PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements
Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 2461 - 18 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.04.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of
Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida
and
Rhodosporidium toruloides
. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.
Alternative algorithms exploiting advantages of multidimensional mass spectrometry in untargeted metabolomics are needed. Here, the authors develop and demonstrate PeakDecoder for confident and accurate metabolite profiling in 116 microbial sample runs and using a library built from 64 standards. |
---|---|
AbstractList | Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards. Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.Alternative algorithms exploiting advantages of multidimensional mass spectrometry in untargeted metabolomics are needed. Here, the authors develop and demonstrate PeakDecoder for confident and accurate metabolite profiling in 116 microbial sample runs and using a library built from 64 standards. Abstract Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards. Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides . Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards. Alternative algorithms exploiting advantages of multidimensional mass spectrometry in untargeted metabolomics are needed. Here, the authors develop and demonstrate PeakDecoder for confident and accurate metabolite profiling in 116 microbial sample runs and using a library built from 64 standards. Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards. Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides . Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards. |
ArticleNumber | 2461 |
Author | Burnum-Johnson, Kristin E. Oksen, Ethan Gao, Yuqian Deng, Shuang Baker, Erin S. Michener, Joshua K. Petzold, Christopher J. Burnet, Meagan Kim, Young-Mo Tsalenko, Anya Munoz, Nathalie Smith, Richard D. Weitz, Karl Fasani, Rick A. Tanjore, Deepti Gladden, John M. Poorey, Kunal Kim, Joonhoon Magnuson, Jon K. Orton, Daniel J. Gee, Aaron Apffel, Alex Bilbao, Aivett Pomraning, Kyle R. Nicora, Carrie D. Dai, Ziyu Wilton, Rosemarie Gardner, James |
Author_xml | – sequence: 1 givenname: Aivett orcidid: 0000-0003-2985-8249 surname: Bilbao fullname: Bilbao, Aivett email: Aivett.Bilbao@pnnl.gov organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry – sequence: 2 givenname: Nathalie orcidid: 0000-0002-2723-3512 surname: Munoz fullname: Munoz, Nathalie organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry – sequence: 3 givenname: Joonhoon surname: Kim fullname: Kim, Joonhoon organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry – sequence: 4 givenname: Daniel J. orcidid: 0000-0002-0253-6859 surname: Orton fullname: Orton, Daniel J. organization: Pacific Northwest National Laboratory – sequence: 5 givenname: Yuqian orcidid: 0000-0003-1646-4515 surname: Gao fullname: Gao, Yuqian organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry – sequence: 6 givenname: Kunal surname: Poorey fullname: Poorey, Kunal organization: Sandia National Laboratory – sequence: 7 givenname: Kyle R. orcidid: 0000-0003-2324-2881 surname: Pomraning fullname: Pomraning, Kyle R. organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry – sequence: 8 givenname: Karl surname: Weitz fullname: Weitz, Karl organization: Pacific Northwest National Laboratory – sequence: 9 givenname: Meagan surname: Burnet fullname: Burnet, Meagan organization: Pacific Northwest National Laboratory – sequence: 10 givenname: Carrie D. orcidid: 0000-0003-2461-9548 surname: Nicora fullname: Nicora, Carrie D. organization: Pacific Northwest National Laboratory – sequence: 11 givenname: Rosemarie surname: Wilton fullname: Wilton, Rosemarie organization: US Department of Energy, Agile BioFoundry, Argonne National Laboratory – sequence: 12 givenname: Shuang surname: Deng fullname: Deng, Shuang organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry – sequence: 13 givenname: Ziyu surname: Dai fullname: Dai, Ziyu organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry – sequence: 14 givenname: Ethan orcidid: 0000-0001-6903-9104 surname: Oksen fullname: Oksen, Ethan organization: Lawrence Berkeley National Laboratory – sequence: 15 givenname: Aaron surname: Gee fullname: Gee, Aaron organization: Agilent Research Laboratories, Agilent Technologies – sequence: 16 givenname: Rick A. surname: Fasani fullname: Fasani, Rick A. organization: Agilent Research Laboratories, Agilent Technologies – sequence: 17 givenname: Anya surname: Tsalenko fullname: Tsalenko, Anya organization: Agilent Research Laboratories, Agilent Technologies – sequence: 18 givenname: Deepti surname: Tanjore fullname: Tanjore, Deepti organization: US Department of Energy, Agile BioFoundry, Lawrence Berkeley National Laboratory – sequence: 19 givenname: James surname: Gardner fullname: Gardner, James organization: US Department of Energy, Agile BioFoundry, Lawrence Berkeley National Laboratory – sequence: 20 givenname: Richard D. orcidid: 0000-0002-2381-2349 surname: Smith fullname: Smith, Richard D. organization: Pacific Northwest National Laboratory – sequence: 21 givenname: Joshua K. orcidid: 0000-0003-2302-8180 surname: Michener fullname: Michener, Joshua K. organization: US Department of Energy, Agile BioFoundry, Oak Ridge National Laboratory – sequence: 22 givenname: John M. surname: Gladden fullname: Gladden, John M. organization: US Department of Energy, Agile BioFoundry, Sandia National Laboratory – sequence: 23 givenname: Erin S. orcidid: 0000-0001-5246-2213 surname: Baker fullname: Baker, Erin S. organization: Department of Chemistry, University of North Carolina – sequence: 24 givenname: Christopher J. orcidid: 0000-0002-8270-5228 surname: Petzold fullname: Petzold, Christopher J. organization: US Department of Energy, Agile BioFoundry, Lawrence Berkeley National Laboratory – sequence: 25 givenname: Young-Mo orcidid: 0000-0002-8972-7593 surname: Kim fullname: Kim, Young-Mo organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry – sequence: 26 givenname: Alex surname: Apffel fullname: Apffel, Alex organization: Agilent Research Laboratories, Agilent Technologies – sequence: 27 givenname: Jon K. orcidid: 0000-0001-7712-7024 surname: Magnuson fullname: Magnuson, Jon K. organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry – sequence: 28 givenname: Kristin E. orcidid: 0000-0002-2722-4149 surname: Burnum-Johnson fullname: Burnum-Johnson, Kristin E. email: Kristin.Burnum-Johnson@pnnl.gov organization: Pacific Northwest National Laboratory, US Department of Energy, Agile BioFoundry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37117207$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1973113$$D View this record in Osti.gov |
BookMark | eNp9ks1u1TAQhSNUREvpC7BAEWzYBPyXOFkhVP4qVYIFrK2JM7nXF8e-2AlSX4GnZtq00HbRbGKNv3N8PJ6nxUGIAYviOWdvOJPt26y4anTFhKykZpJX3aPiSDDFK66FPLi1PixOct4x-mTHW6WeFIdSc9ph-qj48w3h5we0ccBUYoDeYy4nsFsXsPQIKbiwqXrIOJQTztBH72YsIYQ4w-xioOVQgrVLAqrvUxydJ0npQjktfnaDmzBkAsGTb85l3qOdUySzdEGWkJeEhMz5WfF4BJ_x5Pp_XPz49PH76Zfq_Ovns9P355Wtm3aukI0WWuy7plON0G1nZTOC1UzVgxip3PfN0FBvbN1zIZmtQRKuJB9E3aGUx8XZ6jtE2Jl9chOkCxPBmatCTBsDaXbWo2mFsqOoa-glKA19azmCaADHpkamGHm9W732Sz_hYOkeCfwd07s7wW3NJv42nHGlNb3ecfFydYh5diZb6q7d2hgCdcnwTkvOLyO_vj4mxV8L5tlMLlv0HgLGJRvRMt3xWrctoa_uobu4JOr-SgmulK6JenE797_AN4NBQLsCNsWcE46Gkl09OF3DecpvLsfQrGNo6CLmagxNR1JxT3rj_qBIrqJMcNhg-h_7AdVfNrzyPA |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2024_110322 crossref_primary_10_1021_jacs_4c00354 crossref_primary_10_1093_bib_bbae498 crossref_primary_10_2139_ssrn_4560366 crossref_primary_10_1016_j_foodchem_2024_138468 crossref_primary_10_1016_j_ymben_2023_07_004 crossref_primary_10_1021_acs_analchem_4c04780 crossref_primary_10_1002_smtd_202400305 crossref_primary_10_1177_1934578X251317114 crossref_primary_10_1016_j_copbio_2023_103057 crossref_primary_10_1016_j_jhazmat_2024_134334 crossref_primary_10_1021_acs_analchem_4c00256 crossref_primary_10_1021_jasms_4c00220 crossref_primary_10_1080_17460441_2024_2354871 crossref_primary_10_1021_jasms_4c00146 crossref_primary_10_1038_s41467_023_37031_9 crossref_primary_10_1038_s41589_023_01536_7 |
Cites_doi | 10.1007/978-1-4939-1258-2_1 10.1021/acs.jproteome.5b00394 10.1074/jbc.274.44.31671 10.1002/pmic.201400323 10.1074/jbc.RA119.007885 10.3389/fbioe.2021.603832 10.1038/nmeth.4398 10.1038/s41467-017-01318-5 10.1021/pr700739d 10.3390/metabo8020031 10.1038/s41592-021-01331-z 10.1111/1462-2920.14843 10.1016/j.cbpa.2016.05.011 10.1038/nmeth.4072 10.1016/j.trac.2019.04.022 10.1038/nbt.2841 10.1021/acs.energyfuels.6b01952 10.1371/journal.pcbi.1004321 10.7554/eLife.32110 10.1002/pmic.201000665 10.1007/s13361-018-2028-5 10.1128/mSystems.00043-16 10.1021/acs.analchem.6b05006 10.1038/s41467-022-29006-z 10.1021/acs.analchem.7b01729 10.1038/s41592-021-01195-3 10.1186/s13068-021-01950-w 10.1074/jbc.M109.023994 10.1002/jcc.21707 10.1021/pr1005247 10.3389/fmicb.2015.00209 10.1021/pr301039b 10.1021/ac802689c 10.1186/s12934-019-1227-5 10.1074/mcp.O111.016717 10.1021/acs.jproteome.8b00019 10.1039/C9RA08985C 10.1016/j.ymben.2014.10.003 10.3389/fbioe.2021.768934 10.1021/acs.jproteome.8b00760 10.1038/ncomms1494 10.1038/nmeth.1584 10.1021/acs.analchem.9b05135 10.1021/acs.jproteome.1c00425 10.18637/jss.v036.i11 10.1021/acs.analchem.8b04698 10.1021/acs.analchem.0c05022 10.1186/1752-0509-7-74 10.1038/nbt.1511 10.1021/acs.analchem.9b03355 10.1016/j.copbio.2018.07.010 10.1038/s41564-022-01134-8 10.1186/s13068-017-0927-5 10.3389/fbioe.2020.603488 10.1038/s41587-020-0531-2 10.1016/j.ymben.2012.07.010 10.1016/j.mec.2020.e00139 10.1021/acs.analchem.6b02122 10.3389/fbioe.2020.612832 10.1093/bioinformatics/btq054 10.1186/s40694-018-0060-7 10.1002/rcm.8420 10.1038/s41467-019-10079-2 10.3390/metabo10060243 10.1038/s41467-023-37031-9 10.1145/2939672.2939778 10.1016/j.neunet.2022.03.037 10.1016/B978-0-12-809633-8.20274-4 10.1016/B978-0-08-101036-5.00016-1 |
ContentType | Journal Article |
Copyright | Battelle Memorial Institute and the Author(s) 2023 2023. Battelle Memorial Institute and the Author(s). Battelle Memorial Institute and the Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Battelle Memorial Institute and the Author(s) 2023 – notice: 2023. Battelle Memorial Institute and the Author(s). – notice: Battelle Memorial Institute and the Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-023-37031-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_824cf255ab3a47ab8c1ea26aef65e040 PMC10147702 1973113 37117207 10_1038_s41467_023_37031_9 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P41 GM103493 – fundername: NIEHS NIH HHS grantid: P42 ES027704 – fundername: NIGMS NIH HHS grantid: R01 GM141277 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c568t-e0fca8eb969462789c36fac7045d2fb96bb6d6467c5b1230c5a38eb431d259e33 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:12 EDT 2025 Thu Aug 21 18:38:04 EDT 2025 Mon May 22 04:07:03 EDT 2023 Tue Aug 05 10:35:00 EDT 2025 Wed Aug 13 05:15:37 EDT 2025 Wed Feb 19 02:12:27 EST 2025 Thu Apr 24 23:07:31 EDT 2025 Tue Jul 01 00:58:50 EDT 2025 Fri Feb 21 02:40:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. Battelle Memorial Institute and the Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c568t-e0fca8eb969462789c36fac7045d2fb96bb6d6467c5b1230c5a38eb431d259e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC05-76RL01830; P41 GM103493 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Bioenergy Technologies Office (BETO) National Institutes of Health (NIH) PNNL-SA-174727 |
ORCID | 0000-0002-8972-7593 0000-0002-0253-6859 0000-0001-5246-2213 0000-0003-2461-9548 0000-0003-2324-2881 0000-0002-2723-3512 0000-0003-1646-4515 0000-0002-8270-5228 0000-0003-2302-8180 0000-0003-2985-8249 0000-0001-7712-7024 0000-0002-2381-2349 0000-0002-2722-4149 0000-0001-6903-9104 0000000223812349 0000000316464515 0000000323028180 0000000274251828 0000000227224149 0000000169039104 0000000289727593 0000000323242881 0000000177127024 0000000329858249 0000000202536859 0000000152462213 0000000227233512 0000000324619548 0000000282705228 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-37031-9 |
PMID | 37117207 |
PQID | 2807214475 |
PQPubID | 546298 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_824cf255ab3a47ab8c1ea26aef65e040 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10147702 osti_scitechconnect_1973113 proquest_miscellaneous_2807915788 proquest_journals_2807214475 pubmed_primary_37117207 crossref_citationtrail_10_1038_s41467_023_37031_9 crossref_primary_10_1038_s41467_023_37031_9 springer_journals_10_1038_s41467_023_37031_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-28 |
PublicationDateYYYYMMDD | 2023-04-28 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Scheubert (CR20) 2017; 8 Kall, Storey, MacCoss, Noble (CR56) 2008; 7 Li, Cai, Guo, Chen, Zhu (CR15) 2016; 88 Stancliffe, Schwaiger-Haber, Sindelar, Patti (CR17) 2021; 18 Bilbao (CR55) 2022; 21 Hillson (CR3) 2019; 10 Nogales (CR61) 2020; 22 Garza, Tran, Hampton (CR46) 2009; 284 Hiller (CR65) 2009; 81 King (CR62) 2015; 11 Gowda, Djukovic (CR2) 2014; 1198 Burnum-Johnson (CR7) 2019; 116 Gillet (CR9) 2012; 11 Bilbao (CR8) 2015; 15 Stratton (CR57) 2019; 18 Wang (CR21) 2018; 17 Tsugawa (CR11) 2020; 38 Chaleckis, Meister, Zhang, Wheelock (CR4) 2019; 55 Guo, Huan (CR10) 2020; 92 Yaegashi (CR40) 2017; 10 Reiter (CR29) 2011; 8 Coradetti (CR45) 2018; 7 Guo, Shen, Xing, Huan (CR13) 2021; 93 Ozaydin, Burd, Lee, Keasling (CR52) 2013; 15 CR47 Palmer (CR19) 2017; 14 Cheng, Tsai, Chen, Sung, Hsu (CR32) 2013; 12 Kirby (CR42) 2021; 14 Kim (CR64) 2015; 6 Pomraning (CR24) 2021; 9 CR43 Berlanga-Clavero (CR26) 2022; 7 Peralta-Yahya (CR41) 2011; 2 Borodina (CR35) 2015; 27 Nakayasu (CR53) 2016; 1 Bilbao (CR27) 2015; 14 Liebal, Phan, Sudhakar, Raman, Blank (CR1) 2020; 10 Kukurugya (CR38) 2019; 294 Ebrahim, Lerman, Palsson, Hyduke (CR63) 2013; 7 Cox, Mann (CR67) 2008; 26 Li (CR6) 2021; 18 Zhang, Li, Xu, Dou (CR5) 2020; 10 Rosenberger (CR28) 2017; 14 Alka (CR16) 2022; 13 Chaves (CR37) 2020; 11 Ahrne (CR31) 2011; 11 Nikel, Chavarria, Danchin, de Lorenzo (CR36) 2016; 34 Chen (CR12) 2017; 89 MacLean (CR14) 2018; 29 Gardner, Hampton (CR44) 1999; 274 Mairinger (CR33) 2019; 33 CR51 Gao (CR39) 2020; 8 Stow (CR54) 2017; 89 Whitmore (CR48) 2016; 30 Kim (CR60) 2020; 8 Lyu (CR25) 2021; 9 Yap (CR49) 2011; 32 Li (CR22) 2020; 92 Webb-Robertson (CR58) 2010; 9 CR69 CR68 Blazenovic, Kind, Ji, Fiehn (CR34) 2018; 8 Brandl (CR59) 2018; 5 MacLean (CR66) 2010; 26 Kampers (CR23) 2019; 18 Blazenovic (CR18) 2019; 91 Rost (CR30) 2014; 32 Kursa, Rudnicki (CR50) 2010; 36 E Stancliffe (37031_CR17) 2021; 18 KE Burnum-Johnson (37031_CR7) 2019; 116 L Lyu (37031_CR25) 2021; 9 Y Gao (37031_CR39) 2020; 8 37031_CR69 37031_CR68 H Tsugawa (37031_CR11) 2020; 38 HL Rost (37031_CR30) 2014; 32 SM Stow (37031_CR54) 2017; 89 CW Yap (37031_CR49) 2011; 32 KG Stratton (37031_CR57) 2019; 18 J Brandl (37031_CR59) 2018; 5 I Blazenovic (37031_CR18) 2019; 91 L Reiter (37031_CR29) 2011; 8 G Chen (37031_CR12) 2017; 89 I Blazenovic (37031_CR34) 2018; 8 E Ahrne (37031_CR31) 2011; 11 37031_CR51 L Kall (37031_CR56) 2008; 7 A Bilbao (37031_CR27) 2015; 14 XW Zhang (37031_CR5) 2020; 10 D Li (37031_CR22) 2020; 92 I Borodina (37031_CR35) 2015; 27 MA Kukurugya (37031_CR38) 2019; 294 J Cox (37031_CR67) 2008; 26 MV Berlanga-Clavero (37031_CR26) 2022; 7 LC Gillet (37031_CR9) 2012; 11 JE Chaves (37031_CR37) 2020; 11 J Yaegashi (37031_CR40) 2017; 10 PP Peralta-Yahya (37031_CR41) 2011; 2 ZA King (37031_CR62) 2015; 11 37031_CR43 37031_CR47 K Scheubert (37031_CR20) 2017; 8 J Kim (37031_CR60) 2020; 8 J Nogales (37031_CR61) 2020; 22 A Bilbao (37031_CR8) 2015; 15 A Palmer (37031_CR19) 2017; 14 N Hillson (37031_CR3) 2019; 10 RG Gardner (37031_CR44) 1999; 274 BX MacLean (37031_CR14) 2018; 29 O Alka (37031_CR16) 2022; 13 YM Kim (37031_CR64) 2015; 6 J Kirby (37031_CR42) 2021; 14 BJ Webb-Robertson (37031_CR58) 2010; 9 K Hiller (37031_CR65) 2009; 81 LS Whitmore (37031_CR48) 2016; 30 ST Coradetti (37031_CR45) 2018; 7 T Mairinger (37031_CR33) 2019; 33 ES Nakayasu (37031_CR53) 2016; 1 A Ebrahim (37031_CR63) 2013; 7 J Guo (37031_CR10) 2020; 92 PI Nikel (37031_CR36) 2016; 34 B Ozaydin (37031_CR52) 2013; 15 R Chaleckis (37031_CR4) 2019; 55 KR Pomraning (37031_CR24) 2021; 9 A Bilbao (37031_CR55) 2022; 21 UW Liebal (37031_CR1) 2020; 10 J Guo (37031_CR13) 2021; 93 CY Cheng (37031_CR32) 2013; 12 MB Kursa (37031_CR50) 2010; 36 B MacLean (37031_CR66) 2010; 26 H Li (37031_CR15) 2016; 88 GA Gowda (37031_CR2) 2014; 1198 Y Li (37031_CR6) 2021; 18 X Wang (37031_CR21) 2018; 17 RM Garza (37031_CR46) 2009; 284 LFC Kampers (37031_CR23) 2019; 18 G Rosenberger (37031_CR28) 2017; 14 |
References_xml | – volume: 1198 start-page: 3 year: 2014 end-page: 12 ident: CR2 article-title: Overview of mass spectrometry-based metabolomics: opportunities and challenges publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-1258-2_1 – volume: 14 start-page: 4581 year: 2015 end-page: 4593 ident: CR27 article-title: Ranking fragment ions based on outlier detection for improved label-free quantification in data-independent acquisition LC-MS/MS publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.5b00394 – volume: 274 start-page: 31671 year: 1999 end-page: 31678 ident: CR44 article-title: A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.44.31671 – volume: 15 start-page: 964 year: 2015 end-page: 980 ident: CR8 article-title: Processing strategies and software solutions for data-independent acquisition in mass spectrometry publication-title: Proteomics doi: 10.1002/pmic.201400323 – volume: 294 start-page: 8464 year: 2019 end-page: 8479 ident: CR38 article-title: Multi-omics analysis unravels a segregated metabolic flux network that tunes co-utilization of sugar and aromatic carbons in publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.007885 – volume: 9 start-page: 603832 year: 2021 ident: CR24 article-title: Integration of proteomics and metabolomics into the design, build, test, learn cycle to improve 3-hydroxypropionic acid production in publication-title: Front Bioeng. Biotech. doi: 10.3389/fbioe.2021.603832 – ident: CR68 – volume: 14 start-page: 921 year: 2017 end-page: 927 ident: CR28 article-title: Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses publication-title: Nat. Methods doi: 10.1038/nmeth.4398 – volume: 8 year: 2017 ident: CR20 article-title: Significance estimation for large scale metabolomics annotations by spectral matching publication-title: Nat. Commun. doi: 10.1038/s41467-017-01318-5 – volume: 7 start-page: 40 year: 2008 end-page: 44 ident: CR56 article-title: Posterior error probabilities and false discovery rates: two sides of the same coin publication-title: J. Proteome Res. doi: 10.1021/pr700739d – ident: CR51 – volume: 8 start-page: 31 year: 2018 ident: CR34 article-title: Software tools and approaches for compound identification of LC-MS/MS data in metabolomics publication-title: Metabolites doi: 10.3390/metabo8020031 – volume: 18 start-page: 1524 year: 2021 end-page: 1531 ident: CR6 article-title: Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification publication-title: Nat. Methods doi: 10.1038/s41592-021-01331-z – volume: 22 start-page: 255 year: 2020 end-page: 269 ident: CR61 article-title: High-quality genome-scale metabolic modelling of highlights its broad metabolic capabilities publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.14843 – volume: 34 start-page: 20 year: 2016 end-page: 29 ident: CR36 article-title: From dirt to industrial applications: as a Synthetic Biology chassis for hosting harsh biochemical reactions publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2016.05.011 – volume: 14 start-page: 57 year: 2017 end-page: 60 ident: CR19 article-title: FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry publication-title: Nat. Methods doi: 10.1038/nmeth.4072 – volume: 116 start-page: 292 year: 2019 end-page: 299 ident: CR7 article-title: Ion mobility spectrometry and the omics: distinguishing isomers, molecular classes and contaminant ions in complex samples publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2019.04.022 – volume: 32 start-page: 219 year: 2014 end-page: 223 ident: CR30 article-title: OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2841 – volume: 30 start-page: 8410 year: 2016 end-page: 8418 ident: CR48 article-title: BioCompoundML: a general biofuel property screening tool for biological molecules using random forest classifiers publication-title: Energ. Fuel. doi: 10.1021/acs.energyfuels.6b01952 – volume: 11 start-page: e1004321 year: 2015 ident: CR62 article-title: Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004321 – volume: 7 start-page: e32110 year: 2018 ident: CR45 article-title: Functional genomics of lipid metabolism in the oleaginous yeast publication-title: Elife doi: 10.7554/eLife.32110 – volume: 11 start-page: 4085 year: 2011 end-page: 4095 ident: CR31 article-title: An improved method for the construction of decoy peptide MS/MS spectra suitable for the accurate estimation of false discovery rates publication-title: Proteomics doi: 10.1002/pmic.201000665 – volume: 29 start-page: 2182 year: 2018 end-page: 2188 ident: CR14 article-title: Using skyline to analyze data-containing liquid chromatography, ion mobility spectrometry, and mass spectrometry dimensions publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-018-2028-5 – volume: 1 start-page: e00043 year: 2016 end-page: 16 ident: CR53 article-title: MPLEx: a robust and universal protocol for single-sample integrative proteomic, metabolomic, and lipidomic analyses publication-title: mSystems doi: 10.1128/mSystems.00043-16 – volume: 89 start-page: 4897 year: 2017 end-page: 4906 ident: CR12 article-title: Customized consensus spectral library building for untargeted quantitative metabolomics analysis with data independent acquisition mass spectrometry and MetaboDIA workflow publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b05006 – volume: 13 year: 2022 ident: CR16 article-title: DIAMetAlyzer allows automated false-discovery rate-controlled analysis for data-independent acquisition in metabolomics publication-title: Nat. Commun. doi: 10.1038/s41467-022-29006-z – volume: 89 start-page: 9048 year: 2017 end-page: 9055 ident: CR54 article-title: An interlaboratory evaluation of drift tube ion mobility-mass spectrometry collision cross section measurements publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01729 – volume: 18 start-page: 779 year: 2021 end-page: 787 ident: CR17 article-title: DecoID improves identification rates in metabolomics through database-assisted MS/MS deconvolution publication-title: Nat. Methods doi: 10.1038/s41592-021-01195-3 – volume: 14 year: 2021 ident: CR42 article-title: Further engineering of for the production of terpenes from lignocellulosic biomass publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-021-01950-w – ident: CR43 – ident: CR47 – volume: 284 start-page: 35368 year: 2009 end-page: 35380 ident: CR46 article-title: Geranylgeranyl pyrophosphate is a potent regulator of HRD-dependent 3-hydroxy-3-methylglutaryl-CoA reductase degradation in yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.023994 – volume: 32 start-page: 1466 year: 2011 end-page: 1474 ident: CR49 article-title: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints publication-title: J. Comput Chem. doi: 10.1002/jcc.21707 – volume: 9 start-page: 5748 year: 2010 end-page: 5756 ident: CR58 article-title: Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data publication-title: J. Proteome Res. doi: 10.1021/pr1005247 – volume: 6 start-page: 209 year: 2015 ident: CR64 article-title: Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00209 – volume: 12 start-page: 2305 year: 2013 end-page: 2310 ident: CR32 article-title: Spectrum-based method to generate good decoy libraries for spectral library searching in peptide identifications publication-title: J. Proteome Res. doi: 10.1021/pr301039b – volume: 81 start-page: 3429 year: 2009 end-page: 3439 ident: CR65 article-title: MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis publication-title: Anal. Chem. doi: 10.1021/ac802689c – volume: 18 start-page: 179 year: 2019 ident: CR23 article-title: In silico-guided engineering of towards growth under micro-oxic conditions publication-title: Micro. Cell Fact. doi: 10.1186/s12934-019-1227-5 – volume: 11 start-page: O111 016717 year: 2012 ident: CR9 article-title: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis publication-title: Mol. Cell Proteom. doi: 10.1074/mcp.O111.016717 – volume: 17 start-page: 2328 year: 2018 end-page: 2334 ident: CR21 article-title: Target-decoy-based false discovery rate estimation for large-scale metabolite identification publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.8b00019 – volume: 10 start-page: 3092 year: 2020 end-page: 3104 ident: CR5 article-title: Mass spectrometry-based metabolomics in health and medical science: a systematic review publication-title: RSC Adv. doi: 10.1039/C9RA08985C – volume: 27 start-page: 57 year: 2015 end-page: 64 ident: CR35 article-title: Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.10.003 – volume: 9 start-page: 768934 year: 2021 ident: CR25 article-title: Engineering the oleaginous yeast for improved resistance against inhibitors in biomass hydrolysates publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.768934 – volume: 18 start-page: 1418 year: 2019 end-page: 1425 ident: CR57 article-title: pmartR: quality control and statistics for mass spectrometry-based biological data publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.8b00760 – volume: 2 year: 2011 ident: CR41 article-title: Identification and microbial production of a terpene-based advanced biofuel publication-title: Nat. Commun. doi: 10.1038/ncomms1494 – volume: 8 start-page: 430 year: 2011 end-page: 435 ident: CR29 article-title: mProphet: automated data processing and statistical validation for large-scale SRM experiments publication-title: Nat. Methods doi: 10.1038/nmeth.1584 – volume: 92 start-page: 8072 year: 2020 end-page: 8080 ident: CR10 article-title: Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography-mass spectrometry based untargeted metabolomics publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b05135 – volume: 21 start-page: 798 year: 2022 end-page: 807 ident: CR55 article-title: A preprocessing tool for enhanced ion mobility-mass spectrometry-based omics workflows publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.1c00425 – ident: CR69 – volume: 36 start-page: 1 year: 2010 end-page: 13 ident: CR50 article-title: Feature selection with the Boruta package publication-title: J. Stat. Softw. doi: 10.18637/jss.v036.i11 – volume: 91 start-page: 2155 year: 2019 end-page: 2162 ident: CR18 article-title: Structure annotation of all mass spectra in untargeted metabolomics publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04698 – volume: 93 start-page: 2669 year: 2021 end-page: 2677 ident: CR13 article-title: DaDIA: hybridizing data-dependent and data-independent acquisition modes for generating high-quality metabolomic data publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c05022 – volume: 7 year: 2013 ident: CR63 article-title: COBRApy: constraints-based reconstruction and analysis for python publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-7-74 – volume: 26 start-page: 1367 year: 2008 end-page: 1372 ident: CR67 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1511 – volume: 92 start-page: 5701 year: 2020 end-page: 5707 ident: CR22 article-title: XY-Meta: a high-efficiency search engine for large-scale metabolome annotation with accurate FDR estimation publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b03355 – volume: 55 start-page: 44 year: 2019 end-page: 50 ident: CR4 article-title: Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2018.07.010 – volume: 7 start-page: 1001 year: 2022 end-page: 1015 ident: CR26 article-title: Bacillus subtilis biofilm matrix components target seed oil bodies to promote growth and anti-fungal resistance in melon publication-title: Nat. Microbiol. doi: 10.1038/s41564-022-01134-8 – volume: 10 year: 2017 ident: CR40 article-title: : a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-0927-5 – volume: 8 start-page: 603488 year: 2020 ident: CR39 article-title: High-throughput large-scale targeted proteomics assays for quantifying pathway proteins in KT2440 publication-title: Front Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.603488 – volume: 38 start-page: 1159 year: 2020 end-page: 1163 ident: CR11 article-title: A lipidome atlas in MS-DIAL 4 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0531-2 – volume: 15 start-page: 174 year: 2013 end-page: 183 ident: CR52 article-title: Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production publication-title: Metab. Eng. doi: 10.1016/j.ymben.2012.07.010 – volume: 11 start-page: e00139 year: 2020 ident: CR37 article-title: Evaluation of chromosomal insertion loci in the KT2440 genome for predictable biosystems design publication-title: Metab. Eng. Commun. doi: 10.1016/j.mec.2020.e00139 – volume: 88 start-page: 8757 year: 2016 end-page: 8764 ident: CR15 article-title: MetDIA: targeted metabolite extraction of multiplexed MS/MS spectra generated by data-independent acquisition publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b02122 – volume: 8 start-page: 612832 year: 2020 ident: CR60 article-title: Multi-omics driven metabolic network reconstruction and analysis of lignocellulosic carbon utilization in publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.612832 – volume: 26 start-page: 966 year: 2010 end-page: 968 ident: CR66 article-title: Skyline: an open source document editor for creating and analyzing targeted proteomics experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq054 – volume: 5 year: 2018 ident: CR59 article-title: A community-driven reconstruction of the metabolic network publication-title: Fungal Biol. Biotechnol. doi: 10.1186/s40694-018-0060-7 – volume: 33 start-page: 66 year: 2019 end-page: 74 ident: CR33 article-title: Rapid screening methods for yeast sub-metabolome analysis with a high-resolution ion mobility quadrupole time-of-flight mass spectrometer publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.8420 – volume: 10 year: 2019 ident: CR3 article-title: Building a global alliance of biofoundries publication-title: Nat. Commun. doi: 10.1038/s41467-019-10079-2 – volume: 10 start-page: 243 year: 2020 ident: CR1 article-title: Machine learning applications for mass spectrometry-based metabolomics publication-title: Metabolites doi: 10.3390/metabo10060243 – volume: 8 start-page: 430 year: 2011 ident: 37031_CR29 publication-title: Nat. Methods doi: 10.1038/nmeth.1584 – volume: 26 start-page: 966 year: 2010 ident: 37031_CR66 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq054 – volume: 33 start-page: 66 year: 2019 ident: 37031_CR33 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.8420 – volume: 10 start-page: 243 year: 2020 ident: 37031_CR1 publication-title: Metabolites doi: 10.3390/metabo10060243 – volume: 13 year: 2022 ident: 37031_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29006-z – volume: 14 start-page: 57 year: 2017 ident: 37031_CR19 publication-title: Nat. Methods doi: 10.1038/nmeth.4072 – volume: 9 start-page: 5748 year: 2010 ident: 37031_CR58 publication-title: J. Proteome Res. doi: 10.1021/pr1005247 – volume: 89 start-page: 9048 year: 2017 ident: 37031_CR54 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01729 – volume: 8 start-page: 612832 year: 2020 ident: 37031_CR60 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.612832 – volume: 116 start-page: 292 year: 2019 ident: 37031_CR7 publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2019.04.022 – volume: 92 start-page: 8072 year: 2020 ident: 37031_CR10 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b05135 – volume: 88 start-page: 8757 year: 2016 ident: 37031_CR15 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b02122 – volume: 34 start-page: 20 year: 2016 ident: 37031_CR36 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2016.05.011 – volume: 274 start-page: 31671 year: 1999 ident: 37031_CR44 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.44.31671 – volume: 284 start-page: 35368 year: 2009 ident: 37031_CR46 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.023994 – volume: 38 start-page: 1159 year: 2020 ident: 37031_CR11 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0531-2 – volume: 1 start-page: e00043 year: 2016 ident: 37031_CR53 publication-title: mSystems doi: 10.1128/mSystems.00043-16 – volume: 14 year: 2021 ident: 37031_CR42 publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-021-01950-w – volume: 14 start-page: 4581 year: 2015 ident: 37031_CR27 publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.5b00394 – volume: 294 start-page: 8464 year: 2019 ident: 37031_CR38 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.007885 – volume: 8 start-page: 31 year: 2018 ident: 37031_CR34 publication-title: Metabolites doi: 10.3390/metabo8020031 – ident: 37031_CR68 doi: 10.1038/s41467-023-37031-9 – volume: 26 start-page: 1367 year: 2008 ident: 37031_CR67 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1511 – volume: 18 start-page: 1524 year: 2021 ident: 37031_CR6 publication-title: Nat. Methods doi: 10.1038/s41592-021-01331-z – volume: 12 start-page: 2305 year: 2013 ident: 37031_CR32 publication-title: J. Proteome Res. doi: 10.1021/pr301039b – volume: 10 year: 2017 ident: 37031_CR40 publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-0927-5 – volume: 7 start-page: e32110 year: 2018 ident: 37031_CR45 publication-title: Elife doi: 10.7554/eLife.32110 – ident: 37031_CR51 doi: 10.1145/2939672.2939778 – volume: 32 start-page: 219 year: 2014 ident: 37031_CR30 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2841 – volume: 11 start-page: 4085 year: 2011 ident: 37031_CR31 publication-title: Proteomics doi: 10.1002/pmic.201000665 – volume: 17 start-page: 2328 year: 2018 ident: 37031_CR21 publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.8b00019 – volume: 5 year: 2018 ident: 37031_CR59 publication-title: Fungal Biol. Biotechnol. doi: 10.1186/s40694-018-0060-7 – volume: 91 start-page: 2155 year: 2019 ident: 37031_CR18 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04698 – volume: 7 start-page: 40 year: 2008 ident: 37031_CR56 publication-title: J. Proteome Res. doi: 10.1021/pr700739d – ident: 37031_CR47 doi: 10.1016/j.neunet.2022.03.037 – volume: 1198 start-page: 3 year: 2014 ident: 37031_CR2 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-1258-2_1 – volume: 93 start-page: 2669 year: 2021 ident: 37031_CR13 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c05022 – volume: 15 start-page: 174 year: 2013 ident: 37031_CR52 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2012.07.010 – volume: 10 year: 2019 ident: 37031_CR3 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10079-2 – volume: 18 start-page: 1418 year: 2019 ident: 37031_CR57 publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.8b00760 – volume: 8 year: 2017 ident: 37031_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01318-5 – volume: 18 start-page: 779 year: 2021 ident: 37031_CR17 publication-title: Nat. Methods doi: 10.1038/s41592-021-01195-3 – ident: 37031_CR69 doi: 10.1016/B978-0-12-809633-8.20274-4 – volume: 14 start-page: 921 year: 2017 ident: 37031_CR28 publication-title: Nat. Methods doi: 10.1038/nmeth.4398 – volume: 27 start-page: 57 year: 2015 ident: 37031_CR35 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.10.003 – volume: 36 start-page: 1 year: 2010 ident: 37031_CR50 publication-title: J. Stat. Softw. doi: 10.18637/jss.v036.i11 – volume: 21 start-page: 798 year: 2022 ident: 37031_CR55 publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.1c00425 – volume: 55 start-page: 44 year: 2019 ident: 37031_CR4 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2018.07.010 – volume: 11 start-page: O111 016717 year: 2012 ident: 37031_CR9 publication-title: Mol. Cell Proteom. doi: 10.1074/mcp.O111.016717 – volume: 9 start-page: 603832 year: 2021 ident: 37031_CR24 publication-title: Front Bioeng. Biotech. doi: 10.3389/fbioe.2021.603832 – volume: 9 start-page: 768934 year: 2021 ident: 37031_CR25 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.768934 – volume: 22 start-page: 255 year: 2020 ident: 37031_CR61 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.14843 – volume: 2 year: 2011 ident: 37031_CR41 publication-title: Nat. Commun. doi: 10.1038/ncomms1494 – volume: 81 start-page: 3429 year: 2009 ident: 37031_CR65 publication-title: Anal. Chem. doi: 10.1021/ac802689c – volume: 89 start-page: 4897 year: 2017 ident: 37031_CR12 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b05006 – volume: 8 start-page: 603488 year: 2020 ident: 37031_CR39 publication-title: Front Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.603488 – volume: 6 start-page: 209 year: 2015 ident: 37031_CR64 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00209 – volume: 11 start-page: e1004321 year: 2015 ident: 37031_CR62 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004321 – volume: 18 start-page: 179 year: 2019 ident: 37031_CR23 publication-title: Micro. Cell Fact. doi: 10.1186/s12934-019-1227-5 – volume: 92 start-page: 5701 year: 2020 ident: 37031_CR22 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b03355 – volume: 7 start-page: 1001 year: 2022 ident: 37031_CR26 publication-title: Nat. Microbiol. doi: 10.1038/s41564-022-01134-8 – volume: 30 start-page: 8410 year: 2016 ident: 37031_CR48 publication-title: Energ. Fuel. doi: 10.1021/acs.energyfuels.6b01952 – volume: 15 start-page: 964 year: 2015 ident: 37031_CR8 publication-title: Proteomics doi: 10.1002/pmic.201400323 – volume: 29 start-page: 2182 year: 2018 ident: 37031_CR14 publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-018-2028-5 – volume: 10 start-page: 3092 year: 2020 ident: 37031_CR5 publication-title: RSC Adv. doi: 10.1039/C9RA08985C – volume: 32 start-page: 1466 year: 2011 ident: 37031_CR49 publication-title: J. Comput Chem. doi: 10.1002/jcc.21707 – volume: 11 start-page: e00139 year: 2020 ident: 37031_CR37 publication-title: Metab. Eng. Commun. doi: 10.1016/j.mec.2020.e00139 – volume: 7 year: 2013 ident: 37031_CR63 publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-7-74 – ident: 37031_CR43 doi: 10.1016/B978-0-08-101036-5.00016-1 |
SSID | ssj0000391844 |
Score | 2.522018 |
Snippet | Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying... Abstract Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2461 |
SubjectTerms | 49/47 631/114/1305 631/114/1314 631/1647/296 631/45/320 82/16 82/58 Algorithms Annotations BASIC BIOLOGICAL SCIENCES Biological activity Chemical reactions Chromatography Chromatography, Liquid - methods Construction standards Gas chromatography Humanities and Social Sciences Ion Mobility Spectrometry Ionic mobility Ions Learning algorithms Libraries Liquid chromatography Machine learning Mass spectrometry Mass Spectrometry - methods Mass spectroscopy Metabolites Metabolomics Metabolomics - methods Microorganisms Mobility multidisciplinary Pseudomonas putida Science Science (multidisciplinary) Scientific imaging Sensitivity analysis Workflow |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDehBRmJG1iNY8d2jryqCglOVOrN8itQQbPVJnvoX-BXM2NnQ5fnhdOuEidKZr55OPZ8Q8izVniluxhYr7lkUujEvFCKpQZii9YawhLWO7__oI5P5LvT9vRKqy_cE1bogYvgDk0jQw95r_PCSe28CTy5RrnUqzYBAtH7Qsy7MpnKPlh0MHWRc5VMLczhKLNPgBAFNgVIZt1OJMqE_fCzAsP6XbL5657JnxZOczw6ukVuzokkfVle4Da5loY75HppLXl5l3wDX_flTcKK9TVNuUBqpOd552Sic6uITwxjWKTnaQIoYDEydcOwKovz8DdSF8IGuSRoae0Nl9CzgeZNiBHbAhRKD7jvONJcs4nkB9P6Em65fHoc75GTo7cfXx-zue8CC60yE0t1H5xJvlOdVFgpG4TqXdCQ_cWmh8Peq6hAmqH1EPjq0DoBwyEViTCZSkLcJ3vDakgPCU1O6JikCkI24CqC47Xn0QkZI0xco64I3-rAhpmUHHtjfLV5cVwYW_RmQW826812FXm-XHNRKDn-OvoVqnYZiXTa-QCAzM4gs_8CWUX2ERgWshKk1g24BylMlmPfLy4qcrDFi509wGiRZQjp6HRbkafLabBdXJBxQ1ptypiOg880FXlQ4LU8p9AccssaJGR2gLfzIrtnhrPPmR8c2y-DlTUVebHF6I_n-rOkHv0PSe2TGw3aWC1ZYw7I3rTepMeQtk3-SbbQ764WQE8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagCIkLYie0ICNxA6tJ7NjOCbGVCglOVOrN8pZSQZPyknfoX-BXM-P4pXosPSVKnCjxrPbMfEPIi4Y7qdrgWacqwQRXkTkuJYs12BalFJglrHf-_EUeHolPx81x3nAbc1rlRicmRR0Gj3vk-4jagvBeqnl9_pNh1yiMruYWGtfJjQosDaZ06YOPyx4Lop9rIXKtTMn1_iiSZgBDBZIF_MzaLXuUYPvhMIB4_cvl_Dtz8o_wabJKB3fI7exO0jcz_e-Sa7G_R27ODSYv7pNfoPG-v49Yt76iMZVJjfQs5U9GmhtGnDC0ZIGexQkYAkuSqe37YQ7Rw2mg1vs1IkrQucE3PEJPe5pSEQM2B5iBPeC940hT5SZCIEyrC3jlsgE5PiBHBx--vjtkufsC843UE4tl562OrpWtkFgv67nsrFfgA4a6g8vOySBhNn3jwPyVvrEchoNDEmBJFTl_SHb6oY-PCY2WqxCF9FzUoDC8rUpXBctFCLB8Daog1YYGxmdocuyQ8cOkEDnXZqabAbqZRDfTFuTl8sz5DMxx5ei3SNplJIJqpwvD6sRkGTW6Fr6DJZZ13AplnfZVtLW0sZNNBGVXkF1kDAO-CQLsesxE8pOpsPtXxQuyt-EXk_XAaC65tiDPl9sgwRiWsX0c1vOYtgLNqQvyaGav5Tu5qsDDLGGG9Bbjbf3I9p3-9FtCCccmzCBrdUFebXj08rv-P1NPrv6NXXKrRukpBav1HtmZVuv4FNyyyT1Lsvcb7fc3Ew priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDehBRmJG1gksWM7x-VRVSvBBSr1ZvmVUkETtMke-hf41cw4D7RQkDjtKhlHjufpeOYbQl5U3ElVB88aVQgmuIrMcSlZLMG3KKXALWG984eP8uRUrM-qsz1SzrUwKWk_QVomMz1nh73uRVJp8DCgEiCIrL5BDhCqHWT7YLVaf1ovX1YQ81wLMVXI5FxfM3jHCyWwfvjpQKmuCzT_zJf87dA0-aLjO-T2FETS1Tjtu2QvtvfIzbGt5NV98gPs3Nd3EavVNzSm4qieXqasyUinNhHnDP1XoJdxADHAQmRq27YbD-bhb6DW-y3iSNCxrTcMoRctTQmIAVsCjHAe8Ny-p6leE4EPhs0VPHL57Ng_IKfH7z-_PWFTzwXmK6kHFvPGWx1dLWshsUrWc9lYryDyC2UDl52TQcJq-sqB08t9ZTmQQxgSYCMVOX9I9tuujY8JjZarEIX0XJRgJrwtclcEy0UIsGkNKiPFzAPjJ0By7IvxzaSDca7NyDcDfDOJb6bOyMtlzPcRjuOf1G-QtQslQmmnC93m3EyiZXQpfAMbK-u4Fco67YtoS2ljI6sIJi4jhygYBiIShNX1mH_kB1Ngz6-CZ-RolhczaX9vEGEIoehUlZHny23QWzyMsW3stiNNXYC91Bl5NIrXMk-uCogrc1ghvSN4Oy-ye6e9-JKwwbH1MmhYmZFXs4z-mtffV-rJ_5EfklslalMuWKmPyP6w2canEJwN7tmkjT8BGtU2Og priority: 102 providerName: Springer Nature |
Title | PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements |
URI | https://link.springer.com/article/10.1038/s41467-023-37031-9 https://www.ncbi.nlm.nih.gov/pubmed/37117207 https://www.proquest.com/docview/2807214475 https://www.proquest.com/docview/2807915788 https://www.osti.gov/servlets/purl/1973113 https://pubmed.ncbi.nlm.nih.gov/PMC10147702 https://doaj.org/article/824cf255ab3a47ab8c1ea26aef65e040 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_tQ0i8IL4JG5WReINAEzt28oBQV1amSpsQUKlvlmM7Y2JLoU0l-i_wV3PnpEWFwRMvSeTYUXK-851j3-8H8CzjpVSFs3GlEhELrnxcciljn6JvUUqhW6J859MzeTIR42k23YE13VEnwMW1Uzvik5rML19-_7Z6gwb_uk0Zz18tRDB39D5oLqikcbEL--iZFDEanHbhfhiZeYETGtHlzlzfdMs_BRh_PM3Q3K4LQf_cSfnbcmrwUqPbcKsLL9mg1Yc7sOPru3CjJZxc3YMfOAJ-eespj33OfEibWrCrsJ_Ss45A4jwmz-bYlW9QQShFmZm6nrVL9njpmLF2SQgTrCX8xibsomZha6IjsoAW6AOfu1iwkMlJkAjNfIWP3PyQXNyHyej40_Ak7tgYYpvJvIl9v7Im92UhCyEpf9ZyWRmrMCZ0aYXFZSmdRGnarER32LeZ4VgdAxSHUyzP-QPYq2e1fwTMG66cF9JykeIAYk3SLxNnuHAOp7NORZCs-0DbDqqcGDMudVgy57lu-01jv-nQb7qI4PmmzdcWqOOftY-oazc1CWQ7FMzm57qzWZ2nwlY45TIlN0KZMreJN6k0vpKZx8EvggNSDI2xCgHuWtqZZBudEBtYwiM4XOuLXqu1JuwhAqlTWQRPN7fRommZxtR-tmzrFAmOpHkED1v12rwnVwmqdR8llG8p3taHbN-pLz4H1HAiZUbbSyN4sdbRX-_1d0k9_h-SOoCbKdlYX8Rpfgh7zXzpn2Aw15Q92FVThcd89K4H-4PB-OMYz0fHZ-8_YOlQDnvhN0kvWPJPJxBOZg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLuhBYwEJ4iaxI6dHBACyrKlj1Mr9WYc2ylV26RsskL7F_gx_EZmnEe1PHrraVeJEyWZmW_G9sx8hLxMWSFkbk1YypiHnEkXFkyI0CXgW6SU4Jaw3nlvX0wP-Zej9GiF_BpqYTCtcsBED9S2NrhGvoldW7C9l0zfXXwPkTUKd1cHCo1OLXbc4gdM2Zq321sg31dJMvl08HEa9qwCoUlF1oYuKo3OXJGLnAusAzVMlNpIiG1sUsLhohBWAH6YtABYj0yqGQwHR2thquBwARQg_wZn4MmxMn3yeVzTwW7rGed9bU7Ess2GeyQCxwiWDPYT5kv-z9MEwE8N5vyvEPfvTM0_tmu9F5zcJXf68JW-7_TtHllx1X1ysyO0XDwgPwFhT7cc1snPqPNlWQ099_majvYEFcchek5Lz10LCogl0FRXVd2lBMBfS7Uxc-xgQTtCcbiEnlTUpz5aJCPoGonAfZuG-kpRbLnQzhZwy3HBs3lIDq9FLo_IalVXbo1Qp5m0jgvDeAIAZXQcFbHVjFsL02UrAxIPMlCmb4WOjBxnym_Js0x1clMgN-XlpvKAvB6vuegagVw5-gOKdhyJTbz9gXp2rHpMUFnCTQlTOl0wzaUuMhM7nQjtSpE6ANeArKNiKIiFsKGvwcwn06oY2cZiFpCNQV9UjzuNurSSgLwYTwNi4DaQrlw978bkMSB1FpDHnXqNz8lkDBFtBF8oW1K8pRdZPlOdfPNdyZH0GWw7CcibQUcvn-v_X-rJ1a_xnNyaHuztqt3t_Z11cjtBS4p4mGQbZLWdzd1TCAnb4pm3Q0q-Xrfh_wb4UHPl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqViAuiP-GFjASnCDaJHbs5IAQZbtqKawqRKXejGM7pYImZZMV2lfgkXg6ZpxsquWnt552lThRkpn5ZmzPzEfIs5QVQubWhKWMeciZdGHBhAhdAr5FSgluCeudP0zF3hF_d5wer5Ffy1oYTKtcYqIHalsbXCMfYdcWbO8l01HZp0Ucjievz7-HyCCFO61LOo1ORQ7c4gdM35pX-2OQ9fMkmex-ersX9gwDoUlF1oYuKo3OXJGLnAusCTVMlNpIiHNsUsLhohBWAJaYtACIj0yqGQwHp2th2uBwMRTgf0PirGidbOzsTg8_Dis82Hs947yv1IlYNmq4xyVwk2DXYE1hvuINPWkA_NRg3P8KeP_O2_xj89b7xMktcrMPZumbTvtukzVX3SHXOnrLxV3yE_D269hh1fyMOl-k1dAzn73paE9XcRKiH7X0zLWgjlgQTXVV1V2CAPy1VBszx34WtKMXh0voaUV9IqRFaoKurQjct2morxvFBgztbAG3HJY_m3vk6Eokc5-sV3XlNgl1mknruDCMJwBXRsdREVvNuLUwebYyIPFSBsr0jdGRn-Ob8hv0LFOd3BTITXm5qTwgL4Zrzru2IJeO3kHRDiOxpbc_UM9OVI8QKku4KWGCpwumudRFZmKnE6FdKVIHUBuQLVQMBZERtvc1mAdlWhUj91jMArK91BfVo1CjLmwmIE-H04AfuCmkK1fPuzF5DLidBeRBp17DczIZQ3wbwRfKVhRv5UVWz1SnX3yPcqSABktPAvJyqaMXz_X_L_Xw8td4Qq6D0av3-9ODLXIjQUOKeJhk22S9nc3dI4gP2-Jxb4iUfL5q2_8NfEF5dw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PeakDecoder+enables+machine+learning-based+metabolite+annotation+and+accurate+profiling+in+multidimensional+mass+spectrometry+measurements&rft.jtitle=Nature+communications&rft.au=Aivett+Bilbao&rft.au=Nathalie+Munoz&rft.au=Joonhoon+Kim&rft.au=Daniel+J.+Orton&rft.date=2023-04-28&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1038%2Fs41467-023-37031-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_824cf255ab3a47ab8c1ea26aef65e040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |