PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements

Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 2461 - 18
Main Authors Bilbao, Aivett, Munoz, Nathalie, Kim, Joonhoon, Orton, Daniel J., Gao, Yuqian, Poorey, Kunal, Pomraning, Kyle R., Weitz, Karl, Burnet, Meagan, Nicora, Carrie D., Wilton, Rosemarie, Deng, Shuang, Dai, Ziyu, Oksen, Ethan, Gee, Aaron, Fasani, Rick A., Tsalenko, Anya, Tanjore, Deepti, Gardner, James, Smith, Richard D., Michener, Joshua K., Gladden, John M., Baker, Erin S., Petzold, Christopher J., Kim, Young-Mo, Apffel, Alex, Magnuson, Jon K., Burnum-Johnson, Kristin E.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.04.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides . Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards. Alternative algorithms exploiting advantages of multidimensional mass spectrometry in untargeted metabolomics are needed. Here, the authors develop and demonstrate PeakDecoder for confident and accurate metabolite profiling in 116 microbial sample runs and using a library built from 64 standards.
AbstractList Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.
Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.Alternative algorithms exploiting advantages of multidimensional mass spectrometry in untargeted metabolomics are needed. Here, the authors develop and demonstrate PeakDecoder for confident and accurate metabolite profiling in 116 microbial sample runs and using a library built from 64 standards.
Abstract Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.
Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides . Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards. Alternative algorithms exploiting advantages of multidimensional mass spectrometry in untargeted metabolomics are needed. Here, the authors develop and demonstrate PeakDecoder for confident and accurate metabolite profiling in 116 microbial sample runs and using a library built from 64 standards.
Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.
Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides . Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.
ArticleNumber 2461
Author Burnum-Johnson, Kristin E.
Oksen, Ethan
Gao, Yuqian
Deng, Shuang
Baker, Erin S.
Michener, Joshua K.
Petzold, Christopher J.
Burnet, Meagan
Kim, Young-Mo
Tsalenko, Anya
Munoz, Nathalie
Smith, Richard D.
Weitz, Karl
Fasani, Rick A.
Tanjore, Deepti
Gladden, John M.
Poorey, Kunal
Kim, Joonhoon
Magnuson, Jon K.
Orton, Daniel J.
Gee, Aaron
Apffel, Alex
Bilbao, Aivett
Pomraning, Kyle R.
Nicora, Carrie D.
Dai, Ziyu
Wilton, Rosemarie
Gardner, James
Author_xml – sequence: 1
  givenname: Aivett
  orcidid: 0000-0003-2985-8249
  surname: Bilbao
  fullname: Bilbao, Aivett
  email: Aivett.Bilbao@pnnl.gov
  organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry
– sequence: 2
  givenname: Nathalie
  orcidid: 0000-0002-2723-3512
  surname: Munoz
  fullname: Munoz, Nathalie
  organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry
– sequence: 3
  givenname: Joonhoon
  surname: Kim
  fullname: Kim, Joonhoon
  organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry
– sequence: 4
  givenname: Daniel J.
  orcidid: 0000-0002-0253-6859
  surname: Orton
  fullname: Orton, Daniel J.
  organization: Pacific Northwest National Laboratory
– sequence: 5
  givenname: Yuqian
  orcidid: 0000-0003-1646-4515
  surname: Gao
  fullname: Gao, Yuqian
  organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry
– sequence: 6
  givenname: Kunal
  surname: Poorey
  fullname: Poorey, Kunal
  organization: Sandia National Laboratory
– sequence: 7
  givenname: Kyle R.
  orcidid: 0000-0003-2324-2881
  surname: Pomraning
  fullname: Pomraning, Kyle R.
  organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry
– sequence: 8
  givenname: Karl
  surname: Weitz
  fullname: Weitz, Karl
  organization: Pacific Northwest National Laboratory
– sequence: 9
  givenname: Meagan
  surname: Burnet
  fullname: Burnet, Meagan
  organization: Pacific Northwest National Laboratory
– sequence: 10
  givenname: Carrie D.
  orcidid: 0000-0003-2461-9548
  surname: Nicora
  fullname: Nicora, Carrie D.
  organization: Pacific Northwest National Laboratory
– sequence: 11
  givenname: Rosemarie
  surname: Wilton
  fullname: Wilton, Rosemarie
  organization: US Department of Energy, Agile BioFoundry, Argonne National Laboratory
– sequence: 12
  givenname: Shuang
  surname: Deng
  fullname: Deng, Shuang
  organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry
– sequence: 13
  givenname: Ziyu
  surname: Dai
  fullname: Dai, Ziyu
  organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry
– sequence: 14
  givenname: Ethan
  orcidid: 0000-0001-6903-9104
  surname: Oksen
  fullname: Oksen, Ethan
  organization: Lawrence Berkeley National Laboratory
– sequence: 15
  givenname: Aaron
  surname: Gee
  fullname: Gee, Aaron
  organization: Agilent Research Laboratories, Agilent Technologies
– sequence: 16
  givenname: Rick A.
  surname: Fasani
  fullname: Fasani, Rick A.
  organization: Agilent Research Laboratories, Agilent Technologies
– sequence: 17
  givenname: Anya
  surname: Tsalenko
  fullname: Tsalenko, Anya
  organization: Agilent Research Laboratories, Agilent Technologies
– sequence: 18
  givenname: Deepti
  surname: Tanjore
  fullname: Tanjore, Deepti
  organization: US Department of Energy, Agile BioFoundry, Lawrence Berkeley National Laboratory
– sequence: 19
  givenname: James
  surname: Gardner
  fullname: Gardner, James
  organization: US Department of Energy, Agile BioFoundry, Lawrence Berkeley National Laboratory
– sequence: 20
  givenname: Richard D.
  orcidid: 0000-0002-2381-2349
  surname: Smith
  fullname: Smith, Richard D.
  organization: Pacific Northwest National Laboratory
– sequence: 21
  givenname: Joshua K.
  orcidid: 0000-0003-2302-8180
  surname: Michener
  fullname: Michener, Joshua K.
  organization: US Department of Energy, Agile BioFoundry, Oak Ridge National Laboratory
– sequence: 22
  givenname: John M.
  surname: Gladden
  fullname: Gladden, John M.
  organization: US Department of Energy, Agile BioFoundry, Sandia National Laboratory
– sequence: 23
  givenname: Erin S.
  orcidid: 0000-0001-5246-2213
  surname: Baker
  fullname: Baker, Erin S.
  organization: Department of Chemistry, University of North Carolina
– sequence: 24
  givenname: Christopher J.
  orcidid: 0000-0002-8270-5228
  surname: Petzold
  fullname: Petzold, Christopher J.
  organization: US Department of Energy, Agile BioFoundry, Lawrence Berkeley National Laboratory
– sequence: 25
  givenname: Young-Mo
  orcidid: 0000-0002-8972-7593
  surname: Kim
  fullname: Kim, Young-Mo
  organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry
– sequence: 26
  givenname: Alex
  surname: Apffel
  fullname: Apffel, Alex
  organization: Agilent Research Laboratories, Agilent Technologies
– sequence: 27
  givenname: Jon K.
  orcidid: 0000-0001-7712-7024
  surname: Magnuson
  fullname: Magnuson, Jon K.
  organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry
– sequence: 28
  givenname: Kristin E.
  orcidid: 0000-0002-2722-4149
  surname: Burnum-Johnson
  fullname: Burnum-Johnson, Kristin E.
  email: Kristin.Burnum-Johnson@pnnl.gov
  organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37117207$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1973113$$D View this record in Osti.gov
BookMark eNp9ks1u1TAQhSNUREvpC7BAEWzYBPyXOFkhVP4qVYIFrK2JM7nXF8e-2AlSX4GnZtq00HbRbGKNv3N8PJ6nxUGIAYviOWdvOJPt26y4anTFhKykZpJX3aPiSDDFK66FPLi1PixOct4x-mTHW6WeFIdSc9ph-qj48w3h5we0ccBUYoDeYy4nsFsXsPQIKbiwqXrIOJQTztBH72YsIYQ4w-xioOVQgrVLAqrvUxydJ0npQjktfnaDmzBkAsGTb85l3qOdUySzdEGWkJeEhMz5WfF4BJ_x5Pp_XPz49PH76Zfq_Ovns9P355Wtm3aukI0WWuy7plON0G1nZTOC1UzVgxip3PfN0FBvbN1zIZmtQRKuJB9E3aGUx8XZ6jtE2Jl9chOkCxPBmatCTBsDaXbWo2mFsqOoa-glKA19azmCaADHpkamGHm9W732Sz_hYOkeCfwd07s7wW3NJv42nHGlNb3ecfFydYh5diZb6q7d2hgCdcnwTkvOLyO_vj4mxV8L5tlMLlv0HgLGJRvRMt3xWrctoa_uobu4JOr-SgmulK6JenE797_AN4NBQLsCNsWcE46Gkl09OF3DecpvLsfQrGNo6CLmagxNR1JxT3rj_qBIrqJMcNhg-h_7AdVfNrzyPA
CitedBy_id crossref_primary_10_1016_j_nanoen_2024_110322
crossref_primary_10_1021_jacs_4c00354
crossref_primary_10_1093_bib_bbae498
crossref_primary_10_2139_ssrn_4560366
crossref_primary_10_1016_j_foodchem_2024_138468
crossref_primary_10_1016_j_ymben_2023_07_004
crossref_primary_10_1021_acs_analchem_4c04780
crossref_primary_10_1002_smtd_202400305
crossref_primary_10_1177_1934578X251317114
crossref_primary_10_1016_j_copbio_2023_103057
crossref_primary_10_1016_j_jhazmat_2024_134334
crossref_primary_10_1021_acs_analchem_4c00256
crossref_primary_10_1021_jasms_4c00220
crossref_primary_10_1080_17460441_2024_2354871
crossref_primary_10_1021_jasms_4c00146
crossref_primary_10_1038_s41467_023_37031_9
crossref_primary_10_1038_s41589_023_01536_7
Cites_doi 10.1007/978-1-4939-1258-2_1
10.1021/acs.jproteome.5b00394
10.1074/jbc.274.44.31671
10.1002/pmic.201400323
10.1074/jbc.RA119.007885
10.3389/fbioe.2021.603832
10.1038/nmeth.4398
10.1038/s41467-017-01318-5
10.1021/pr700739d
10.3390/metabo8020031
10.1038/s41592-021-01331-z
10.1111/1462-2920.14843
10.1016/j.cbpa.2016.05.011
10.1038/nmeth.4072
10.1016/j.trac.2019.04.022
10.1038/nbt.2841
10.1021/acs.energyfuels.6b01952
10.1371/journal.pcbi.1004321
10.7554/eLife.32110
10.1002/pmic.201000665
10.1007/s13361-018-2028-5
10.1128/mSystems.00043-16
10.1021/acs.analchem.6b05006
10.1038/s41467-022-29006-z
10.1021/acs.analchem.7b01729
10.1038/s41592-021-01195-3
10.1186/s13068-021-01950-w
10.1074/jbc.M109.023994
10.1002/jcc.21707
10.1021/pr1005247
10.3389/fmicb.2015.00209
10.1021/pr301039b
10.1021/ac802689c
10.1186/s12934-019-1227-5
10.1074/mcp.O111.016717
10.1021/acs.jproteome.8b00019
10.1039/C9RA08985C
10.1016/j.ymben.2014.10.003
10.3389/fbioe.2021.768934
10.1021/acs.jproteome.8b00760
10.1038/ncomms1494
10.1038/nmeth.1584
10.1021/acs.analchem.9b05135
10.1021/acs.jproteome.1c00425
10.18637/jss.v036.i11
10.1021/acs.analchem.8b04698
10.1021/acs.analchem.0c05022
10.1186/1752-0509-7-74
10.1038/nbt.1511
10.1021/acs.analchem.9b03355
10.1016/j.copbio.2018.07.010
10.1038/s41564-022-01134-8
10.1186/s13068-017-0927-5
10.3389/fbioe.2020.603488
10.1038/s41587-020-0531-2
10.1016/j.ymben.2012.07.010
10.1016/j.mec.2020.e00139
10.1021/acs.analchem.6b02122
10.3389/fbioe.2020.612832
10.1093/bioinformatics/btq054
10.1186/s40694-018-0060-7
10.1002/rcm.8420
10.1038/s41467-019-10079-2
10.3390/metabo10060243
10.1038/s41467-023-37031-9
10.1145/2939672.2939778
10.1016/j.neunet.2022.03.037
10.1016/B978-0-12-809633-8.20274-4
10.1016/B978-0-08-101036-5.00016-1
ContentType Journal Article
Copyright Battelle Memorial Institute and the Author(s) 2023
2023. Battelle Memorial Institute and the Author(s).
Battelle Memorial Institute and the Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Battelle Memorial Institute and the Author(s) 2023
– notice: 2023. Battelle Memorial Institute and the Author(s).
– notice: Battelle Memorial Institute and the Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-023-37031-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 18
ExternalDocumentID oai_doaj_org_article_824cf255ab3a47ab8c1ea26aef65e040
PMC10147702
1973113
37117207
10_1038_s41467_023_37031_9
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P41 GM103493
– fundername: NIEHS NIH HHS
  grantid: P42 ES027704
– fundername: NIGMS NIH HHS
  grantid: R01 GM141277
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
AAPBV
AAYJO
ADQMX
AEDAW
OIOZB
OTOTI
ZA5
5PM
PUEGO
ID FETCH-LOGICAL-c568t-e0fca8eb969462789c36fac7045d2fb96bb6d6467c5b1230c5a38eb431d259e33
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:12 EDT 2025
Thu Aug 21 18:38:04 EDT 2025
Mon May 22 04:07:03 EDT 2023
Tue Aug 05 10:35:00 EDT 2025
Wed Aug 13 05:15:37 EDT 2025
Wed Feb 19 02:12:27 EST 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 01 00:58:50 EDT 2025
Fri Feb 21 02:40:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. Battelle Memorial Institute and the Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-e0fca8eb969462789c36fac7045d2fb96bb6d6467c5b1230c5a38eb431d259e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC05-76RL01830; P41 GM103493
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Bioenergy Technologies Office (BETO)
National Institutes of Health (NIH)
PNNL-SA-174727
ORCID 0000-0002-8972-7593
0000-0002-0253-6859
0000-0001-5246-2213
0000-0003-2461-9548
0000-0003-2324-2881
0000-0002-2723-3512
0000-0003-1646-4515
0000-0002-8270-5228
0000-0003-2302-8180
0000-0003-2985-8249
0000-0001-7712-7024
0000-0002-2381-2349
0000-0002-2722-4149
0000-0001-6903-9104
0000000223812349
0000000316464515
0000000323028180
0000000274251828
0000000227224149
0000000169039104
0000000289727593
0000000323242881
0000000177127024
0000000329858249
0000000202536859
0000000152462213
0000000227233512
0000000324619548
0000000282705228
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-37031-9
PMID 37117207
PQID 2807214475
PQPubID 546298
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_824cf255ab3a47ab8c1ea26aef65e040
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10147702
osti_scitechconnect_1973113
proquest_miscellaneous_2807915788
proquest_journals_2807214475
pubmed_primary_37117207
crossref_citationtrail_10_1038_s41467_023_37031_9
crossref_primary_10_1038_s41467_023_37031_9
springer_journals_10_1038_s41467_023_37031_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-28
PublicationDateYYYYMMDD 2023-04-28
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Scheubert (CR20) 2017; 8
Kall, Storey, MacCoss, Noble (CR56) 2008; 7
Li, Cai, Guo, Chen, Zhu (CR15) 2016; 88
Stancliffe, Schwaiger-Haber, Sindelar, Patti (CR17) 2021; 18
Bilbao (CR55) 2022; 21
Hillson (CR3) 2019; 10
Nogales (CR61) 2020; 22
Garza, Tran, Hampton (CR46) 2009; 284
Hiller (CR65) 2009; 81
King (CR62) 2015; 11
Gowda, Djukovic (CR2) 2014; 1198
Burnum-Johnson (CR7) 2019; 116
Gillet (CR9) 2012; 11
Bilbao (CR8) 2015; 15
Stratton (CR57) 2019; 18
Wang (CR21) 2018; 17
Tsugawa (CR11) 2020; 38
Chaleckis, Meister, Zhang, Wheelock (CR4) 2019; 55
Guo, Huan (CR10) 2020; 92
Yaegashi (CR40) 2017; 10
Reiter (CR29) 2011; 8
Coradetti (CR45) 2018; 7
Guo, Shen, Xing, Huan (CR13) 2021; 93
Ozaydin, Burd, Lee, Keasling (CR52) 2013; 15
CR47
Palmer (CR19) 2017; 14
Cheng, Tsai, Chen, Sung, Hsu (CR32) 2013; 12
Kirby (CR42) 2021; 14
Kim (CR64) 2015; 6
Pomraning (CR24) 2021; 9
CR43
Berlanga-Clavero (CR26) 2022; 7
Peralta-Yahya (CR41) 2011; 2
Borodina (CR35) 2015; 27
Nakayasu (CR53) 2016; 1
Bilbao (CR27) 2015; 14
Liebal, Phan, Sudhakar, Raman, Blank (CR1) 2020; 10
Kukurugya (CR38) 2019; 294
Ebrahim, Lerman, Palsson, Hyduke (CR63) 2013; 7
Cox, Mann (CR67) 2008; 26
Li (CR6) 2021; 18
Zhang, Li, Xu, Dou (CR5) 2020; 10
Rosenberger (CR28) 2017; 14
Alka (CR16) 2022; 13
Chaves (CR37) 2020; 11
Ahrne (CR31) 2011; 11
Nikel, Chavarria, Danchin, de Lorenzo (CR36) 2016; 34
Chen (CR12) 2017; 89
MacLean (CR14) 2018; 29
Gardner, Hampton (CR44) 1999; 274
Mairinger (CR33) 2019; 33
CR51
Gao (CR39) 2020; 8
Stow (CR54) 2017; 89
Whitmore (CR48) 2016; 30
Kim (CR60) 2020; 8
Lyu (CR25) 2021; 9
Yap (CR49) 2011; 32
Li (CR22) 2020; 92
Webb-Robertson (CR58) 2010; 9
CR69
CR68
Blazenovic, Kind, Ji, Fiehn (CR34) 2018; 8
Brandl (CR59) 2018; 5
MacLean (CR66) 2010; 26
Kampers (CR23) 2019; 18
Blazenovic (CR18) 2019; 91
Rost (CR30) 2014; 32
Kursa, Rudnicki (CR50) 2010; 36
E Stancliffe (37031_CR17) 2021; 18
KE Burnum-Johnson (37031_CR7) 2019; 116
L Lyu (37031_CR25) 2021; 9
Y Gao (37031_CR39) 2020; 8
37031_CR69
37031_CR68
H Tsugawa (37031_CR11) 2020; 38
HL Rost (37031_CR30) 2014; 32
SM Stow (37031_CR54) 2017; 89
CW Yap (37031_CR49) 2011; 32
KG Stratton (37031_CR57) 2019; 18
J Brandl (37031_CR59) 2018; 5
I Blazenovic (37031_CR18) 2019; 91
L Reiter (37031_CR29) 2011; 8
G Chen (37031_CR12) 2017; 89
I Blazenovic (37031_CR34) 2018; 8
E Ahrne (37031_CR31) 2011; 11
37031_CR51
L Kall (37031_CR56) 2008; 7
A Bilbao (37031_CR27) 2015; 14
XW Zhang (37031_CR5) 2020; 10
D Li (37031_CR22) 2020; 92
I Borodina (37031_CR35) 2015; 27
MA Kukurugya (37031_CR38) 2019; 294
J Cox (37031_CR67) 2008; 26
MV Berlanga-Clavero (37031_CR26) 2022; 7
LC Gillet (37031_CR9) 2012; 11
JE Chaves (37031_CR37) 2020; 11
J Yaegashi (37031_CR40) 2017; 10
PP Peralta-Yahya (37031_CR41) 2011; 2
ZA King (37031_CR62) 2015; 11
37031_CR43
37031_CR47
K Scheubert (37031_CR20) 2017; 8
J Kim (37031_CR60) 2020; 8
J Nogales (37031_CR61) 2020; 22
A Bilbao (37031_CR8) 2015; 15
A Palmer (37031_CR19) 2017; 14
N Hillson (37031_CR3) 2019; 10
RG Gardner (37031_CR44) 1999; 274
BX MacLean (37031_CR14) 2018; 29
O Alka (37031_CR16) 2022; 13
YM Kim (37031_CR64) 2015; 6
J Kirby (37031_CR42) 2021; 14
BJ Webb-Robertson (37031_CR58) 2010; 9
K Hiller (37031_CR65) 2009; 81
LS Whitmore (37031_CR48) 2016; 30
ST Coradetti (37031_CR45) 2018; 7
T Mairinger (37031_CR33) 2019; 33
ES Nakayasu (37031_CR53) 2016; 1
A Ebrahim (37031_CR63) 2013; 7
J Guo (37031_CR10) 2020; 92
PI Nikel (37031_CR36) 2016; 34
B Ozaydin (37031_CR52) 2013; 15
R Chaleckis (37031_CR4) 2019; 55
KR Pomraning (37031_CR24) 2021; 9
A Bilbao (37031_CR55) 2022; 21
UW Liebal (37031_CR1) 2020; 10
J Guo (37031_CR13) 2021; 93
CY Cheng (37031_CR32) 2013; 12
MB Kursa (37031_CR50) 2010; 36
B MacLean (37031_CR66) 2010; 26
H Li (37031_CR15) 2016; 88
GA Gowda (37031_CR2) 2014; 1198
Y Li (37031_CR6) 2021; 18
X Wang (37031_CR21) 2018; 17
RM Garza (37031_CR46) 2009; 284
LFC Kampers (37031_CR23) 2019; 18
G Rosenberger (37031_CR28) 2017; 14
References_xml – volume: 1198
  start-page: 3
  year: 2014
  end-page: 12
  ident: CR2
  article-title: Overview of mass spectrometry-based metabolomics: opportunities and challenges
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-1258-2_1
– volume: 14
  start-page: 4581
  year: 2015
  end-page: 4593
  ident: CR27
  article-title: Ranking fragment ions based on outlier detection for improved label-free quantification in data-independent acquisition LC-MS/MS
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.5b00394
– volume: 274
  start-page: 31671
  year: 1999
  end-page: 31678
  ident: CR44
  article-title: A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.44.31671
– volume: 15
  start-page: 964
  year: 2015
  end-page: 980
  ident: CR8
  article-title: Processing strategies and software solutions for data-independent acquisition in mass spectrometry
  publication-title: Proteomics
  doi: 10.1002/pmic.201400323
– volume: 294
  start-page: 8464
  year: 2019
  end-page: 8479
  ident: CR38
  article-title: Multi-omics analysis unravels a segregated metabolic flux network that tunes co-utilization of sugar and aromatic carbons in
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.007885
– volume: 9
  start-page: 603832
  year: 2021
  ident: CR24
  article-title: Integration of proteomics and metabolomics into the design, build, test, learn cycle to improve 3-hydroxypropionic acid production in
  publication-title: Front Bioeng. Biotech.
  doi: 10.3389/fbioe.2021.603832
– ident: CR68
– volume: 14
  start-page: 921
  year: 2017
  end-page: 927
  ident: CR28
  article-title: Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4398
– volume: 8
  year: 2017
  ident: CR20
  article-title: Significance estimation for large scale metabolomics annotations by spectral matching
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01318-5
– volume: 7
  start-page: 40
  year: 2008
  end-page: 44
  ident: CR56
  article-title: Posterior error probabilities and false discovery rates: two sides of the same coin
  publication-title: J. Proteome Res.
  doi: 10.1021/pr700739d
– ident: CR51
– volume: 8
  start-page: 31
  year: 2018
  ident: CR34
  article-title: Software tools and approaches for compound identification of LC-MS/MS data in metabolomics
  publication-title: Metabolites
  doi: 10.3390/metabo8020031
– volume: 18
  start-page: 1524
  year: 2021
  end-page: 1531
  ident: CR6
  article-title: Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01331-z
– volume: 22
  start-page: 255
  year: 2020
  end-page: 269
  ident: CR61
  article-title: High-quality genome-scale metabolic modelling of highlights its broad metabolic capabilities
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.14843
– volume: 34
  start-page: 20
  year: 2016
  end-page: 29
  ident: CR36
  article-title: From dirt to industrial applications: as a Synthetic Biology chassis for hosting harsh biochemical reactions
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2016.05.011
– volume: 14
  start-page: 57
  year: 2017
  end-page: 60
  ident: CR19
  article-title: FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4072
– volume: 116
  start-page: 292
  year: 2019
  end-page: 299
  ident: CR7
  article-title: Ion mobility spectrometry and the omics: distinguishing isomers, molecular classes and contaminant ions in complex samples
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.04.022
– volume: 32
  start-page: 219
  year: 2014
  end-page: 223
  ident: CR30
  article-title: OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2841
– volume: 30
  start-page: 8410
  year: 2016
  end-page: 8418
  ident: CR48
  article-title: BioCompoundML: a general biofuel property screening tool for biological molecules using random forest classifiers
  publication-title: Energ. Fuel.
  doi: 10.1021/acs.energyfuels.6b01952
– volume: 11
  start-page: e1004321
  year: 2015
  ident: CR62
  article-title: Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004321
– volume: 7
  start-page: e32110
  year: 2018
  ident: CR45
  article-title: Functional genomics of lipid metabolism in the oleaginous yeast
  publication-title: Elife
  doi: 10.7554/eLife.32110
– volume: 11
  start-page: 4085
  year: 2011
  end-page: 4095
  ident: CR31
  article-title: An improved method for the construction of decoy peptide MS/MS spectra suitable for the accurate estimation of false discovery rates
  publication-title: Proteomics
  doi: 10.1002/pmic.201000665
– volume: 29
  start-page: 2182
  year: 2018
  end-page: 2188
  ident: CR14
  article-title: Using skyline to analyze data-containing liquid chromatography, ion mobility spectrometry, and mass spectrometry dimensions
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-018-2028-5
– volume: 1
  start-page: e00043
  year: 2016
  end-page: 16
  ident: CR53
  article-title: MPLEx: a robust and universal protocol for single-sample integrative proteomic, metabolomic, and lipidomic analyses
  publication-title: mSystems
  doi: 10.1128/mSystems.00043-16
– volume: 89
  start-page: 4897
  year: 2017
  end-page: 4906
  ident: CR12
  article-title: Customized consensus spectral library building for untargeted quantitative metabolomics analysis with data independent acquisition mass spectrometry and MetaboDIA workflow
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b05006
– volume: 13
  year: 2022
  ident: CR16
  article-title: DIAMetAlyzer allows automated false-discovery rate-controlled analysis for data-independent acquisition in metabolomics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29006-z
– volume: 89
  start-page: 9048
  year: 2017
  end-page: 9055
  ident: CR54
  article-title: An interlaboratory evaluation of drift tube ion mobility-mass spectrometry collision cross section measurements
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b01729
– volume: 18
  start-page: 779
  year: 2021
  end-page: 787
  ident: CR17
  article-title: DecoID improves identification rates in metabolomics through database-assisted MS/MS deconvolution
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01195-3
– volume: 14
  year: 2021
  ident: CR42
  article-title: Further engineering of for the production of terpenes from lignocellulosic biomass
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-021-01950-w
– ident: CR43
– ident: CR47
– volume: 284
  start-page: 35368
  year: 2009
  end-page: 35380
  ident: CR46
  article-title: Geranylgeranyl pyrophosphate is a potent regulator of HRD-dependent 3-hydroxy-3-methylglutaryl-CoA reductase degradation in yeast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.023994
– volume: 32
  start-page: 1466
  year: 2011
  end-page: 1474
  ident: CR49
  article-title: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints
  publication-title: J. Comput Chem.
  doi: 10.1002/jcc.21707
– volume: 9
  start-page: 5748
  year: 2010
  end-page: 5756
  ident: CR58
  article-title: Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data
  publication-title: J. Proteome Res.
  doi: 10.1021/pr1005247
– volume: 6
  start-page: 209
  year: 2015
  ident: CR64
  article-title: Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00209
– volume: 12
  start-page: 2305
  year: 2013
  end-page: 2310
  ident: CR32
  article-title: Spectrum-based method to generate good decoy libraries for spectral library searching in peptide identifications
  publication-title: J. Proteome Res.
  doi: 10.1021/pr301039b
– volume: 81
  start-page: 3429
  year: 2009
  end-page: 3439
  ident: CR65
  article-title: MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis
  publication-title: Anal. Chem.
  doi: 10.1021/ac802689c
– volume: 18
  start-page: 179
  year: 2019
  ident: CR23
  article-title: In silico-guided engineering of towards growth under micro-oxic conditions
  publication-title: Micro. Cell Fact.
  doi: 10.1186/s12934-019-1227-5
– volume: 11
  start-page: O111 016717
  year: 2012
  ident: CR9
  article-title: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis
  publication-title: Mol. Cell Proteom.
  doi: 10.1074/mcp.O111.016717
– volume: 17
  start-page: 2328
  year: 2018
  end-page: 2334
  ident: CR21
  article-title: Target-decoy-based false discovery rate estimation for large-scale metabolite identification
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.8b00019
– volume: 10
  start-page: 3092
  year: 2020
  end-page: 3104
  ident: CR5
  article-title: Mass spectrometry-based metabolomics in health and medical science: a systematic review
  publication-title: RSC Adv.
  doi: 10.1039/C9RA08985C
– volume: 27
  start-page: 57
  year: 2015
  end-page: 64
  ident: CR35
  article-title: Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.10.003
– volume: 9
  start-page: 768934
  year: 2021
  ident: CR25
  article-title: Engineering the oleaginous yeast for improved resistance against inhibitors in biomass hydrolysates
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.768934
– volume: 18
  start-page: 1418
  year: 2019
  end-page: 1425
  ident: CR57
  article-title: pmartR: quality control and statistics for mass spectrometry-based biological data
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.8b00760
– volume: 2
  year: 2011
  ident: CR41
  article-title: Identification and microbial production of a terpene-based advanced biofuel
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1494
– volume: 8
  start-page: 430
  year: 2011
  end-page: 435
  ident: CR29
  article-title: mProphet: automated data processing and statistical validation for large-scale SRM experiments
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1584
– volume: 92
  start-page: 8072
  year: 2020
  end-page: 8080
  ident: CR10
  article-title: Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography-mass spectrometry based untargeted metabolomics
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b05135
– volume: 21
  start-page: 798
  year: 2022
  end-page: 807
  ident: CR55
  article-title: A preprocessing tool for enhanced ion mobility-mass spectrometry-based omics workflows
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.1c00425
– ident: CR69
– volume: 36
  start-page: 1
  year: 2010
  end-page: 13
  ident: CR50
  article-title: Feature selection with the Boruta package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v036.i11
– volume: 91
  start-page: 2155
  year: 2019
  end-page: 2162
  ident: CR18
  article-title: Structure annotation of all mass spectra in untargeted metabolomics
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b04698
– volume: 93
  start-page: 2669
  year: 2021
  end-page: 2677
  ident: CR13
  article-title: DaDIA: hybridizing data-dependent and data-independent acquisition modes for generating high-quality metabolomic data
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c05022
– volume: 7
  year: 2013
  ident: CR63
  article-title: COBRApy: constraints-based reconstruction and analysis for python
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-7-74
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  ident: CR67
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1511
– volume: 92
  start-page: 5701
  year: 2020
  end-page: 5707
  ident: CR22
  article-title: XY-Meta: a high-efficiency search engine for large-scale metabolome annotation with accurate FDR estimation
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b03355
– volume: 55
  start-page: 44
  year: 2019
  end-page: 50
  ident: CR4
  article-title: Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2018.07.010
– volume: 7
  start-page: 1001
  year: 2022
  end-page: 1015
  ident: CR26
  article-title: Bacillus subtilis biofilm matrix components target seed oil bodies to promote growth and anti-fungal resistance in melon
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-022-01134-8
– volume: 10
  year: 2017
  ident: CR40
  article-title: : a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-017-0927-5
– volume: 8
  start-page: 603488
  year: 2020
  ident: CR39
  article-title: High-throughput large-scale targeted proteomics assays for quantifying pathway proteins in KT2440
  publication-title: Front Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.603488
– volume: 38
  start-page: 1159
  year: 2020
  end-page: 1163
  ident: CR11
  article-title: A lipidome atlas in MS-DIAL 4
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0531-2
– volume: 15
  start-page: 174
  year: 2013
  end-page: 183
  ident: CR52
  article-title: Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2012.07.010
– volume: 11
  start-page: e00139
  year: 2020
  ident: CR37
  article-title: Evaluation of chromosomal insertion loci in the KT2440 genome for predictable biosystems design
  publication-title: Metab. Eng. Commun.
  doi: 10.1016/j.mec.2020.e00139
– volume: 88
  start-page: 8757
  year: 2016
  end-page: 8764
  ident: CR15
  article-title: MetDIA: targeted metabolite extraction of multiplexed MS/MS spectra generated by data-independent acquisition
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b02122
– volume: 8
  start-page: 612832
  year: 2020
  ident: CR60
  article-title: Multi-omics driven metabolic network reconstruction and analysis of lignocellulosic carbon utilization in
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.612832
– volume: 26
  start-page: 966
  year: 2010
  end-page: 968
  ident: CR66
  article-title: Skyline: an open source document editor for creating and analyzing targeted proteomics experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq054
– volume: 5
  year: 2018
  ident: CR59
  article-title: A community-driven reconstruction of the metabolic network
  publication-title: Fungal Biol. Biotechnol.
  doi: 10.1186/s40694-018-0060-7
– volume: 33
  start-page: 66
  year: 2019
  end-page: 74
  ident: CR33
  article-title: Rapid screening methods for yeast sub-metabolome analysis with a high-resolution ion mobility quadrupole time-of-flight mass spectrometer
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.8420
– volume: 10
  year: 2019
  ident: CR3
  article-title: Building a global alliance of biofoundries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10079-2
– volume: 10
  start-page: 243
  year: 2020
  ident: CR1
  article-title: Machine learning applications for mass spectrometry-based metabolomics
  publication-title: Metabolites
  doi: 10.3390/metabo10060243
– volume: 8
  start-page: 430
  year: 2011
  ident: 37031_CR29
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1584
– volume: 26
  start-page: 966
  year: 2010
  ident: 37031_CR66
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq054
– volume: 33
  start-page: 66
  year: 2019
  ident: 37031_CR33
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.8420
– volume: 10
  start-page: 243
  year: 2020
  ident: 37031_CR1
  publication-title: Metabolites
  doi: 10.3390/metabo10060243
– volume: 13
  year: 2022
  ident: 37031_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29006-z
– volume: 14
  start-page: 57
  year: 2017
  ident: 37031_CR19
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4072
– volume: 9
  start-page: 5748
  year: 2010
  ident: 37031_CR58
  publication-title: J. Proteome Res.
  doi: 10.1021/pr1005247
– volume: 89
  start-page: 9048
  year: 2017
  ident: 37031_CR54
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b01729
– volume: 8
  start-page: 612832
  year: 2020
  ident: 37031_CR60
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.612832
– volume: 116
  start-page: 292
  year: 2019
  ident: 37031_CR7
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.04.022
– volume: 92
  start-page: 8072
  year: 2020
  ident: 37031_CR10
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b05135
– volume: 88
  start-page: 8757
  year: 2016
  ident: 37031_CR15
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b02122
– volume: 34
  start-page: 20
  year: 2016
  ident: 37031_CR36
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2016.05.011
– volume: 274
  start-page: 31671
  year: 1999
  ident: 37031_CR44
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.44.31671
– volume: 284
  start-page: 35368
  year: 2009
  ident: 37031_CR46
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.023994
– volume: 38
  start-page: 1159
  year: 2020
  ident: 37031_CR11
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0531-2
– volume: 1
  start-page: e00043
  year: 2016
  ident: 37031_CR53
  publication-title: mSystems
  doi: 10.1128/mSystems.00043-16
– volume: 14
  year: 2021
  ident: 37031_CR42
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-021-01950-w
– volume: 14
  start-page: 4581
  year: 2015
  ident: 37031_CR27
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.5b00394
– volume: 294
  start-page: 8464
  year: 2019
  ident: 37031_CR38
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.007885
– volume: 8
  start-page: 31
  year: 2018
  ident: 37031_CR34
  publication-title: Metabolites
  doi: 10.3390/metabo8020031
– ident: 37031_CR68
  doi: 10.1038/s41467-023-37031-9
– volume: 26
  start-page: 1367
  year: 2008
  ident: 37031_CR67
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1511
– volume: 18
  start-page: 1524
  year: 2021
  ident: 37031_CR6
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01331-z
– volume: 12
  start-page: 2305
  year: 2013
  ident: 37031_CR32
  publication-title: J. Proteome Res.
  doi: 10.1021/pr301039b
– volume: 10
  year: 2017
  ident: 37031_CR40
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-017-0927-5
– volume: 7
  start-page: e32110
  year: 2018
  ident: 37031_CR45
  publication-title: Elife
  doi: 10.7554/eLife.32110
– ident: 37031_CR51
  doi: 10.1145/2939672.2939778
– volume: 32
  start-page: 219
  year: 2014
  ident: 37031_CR30
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2841
– volume: 11
  start-page: 4085
  year: 2011
  ident: 37031_CR31
  publication-title: Proteomics
  doi: 10.1002/pmic.201000665
– volume: 17
  start-page: 2328
  year: 2018
  ident: 37031_CR21
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.8b00019
– volume: 5
  year: 2018
  ident: 37031_CR59
  publication-title: Fungal Biol. Biotechnol.
  doi: 10.1186/s40694-018-0060-7
– volume: 91
  start-page: 2155
  year: 2019
  ident: 37031_CR18
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b04698
– volume: 7
  start-page: 40
  year: 2008
  ident: 37031_CR56
  publication-title: J. Proteome Res.
  doi: 10.1021/pr700739d
– ident: 37031_CR47
  doi: 10.1016/j.neunet.2022.03.037
– volume: 1198
  start-page: 3
  year: 2014
  ident: 37031_CR2
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-1258-2_1
– volume: 93
  start-page: 2669
  year: 2021
  ident: 37031_CR13
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c05022
– volume: 15
  start-page: 174
  year: 2013
  ident: 37031_CR52
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2012.07.010
– volume: 10
  year: 2019
  ident: 37031_CR3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10079-2
– volume: 18
  start-page: 1418
  year: 2019
  ident: 37031_CR57
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.8b00760
– volume: 8
  year: 2017
  ident: 37031_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01318-5
– volume: 18
  start-page: 779
  year: 2021
  ident: 37031_CR17
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01195-3
– ident: 37031_CR69
  doi: 10.1016/B978-0-12-809633-8.20274-4
– volume: 14
  start-page: 921
  year: 2017
  ident: 37031_CR28
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4398
– volume: 27
  start-page: 57
  year: 2015
  ident: 37031_CR35
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.10.003
– volume: 36
  start-page: 1
  year: 2010
  ident: 37031_CR50
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v036.i11
– volume: 21
  start-page: 798
  year: 2022
  ident: 37031_CR55
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.1c00425
– volume: 55
  start-page: 44
  year: 2019
  ident: 37031_CR4
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2018.07.010
– volume: 11
  start-page: O111 016717
  year: 2012
  ident: 37031_CR9
  publication-title: Mol. Cell Proteom.
  doi: 10.1074/mcp.O111.016717
– volume: 9
  start-page: 603832
  year: 2021
  ident: 37031_CR24
  publication-title: Front Bioeng. Biotech.
  doi: 10.3389/fbioe.2021.603832
– volume: 9
  start-page: 768934
  year: 2021
  ident: 37031_CR25
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.768934
– volume: 22
  start-page: 255
  year: 2020
  ident: 37031_CR61
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.14843
– volume: 2
  year: 2011
  ident: 37031_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1494
– volume: 81
  start-page: 3429
  year: 2009
  ident: 37031_CR65
  publication-title: Anal. Chem.
  doi: 10.1021/ac802689c
– volume: 89
  start-page: 4897
  year: 2017
  ident: 37031_CR12
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b05006
– volume: 8
  start-page: 603488
  year: 2020
  ident: 37031_CR39
  publication-title: Front Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.603488
– volume: 6
  start-page: 209
  year: 2015
  ident: 37031_CR64
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00209
– volume: 11
  start-page: e1004321
  year: 2015
  ident: 37031_CR62
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004321
– volume: 18
  start-page: 179
  year: 2019
  ident: 37031_CR23
  publication-title: Micro. Cell Fact.
  doi: 10.1186/s12934-019-1227-5
– volume: 92
  start-page: 5701
  year: 2020
  ident: 37031_CR22
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b03355
– volume: 7
  start-page: 1001
  year: 2022
  ident: 37031_CR26
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-022-01134-8
– volume: 30
  start-page: 8410
  year: 2016
  ident: 37031_CR48
  publication-title: Energ. Fuel.
  doi: 10.1021/acs.energyfuels.6b01952
– volume: 15
  start-page: 964
  year: 2015
  ident: 37031_CR8
  publication-title: Proteomics
  doi: 10.1002/pmic.201400323
– volume: 29
  start-page: 2182
  year: 2018
  ident: 37031_CR14
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-018-2028-5
– volume: 10
  start-page: 3092
  year: 2020
  ident: 37031_CR5
  publication-title: RSC Adv.
  doi: 10.1039/C9RA08985C
– volume: 32
  start-page: 1466
  year: 2011
  ident: 37031_CR49
  publication-title: J. Comput Chem.
  doi: 10.1002/jcc.21707
– volume: 11
  start-page: e00139
  year: 2020
  ident: 37031_CR37
  publication-title: Metab. Eng. Commun.
  doi: 10.1016/j.mec.2020.e00139
– volume: 7
  year: 2013
  ident: 37031_CR63
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-7-74
– ident: 37031_CR43
  doi: 10.1016/B978-0-08-101036-5.00016-1
SSID ssj0000391844
Score 2.522018
Snippet Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying...
Abstract Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2461
SubjectTerms 49/47
631/114/1305
631/114/1314
631/1647/296
631/45/320
82/16
82/58
Algorithms
Annotations
BASIC BIOLOGICAL SCIENCES
Biological activity
Chemical reactions
Chromatography
Chromatography, Liquid - methods
Construction standards
Gas chromatography
Humanities and Social Sciences
Ion Mobility Spectrometry
Ionic mobility
Ions
Learning algorithms
Libraries
Liquid chromatography
Machine learning
Mass spectrometry
Mass Spectrometry - methods
Mass spectroscopy
Metabolites
Metabolomics
Metabolomics - methods
Microorganisms
Mobility
multidisciplinary
Pseudomonas putida
Science
Science (multidisciplinary)
Scientific imaging
Sensitivity analysis
Workflow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDehBRmJG1iNY8d2jryqCglOVOrN8itQQbPVJnvoX-BXM2NnQ5fnhdOuEidKZr55OPZ8Q8izVniluxhYr7lkUujEvFCKpQZii9YawhLWO7__oI5P5LvT9vRKqy_cE1bogYvgDk0jQw95r_PCSe28CTy5RrnUqzYBAtH7Qsy7MpnKPlh0MHWRc5VMLczhKLNPgBAFNgVIZt1OJMqE_fCzAsP6XbL5657JnxZOczw6ukVuzokkfVle4Da5loY75HppLXl5l3wDX_flTcKK9TVNuUBqpOd552Sic6uITwxjWKTnaQIoYDEydcOwKovz8DdSF8IGuSRoae0Nl9CzgeZNiBHbAhRKD7jvONJcs4nkB9P6Em65fHoc75GTo7cfXx-zue8CC60yE0t1H5xJvlOdVFgpG4TqXdCQ_cWmh8Peq6hAmqH1EPjq0DoBwyEViTCZSkLcJ3vDakgPCU1O6JikCkI24CqC47Xn0QkZI0xco64I3-rAhpmUHHtjfLV5cVwYW_RmQW826812FXm-XHNRKDn-OvoVqnYZiXTa-QCAzM4gs_8CWUX2ERgWshKk1g24BylMlmPfLy4qcrDFi509wGiRZQjp6HRbkafLabBdXJBxQ1ptypiOg880FXlQ4LU8p9AccssaJGR2gLfzIrtnhrPPmR8c2y-DlTUVebHF6I_n-rOkHv0PSe2TGw3aWC1ZYw7I3rTepMeQtk3-SbbQ764WQE8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagCIkLYie0ICNxA6tJ7NjOCbGVCglOVOrN8pZSQZPyknfoX-BXM-P4pXosPSVKnCjxrPbMfEPIi4Y7qdrgWacqwQRXkTkuJYs12BalFJglrHf-_EUeHolPx81x3nAbc1rlRicmRR0Gj3vk-4jagvBeqnl9_pNh1yiMruYWGtfJjQosDaZ06YOPyx4Lop9rIXKtTMn1_iiSZgBDBZIF_MzaLXuUYPvhMIB4_cvl_Dtz8o_wabJKB3fI7exO0jcz_e-Sa7G_R27ODSYv7pNfoPG-v49Yt76iMZVJjfQs5U9GmhtGnDC0ZIGexQkYAkuSqe37YQ7Rw2mg1vs1IkrQucE3PEJPe5pSEQM2B5iBPeC940hT5SZCIEyrC3jlsgE5PiBHBx--vjtkufsC843UE4tl562OrpWtkFgv67nsrFfgA4a6g8vOySBhNn3jwPyVvrEchoNDEmBJFTl_SHb6oY-PCY2WqxCF9FzUoDC8rUpXBctFCLB8Daog1YYGxmdocuyQ8cOkEDnXZqabAbqZRDfTFuTl8sz5DMxx5ei3SNplJIJqpwvD6sRkGTW6Fr6DJZZ13AplnfZVtLW0sZNNBGVXkF1kDAO-CQLsesxE8pOpsPtXxQuyt-EXk_XAaC65tiDPl9sgwRiWsX0c1vOYtgLNqQvyaGav5Tu5qsDDLGGG9Bbjbf3I9p3-9FtCCccmzCBrdUFebXj08rv-P1NPrv6NXXKrRukpBav1HtmZVuv4FNyyyT1Lsvcb7fc3Ew
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDehBRmJG1gksWM7x-VRVSvBBSr1ZvmVUkETtMke-hf41cw4D7RQkDjtKhlHjufpeOYbQl5U3ElVB88aVQgmuIrMcSlZLMG3KKXALWG984eP8uRUrM-qsz1SzrUwKWk_QVomMz1nh73uRVJp8DCgEiCIrL5BDhCqHWT7YLVaf1ovX1YQ81wLMVXI5FxfM3jHCyWwfvjpQKmuCzT_zJf87dA0-aLjO-T2FETS1Tjtu2QvtvfIzbGt5NV98gPs3Nd3EavVNzSm4qieXqasyUinNhHnDP1XoJdxADHAQmRq27YbD-bhb6DW-y3iSNCxrTcMoRctTQmIAVsCjHAe8Ny-p6leE4EPhs0VPHL57Ng_IKfH7z-_PWFTzwXmK6kHFvPGWx1dLWshsUrWc9lYryDyC2UDl52TQcJq-sqB08t9ZTmQQxgSYCMVOX9I9tuujY8JjZarEIX0XJRgJrwtclcEy0UIsGkNKiPFzAPjJ0By7IvxzaSDca7NyDcDfDOJb6bOyMtlzPcRjuOf1G-QtQslQmmnC93m3EyiZXQpfAMbK-u4Fco67YtoS2ljI6sIJi4jhygYBiIShNX1mH_kB1Ngz6-CZ-RolhczaX9vEGEIoehUlZHny23QWzyMsW3stiNNXYC91Bl5NIrXMk-uCogrc1ghvSN4Oy-ye6e9-JKwwbH1MmhYmZFXs4z-mtffV-rJ_5EfklslalMuWKmPyP6w2canEJwN7tmkjT8BGtU2Og
  priority: 102
  providerName: Springer Nature
Title PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements
URI https://link.springer.com/article/10.1038/s41467-023-37031-9
https://www.ncbi.nlm.nih.gov/pubmed/37117207
https://www.proquest.com/docview/2807214475
https://www.proquest.com/docview/2807915788
https://www.osti.gov/servlets/purl/1973113
https://pubmed.ncbi.nlm.nih.gov/PMC10147702
https://doaj.org/article/824cf255ab3a47ab8c1ea26aef65e040
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_tQ0i8IL4JG5WReINAEzt28oBQV1amSpsQUKlvlmM7Y2JLoU0l-i_wV3PnpEWFwRMvSeTYUXK-851j3-8H8CzjpVSFs3GlEhELrnxcciljn6JvUUqhW6J859MzeTIR42k23YE13VEnwMW1Uzvik5rML19-_7Z6gwb_uk0Zz18tRDB39D5oLqikcbEL--iZFDEanHbhfhiZeYETGtHlzlzfdMs_BRh_PM3Q3K4LQf_cSfnbcmrwUqPbcKsLL9mg1Yc7sOPru3CjJZxc3YMfOAJ-eespj33OfEibWrCrsJ_Ss45A4jwmz-bYlW9QQShFmZm6nrVL9njpmLF2SQgTrCX8xibsomZha6IjsoAW6AOfu1iwkMlJkAjNfIWP3PyQXNyHyej40_Ak7tgYYpvJvIl9v7Im92UhCyEpf9ZyWRmrMCZ0aYXFZSmdRGnarER32LeZ4VgdAxSHUyzP-QPYq2e1fwTMG66cF9JykeIAYk3SLxNnuHAOp7NORZCs-0DbDqqcGDMudVgy57lu-01jv-nQb7qI4PmmzdcWqOOftY-oazc1CWQ7FMzm57qzWZ2nwlY45TIlN0KZMreJN6k0vpKZx8EvggNSDI2xCgHuWtqZZBudEBtYwiM4XOuLXqu1JuwhAqlTWQRPN7fRommZxtR-tmzrFAmOpHkED1v12rwnVwmqdR8llG8p3taHbN-pLz4H1HAiZUbbSyN4sdbRX-_1d0k9_h-SOoCbKdlYX8Rpfgh7zXzpn2Aw15Q92FVThcd89K4H-4PB-OMYz0fHZ-8_YOlQDnvhN0kvWPJPJxBOZg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLuhBYwEJ4iaxI6dHBACyrKlj1Mr9WYc2ylV26RsskL7F_gx_EZmnEe1PHrraVeJEyWZmW_G9sx8hLxMWSFkbk1YypiHnEkXFkyI0CXgW6SU4Jaw3nlvX0wP-Zej9GiF_BpqYTCtcsBED9S2NrhGvoldW7C9l0zfXXwPkTUKd1cHCo1OLXbc4gdM2Zq321sg31dJMvl08HEa9qwCoUlF1oYuKo3OXJGLnAusAzVMlNpIiG1sUsLhohBWAH6YtABYj0yqGQwHR2thquBwARQg_wZn4MmxMn3yeVzTwW7rGed9bU7Ess2GeyQCxwiWDPYT5kv-z9MEwE8N5vyvEPfvTM0_tmu9F5zcJXf68JW-7_TtHllx1X1ysyO0XDwgPwFhT7cc1snPqPNlWQ099_majvYEFcchek5Lz10LCogl0FRXVd2lBMBfS7Uxc-xgQTtCcbiEnlTUpz5aJCPoGonAfZuG-kpRbLnQzhZwy3HBs3lIDq9FLo_IalVXbo1Qp5m0jgvDeAIAZXQcFbHVjFsL02UrAxIPMlCmb4WOjBxnym_Js0x1clMgN-XlpvKAvB6vuegagVw5-gOKdhyJTbz9gXp2rHpMUFnCTQlTOl0wzaUuMhM7nQjtSpE6ANeArKNiKIiFsKGvwcwn06oY2cZiFpCNQV9UjzuNurSSgLwYTwNi4DaQrlw978bkMSB1FpDHnXqNz8lkDBFtBF8oW1K8pRdZPlOdfPNdyZH0GWw7CcibQUcvn-v_X-rJ1a_xnNyaHuztqt3t_Z11cjtBS4p4mGQbZLWdzd1TCAnb4pm3Q0q-Xrfh_wb4UHPl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqViAuiP-GFjASnCDaJHbs5IAQZbtqKawqRKXejGM7pYImZZMV2lfgkXg6ZpxsquWnt552lThRkpn5ZmzPzEfIs5QVQubWhKWMeciZdGHBhAhdAr5FSgluCeudP0zF3hF_d5wer5Ffy1oYTKtcYqIHalsbXCMfYdcWbO8l01HZp0Ucjievz7-HyCCFO61LOo1ORQ7c4gdM35pX-2OQ9fMkmex-ersX9gwDoUlF1oYuKo3OXJGLnAusCTVMlNpIiHNsUsLhohBWAJaYtACIj0yqGQwHp2th2uBwMRTgf0PirGidbOzsTg8_Dis82Hs947yv1IlYNmq4xyVwk2DXYE1hvuINPWkA_NRg3P8KeP_O2_xj89b7xMktcrMPZumbTvtukzVX3SHXOnrLxV3yE_D269hh1fyMOl-k1dAzn73paE9XcRKiH7X0zLWgjlgQTXVV1V2CAPy1VBszx34WtKMXh0voaUV9IqRFaoKurQjct2morxvFBgztbAG3HJY_m3vk6Eokc5-sV3XlNgl1mknruDCMJwBXRsdREVvNuLUwebYyIPFSBsr0jdGRn-Ob8hv0LFOd3BTITXm5qTwgL4Zrzru2IJeO3kHRDiOxpbc_UM9OVI8QKku4KWGCpwumudRFZmKnE6FdKVIHUBuQLVQMBZERtvc1mAdlWhUj91jMArK91BfVo1CjLmwmIE-H04AfuCmkK1fPuzF5DLidBeRBp17DczIZQ3wbwRfKVhRv5UVWz1SnX3yPcqSABktPAvJyqaMXz_X_L_Xw8td4Qq6D0av3-9ODLXIjQUOKeJhk22S9nc3dI4gP2-Jxb4iUfL5q2_8NfEF5dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PeakDecoder+enables+machine+learning-based+metabolite+annotation+and+accurate+profiling+in+multidimensional+mass+spectrometry+measurements&rft.jtitle=Nature+communications&rft.au=Aivett+Bilbao&rft.au=Nathalie+Munoz&rft.au=Joonhoon+Kim&rft.au=Daniel+J.+Orton&rft.date=2023-04-28&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1038%2Fs41467-023-37031-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_824cf255ab3a47ab8c1ea26aef65e040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon