Self‐Powered Biomimetic Pressure Sensor Based on Mn–Ag Electrochemical Reaction for Monitoring Rehabilitation Training of Athletes

Self‐powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking stat...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 11; no. 25; pp. e2401515 - n/a
Main Authors Yang, Ziyan, Wang, Qingzhou, Yu, Huixin, Xu, Qing, Li, Yuanyue, Cao, Minghui, Dhakal, Rajendra, Li, Yang, Yao, Zhao
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.07.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2198-3844
2198-3844
DOI10.1002/advs.202401515

Cover

Loading…
Abstract Self‐powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking static stimuli. This study proposes a dual‐response potentiometric pressure sensor that responds to both dynamic and static stimuli. The proposed sensor utilizes interdigital electrodes with MnO2/carbon/polyvinyl alcohol (PVA) as the cathode and conductive silver paste as the anode. The electrolyte layer incorporates a mixed hydrogel of PVA and phosphoric acid. The optimized interdigital electrodes and sandpaper‐like microstructured surface of the hydrogel electrolyte contribute to enhanced performance by facilitating an increased contact area between the electrolyte and electrodes. The sensor features an open‐circuit voltage of 0.927 V, a short‐circuit current of 6 µA, a higher sensitivity of 14 mV/kPa, and outstanding cycling performance (>5000 cycles). It can accurately recognize letter writing and enable capacitor charging and LED lighting. Additionally, a data acquisition and display system employing the proposed sensor, which facilitates the monitoring of athletes’ rehabilitation training, and machine learning algorithms that effectively guide rehabilitation actions are presented. This study offers novel solutions for the future development of smart wearable devices. A self‐powered pressure sensor utilizing a potential conversion mechanism based on electrochemical reactions is proposed. The proposed sensor incorporates interdigital electrodes and a microstructured electrolyte to increase the sensitive area. Additionally, a data acquisition and machine learning algorithm system are developed using the sensor microcontroller for real‐time monitoring of sports rehabilitation.
AbstractList Self-powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking static stimuli. This study proposes a dual-response potentiometric pressure sensor that responds to both dynamic and static stimuli. The proposed sensor utilizes interdigital electrodes with MnO2/carbon/polyvinyl alcohol (PVA) as the cathode and conductive silver paste as the anode. The electrolyte layer incorporates a mixed hydrogel of PVA and phosphoric acid. The optimized interdigital electrodes and sandpaper-like microstructured surface of the hydrogel electrolyte contribute to enhanced performance by facilitating an increased contact area between the electrolyte and electrodes. The sensor features an open-circuit voltage of 0.927 V, a short-circuit current of 6 µA, a higher sensitivity of 14 mV/kPa, and outstanding cycling performance (>5000 cycles). It can accurately recognize letter writing and enable capacitor charging and LED lighting. Additionally, a data acquisition and display system employing the proposed sensor, which facilitates the monitoring of athletes' rehabilitation training, and machine learning algorithms that effectively guide rehabilitation actions are presented. This study offers novel solutions for the future development of smart wearable devices.Self-powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking static stimuli. This study proposes a dual-response potentiometric pressure sensor that responds to both dynamic and static stimuli. The proposed sensor utilizes interdigital electrodes with MnO2/carbon/polyvinyl alcohol (PVA) as the cathode and conductive silver paste as the anode. The electrolyte layer incorporates a mixed hydrogel of PVA and phosphoric acid. The optimized interdigital electrodes and sandpaper-like microstructured surface of the hydrogel electrolyte contribute to enhanced performance by facilitating an increased contact area between the electrolyte and electrodes. The sensor features an open-circuit voltage of 0.927 V, a short-circuit current of 6 µA, a higher sensitivity of 14 mV/kPa, and outstanding cycling performance (>5000 cycles). It can accurately recognize letter writing and enable capacitor charging and LED lighting. Additionally, a data acquisition and display system employing the proposed sensor, which facilitates the monitoring of athletes' rehabilitation training, and machine learning algorithms that effectively guide rehabilitation actions are presented. This study offers novel solutions for the future development of smart wearable devices.
Self‐powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking static stimuli. This study proposes a dual‐response potentiometric pressure sensor that responds to both dynamic and static stimuli. The proposed sensor utilizes interdigital electrodes with MnO 2 /carbon/polyvinyl alcohol (PVA) as the cathode and conductive silver paste as the anode. The electrolyte layer incorporates a mixed hydrogel of PVA and phosphoric acid. The optimized interdigital electrodes and sandpaper‐like microstructured surface of the hydrogel electrolyte contribute to enhanced performance by facilitating an increased contact area between the electrolyte and electrodes. The sensor features an open‐circuit voltage of 0.927 V, a short‐circuit current of 6 µA, a higher sensitivity of 14 mV/kPa, and outstanding cycling performance (>5000 cycles). It can accurately recognize letter writing and enable capacitor charging and LED lighting. Additionally, a data acquisition and display system employing the proposed sensor, which facilitates the monitoring of athletes’ rehabilitation training, and machine learning algorithms that effectively guide rehabilitation actions are presented. This study offers novel solutions for the future development of smart wearable devices.
Self‐powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking static stimuli. This study proposes a dual‐response potentiometric pressure sensor that responds to both dynamic and static stimuli. The proposed sensor utilizes interdigital electrodes with MnO 2 /carbon/polyvinyl alcohol (PVA) as the cathode and conductive silver paste as the anode. The electrolyte layer incorporates a mixed hydrogel of PVA and phosphoric acid. The optimized interdigital electrodes and sandpaper‐like microstructured surface of the hydrogel electrolyte contribute to enhanced performance by facilitating an increased contact area between the electrolyte and electrodes. The sensor features an open‐circuit voltage of 0.927 V, a short‐circuit current of 6 µA, a higher sensitivity of 14 mV/kPa, and outstanding cycling performance (>5000 cycles). It can accurately recognize letter writing and enable capacitor charging and LED lighting. Additionally, a data acquisition and display system employing the proposed sensor, which facilitates the monitoring of athletes’ rehabilitation training, and machine learning algorithms that effectively guide rehabilitation actions are presented. This study offers novel solutions for the future development of smart wearable devices. A self‐powered pressure sensor utilizing a potential conversion mechanism based on electrochemical reactions is proposed. The proposed sensor incorporates interdigital electrodes and a microstructured electrolyte to increase the sensitive area. Additionally, a data acquisition and machine learning algorithm system are developed using the sensor microcontroller for real‐time monitoring of sports rehabilitation.
Self‐powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking static stimuli. This study proposes a dual‐response potentiometric pressure sensor that responds to both dynamic and static stimuli. The proposed sensor utilizes interdigital electrodes with MnO2/carbon/polyvinyl alcohol (PVA) as the cathode and conductive silver paste as the anode. The electrolyte layer incorporates a mixed hydrogel of PVA and phosphoric acid. The optimized interdigital electrodes and sandpaper‐like microstructured surface of the hydrogel electrolyte contribute to enhanced performance by facilitating an increased contact area between the electrolyte and electrodes. The sensor features an open‐circuit voltage of 0.927 V, a short‐circuit current of 6 µA, a higher sensitivity of 14 mV/kPa, and outstanding cycling performance (>5000 cycles). It can accurately recognize letter writing and enable capacitor charging and LED lighting. Additionally, a data acquisition and display system employing the proposed sensor, which facilitates the monitoring of athletes’ rehabilitation training, and machine learning algorithms that effectively guide rehabilitation actions are presented. This study offers novel solutions for the future development of smart wearable devices. A self‐powered pressure sensor utilizing a potential conversion mechanism based on electrochemical reactions is proposed. The proposed sensor incorporates interdigital electrodes and a microstructured electrolyte to increase the sensitive area. Additionally, a data acquisition and machine learning algorithm system are developed using the sensor microcontroller for real‐time monitoring of sports rehabilitation.
Abstract Self‐powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking static stimuli. This study proposes a dual‐response potentiometric pressure sensor that responds to both dynamic and static stimuli. The proposed sensor utilizes interdigital electrodes with MnO2/carbon/polyvinyl alcohol (PVA) as the cathode and conductive silver paste as the anode. The electrolyte layer incorporates a mixed hydrogel of PVA and phosphoric acid. The optimized interdigital electrodes and sandpaper‐like microstructured surface of the hydrogel electrolyte contribute to enhanced performance by facilitating an increased contact area between the electrolyte and electrodes. The sensor features an open‐circuit voltage of 0.927 V, a short‐circuit current of 6 µA, a higher sensitivity of 14 mV/kPa, and outstanding cycling performance (>5000 cycles). It can accurately recognize letter writing and enable capacitor charging and LED lighting. Additionally, a data acquisition and display system employing the proposed sensor, which facilitates the monitoring of athletes’ rehabilitation training, and machine learning algorithms that effectively guide rehabilitation actions are presented. This study offers novel solutions for the future development of smart wearable devices.
Self-powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking static stimuli. This study proposes a dual-response potentiometric pressure sensor that responds to both dynamic and static stimuli. The proposed sensor utilizes interdigital electrodes with MnO2/carbon/polyvinyl alcohol (PVA) as the cathode and conductive silver paste as the anode. The electrolyte layer incorporates a mixed hydrogel of PVA and phosphoric acid. The optimized interdigital electrodes and sandpaper-like microstructured surface of the hydrogel electrolyte contribute to enhanced performance by facilitating an increased contact area between the electrolyte and electrodes. The sensor features an open-circuit voltage of 0.927 V, a short-circuit current of 6 µA, a higher sensitivity of 14 mV/kPa, and outstanding cycling performance (>5000 cycles). It can accurately recognize letter writing and enable capacitor charging and LED lighting. Additionally, a data acquisition and display system employing the proposed sensor, which facilitates the monitoring of athletes’ rehabilitation training, and machine learning algorithms that effectively guide rehabilitation actions are presented. This study offers novel solutions for the future development of smart wearable devices.
Self-powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking static stimuli. This study proposes a dual-response potentiometric pressure sensor that responds to both dynamic and static stimuli. The proposed sensor utilizes interdigital electrodes with MnO /carbon/polyvinyl alcohol (PVA) as the cathode and conductive silver paste as the anode. The electrolyte layer incorporates a mixed hydrogel of PVA and phosphoric acid. The optimized interdigital electrodes and sandpaper-like microstructured surface of the hydrogel electrolyte contribute to enhanced performance by facilitating an increased contact area between the electrolyte and electrodes. The sensor features an open-circuit voltage of 0.927 V, a short-circuit current of 6 µA, a higher sensitivity of 14 mV/kPa, and outstanding cycling performance (>5000 cycles). It can accurately recognize letter writing and enable capacitor charging and LED lighting. Additionally, a data acquisition and display system employing the proposed sensor, which facilitates the monitoring of athletes' rehabilitation training, and machine learning algorithms that effectively guide rehabilitation actions are presented. This study offers novel solutions for the future development of smart wearable devices.
Author Cao, Minghui
Dhakal, Rajendra
Yao, Zhao
Li, Yuanyue
Yu, Huixin
Yang, Ziyan
Li, Yang
Xu, Qing
Wang, Qingzhou
AuthorAffiliation 2 Department of Computer Science and Engineering Sejong University Seoul 05006 South Korea
1 College of Electronics and Information Qingdao University Qingdao 266071 China
3 School of Integrated Circuits Shandong University Jinan 250101 China
AuthorAffiliation_xml – name: 1 College of Electronics and Information Qingdao University Qingdao 266071 China
– name: 3 School of Integrated Circuits Shandong University Jinan 250101 China
– name: 2 Department of Computer Science and Engineering Sejong University Seoul 05006 South Korea
Author_xml – sequence: 1
  givenname: Ziyan
  surname: Yang
  fullname: Yang, Ziyan
  organization: Qingdao University
– sequence: 2
  givenname: Qingzhou
  surname: Wang
  fullname: Wang, Qingzhou
  organization: Qingdao University
– sequence: 3
  givenname: Huixin
  surname: Yu
  fullname: Yu, Huixin
  organization: Qingdao University
– sequence: 4
  givenname: Qing
  surname: Xu
  fullname: Xu, Qing
  organization: Qingdao University
– sequence: 5
  givenname: Yuanyue
  surname: Li
  fullname: Li, Yuanyue
  email: yyli@qdu.edu.cn
  organization: Qingdao University
– sequence: 6
  givenname: Minghui
  surname: Cao
  fullname: Cao, Minghui
  organization: Qingdao University
– sequence: 7
  givenname: Rajendra
  surname: Dhakal
  fullname: Dhakal, Rajendra
  organization: Sejong University
– sequence: 8
  givenname: Yang
  orcidid: 0000-0002-2994-2523
  surname: Li
  fullname: Li, Yang
  email: yang.li@sdu.edu.cn
  organization: Shandong University
– sequence: 9
  givenname: Zhao
  surname: Yao
  fullname: Yao, Zhao
  email: yzh17@qdu.edu.cn
  organization: Qingdao University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38654624$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQQCNUREvplSOKxIXLLv5MnBPalgKVWlGxhavlOJNdrxy72Emr3nrijMQ_7C_B6W6rthLiFGf85s3YnpfZlvMOsuw1RlOMEHmvmos4JYgwhDnmz7IdgisxoYKxrQfr7WwvxhVCCaIlw-JFtk1FwVlB2E72aw62vbn-feovIUCT7xvfmQ56o_PTADEOAfI5uOhDvq9iArzLT9zN9Z_ZIj-0oPvg9RI6o5XNv4HSvUlAm-gT70zvg3GLFF-q2ljTq9vds6CMG-O-zWf90kIP8VX2vFU2wt7mu5t9_3R4dvBlcvz189HB7HiieVGhSVU3HLGqrrVQBa_rgmFdQasLzUomBEZc1KilDYH0qygttCAcSq1K4DxBdDc7Wnsbr1byPJhOhSvplZG3AR8WUoV0eAsSUSh5XTEmSs3qVIwCIxyVmtRMIDW6Pqxd50PdQaPB9UHZR9LHO84s5cJfSIwJQSWmyfBuYwj-5wCxl52JGqxVDvwQJUWs4JiWaCz29gm68kNw6a4SVXKEKGOj8M3Dlu57uXvvBLA1oIOPMUAr9eZZUofGSozkOFlynCx5P1kpbfok7c78z4RNnUtj4eo_tJx9_DEXuEL0L8__4rM
CitedBy_id crossref_primary_10_1039_D4TC03434A
crossref_primary_10_1063_5_0238879
crossref_primary_10_1016_j_cej_2024_157865
crossref_primary_10_1016_j_mser_2024_100892
crossref_primary_10_1021_acsnano_4c14157
crossref_primary_10_1002_adfm_202415640
crossref_primary_10_34133_research_0571
crossref_primary_10_1016_j_cej_2025_161328
crossref_primary_10_3390_su16198491
crossref_primary_10_1016_j_cej_2024_154812
crossref_primary_10_1021_acsanm_5c00196
Cites_doi 10.1038/s41467-023-40953-z
10.1016/j.ceramint.2017.03.195
10.1038/s41563-019-0576-0
10.1039/C6CS00915H
10.1016/j.jpowsour.2020.228742
10.1016/j.matdes.2024.112640
10.1002/advs.202200507
10.1016/j.nanoen.2022.107966
10.1007/s40820-023-01079-5
10.1016/j.cej.2023.144276
10.1016/j.xcrp.2022.101050
10.1016/j.nanoen.2022.107954
10.1002/adma.202205369
10.1002/adma.202308795
10.1016/j.nanoen.2023.108783
10.1016/j.nanoen.2022.107498
10.1016/j.cej.2023.146464
10.1021/acsnano.7b06909
10.1002/adfm.202108856
10.1016/S0926-3373(01)00142-4
10.1002/smll.202305925
10.1016/j.nanoen.2022.108109
10.1021/acsnano.0c03294
10.3389/fbioe.2023.1303142
10.1016/j.nanoen.2023.108237
10.1002/adfm.202300046
10.1038/s41746-019-0150-9
10.1016/j.nanoen.2022.107788
10.1007/s00289-016-1876-z
10.1126/sciadv.aba1062
10.1016/j.nanoen.2021.106330
10.1002/aenm.201701189
10.1039/D2TC00955B
10.1016/j.nanoen.2023.108424
10.1002/adfm.202202145
10.1002/adfm.202303562
10.1002/adfm.202010824
10.1016/j.est.2020.101797
10.1109/TED.2023.3248000
10.1039/D2NA00339B
10.1002/adma.202005970
10.1016/j.nanoen.2021.106798
10.1002/adma.201803621
10.1039/D2EE00004K
10.1088/1361-6439/ace268
10.1016/j.electacta.2017.11.005
10.1002/adfm.202107330
10.1021/acsnano.3c05253
10.1016/j.carbon.2012.10.013
ContentType Journal Article
Copyright 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH
2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202401515
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef



Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_03e75b94487c4b5bb3e42507c2b480a4
PMC11220713
38654624
10_1002_advs_202401515
ADVS8190
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  funderid: ZR2021ME052
– fundername: National Natural Science Foundation of China
  funderid: 61904092; 62181240278; 62301291; 62174068
– fundername: Taishan Scholars Project Special Funds
  funderid: tsqn202312035
– fundername: Youth Innovation Team Project of Shandong Provincial Education Department
  funderid: 2022KJ141
– fundername: National Natural Science Foundation of China
  grantid: 62301291
– fundername: National Natural Science Foundation of China
  grantid: 62181240278
– fundername: Taishan Scholars Project Special Funds
  grantid: tsqn202312035
– fundername: National Natural Science Foundation of China
  grantid: 62174068
– fundername: Youth Innovation Team Project of Shandong Provincial Education Department
  grantid: 2022KJ141
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2021ME052
– fundername: National Natural Science Foundation of China
  grantid: 61904092
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5690-9bd5049bbc8a65bb641c9efc6c474881058b0f3d2e748a336c825e7ca7e556c43
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:26:30 EDT 2025
Thu Aug 21 18:32:26 EDT 2025
Thu Jul 10 23:34:52 EDT 2025
Sat Jul 26 03:37:21 EDT 2025
Mon Jul 21 06:02:29 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Tue Jul 01 04:00:07 EDT 2025
Wed Jan 22 17:18:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords wearable device
human health monitoring
hydrogel electrolyte
biomimetic pressure sensor
potentiometry
Language English
License Attribution
2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5690-9bd5049bbc8a65bb641c9efc6c474881058b0f3d2e748a336c825e7ca7e556c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2994-2523
OpenAccessLink https://www.proquest.com/docview/3075003443?pq-origsite=%requestingapplication%
PMID 38654624
PQID 3075003443
PQPubID 4365299
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_03e75b94487c4b5bb3e42507c2b480a4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11220713
proquest_miscellaneous_3046513704
proquest_journals_3075003443
pubmed_primary_38654624
crossref_citationtrail_10_1002_advs_202401515
crossref_primary_10_1002_advs_202401515
wiley_primary_10_1002_advs_202401515_ADVS8190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 7
2023; 35
2023; 14
2023; 33
2023; 11
2021; 89
2023; 17
2019; 31
2022; 93
2023; 15
2019; 2
2017; 43
2020; 480
2020; 14
2023; 108
2023; 107
2020; 32
2020; 19
2018; 47
2022; 100
2023; 20
2020; 6
2017; 74
2021; 32
2021; 31
2022; 3
2022; 4
2018; 259
2024; 238
2023; 470
2023; 476
2023; 111
2022; 9
2013; 53
2022; 34
2023; 116
2022; 15
2008; 24
2022; 10
2022; 32
2018; 12
2022; 104
2023; 70
2022; 103
2001; 32
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
Adelkhani H. (e_1_2_8_42_1) 2008; 24
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 32
  start-page: 229
  year: 2001
  publication-title: Appl. Catal., B.
– volume: 14
  start-page: 5221
  year: 2023
  publication-title: Nat. Commun.
– volume: 20
  year: 2023
  publication-title: Small.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. C.
– volume: 111
  year: 2023
  publication-title: Nano Energy.
– volume: 33
  year: 2023
  publication-title: J. Micromech. Microeng.
– volume: 12
  start-page: 3209
  year: 2018
  publication-title: ACS Nano.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 11
  year: 2023
  publication-title: Front. Bioeng. Biotechnol.
– volume: 470
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 108
  year: 2023
  publication-title: Nano Energy.
– volume: 74
  start-page: 2957
  year: 2017
  publication-title: Polym. Bull.
– volume: 47
  start-page: 1822
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 19
  start-page: 428
  year: 2020
  publication-title: Nat. Mater.
– volume: 70
  start-page: 1865
  year: 2023
  publication-title: IEEE Trans. Electron Devices.
– volume: 2
  start-page: 72
  year: 2019
  publication-title: npj Digit. Med.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 43
  start-page: 8440
  year: 2017
  publication-title: Ceram. Int.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 53
  start-page: 38
  year: 2013
  publication-title: Carbon.
– volume: 15
  start-page: 105
  year: 2023
  publication-title: Nano‐Micro Lett.
– volume: 14
  year: 2020
  publication-title: ACS Nano.
– volume: 32
  year: 2020
  publication-title: J. Energy Storage.
– volume: 89
  year: 2021
  publication-title: Nano Energy.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 104
  year: 2022
  publication-title: Nano Energy.
– volume: 238
  year: 2024
  publication-title: Mater. Des.
– volume: 480
  year: 2020
  publication-title: J. Power Sources.
– volume: 476
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 107
  year: 2023
  publication-title: Nano Energy.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 100
  year: 2022
  publication-title: Nano Energy.
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 3
  year: 2022
  publication-title: Cell Rep. Phys. Sci.
– volume: 15
  start-page: 1805
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 17
  year: 2023
  publication-title: ACS Nano.
– volume: 116
  year: 2023
  publication-title: Nano Energy.
– volume: 24
  start-page: 857
  year: 2008
  publication-title: J. Mater. Sci. Technol.
– volume: 259
  start-page: 466
  year: 2018
  publication-title: Electrochim. Acta.
– volume: 93
  year: 2022
  publication-title: Nano Energy.
– volume: 103
  year: 2022
  publication-title: Nano Energy.
– volume: 4
  start-page: 3987
  year: 2022
  publication-title: Nanoscale Adv.
– ident: e_1_2_8_16_1
  doi: 10.1038/s41467-023-40953-z
– ident: e_1_2_8_43_1
  doi: 10.1016/j.ceramint.2017.03.195
– ident: e_1_2_8_34_1
  doi: 10.1038/s41563-019-0576-0
– ident: e_1_2_8_44_1
  doi: 10.1039/C6CS00915H
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jpowsour.2020.228742
– ident: e_1_2_8_14_1
  doi: 10.1016/j.matdes.2024.112640
– ident: e_1_2_8_38_1
  doi: 10.1002/advs.202200507
– ident: e_1_2_8_1_1
  doi: 10.1016/j.nanoen.2022.107966
– ident: e_1_2_8_6_1
  doi: 10.1007/s40820-023-01079-5
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cej.2023.144276
– ident: e_1_2_8_31_1
  doi: 10.1016/j.xcrp.2022.101050
– ident: e_1_2_8_24_1
  doi: 10.1016/j.nanoen.2022.107954
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.202205369
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.202308795
– ident: e_1_2_8_4_1
  doi: 10.1016/j.nanoen.2023.108783
– ident: e_1_2_8_20_1
  doi: 10.1016/j.nanoen.2022.107498
– ident: e_1_2_8_5_1
  doi: 10.1016/j.cej.2023.146464
– ident: e_1_2_8_12_1
  doi: 10.1021/acsnano.7b06909
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.202108856
– ident: e_1_2_8_40_1
  doi: 10.1016/S0926-3373(01)00142-4
– ident: e_1_2_8_26_1
  doi: 10.1002/smll.202305925
– ident: e_1_2_8_28_1
  doi: 10.1016/j.nanoen.2022.108109
– ident: e_1_2_8_13_1
  doi: 10.1021/acsnano.0c03294
– volume: 24
  start-page: 857
  year: 2008
  ident: e_1_2_8_42_1
  publication-title: J. Mater. Sci. Technol.
– ident: e_1_2_8_11_1
  doi: 10.3389/fbioe.2023.1303142
– ident: e_1_2_8_18_1
  doi: 10.1016/j.nanoen.2023.108237
– ident: e_1_2_8_15_1
  doi: 10.1002/adfm.202300046
– ident: e_1_2_8_50_1
  doi: 10.1038/s41746-019-0150-9
– ident: e_1_2_8_21_1
  doi: 10.1016/j.nanoen.2022.107788
– ident: e_1_2_8_39_1
  doi: 10.1007/s00289-016-1876-z
– ident: e_1_2_8_23_1
  doi: 10.1126/sciadv.aba1062
– ident: e_1_2_8_49_1
  doi: 10.1016/j.nanoen.2021.106330
– ident: e_1_2_8_36_1
  doi: 10.1002/aenm.201701189
– ident: e_1_2_8_9_1
  doi: 10.1039/D2TC00955B
– ident: e_1_2_8_17_1
  doi: 10.1016/j.nanoen.2023.108424
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.202202145
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.202303562
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.202010824
– ident: e_1_2_8_41_1
  doi: 10.1016/j.est.2020.101797
– ident: e_1_2_8_8_1
  doi: 10.1109/TED.2023.3248000
– ident: e_1_2_8_10_1
  doi: 10.1039/D2NA00339B
– ident: e_1_2_8_32_1
  doi: 10.1002/adma.202005970
– ident: e_1_2_8_48_1
  doi: 10.1016/j.nanoen.2021.106798
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.201803621
– ident: e_1_2_8_35_1
  doi: 10.1039/D2EE00004K
– ident: e_1_2_8_7_1
  doi: 10.1088/1361-6439/ace268
– ident: e_1_2_8_46_1
  doi: 10.1016/j.electacta.2017.11.005
– ident: e_1_2_8_25_1
  doi: 10.1002/adfm.202107330
– ident: e_1_2_8_2_1
  doi: 10.1021/acsnano.3c05253
– ident: e_1_2_8_45_1
  doi: 10.1016/j.carbon.2012.10.013
SSID ssj0001537418
Score 2.3825626
Snippet Self‐powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for...
Self-powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for...
Abstract Self‐powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2401515
SubjectTerms biomimetic pressure sensor
Electrodes
Electrolytes
Graphene
human health monitoring
hydrogel electrolyte
Hydrogels
Microstructure
Monitoring systems
Oxidation
Polyvinyl alcohol
potentiometry
Rehabilitation
Scanning electron microscopy
Sensors
Simulation
Skin
Spectrum analysis
wearable device
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA_Skxexfq5WiSCoh6Gz-ZrscVdailARt4XeQpJ5owvtjGxbzz31XPA_7F_ie5PssItKL16TRwjvY97vZZLfY-yt8VFAJaDQJdSFEqopEBypwoagha8x6fX0xYefzcGx-nSiT9ZafdGdsEQPnBS3W0qodJhgFVFFFXQIEtDNyiqKoGzpeyZQzHlrxVR6HyyJlmXF0liKXV__JHZuTGCUwjeyUE_W_zeE-edFyXUA22eg_YfsQYaOfJq2vM3uQfuIbefgPOfvM4P0h8fseg6nze3VzRdqgQY1ny26s8UZPVfk6TngEvgc69duyWeYxWretfywvb36Nf3G91JfnJiJBPhXSE8fOKJbnr4AdBSI4-sU3_wot5rgXcOndEEDIewTdry_d_TxoMgNF4qosUouJqHWWDGEEK03qGqjxnECTTRRVRjoCMVsKBtZo3WV9VKaiPUlVNFXoDUKyadsq-1aeM64GDe-nsiowYLy2noxNqWNjRnHRnqpR6xYGcDFvFVqinHqEo-ycGQwNxhsxN4N8j8SD8c_JWdkz0GK-LP7AfQql73K3eVVI7az8gaXg_rcSYJXRJEoR-zNMI3hSP9YfAvdJclQc3lZlbjEs-Q8w06ovaoyAmfshlttbHVzpl187ym_ERULOk9AtfUeeIcOHGKaOWG9F_9DGS_ZfVo5XVLeYVsXy0t4hVDsIrzuo-43Bc0yEg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZteumlNH1ukxQVCm0PJl69rD3uhoQQSAndBHITkiynC4kddpOcc-q50H-YX9IZS-usSUvpVRqErNFovpE13xDyUVnPQsFCJvNQZoKJKgNwJDLtnGS2BKfX0hcfflX7J-LgVJ6uZPFHfojuwg0toz2v0cCtW2zfk4ba8gbptsEjoU9-TJ5gfi2y5zNxdH_LIjnSs2CFOYiuM66FWDI35my7P0TPM7UE_n9CnQ8fT66C2tYr7T0nzxKcpOOo_3XyKNQvyHoy2AX9nFilv7wkP6bhvLq7_XmEZdFCSSez5mJ2gSmMNKYIzgOdQkzbzOkEPFtJm5oe1ne3v8ZndDfWyvGJXIB-CzEdggLipfFUwOtBaF-l_abHqfwEbSo6xkcbAGtfkZO93eOd_SwVYci8hMg5G7lSQhThnNdWSeeUGPpRqLzyogDjB3imXV7xEjQutOVceYg5Q-FtEaQEIf6arNVNHd4SyoaVLUfcy6CDsFJbNlS59pUa-opbLgckWyrA-DRVLJRxbiK3MjOoMNMpbEA-dfKXkZvjr5IT1GcnhZzabUMzPzPJRE3OQyHdCOLVwgsHn8oDHGh54ZkTOrdiQDaXu8EkQ18YjpALaRP5gHzousFE8b-LrUNzjTJYcJ4XOQzxJm6ebiZYclUoBj26t616U-331LPvLQ04IGWGdwywbO0O_McaGMA5U8R_7_5TfoM8xcb4RnmTrF3Nr8MWILEr9741tt_Pwi7C
  priority: 102
  providerName: Wiley-Blackwell
Title Self‐Powered Biomimetic Pressure Sensor Based on Mn–Ag Electrochemical Reaction for Monitoring Rehabilitation Training of Athletes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202401515
https://www.ncbi.nlm.nih.gov/pubmed/38654624
https://www.proquest.com/docview/3075003443
https://www.proquest.com/docview/3046513704
https://pubmed.ncbi.nlm.nih.gov/PMC11220713
https://doaj.org/article/03e75b94487c4b5bb3e42507c2b480a4
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZoc-GCKM9AiYyEBBysbvxa54QSSFUhUkVNK_W2sr3eEqndLUnLmQP_gH_YX9KZXWfbqAWuayfyel7fzNrfEPJOW89DygNTSciZ5LJgAI4kM84pbnMIejV98WRf7x3Jr8fqOBbclvFY5con1o46rzzWyHcExjbkpxOfzn8w7BqFX1djC40N0gEXbCD56ozG-9ODmyqLEkjPsmJrTPiOzX8iSzcEMgzla9GoJu2_D2nePTB5G8jWkWj3MXkUISQdNjLfIg9C-YRsRSNd0g-RSfrjU_J7Fk4LNsVGaCGno3l1Nj_DS4u0uRS4CHQGWWy1oCOIZTmtSjopr379GZ7QcdMdx0c6AXoQmgsQFDAubfwAFgTh-W2ib3oYG07QqqBDPKYBQPYZOdodH37eY7HtAvMKcmU2cLmCvME5b6xWzmnZ94NQeO1lCuYOgMy4pBA5yFgaK4T2kGWG1Ns0KAWTxHOyWVZleEko7xc2HwivggnSKmN5XyfGF7rvC2GF6hK22v7Mx6Via4zTrGFT5hmKK2vF1SXv2_nnDRvHX2eOUJrtLGTRrh9Ui5MsGmWWiJAqN4AMNfXSwauKAC4sST130iRWdsn2SheyaNrL7EYRu-RtOwxGiV9abBmqS5yDLeZFmsBfvGhUp10JNlmVmsOIWVOqtaWuj5Tz7zXxN2BjjlUF2LZa__6zBxkgmxkivlf_fo_X5CH-pjmEvE02LxaX4Q1ArQvXIxtcTnukM_wy-TbrRevq1YWLa-7FLS4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAXRHkGCiwSCDhYdfZhOweEEkiV0iaqmlTqbdldr0uk1i5JC-LGgX_A_-BH8UuYsdduI16nXr1ja3dnPPPNPr4h5GmkLXMxc4EMXRoIJrIAwJEIEmMk0ykEvZK-eDSOhvvi3YE8WCE_6rsweKyy9omlo04Li2vkGxxjG_LT8dcnHwOsGoW7q3UJjcostt2Xz5CyLV5tvQX9PmNsczB9Mwx8VYHASkgFg65JJcBiY2yiI2lMJDq26zIbWRGDNQPeSEyY8RSGIBLNeWQhiXKx1bGTEoQ4fPcKWRUcUpkWWe0Pxrt756s6kiMdTM0OGbINnX5CVnAInAgdlqJfWSTgT8j29wOaF4FzGfk2b5DrHrLSXmVja2TF5TfJmncKC_rCM1e_vEW-TdxRFuxi4TWX0v6sOJ4d4yVJWl1CnDs6gay5mNM-xM6UFjkd5T-_fu8d0kFVjcd6-gK656oLFxQwNa38Di5AwvOLxOJ06gtc0CKjPTwWAsD5Ntm_FIXcIa28yN09Qlkn02mXW-kSJ7RMNOtEYWKzqGMzrrlsk6CefmV9V7EUx5Gq2JuZQnWpRl1t8ryRP6nYP_4q2UdtNlLI2l0-KOaHyjsBFXIXS9OFjDi2wsBQuQOXGcaWGZGEWrTJem0LyruShTo3_DZ50jSDE8CdHZ274gxlsKQ9j0P4xN3KdJqeYFFXETFoSZaMaqmryy357ENJNA5YnOEqBkxbaX__mQMFSGqCCPP-v8fxmFwdTkc7amdrvP2AXMP3qwPQ66R1Oj9zDwHmnZpH_t-i5P1l_86_AJyCZhs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKVkJcEOV3oYCRQMAh2qx_kuwBoV26q5bS1arbSr0Z23HKSm1SdlsQNw68AW_D4_AkzCRO2hV_p15jJ7I945lvnPE3hDyNtGUuZi6QoUsDwUQWADgSQWKMZDoFp1fSF--Mo8198fZAHqyQH_VdGEyrrG1iaajTwuIZeYejb0N-Ot7JfFrEZGP0-uRjgBWk8E9rXU6jUpFt9-UzhG-LV1sbIOtnjI2Ge282A19hILASwsKgZ1IJENkYm-hIGhOJru25zEZWxKDZgD0SE2Y8hemIRHMeWQioXGx17KSEThy-e4WsxhAVhS2yOhiOJ7vnJzySIzVMzRQZso5OPyFDODhRhBFLnrAsGPAnlPt7suZFEF16wdENct3DV9qv9G2NrLj8JlnzBmJBX3gW65e3yLepO8qCCRZhcykdzIrj2TFemKTVhcS5o1OIoIs5HYAfTWmR053859fv_UM6rCrzWE9lQHdddfmCAr6mlQ3Cw0h4fpFknO75Yhe0yGgfU0QARN8m-5cikDuklRe5u0co62Y67XErXeKElolm3ShMbBZ1bcY1l20S1MuvrB8qluU4UhWTM1MoLtWIq02eN_1PKiaQv_YcoDSbXsjgXT4o5ofKGwQVchdL04PoOLbCwFS5A_MZxpYZkYRatMl6rQvKm5WFOt8EbfKkaQaDgH95dO6KM-yD5e15HMIn7laq04wEC7yKiEFLsqRUS0NdbslnH0rSccDlDE80YNlK_fvPGihAVVNEm_f_PY_H5CpsY_Vua7z9gFzD16tc6HXSOp2fuYeA-E7NI7-1KHl_2bv5F0iPalA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Powered+Biomimetic+Pressure+Sensor+Based+on+Mn%E2%80%93Ag+Electrochemical+Reaction+for+Monitoring+Rehabilitation+Training+of+Athletes&rft.jtitle=Advanced+science&rft.au=Yang%2C+Ziyan&rft.au=Wang%2C+Qingzhou&rft.au=Yu%2C+Huixin&rft.au=Xu%2C+Qing&rft.date=2024-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2198-3844&rft.volume=11&rft.issue=25&rft_id=info:doi/10.1002%2Fadvs.202401515&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon