强化学习理论在电力系统中的应用及展望
TM76; 强化学习理论是人工智能领域中机器学习方法的一个重要分支,也是马尔可夫决策过程的一类重要方法.所谓强化学习就是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大.强化学习理论及其应用研究近年来日益受到国际机器学习和智能控制学术界的重视.系统地介绍了强化学习的基本思想和算法,综述了目前强化学习在安全稳定控制、自动发电控制、电压无功控制及电力市场等方面应用研究的主要成果与方法,并探讨了该课题在电力系统运行控制中的巨大潜力,以及与经典控制、神经网络、模糊理论和多Agent系统等智能控制技术的相互结合问题,最后对强化学习在电力科学领域的应用前景作出了展望....
Saved in:
Published in | 电力系统保护与控制 Vol. 37; no. 14; pp. 122 - 128 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
华南理工大学电力学院,广东,广州,510640
2009
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-3415 |
DOI | 10.3969/j.issn.1674-3415.2009.14.029 |
Cover
Abstract | TM76; 强化学习理论是人工智能领域中机器学习方法的一个重要分支,也是马尔可夫决策过程的一类重要方法.所谓强化学习就是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大.强化学习理论及其应用研究近年来日益受到国际机器学习和智能控制学术界的重视.系统地介绍了强化学习的基本思想和算法,综述了目前强化学习在安全稳定控制、自动发电控制、电压无功控制及电力市场等方面应用研究的主要成果与方法,并探讨了该课题在电力系统运行控制中的巨大潜力,以及与经典控制、神经网络、模糊理论和多Agent系统等智能控制技术的相互结合问题,最后对强化学习在电力科学领域的应用前景作出了展望. |
---|---|
AbstractList | TM76; 强化学习理论是人工智能领域中机器学习方法的一个重要分支,也是马尔可夫决策过程的一类重要方法.所谓强化学习就是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大.强化学习理论及其应用研究近年来日益受到国际机器学习和智能控制学术界的重视.系统地介绍了强化学习的基本思想和算法,综述了目前强化学习在安全稳定控制、自动发电控制、电压无功控制及电力市场等方面应用研究的主要成果与方法,并探讨了该课题在电力系统运行控制中的巨大潜力,以及与经典控制、神经网络、模糊理论和多Agent系统等智能控制技术的相互结合问题,最后对强化学习在电力科学领域的应用前景作出了展望. |
Abstract_FL | Reinforcement Learning (RL) theory is an important branch of the machine learning in the field of artificial intelligence, which is also the general method to deal with Markov Decision Process problems. RL takes learning as trial and error process so as to maximize the reward value function by choosing an action depending on the state. In recent years, RL and its application are received increasing attention of international academia. In order to propel the further study on the aspect of RL in power systems, this paper introduces the basic idea and algorithms systematically, the main achievements of RL are surveyed in security and stability control, automatic generation control, voltage and reactive power control and electricity market respectively. Furthermore, the paper discusses the application potentials of RL in power system operation and control, and the combination of RL with classical control, ANN, fuzzy theory and multi-agent system. Meanwhile, the prospect of RL theory in power system is brought forward. |
Author | 余涛 周斌 甄卫国 |
AuthorAffiliation | 华南理工大学电力学院,广东,广州,510640 |
AuthorAffiliation_xml | – name: 华南理工大学电力学院,广东,广州,510640 |
Author_FL | ZHEN Wei-guo ZHOU Bin YU Tao |
Author_FL_xml | – sequence: 1 fullname: YU Tao – sequence: 2 fullname: ZHOU Bin – sequence: 3 fullname: ZHEN Wei-guo |
Author_xml | – sequence: 1 fullname: 余涛 – sequence: 2 fullname: 周斌 – sequence: 3 fullname: 甄卫国 |
BookMark | eNo9j81KAzEYRbOoYK19i25nTCaZTL6lFP-g4Kb7kskk0kFSdBBfQFwUQRejC1uoK-mmgoigUx-nMT6GI4p3c-EuzuVsoIYdWY1Qh-CQAoetPBwWhQ0JT1hAGYnDCGMICQtxBA3U_N_XUbsohinGlMQxF9BE3H1U7urOLR5X7w_-5vLrqXLTuS9f3XjiX5Z-OVu9Lfz9hatKX87d9dg9335OJ5tozcjjQrf_uoX6uzv97n7QO9w76G73AhVzCAyoDAxXzMgYc6EZ4FQYUkdTCUwLwwRWBrIsUVJFnKUMMsZEkgqNBSjaQp1f7Lm0RtqjQT46O7X14SDPTn4cCasN6Tc0dl6x |
ClassificationCodes | TM76 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1674-3415.2009.14.029 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Application and development of reinforcement learning theory in power systems |
EndPage | 128 |
ExternalDocumentID | jdq200914029 |
GrantInformation_xml | – fundername: 国家自然科学基金; 广东省自然学基金博士启动项目 funderid: (50807016); (06300091) |
GroupedDBID | -03 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB GROUPED_DOAJ PSX TCJ |
ID | FETCH-LOGICAL-c569-f9cd9f6c4fa5068e490b8f1111e3a94e8f480cf9dd7cac264b49d4487b8e089c3 |
ISSN | 1674-3415 |
IngestDate | Thu May 29 03:55:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | stochastic optimal control Markov Decision process power system 电力系统 人工智能 强化学习 随机最优控制 artificial intelligence 马尔可夫决策过程 reinforcement learning |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c569-f9cd9f6c4fa5068e490b8f1111e3a94e8f480cf9dd7cac264b49d4487b8e089c3 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_jdq200914029 |
PublicationCentury | 2000 |
PublicationDate | 2009 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – year: 2009 text: 2009 |
PublicationDecade | 2000 |
PublicationTitle | 电力系统保护与控制 |
PublicationTitle_FL | POWER SYSTEM PROTECTION AND CONTROL |
PublicationYear | 2009 |
Publisher | 华南理工大学电力学院,广东,广州,510640 |
Publisher_xml | – name: 华南理工大学电力学院,广东,广州,510640 |
SSID | ssib003155689 ssib023166999 ssib002424069 ssj0002912115 ssib051374514 ssib036435463 |
Score | 1.8308272 |
Snippet | TM76;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 122 |
Title | 强化学习理论在电力系统中的应用及展望 |
URI | https://d.wanfangdata.com.cn/periodical/jdq200914029 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwMGqLhLggECBeRT3gY5Y8HMdzdPahCglOi9RblXUSHodFlPbSM-JQIcFh4UArwQn1UiSEkKDlcxqWz2DGdnezgKBwiSbj8XjGk9gzjj3xvOthngod8MoPdMR9Hqbaz3UhfFEUuqiKSAuzm_DWbbF8h99cSVbm5u83di1trA9aevO350r-x6qIQ7vSKdl_sOyEKSIQRvviFS2M12PZmHUTlrVZpgiQbQaCANVhCgHOMmAqYN2UQcAkYiRTXUcMbaakKUKyxFRXDDLCZDHLLJAx6Bk-kngSsWKSm0YVVbTViQ9W7xEHKgoZIENBTUDW9H2P3VyPQYc4II3iTgDZNZguU6mpLlk2WVM0JB0GQCSZOGrWlKCqoRFRUO_I9rTECGPVkdhjmaHNkNHMQsh0oHWEJIgBIG10LeqdMmU0Q5GtjM4Ovyo9KQKSWUX4mBsOQKpbdbHzZpCGP9DOVRzdhE095eYSkXIfnYSkOdnYDDdHLxVvTB2hPZ_tvJDQHpn_eYKLQYCZ4KiF1qQFm3c15K3ALR_NphB_UDwiAoylI5j3TkRpGiaN1QfnqdEZ6MZQT6npJvcYBQgB08g1Rke2-SOFJIxTnrgP8uQERUC5A2kD8UTIkzgyWA1u_El-c3puWOXDuw1Hr3_GO-0itCVlX7ez3tzmvXOeqL_u189e1XvvDr-8Hb94-v39fr2zOx59qre2xx8PxgdvDj_vjV8_qfdH49Fu_Xyr_vDy2872ea_f6_bby7775YivEwF-BbqASmhe5UkgZMkhGMiKvIoyzoGXsuIy0BUURapzjbHEgEPBMeYfyDKQoOML3sLw4bC86C2VMtVFKHOMGCIe8zyvqiQPS6mTUssIxCVv0am56kaUx6tNO13-S_kV75T9sEmrgVe9hfW1jXIR_eP1wTVj2R_l2Yd7 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0%E7%90%86%E8%AE%BA%E5%9C%A8%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8%E5%8F%8A%E5%B1%95%E6%9C%9B&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E4%BD%99%E6%B6%9B&rft.au=%E5%91%A8%E6%96%8C&rft.au=%E7%94%84%E5%8D%AB%E5%9B%BD&rft.date=2009&rft.pub=%E5%8D%8E%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%8A%9B%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C%2C%E5%B9%BF%E5%B7%9E%2C510640&rft.issn=1674-3415&rft.volume=37&rft.issue=14&rft.spage=122&rft.epage=128&rft_id=info:doi/10.3969%2Fj.issn.1674-3415.2009.14.029&rft.externalDocID=jdq200914029 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg |