
Cu2O─S@GO@Zn0.67Cd0.33S
3D hollow heterojunctions
photocatalysis
photothermal effect
Language English
License Attribution
2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5691-4a33c3490537cdef0798b24117703f36524adcd66df9863ab9462becca02c5bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6058-9660
OpenAccessLink https://www.proquest.com/docview/3030880020?pq-origsite=%requestingapplication%
PMID 38258489
PQID 3030880020
PQPubID 4365299
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_dc9de5368ecf4d328b5833dcf90f7727
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10987164
proquest_miscellaneous_2917862844
proquest_journals_3030880020
pubmed_primary_38258489
crossref_citationtrail_10_1002_advs_202309293
crossref_primary_10_1002_advs_202309293
wiley_primary_10_1002_advs_202309293_ADVS7451
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2013; 3
2021; 288
2019; 10
2006; 38
2014; 26
2019; 246
2020; 12
2020; 124
2020; 8
2009; 11
2019; 21
2019; 24
2015; 87
2020; 379
2019; 554
2018; 30
1992; 46
2012; 22
2022; 446
2016; 45
2007; 17
2015; 2
2023; 10
2018; 29
2019; 9
2021; 5
2023; 11
2009; 21
2015; 3
2019; 31
2021; 425
2022; 43
2021; 50
2004; 108
1996; 54
2014; 43
2022; 433
2016; 4
2018; 232
1976; 13
2021; 12
2020; 30
2021; 414
2021; 17
2017; 13
2017; 56
2010; 132
2023; 315
2019; 138
2009; 8
2013; 135
2016; 138
2022; 55
2022; 428
2018; 10
1994; 50
2022; 423
2018; 14
2022; 18
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 21
  start-page: 1903
  year: 2019
  publication-title: CrystEngComm.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 428
  year: 2022
  publication-title: Chem. Eng. J
– volume: 425
  year: 2021
  publication-title: Chem. Eng. J
– volume: 3
  start-page: 882
  year: 2013
  publication-title: ACS Catal.
– volume: 22
  start-page: 166
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 315
  year: 2023
  publication-title: Sep. Purif. Technol.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 124
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 14
  year: 2018
  publication-title: Small
– volume: 29
  start-page: 8473
  year: 2018
  publication-title: J Mater. Sci. Mater. El.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 11
  start-page: 1817
  year: 2023
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 818
  year: 2009
  publication-title: Nat. Mater.
– volume: 423
  year: 2022
  publication-title: J. Hazard. Mater.
– volume: 132
  year: 2010
  publication-title: J Am. Chem. Soc.
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 232
  start-page: 164
  year: 2018
  publication-title: Appl. Catal. B Environ.
– volume: 17
  start-page: 3773
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 8346
  year: 2019
  publication-title: ACS Catal.
– volume: 55
  year: 2022
  publication-title: J. Phys. D
– volume: 3
  start-page: 1486
  year: 2013
  publication-title: ACS Catal.
– volume: 38
  start-page: 238
  year: 2006
  publication-title: Surf. Interface Anal.
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 22
  start-page: 4763
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 554
  start-page: 113
  year: 2019
  publication-title: J. Colloid In. Sci.
– volume: 288
  year: 2021
  publication-title: Appl. Catal. B Environ.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 6263
  year: 2009
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 3882
  year: 2020
  publication-title: J. Mater. Chem. A.
– volume: 246
  start-page: 202
  year: 2019
  publication-title: Appl. Catal. B Environ.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 379
  year: 2020
  publication-title: Chem. Eng. J
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 43
  year: 2022
  publication-title: Chem. Eng. J
– volume: 24
  start-page: 253
  year: 2019
  publication-title: Appl. Catal. B Environ.
– volume: 46
  start-page: 6671
  year: 1992
  publication-title: Phys. Rev. B
– volume: 108
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 45
  start-page: 2603
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
– volume: 138
  start-page: 4286
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 87
  year: 2015
  publication-title: Anal. Chem.
– volume: 3
  start-page: 2485
  year: 2015
  publication-title: J. Mater. Chem. A.
– volume: 26
  start-page: 4920
  year: 2014
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4912
  year: 2019
  publication-title: Nat. Commun.
– volume: 12
  start-page: 3765
  year: 2021
  publication-title: Nat. Commun.
– volume: 414
  year: 2021
  publication-title: Chem. Eng. J
– volume: 21
  year: 2009
  publication-title: J. Phys.‐condens. Mat.
– volume: 446
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 43
  start-page: 7787
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 135
  start-page: 8097
  year: 2013
  publication-title: Am. Chem. Soc.
– volume: 433
  year: 2022
  publication-title: Chem. Eng. J
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  year: 2017
  publication-title: Small
– volume: 5
  year: 2021
  publication-title: Sol. RRL
– volume: 50
  start-page: 2173
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 434
  year: 2019
  publication-title: Renew. Energ.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_8_21_1
  doi: 10.1016/j.seppur.2023.123708
– ident: e_1_2_8_6_1
  doi: 10.1021/cs4002089
– ident: e_1_2_8_33_1
  doi: 10.1007/s10854-018-8860-3
– ident: e_1_2_8_36_1
  doi: 10.1021/acsami.7b19530
– ident: e_1_2_8_46_1
  doi: 10.1021/jacs.5b12666
– ident: e_1_2_8_9_1
  doi: 10.1039/C8NR02936A
– ident: e_1_2_8_4_1
  doi: 10.1002/adfm.201200922
– ident: e_1_2_8_39_1
  doi: 10.1016/j.renene.2019.01.103
– ident: e_1_2_8_20_1
  doi: 10.1021/ja107871r
– ident: e_1_2_8_23_1
  doi: 10.1002/smll.202102307
– ident: e_1_2_8_14_1
  doi: 10.1016/j.apcatb.2018.03.017
– ident: e_1_2_8_22_1
  doi: 10.1016/j.apcatb.2021.119994
– ident: e_1_2_8_51_1
  doi: 10.1016/j.cej.2019.122342
– ident: e_1_2_8_47_1
  doi: 10.1002/anie.201703827
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.jpcc.0c02214
– ident: e_1_2_8_25_1
  doi: 10.1039/C9TA13836F
– ident: e_1_2_8_41_1
  doi: 10.1088/1361-6463/ac4b56
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.201101927
– ident: e_1_2_8_43_1
  doi: 10.1039/C6TA03803D
– ident: e_1_2_8_26_1
  doi: 10.1021/cs4000975
– ident: e_1_2_8_1_1
  doi: 10.1039/C5CS00838G
– ident: e_1_2_8_53_1
  doi: 10.1038/s41467-021-24105-9
– ident: e_1_2_8_61_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_8_63_1
  doi: 10.1063/1.3382344
– ident: e_1_2_8_62_1
  doi: 10.1103/PhysRevB.46.6671
– ident: e_1_2_8_60_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_27_1
  doi: 10.1016/j.cej.2021.131478
– ident: e_1_2_8_40_1
  doi: 10.1039/D0CS00357C
– ident: e_1_2_8_10_1
  doi: 10.1016/j.cej.2022.137138
– ident: e_1_2_8_29_1
  doi: 10.1021/ja401060q
– ident: e_1_2_8_15_1
  doi: 10.1038/nmat2533
– ident: e_1_2_8_48_1
  doi: 10.1021/acscatal.9b01786
– ident: e_1_2_8_44_1
  doi: 10.1002/smll.202103447
– ident: e_1_2_8_64_1
  doi: 10.1103/PhysRevB.13.5188
– ident: e_1_2_8_5_1
  doi: 10.1039/C4TA04461D
– ident: e_1_2_8_58_1
  doi: 10.1016/j.jcis.2019.06.080
– ident: e_1_2_8_59_1
  doi: 10.1002/solr.202000722
– ident: e_1_2_8_57_1
  doi: 10.1016/j.cej.2021.134001
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201705369
– ident: e_1_2_8_24_1
  doi: 10.1002/smll.202202544
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jhazmat.2021.127128
– ident: e_1_2_8_35_1
  doi: 10.1002/advs.201500140
– ident: e_1_2_8_49_1
  doi: 10.1021/acs.analchem.5b02644
– ident: e_1_2_8_55_1
  doi: 10.1002/adma.201802981
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.200700356
– ident: e_1_2_8_45_1
  doi: 10.1016/j.cej.2021.134474
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cej.2021.129157
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201801369
– ident: e_1_2_8_30_1
  doi: 10.1016/j.apcatb.2018.10.051
– ident: e_1_2_8_50_1
  doi: 10.1039/D0NR04007J
– ident: e_1_2_8_54_1
  doi: 10.1002/advs.202205020
– ident: e_1_2_8_37_1
  doi: 10.1016/j.apcatb.2019.01.042
– ident: e_1_2_8_66_1
  doi: 10.1021/jp047349j
– ident: e_1_2_8_65_1
  doi: 10.1088/0953-8984/21/8/084204
– ident: e_1_2_8_11_1
  doi: 10.1002/smll.202006952
– ident: e_1_2_8_7_1
  doi: 10.1002/smll.201604115
– ident: e_1_2_8_32_1
  doi: 10.1038/s41467-019-12853-8
– ident: e_1_2_8_3_1
  doi: 10.1039/C3CS60425J
– ident: e_1_2_8_42_1
  doi: 10.1039/D2TA08027C
– ident: e_1_2_8_17_1
  doi: 10.1002/smll.201702407
– ident: e_1_2_8_52_1
  doi: 10.1002/sia.2322
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201400288
– ident: e_1_2_8_38_1
  doi: 10.1016/j.cej.2021.132628
– ident: e_1_2_8_34_1
  doi: 10.1039/b821452b
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.202003731
– ident: e_1_2_8_18_1
  doi: 10.1039/C9CE00039A
SSID ssj0001537418
Score 2.405294
Snippet The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and...
Abstract The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2309293
SubjectTerms 3D hollow heterojunctions
Alternative energy sources
built‐in electric field
Carbon
Cu2O─S@GO@Zn0.67Cd0.33S
Efficiency
Electric fields
Energy resources
Graphene
Hydrogen
Interfaces
Light
Photocatalysis
photothermal effect
Solar energy
Solid solutions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnrhULfQjUJArIUEPUbO249jHQreKkEAIWqk3y19RQShB7bbQf8_Y8Ua7AtQLt9XGyo5m3uy8ScbPAK9UVTsqpC8bz3jJa9eUtlESP80aZqkxwsTNyR8-ivaCv7-sL1eO-oozYaM88Oi4Y--UDzUTMriOe0aljfuEvOtU1SEzTPvIseatNFPj_mAWZVmWKo0VPTb-LqpzI-NGQsDWqlAS6_8bw_xzUHKVwKYKdLYFm5k6kpPR5G14FPonsJ2T84a8yQrSR0_h1-f8iI-cpgENMnTkHIMWyGkU8x-FOEiLEBh-kjYOxAzfsL4lCBJksWSehCXQHPLpalgM6RnPPf4sae_99YCYI_O7jFlysvIKfAcuzubn79oyH7FQuloo7B4NY45xFVVdnA9dhXGyWNRnDf4TdEzUlBvvvBC-U1IwYxUXNIW9oq62lu3CRj_0YR-I8Z1hDtmfNIFTazFQDUZKIUlwFBu7Asqly7XL-uPxGIzvelROpjqGSE8hKuD1tP7HqLzxz5VvYwSnVVExO32BONIZR_ohHBVwsIy_zml8o1lU80mUuoDD6TImYHyrYvow3KIZ2PBiWyg5L2BvhMtkCcP-W3KpCpBrQFozdf1K__UqiXzPKpV6WXRbwtwDPtDIYr40mGHP_ocznsNjvHOeUDqAjcX1bXiB5GthX6Y8-w12yi2Y
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLiglmdoQUZCAg5Rs7bj2MdCt4qQQBW0Um-WX6FFKEa720L_PWPHm24ECHGLHCsZeWY839jjzwi9lFVtCReubBxlJattU5pGCniaNdQQrbmOh5M_fOTtKXt_Vp9tnOIf-CHGBbfoGWm-jg6uzXL_hjRUu6tItw0QGiI8vY3uxPO1saiPsOObVZaaRnqWeMMcZNclFYytmRsrsj_9xCQyJQL_P6HO34snN0FtikpH2-hehpP4YND_Drrl-_toJzvsEr_OrNJvHqCfn_KyHz5MRRs4dPgEFOnxYST4H8g5cAtmEX7gNhbJhK8Q85JZYkC2eJ7IJkAcfHweViGt-1zDb3F77RYB7BDPr7Id44ONbfGH6PRofvKuLfO1C6WtuYSMUlNqKZOR6cU631WgOwOBftbA7NBRXhOmnXWcu04KTrWRjJNkChWxtTH0EdrqQ--fIKxdp6kFRCi0Z8QYYWCCoFQCcLAEkr0CleshVzZzkserMb6pgU2ZqKgiNaqoQK_G_t8HNo6_9nwbNTj2iizaqSEsvqjslMpZ6XxNufC2Y44SEA-kc7aTVQdZR1OgvbX-VXbtpaKR4SfB7AK9GF-DU8adFt37cAliQBIMqSJYW4EeD-YySkIhJxdMyAKJiSFNRJ2-6S_OE_H3rJIpv4VhSzb3jzFQgGw-N-B1T_-z_y66C425QGkPba0Wl_4ZYK-VeZ7c6xf5dij8
  priority: 102
  providerName: Wiley-Blackwell
Title Rational Design of Three Dimensional Hollow Heterojunctions for Efficient Photocatalytic Hydrogen Evolution Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202309293
https://www.ncbi.nlm.nih.gov/pubmed/38258489
https://www.proquest.com/docview/3030880020
https://www.proquest.com/docview/2917862844
https://pubmed.ncbi.nlm.nih.gov/PMC10987164
https://doaj.org/article/dc9de5368ecf4d328b5833dcf90f7727
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFD5i7QsviHENjMpISMBDtNR2EvsJdbRThNhU7SLtLXLsZAOheLTdYP-eY8fNVnF7ixJHOfW5-DvHp58B3sgk1TQTJs4N4zFPdR5XuRR4Nc5ZRZXKlPtz8sFhVpzyT2fpWSi4LUNb5Tom-kBtrHY18l3miFU8uvlw-T12p0a53dVwhMYWDDEECzGA4d7scH50W2VJmaNnWbM1JnRXmWvH0o3IG4EB21iNPGn_n5Dm7w2Td4GsX4n2H8KDACHJpNP5Ntyr20ewHZx0Sd4FJun3j-HnUSj1kalv1CC2ISeovJpMHal_R8hBCjQF-4MUrjHGfsV1zpsiQTRLZp5gAsUh8wu7sr7Wc4OfJcWNWVi0PTK7DrZLJne2wp_A6f7s5GMRh6MWYp1mErNIxZhmXDp2F23qJkF9Vbi4j3OMCA3LUsqV0SbLTCNFxlQleUa9-hOq06piT2HQ2rZ-DkSZRjGNKFComtOqEhUGBcYkggVNMcGLIF5PeakDD7k7DuNb2TEo09KpqOxVFMHbfvxlx8Dx15F7ToP9KMec7W_YxXkZHLE0Wpo6ZZmodcMNoygeSmd0I5MGM408gp21_svgzsvy1vgieN0_Rkd0uyuqre0VioGJL6aHgvMInnXm0kvCMA8XXMgIxIYhbYi6-aT9cuHJvseJ9DktTpu3uf_MQYlo5jhHT3vx79_xEu7jO6EHaQcGq8VV_Qrh1aoawRbl8xEMJ9ODz8ej4FEjX6z4BUZ8KRI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL0a3QO8IMZnxgAjgYCHaKntOM4DQhvtlLGtmkYn7S1z7IQxoWa03Ub_FL-Ra8fpVvH1tLeqcdMb33Ptc23nXIBXaRRrKqQJE8N4yGOdhEWSSvzUTVhBlRLKvpy8NxDZIf90FB8twc_2XRh7rLIdE91AbWpt18jXmRVWcezmw9n30FaNsrurbQmNBhY75ewSU7bJ--0e-vc1pVv94ccs9FUFQh2LFBMmxZhmPLVCJtqUVYSmFTiPdRMEf8VETLky2ghhqlQKpoqUC-qeNKI6LgqG970Fy5yJiHZgebM_2D-4WtXBm_KubNUhI7quzIVVBUemj0SELcx-rkjAn5jt7wc0rxNnN_Nt3YO7nrKSjQZjK7BUju7Dih8UJuStV65-9wB-HPilRdJzB0NIXZEhgqUkPVtEoBEAIRlCr74kmT2IU5_ivOqgT5A9k74TtEBzyP5JPa3d2tIM_5ZkMzOuEeukf-FjhWxc23p_CIc34oRH0BnVo_IJEGUqxTSyTqlKTotCFjgIMZYiOdEUE8oAwrbLc-11z235jW95o9hMc-uifO6iAN7M2581ih9_bblpPThvZZW63Rf1-EvuAz83OjVlzIQsdcUNo2geWmd0lUYVZjZJAGut_3M_fEzyK7AH8HJ-GQPf7uaoUVmfoxmYaGM6KjkP4HEDl7klDPN-yWUagFwA0oKpi1dGX0-cuHg3Sl0Ojd3mMPefPsiRPX1OMLJX__0cL-B2NtzbzXe3BztP4Q7-3p9_WoPOdHxePkNqNy2e-3gicHzTIfwLNuphzQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYR4QYxrYICRQMBD1NR2EvsBoY226hhU1dikvWWOnTAQSkbbbfSv8es4dpxuFbenvVWNm574XPwd--Q7AM9lFGuaCBOmhvGQxzoN81QK_NRLWU6VSpR9OfnjOBkd8PeH8eEa_GzfhbFllW1MdIHa1NrukXeZJVZx6KZb-rKISX_49uR7aDtI2ZPWtp1GYyK7xeIc07fZm50-6voFpcPB_rtR6DsMhDpOJCZPijHNuLSkJtoUZYRi5rim9VJ0hJIlMeXKaJMkppQiYSqXPKHuqSOq4zxneN9rsJ7arKgD69uD8WTvYocHb8p7omWKjGhXmTPLEI6oH0EJW1kJXcOAP6Hc34s1L4NotwoOb8FND1_JVmNvG7BWVLdhwweIGXnlWaxf34Efe36bkfRdkQipS7KPhlOQvm0o0JCBkBGaYX1ORrYop_6Ka6xzA4JImgwcuQWKQybH9bx2-0wL_FsyWphpjXZPBmfeb8jWpWP4u3BwJUq4B52qrooHQJQpFdOIQIUqOM1zkWNAYkwiUNEUk8sAwnbKM-050G0rjm9Zw95MM6uibKmiAF4ux5807B9_HbltNbgcZVm73Rf19HPmg0BmtDRFzBJR6JIbRlE8lM7oUkYlZjlpAJut_jMfSmbZheEH8Gx5GYOAPdlRVVGfohiYdGNqKjgP4H5jLktJmKAIMoUMQKwY0oqoq1eqL8eOaLwXSZdP47Q5m_vPHGSIpD6l6OUP__0cT-E6um72YWe8-whu4M99KdQmdObT0-Ixorx5_sS7E4Gjq_bgX6yaZgI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+Three+Dimensional+Hollow+Heterojunctions+for+Efficient+Photocatalytic+Hydrogen+Evolution+Applications&rft.jtitle=Advanced+science&rft.au=Pan%2C+Jingwen&rft.au=Wang%2C+Dongbo&rft.au=Wu%2C+Donghai&rft.au=Cao%2C+Jiamu&rft.date=2024-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=11&rft.issue=13&rft_id=info:doi/10.1002%2Fadvs.202309293&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon