强化学习理论在电力系统中的应用及展望

TM76; 强化学习理论是人工智能领域中机器学习方法的一个重要分支,也是马尔可夫决策过程的一类重要方法.所谓强化学习就是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大.强化学习理论及其应用研究近年来日益受到国际机器学习和智能控制学术界的重视.系统地介绍了强化学习的基本思想和算法,综述了目前强化学习在安全稳定控制、自动发电控制、电压无功控制及电力市场等方面应用研究的主要成果与方法,并探讨了该课题在电力系统运行控制中的巨大潜力,以及与经典控制、神经网络、模糊理论和多Agent系统等智能控制技术的相互结合问题,最后对强化学习在电力科学领域的应用前景作出了展望....

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 37; no. 14; pp. 122 - 128
Main Authors 余涛, 周斌, 甄卫国
Format Journal Article
LanguageChinese
Published 华南理工大学电力学院,广东,广州,510640 2009
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.3969/j.issn.1674-3415.2009.14.029

Cover

Abstract TM76; 强化学习理论是人工智能领域中机器学习方法的一个重要分支,也是马尔可夫决策过程的一类重要方法.所谓强化学习就是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大.强化学习理论及其应用研究近年来日益受到国际机器学习和智能控制学术界的重视.系统地介绍了强化学习的基本思想和算法,综述了目前强化学习在安全稳定控制、自动发电控制、电压无功控制及电力市场等方面应用研究的主要成果与方法,并探讨了该课题在电力系统运行控制中的巨大潜力,以及与经典控制、神经网络、模糊理论和多Agent系统等智能控制技术的相互结合问题,最后对强化学习在电力科学领域的应用前景作出了展望.
AbstractList TM76; 强化学习理论是人工智能领域中机器学习方法的一个重要分支,也是马尔可夫决策过程的一类重要方法.所谓强化学习就是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大.强化学习理论及其应用研究近年来日益受到国际机器学习和智能控制学术界的重视.系统地介绍了强化学习的基本思想和算法,综述了目前强化学习在安全稳定控制、自动发电控制、电压无功控制及电力市场等方面应用研究的主要成果与方法,并探讨了该课题在电力系统运行控制中的巨大潜力,以及与经典控制、神经网络、模糊理论和多Agent系统等智能控制技术的相互结合问题,最后对强化学习在电力科学领域的应用前景作出了展望.
Abstract_FL Reinforcement Learning (RL) theory is an important branch of the machine learning in the field of artificial intelligence, which is also the general method to deal with Markov Decision Process problems. RL takes learning as trial and error process so as to maximize the reward value function by choosing an action depending on the state. In recent years, RL and its application are received increasing attention of international academia. In order to propel the further study on the aspect of RL in power systems, this paper introduces the basic idea and algorithms systematically, the main achievements of RL are surveyed in security and stability control, automatic generation control, voltage and reactive power control and electricity market respectively. Furthermore, the paper discusses the application potentials of RL in power system operation and control, and the combination of RL with classical control, ANN, fuzzy theory and multi-agent system. Meanwhile, the prospect of RL theory in power system is brought forward.
Author 余涛
周斌
甄卫国
AuthorAffiliation 华南理工大学电力学院,广东,广州,510640
AuthorAffiliation_xml – name: 华南理工大学电力学院,广东,广州,510640
Author_FL ZHEN Wei-guo
ZHOU Bin
YU Tao
Author_FL_xml – sequence: 1
  fullname: YU Tao
– sequence: 2
  fullname: ZHOU Bin
– sequence: 3
  fullname: ZHEN Wei-guo
Author_xml – sequence: 1
  fullname: 余涛
– sequence: 2
  fullname: 周斌
– sequence: 3
  fullname: 甄卫国
BookMark eNo9j81KAzEYRbOoYK19i25nTCaZTL6lFP-g4Kb7kskk0kFSdBBfQFwUQRejC1uoK-mmgoigUx-nMT6GI4p3c-EuzuVsoIYdWY1Qh-CQAoetPBwWhQ0JT1hAGYnDCGMICQtxBA3U_N_XUbsohinGlMQxF9BE3H1U7urOLR5X7w_-5vLrqXLTuS9f3XjiX5Z-OVu9Lfz9hatKX87d9dg9335OJ5tozcjjQrf_uoX6uzv97n7QO9w76G73AhVzCAyoDAxXzMgYc6EZ4FQYUkdTCUwLwwRWBrIsUVJFnKUMMsZEkgqNBSjaQp1f7Lm0RtqjQT46O7X14SDPTn4cCasN6Tc0dl6x
ClassificationCodes TM76
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1674-3415.2009.14.029
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Application and development of reinforcement learning theory in power systems
EndPage 128
ExternalDocumentID jdq200914029
GrantInformation_xml – fundername: 国家自然科学基金; 广东省自然学基金博士启动项目
  funderid: (50807016); (06300091)
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-c569-f9cd9f6c4fa5068e490b8f1111e3a94e8f480cf9dd7cac264b49d4487b8e089c3
ISSN 1674-3415
IngestDate Thu May 29 03:55:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords stochastic optimal control
Markov Decision process
power system
电力系统
人工智能
强化学习
随机最优控制
artificial intelligence
马尔可夫决策过程
reinforcement learning
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c569-f9cd9f6c4fa5068e490b8f1111e3a94e8f480cf9dd7cac264b49d4487b8e089c3
PageCount 7
ParticipantIDs wanfang_journals_jdq200914029
PublicationCentury 2000
PublicationDate 2009
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009
PublicationDecade 2000
PublicationTitle 电力系统保护与控制
PublicationTitle_FL POWER SYSTEM PROTECTION AND CONTROL
PublicationYear 2009
Publisher 华南理工大学电力学院,广东,广州,510640
Publisher_xml – name: 华南理工大学电力学院,广东,广州,510640
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 1.8308272
Snippet TM76;...
SourceID wanfang
SourceType Aggregation Database
StartPage 122
Title 强化学习理论在电力系统中的应用及展望
URI https://d.wanfangdata.com.cn/periodical/jdq200914029
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwMGqLhLggECBeRT3gY5Y8HMdzdPahCglOi9RblXUSHodFlPbSM-JQIcFh4UArwQn1UiSEkKDlcxqWz2DGdnezgKBwiSbj8XjGk9gzjj3xvOthngod8MoPdMR9Hqbaz3UhfFEUuqiKSAuzm_DWbbF8h99cSVbm5u83di1trA9aevO350r-x6qIQ7vSKdl_sOyEKSIQRvviFS2M12PZmHUTlrVZpgiQbQaCANVhCgHOMmAqYN2UQcAkYiRTXUcMbaakKUKyxFRXDDLCZDHLLJAx6Bk-kngSsWKSm0YVVbTViQ9W7xEHKgoZIENBTUDW9H2P3VyPQYc4II3iTgDZNZguU6mpLlk2WVM0JB0GQCSZOGrWlKCqoRFRUO_I9rTECGPVkdhjmaHNkNHMQsh0oHWEJIgBIG10LeqdMmU0Q5GtjM4Ovyo9KQKSWUX4mBsOQKpbdbHzZpCGP9DOVRzdhE095eYSkXIfnYSkOdnYDDdHLxVvTB2hPZ_tvJDQHpn_eYKLQYCZ4KiF1qQFm3c15K3ALR_NphB_UDwiAoylI5j3TkRpGiaN1QfnqdEZ6MZQT6npJvcYBQgB08g1Rke2-SOFJIxTnrgP8uQERUC5A2kD8UTIkzgyWA1u_El-c3puWOXDuw1Hr3_GO-0itCVlX7ez3tzmvXOeqL_u189e1XvvDr-8Hb94-v39fr2zOx59qre2xx8PxgdvDj_vjV8_qfdH49Fu_Xyr_vDy2872ea_f6_bby7775YivEwF-BbqASmhe5UkgZMkhGMiKvIoyzoGXsuIy0BUURapzjbHEgEPBMeYfyDKQoOML3sLw4bC86C2VMtVFKHOMGCIe8zyvqiQPS6mTUssIxCVv0am56kaUx6tNO13-S_kV75T9sEmrgVe9hfW1jXIR_eP1wTVj2R_l2Yd7
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0%E7%90%86%E8%AE%BA%E5%9C%A8%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8%E5%8F%8A%E5%B1%95%E6%9C%9B&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E4%BD%99%E6%B6%9B&rft.au=%E5%91%A8%E6%96%8C&rft.au=%E7%94%84%E5%8D%AB%E5%9B%BD&rft.date=2009&rft.pub=%E5%8D%8E%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%8A%9B%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C%2C%E5%B9%BF%E5%B7%9E%2C510640&rft.issn=1674-3415&rft.volume=37&rft.issue=14&rft.spage=122&rft.epage=128&rft_id=info:doi/10.3969%2Fj.issn.1674-3415.2009.14.029&rft.externalDocID=jdq200914029
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg