Homology-mediated end joining-based targeted integration using CRISPR/Cas9

Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), mi- crohomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because i...

Full description

Saved in:
Bibliographic Details
Published inCell research Vol. 27; no. 6; pp. 801 - 814
Main Authors Yao, Xuan, Wang, Xing, Hu, Xinde, Liu, Zhen, Liu, Junlai, Zhou, Haibo, Shen, Xiaowen, Wei, Yu, Huang, Zijian, Ying, Wenqin, Wang, Yan, Nie, Yan-Hong, Zhang, Chen-Chen, Li, Sanlan, Cheng, Leping, Wang, Qifang, Wu, Yan, Huang, Pengyu, Sun, Qiang, Shi, Linyu, Yang, Hui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), mi- crohomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and -800 bp of homology arms, and the targeted genome. We found no significant improve- ment of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblas- toma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock- in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies.
AbstractList Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), microhomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and ∼800 bp of homology arms, and the targeted genome. We found no significant improvement of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblastoma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock-in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies.
Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), microhomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and ∼800 bp of homology arms, and the targeted genome. We found no significant improvement of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblastoma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock-in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo , with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies.
Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), microhomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and 800 bp of homology arms, and the targeted genome. We found no significant improvement of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblastoma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock-in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies.
Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), mi- crohomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and -800 bp of homology arms, and the targeted genome. We found no significant improve- ment of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblas- toma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock- in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies.
Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), microhomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and ∼800 bp of homology arms, and the targeted genome. We found no significant improvement of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblastoma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock-in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies.Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), microhomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and ∼800 bp of homology arms, and the targeted genome. We found no significant improvement of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblastoma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock-in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies.
Author Huang, Pengyu
Shi, Linyu
Hu, Xinde
Nie, Yan-Hong
Wang, Xing
Ying, Wenqin
Sun, Qiang
Wang, Qifang
Liu, Zhen
Liu, Junlai
Li, Sanlan
Huang, Zijian
Cheng, Leping
Wang, Yan
Yang, Hui
Zhang, Chen-Chen
Wu, Yan
Zhou, Haibo
Yao, Xuan
Wei, Yu
Shen, Xiaowen
Author_xml – sequence: 1
  givenname: Xuan
  surname: Yao
  fullname: Yao, Xuan
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Xing
  surname: Wang
  fullname: Wang, Xing
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Xinde
  surname: Hu
  fullname: Hu, Xinde
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 4
  givenname: Zhen
  surname: Liu
  fullname: Liu, Zhen
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 5
  givenname: Junlai
  surname: Liu
  fullname: Liu, Junlai
  organization: College of Life Sciences, University of Chinese Academy of Sciences, School of Life Science and Technology, ShanghaiTech University, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 6
  givenname: Haibo
  surname: Zhou
  fullname: Zhou, Haibo
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 7
  givenname: Xiaowen
  surname: Shen
  fullname: Shen, Xiaowen
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 8
  givenname: Yu
  surname: Wei
  fullname: Wei, Yu
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai University
– sequence: 9
  givenname: Zijian
  surname: Huang
  fullname: Huang, Zijian
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences
– sequence: 10
  givenname: Wenqin
  surname: Ying
  fullname: Ying, Wenqin
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 11
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 12
  givenname: Yan-Hong
  surname: Nie
  fullname: Nie, Yan-Hong
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 13
  givenname: Chen-Chen
  surname: Zhang
  fullname: Zhang, Chen-Chen
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 14
  givenname: Sanlan
  surname: Li
  fullname: Li, Sanlan
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 15
  givenname: Leping
  surname: Cheng
  fullname: Cheng, Leping
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 16
  givenname: Qifang
  surname: Wang
  fullname: Wang, Qifang
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 17
  givenname: Yan
  surname: Wu
  fullname: Wu, Yan
  organization: National Institute of Biological Sciences
– sequence: 18
  givenname: Pengyu
  surname: Huang
  fullname: Huang, Pengyu
  organization: School of Life Science and Technology, ShanghaiTech University
– sequence: 19
  givenname: Qiang
  surname: Sun
  fullname: Sun, Qiang
  email: qsun@ion.ac.cn
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 20
  givenname: Linyu
  surname: Shi
  fullname: Shi, Linyu
  email: shilinyu@ion.ac.cn
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
– sequence: 21
  givenname: Hui
  surname: Yang
  fullname: Yang, Hui
  email: huiyang@ion.ac.cn
  organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28524166$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1LHDEUhoMofmx74w8oS3sjlVnzncyNUBatFqHF1uuQyWTGLLOJJjOC_96Muy4qXvQqIec573lz3gOw7YO3ABwiOEOQyBMTZxgiMRN8C-wjQWUhJJHb-Q4hKiCHeA8cpLSAEDPK0C7Yw5JhijjfB78uwjJ0oX0slrZ2urf11Pp6ugjOO98WlU75pdextWPJ-d62Ufcu-OmQMjCdX1_-_XN9Mtep_AR2Gt0l-3l9TsDN-dm_-UVx9fvn5fzHVWEYl31hKsSwqAVhxGJRVQJiUQqiIeUUo6ZkDEmqZYMpqyiVsGGCGZ4vjDec4JpMwOlK926osmljfR91p-6iW-r4qIJ26m3Fu1vVhgc1KkuJssDRWiCG-8GmXi1dMrbrtLdhSAqVCHFUCkj-A4VQEsTzwifg2zt0EYbo8yZGigrJGBlnf3ltfuP6JZEMfF8BJoaUom02CIJqjFuZqMa4lRhh-A42rn-OJ3_cdR-3HK9aUtb1rY2vbH5Ef10PuA2-vc8NGztcYFoKwUvyBGShw6g
CitedBy_id crossref_primary_10_1016_j_celrep_2023_112941
crossref_primary_10_1089_crispr_2021_0063
crossref_primary_10_1073_pnas_1909720116
crossref_primary_10_1186_s12915_024_01918_w
crossref_primary_10_2174_1574893616666210601105553
crossref_primary_10_1007_s40259_024_00654_5
crossref_primary_10_1093_nar_gkz459
crossref_primary_10_1007_s00439_020_02198_4
crossref_primary_10_1021_acsomega_0c02396
crossref_primary_10_1016_j_biotechadv_2024_108402
crossref_primary_10_1093_nar_gkae1213
crossref_primary_10_1038_nbt_4166
crossref_primary_10_1093_nar_gkaa779
crossref_primary_10_1371_journal_pbio_3001527
crossref_primary_10_1007_s12033_020_00276_6
crossref_primary_10_3389_fgeed_2021_623519
crossref_primary_10_1016_j_omtn_2021_04_009
crossref_primary_10_1093_nar_gkz462
crossref_primary_10_1002_anbr_202200082
crossref_primary_10_3389_fgene_2020_614688
crossref_primary_10_3390_ijms23115948
crossref_primary_10_1038_s41598_019_47721_4
crossref_primary_10_1089_hum_2023_059
crossref_primary_10_1038_s41422_019_0213_0
crossref_primary_10_1021_acssynbio_4c00632
crossref_primary_10_3390_ijms21165821
crossref_primary_10_1016_j_ymeth_2018_04_008
crossref_primary_10_1002_bit_28329
crossref_primary_10_1016_j_jbc_2021_100497
crossref_primary_10_3390_cells9010112
crossref_primary_10_1016_j_lfs_2022_120409
crossref_primary_10_1126_sciadv_abm5578
crossref_primary_10_1038_s41596_023_00833_8
crossref_primary_10_1002_acg2_10
crossref_primary_10_1042_BSR20191914
crossref_primary_10_1038_s41467_024_48092_9
crossref_primary_10_1016_j_omtn_2018_01_012
crossref_primary_10_1038_s41417_023_00597_z
crossref_primary_10_1016_j_celrep_2019_06_042
crossref_primary_10_3389_fgene_2021_615491
crossref_primary_10_1016_j_jbiotec_2019_11_010
crossref_primary_10_1016_j_jinsphys_2021_104325
crossref_primary_10_1016_j_stemcr_2021_03_021
crossref_primary_10_1007_s00018_024_05154_x
crossref_primary_10_3389_fcell_2021_672564
crossref_primary_10_1007_s10142_025_01566_5
crossref_primary_10_1038_s41598_023_38397_y
crossref_primary_10_1016_j_omtn_2024_102138
crossref_primary_10_3389_fgene_2021_658295
crossref_primary_10_1038_s41598_024_57551_8
crossref_primary_10_1080_23808993_2017_1375851
crossref_primary_10_1002_ajp_22931
crossref_primary_10_3390_ijms23179749
crossref_primary_10_1016_j_ymthe_2020_12_010
crossref_primary_10_1038_s41467_018_05773_6
crossref_primary_10_1007_s00412_018_0677_6
crossref_primary_10_3389_fnins_2020_579062
crossref_primary_10_1093_nar_gkad165
crossref_primary_10_1371_journal_pone_0244515
crossref_primary_10_3389_fgene_2021_648482
crossref_primary_10_1093_jmcb_mjaa060
crossref_primary_10_3389_fgeed_2021_644319
crossref_primary_10_1007_s13238_021_00838_7
crossref_primary_10_1089_crispr_2020_0022
crossref_primary_10_1186_s13578_023_01021_7
crossref_primary_10_3389_fvets_2020_00199
crossref_primary_10_1016_j_tibtech_2018_07_017
crossref_primary_10_1038_s41556_020_00610_9
crossref_primary_10_1038_s41467_020_17551_4
crossref_primary_10_1002_biot_202000057
crossref_primary_10_3389_fbioe_2021_775309
crossref_primary_10_1038_cr_2018_9
crossref_primary_10_1016_j_ijantimicag_2024_107390
crossref_primary_10_1038_s41467_020_20810_z
crossref_primary_10_1089_hum_2018_190
crossref_primary_10_1007_s00018_022_04152_1
crossref_primary_10_1038_s41467_024_48503_x
crossref_primary_10_1002_bit_27315
crossref_primary_10_1007_s13596_023_00728_9
crossref_primary_10_1007_s12257_020_0093_7
crossref_primary_10_1523_ENEURO_0056_22_2022
crossref_primary_10_1186_s13068_021_02056_z
crossref_primary_10_1007_s11033_023_08529_8
crossref_primary_10_1038_s41467_022_29550_8
crossref_primary_10_1016_j_chembiol_2022_10_007
crossref_primary_10_1042_BCJ20200536
crossref_primary_10_1038_s41556_023_01232_7
crossref_primary_10_1093_femsle_fnz086
crossref_primary_10_1016_j_stem_2018_07_008
crossref_primary_10_1002_bit_27441
crossref_primary_10_1016_j_biotechadv_2019_04_002
crossref_primary_10_1016_j_bej_2021_108015
crossref_primary_10_1038_s41467_023_40344_4
crossref_primary_10_3389_fphar_2018_00749
crossref_primary_10_3390_genes13050921
crossref_primary_10_1134_S0026893324700201
crossref_primary_10_1007_s10529_022_03282_7
crossref_primary_10_1186_s13059_019_1907_9
crossref_primary_10_3389_fnins_2020_00838
crossref_primary_10_1186_s13059_021_02312_3
crossref_primary_10_1016_j_omtn_2023_102050
crossref_primary_10_1007_s00438_018_1437_2
crossref_primary_10_1186_s42826_020_00039_z
crossref_primary_10_34133_2021_9898769
crossref_primary_10_1038_s41422_022_00624_y
crossref_primary_10_1242_dev_202076
crossref_primary_10_3390_genes10090654
crossref_primary_10_1093_nar_gkx1272
crossref_primary_10_1002_bmm2_12025
crossref_primary_10_15252_embj_2022113033
crossref_primary_10_31857_S0026898424040029
crossref_primary_10_1016_j_mattod_2018_12_003
crossref_primary_10_3389_fgeed_2022_793010
crossref_primary_10_1038_s41588_020_0677_3
crossref_primary_10_1016_j_devcel_2018_04_021
crossref_primary_10_3390_cells14020103
crossref_primary_10_1016_j_celrep_2022_111061
crossref_primary_10_3389_fgene_2019_00551
crossref_primary_10_1126_science_abb3420
crossref_primary_10_1186_s40643_018_0222_8
crossref_primary_10_1038_s41401_023_01115_5
crossref_primary_10_1038_s41467_021_24035_6
crossref_primary_10_1038_s41598_022_22639_6
crossref_primary_10_1038_s41551_023_01157_4
crossref_primary_10_1038_s41581_018_0047_x
crossref_primary_10_1002_bit_28393
crossref_primary_10_1002_jcp_26141
crossref_primary_10_1016_j_bj_2021_11_002
crossref_primary_10_1038_s12276_020_0466_1
crossref_primary_10_1186_s12943_024_02187_5
crossref_primary_10_1128_mSphere_00446_17
crossref_primary_10_1038_s41419_019_1471_y
crossref_primary_10_3390_ph18010087
crossref_primary_10_1007_s11033_023_09066_0
crossref_primary_10_1016_j_bcp_2023_115555
crossref_primary_10_1016_j_jevs_2020_103025
crossref_primary_10_3390_ijms241814128
crossref_primary_10_1016_j_gene_2023_148038
crossref_primary_10_1111_cpr_13163
crossref_primary_10_1038_s41419_024_07088_5
crossref_primary_10_3389_fcell_2022_913996
crossref_primary_10_1016_j_apsb_2021_05_020
crossref_primary_10_1038_s41598_020_72902_x
crossref_primary_10_1016_j_jmoldx_2018_02_002
crossref_primary_10_1002_jcb_29140
crossref_primary_10_1016_j_omtn_2021_06_011
crossref_primary_10_1038_s41598_020_70804_6
crossref_primary_10_1186_s12929_024_01020_x
crossref_primary_10_1007_s10295_019_02251_w
crossref_primary_10_1038_s41434_018_0003_1
crossref_primary_10_3390_genes11090976
crossref_primary_10_1038_s41598_023_29468_1
crossref_primary_10_1038_s10038_017_0352_4
crossref_primary_10_1016_j_omtm_2025_101437
crossref_primary_10_1021_acssynbio_2c00252
crossref_primary_10_7554_eLife_56008
crossref_primary_10_1089_crispr_2019_0026
crossref_primary_10_2139_ssrn_3050912
crossref_primary_10_3390_cells9051318
crossref_primary_10_54097_814b9h72
crossref_primary_10_3389_fmicb_2023_1160031
crossref_primary_10_1016_j_celrep_2019_08_065
crossref_primary_10_1089_crispr_2023_0036
crossref_primary_10_1007_s13205_019_1966_3
crossref_primary_10_3389_fgene_2023_1115831
crossref_primary_10_1007_s00253_018_9366_x
crossref_primary_10_1038_s41598_021_97579_8
crossref_primary_10_1016_j_stemcr_2018_04_013
crossref_primary_10_1089_crispr_2022_0020
crossref_primary_10_1002_biot_201700590
crossref_primary_10_1021_acs_jafc_8b03545
crossref_primary_10_3390_genes11020140
crossref_primary_10_1016_j_drudis_2020_03_018
crossref_primary_10_1016_j_ijbiomac_2024_130413
crossref_primary_10_1038_s41421_023_00552_0
crossref_primary_10_3390_genes15081005
crossref_primary_10_4142_jvs_23133
crossref_primary_10_3390_ijms25052456
crossref_primary_10_1016_j_tibtech_2018_03_004
crossref_primary_10_1038_s41593_017_0060_6
crossref_primary_10_3390_ijms26031331
crossref_primary_10_3390_jcm10030513
crossref_primary_10_7554_eLife_67926
crossref_primary_10_7554_eLife_75050
crossref_primary_10_1021_acschembio_7b00689
crossref_primary_10_1038_s41419_020_03187_1
crossref_primary_10_1186_s13036_019_0217_9
crossref_primary_10_1038_s41467_022_29120_y
crossref_primary_10_1093_nar_gky571
crossref_primary_10_1007_s10565_017_9409_6
crossref_primary_10_1177_00236772211051842
crossref_primary_10_1007_s10142_025_01560_x
crossref_primary_10_1093_biolre_ioab196
crossref_primary_10_1093_nar_gkac567
crossref_primary_10_3389_fimmu_2021_670280
crossref_primary_10_1371_journal_pbio_3000665
crossref_primary_10_1016_j_jia_2022_08_105
crossref_primary_10_1007_s12519_024_00843_w
crossref_primary_10_1007_s40778_020_00173_3
crossref_primary_10_1016_j_celrep_2020_107653
crossref_primary_10_1186_s13059_023_02987_w
crossref_primary_10_1016_j_omtn_2022_08_002
crossref_primary_10_1038_s41598_019_50731_x
crossref_primary_10_1007_s12264_021_00685_w
crossref_primary_10_1186_s12864_021_07418_3
crossref_primary_10_1590_1984_3143_ar2020_0055
crossref_primary_10_1021_acssynbio_8b00478
crossref_primary_10_1155_2018_9465028
crossref_primary_10_1111_pbi_13490
crossref_primary_10_1126_sciadv_abb7107
crossref_primary_10_1007_s00253_024_13056_y
crossref_primary_10_1038_s41467_020_14981_y
crossref_primary_10_1016_j_cobme_2018_08_004
crossref_primary_10_1038_s41598_022_26107_z
crossref_primary_10_1016_j_cobme_2018_08_006
crossref_primary_10_3389_fgeed_2019_00001
crossref_primary_10_15302_J_FASE_2019305
crossref_primary_10_1073_pnas_1711979114
crossref_primary_10_1089_crispr_2022_0032
crossref_primary_10_1016_j_ymthe_2021_09_019
crossref_primary_10_1016_j_addr_2023_115026
crossref_primary_10_1016_j_jgg_2022_06_001
crossref_primary_10_5483_BMBRep_2019_52_8_149
crossref_primary_10_1093_nar_gkae401
crossref_primary_10_1038_s41598_022_24810_5
crossref_primary_10_3390_genes10090660
Cites_doi 10.1038/srep08841
10.1038/cr.2015.43
10.1073/pnas.93.3.1156
10.1101/gr.161638.113
10.1038/nature20565
10.1016/j.neuron.2015.03.021
10.1186/s13059-017-1164-8
10.1126/science.1079512
10.1038/nbt.1927
10.1126/science.1078395
10.1038/nn.4362
10.1016/j.mrgentox.2013.06.004
10.1523/JNEUROSCI.3975-14.2015
10.1016/j.cell.2014.01.027
10.1038/ncomms6560
10.1038/srep06545
10.1126/science.1231143
10.1038/nature10116
10.1073/pnas.0611478104
10.1126/science.1232033
10.1038/nbt.3190
10.1101/gr.145441.112
10.1016/j.cell.2013.08.022
10.1002/bit.24733
10.1534/genetics.110.120717
10.1111/j.1440-169X.2008.01046.x
10.1038/nm.3793
10.1093/hmg/ddv120
10.1038/nprot.2015.140
10.1073/pnas.0805639105
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Nature Publishing Group Jun 2017
Copyright © 2017 The Author(s) 2017 The Author(s)
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Nature Publishing Group Jun 2017
– notice: Copyright © 2017 The Author(s) 2017 The Author(s)
DBID 2RA
92L
CQIGP
W94
WU4
~WA
C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/cr.2017.76
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

AIDS and Cancer Research Abstracts
ProQuest Central Student


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Homology-mediated end joining-based targeted integration using CRISPR/Cas9
Homology-mediated end joining-dependent gene knock-in
EISSN 1748-7838
EndPage 814
ExternalDocumentID PMC5518881
4322655953
28524166
10_1038_cr_2017_76
672497769
Genre Journal Article
GroupedDBID ---
-01
-0A
-Q-
-SA
-S~
0R~
29B
2B.
2C.
2RA
2WC
36B
39C
3V.
4.4
406
53G
5GY
5VR
5XA
5XB
5XL
6J9
70F
7X7
88E
8FE
8FH
8FI
8FJ
92E
92I
92L
92M
92Q
93N
9D9
9DA
AADWK
AANZL
AATNV
AAWBL
AAYFA
AAYJO
AAZLF
ABAWZ
ABGIJ
ABJNI
ABUWG
ACAOD
ACBMV
ACBRV
ACBYP
ACGFO
ACGFS
ACIGE
ACIWK
ACKTT
ACPRK
ACRQY
ACTTH
ACVWB
ACZOJ
ADBBV
ADFRT
ADHDB
ADMDM
ADQMX
ADYYL
AEDAW
AEFTE
AEJRE
AENEX
AESKC
AEVLU
AEXYK
AFKRA
AFNRJ
AFRAH
AFSHS
AFUIB
AGEZK
AGGBP
AGHAI
AHMBA
AHSBF
AILAN
AJCLW
AJDOV
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMRJV
AMYLF
AOIJS
AXYYD
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C1A
CAG
CAJEA
CAJUS
CCEZO
CCPQU
CCVFK
CHBEP
COF
CQIGP
CS3
CW9
DIK
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMOBN
F5P
FA0
FDQFY
FERAY
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HYE
HZ~
IWAJR
JSO
JUIAU
JZLTJ
KQ8
LK8
M1P
M7P
NAO
NQJWS
NXXTH
NYICJ
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q--
Q-0
R-A
RNS
RNT
RNTTT
RPM
RT1
S..
SNX
SNYQT
SOHCF
SRMVM
SV3
SWTZT
T8Q
TAOOD
TBHMF
TCJ
TDRGL
TGP
TR2
U1F
U1G
U5A
U5K
UKHRP
W94
WFFXF
WU4
XSB
~88
~WA
AACDK
AAHBH
AASML
AAXDM
AAYZH
ABAKF
ABZZP
ACMJI
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AIGIU
ALIPV
C6C
FIGPU
LGEZI
LOTEE
NADUK
ROL
SOJ
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c568t-cb1527d7353e27bb7027973a046421f955184a8f245b4480f575c648056f632d3
IEDL.DBID C6C
ISSN 1001-0602
1748-7838
IngestDate Thu Aug 21 17:47:09 EDT 2025
Fri Jul 11 11:15:26 EDT 2025
Fri Jul 11 02:15:22 EDT 2025
Fri Jul 25 09:11:53 EDT 2025
Mon Jul 21 05:33:52 EDT 2025
Tue Jul 01 03:41:35 EDT 2025
Thu Apr 24 23:11:26 EDT 2025
Fri Feb 21 02:38:12 EST 2025
Wed Feb 14 10:00:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords monkey embryos
homology-mediated end joining
CRISPR/Cas9
neurons
knock-in
Language English
License This work is licensed under a Creative Commons Attribution 4.0 Unported License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-cb1527d7353e27bb7027973a046421f955184a8f245b4480f575c648056f632d3
Notes Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), mi- crohomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and -800 bp of homology arms, and the targeted genome. We found no significant improve- ment of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblas- toma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock- in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies.
Xuan Yaol'2', Xing Wang , Xinde Hu1 , Zhen Liu, Junlai Liu2'3' 4, Haibo Zhou, Xiaowen Shen, Yu Wei~'5, Zijian Huang1'2, Wenqin Ying, Yan Wang, Yan-Hong Nie, Chen-Chen Zhang, Sanlan Li, Leping Cheng, Qifang Wang1, Yan Wu6, Pengyu Huang3, Qiang Sun1, Linyu Shi1, Hui Yang~(1Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Ex- cellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China," e College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; 41nstitute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; 5Shanghai University, Shang- hai 200444, China; 6National _Institute of Biological Sciences, Beijing 102206, China)
31-1568
homology-mediated end joining; CRISPR/Cas9; monkey embryos; neurons; knock-in
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These four authors contributed equally to this work.
OpenAccessLink https://www.nature.com/articles/cr.2017.76
PMID 28524166
PQID 1904785531
PQPubID 536307
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5518881
proquest_miscellaneous_1911619703
proquest_miscellaneous_1900831678
proquest_journals_1904785531
pubmed_primary_28524166
crossref_primary_10_1038_cr_2017_76
crossref_citationtrail_10_1038_cr_2017_76
springer_journals_10_1038_cr_2017_76
chongqing_primary_672497769
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Cell research
PublicationTitleAbbrev Cell Res
PublicationTitleAlternate Cell Research
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Maresca, Lin, Guo, Yang (CR12) 2013; 23
Hisano, Sakuma, Nakade (CR15) 2015; 5
Izpisua, Callaway, Caddick (CR21) 2015; 86
Sun, Dong, Yang (CR28) 2008; 105
Cong, Ran, Cox (CR9) 2013; 339
Suzuki, Tsunekawa, Hernandez-Benitez (CR17) 2016; 540
Moehle, Rock, Lee (CR6) 2007; 104
Takahashi, Nomura, Osumi (CR29) 2008; 50
Kimura, Hisano, Kawahara, Higashijima (CR26) 2014; 4
Auer, Duroure, De Cian, Concordet, Del Bene (CR13) 2014; 24
Porteus, Baltimore (CR5) 2003; 300
Sakuma, Nakade, Sakane, Suzuki, Yamamoto (CR16) 2016; 11
Huang, He, Ji (CR30) 2011; 475
Zhang, Li, Li (CR20) 2017; 18
Cox, Platt, Zhang (CR10) 2015; 21
Chen, Zheng, Kang (CR24) 2015; 24
Maruyama, Dougan, Truttmann, Bilate, Ingram, Ploegh (CR11) 2015; 33
Niu, Shen, Cui (CR22) 2014; 156
Taleei, Nikjoo (CR25) 2013; 756
Mali, Yang, Esvelt (CR8) 2013; 339
Nakade, Tsubota, Sakane (CR14) 2014; 5
Yang, Wang, Shivalila, Cheng, Shi, Jaenisch (CR1) 2013; 154
Li, Zhang, Ren, Gu, Xiang, Du (CR18) 2015; 25
Liu, Miao, Yuan (CR27) 2015; 35
Bibikova, Beumer, Trautman, Carroll (CR4) 2003; 300
Jennings, Landman, Zhou (CR23) 2016; 19
Christian, Cermak, Doyle (CR7) 2010; 186
Hockemeyer, Wang, Kiani (CR2) 2011; 29
Cristea, Freyvert, Santiago (CR19) 2013; 110
Kim, Cha, Chandrasegaran (CR3) 1996; 93
S Cristea (BFcr201776_CR19) 2013; 110
Y Kimura (BFcr201776_CR26) 2014; 4
M Christian (BFcr201776_CR7) 2010; 186
R Taleei (BFcr201776_CR25) 2013; 756
P Mali (BFcr201776_CR8) 2013; 339
MH Porteus (BFcr201776_CR5) 2003; 300
M Bibikova (BFcr201776_CR4) 2003; 300
S Nakade (BFcr201776_CR14) 2014; 5
JP Zhang (BFcr201776_CR20) 2017; 18
Y Liu (BFcr201776_CR27) 2015; 35
Y Chen (BFcr201776_CR24) 2015; 24
Q Sun (BFcr201776_CR28) 2008; 105
DB Cox (BFcr201776_CR10) 2015; 21
L Cong (BFcr201776_CR9) 2013; 339
EA Moehle (BFcr201776_CR6) 2007; 104
T Sakuma (BFcr201776_CR16) 2016; 11
M Takahashi (BFcr201776_CR29) 2008; 50
H Yang (BFcr201776_CR1) 2013; 154
P Huang (BFcr201776_CR30) 2011; 475
J Li (BFcr201776_CR18) 2015; 25
Y Niu (BFcr201776_CR22) 2014; 156
Y Hisano (BFcr201776_CR15) 2015; 5
BJC Izpisua (BFcr201776_CR21) 2015; 86
K Suzuki (BFcr201776_CR17) 2016; 540
D Hockemeyer (BFcr201776_CR2) 2011; 29
M Maresca (BFcr201776_CR12) 2013; 23
CG Jennings (BFcr201776_CR23) 2016; 19
YG Kim (BFcr201776_CR3) 1996; 93
T Maruyama (BFcr201776_CR11) 2015; 33
TO Auer (BFcr201776_CR13) 2014; 24
References_xml – volume: 5
  start-page: 8841
  year: 2015
  ident: CR15
  article-title: Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish
  publication-title: Sci Rep
  doi: 10.1038/srep08841
– volume: 25
  start-page: 634
  year: 2015
  end-page: 637
  ident: CR18
  article-title: Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system
  publication-title: Cell Res
  doi: 10.1038/cr.2015.43
– volume: 93
  start-page: 1156
  year: 1996
  end-page: 1160
  ident: CR3
  article-title: Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.93.3.1156
– volume: 24
  start-page: 142
  year: 2014
  end-page: 153
  ident: CR13
  article-title: Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair
  publication-title: Genome Res
  doi: 10.1101/gr.161638.113
– volume: 540
  start-page: 144
  year: 2016
  end-page: 149
  ident: CR17
  article-title: genome editing via CRISPR/Cas9 mediated homology-independent targeted integration
  publication-title: Nature
  doi: 10.1038/nature20565
– volume: 86
  start-page: 617
  year: 2015
  end-page: 631
  ident: CR21
  article-title: Brains, genes, and primates
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.03.021
– volume: 18
  start-page: 35
  year: 2017
  ident: CR20
  article-title: Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1164-8
– volume: 300
  start-page: 764
  year: 2003
  ident: CR4
  article-title: Enhancing gene targeting with designed zinc finger nucleases
  publication-title: Science
  doi: 10.1126/science.1079512
– volume: 29
  start-page: 731
  year: 2011
  end-page: 734
  ident: CR2
  article-title: Genetic engineering of human pluripotent cells using TALE nucleases
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1927
– volume: 300
  start-page: 763
  year: 2003
  ident: CR5
  article-title: Chimeric nucleases stimulate gene targeting in human cells
  publication-title: Science
  doi: 10.1126/science.1078395
– volume: 19
  start-page: 1123
  year: 2016
  end-page: 1130
  ident: CR23
  article-title: Opportunities and challenges in modeling human brain disorders in transgenic primates
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4362
– volume: 756
  start-page: 206
  year: 2013
  end-page: 212
  ident: CR25
  article-title: Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle
  publication-title: Mut Res
  doi: 10.1016/j.mrgentox.2013.06.004
– volume: 35
  start-page: 9336
  year: 2015
  end-page: 9355
  ident: CR27
  article-title: Ascl1 converts dorsal midbrain astrocytes into functional neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3975-14.2015
– volume: 156
  start-page: 836
  year: 2014
  end-page: 843
  ident: CR22
  article-title: Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos
  publication-title: Cell
  doi: 10.1016/j.cell.2014.01.027
– volume: 5
  start-page: 5560
  year: 2014
  ident: CR14
  article-title: Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9
  publication-title: Nat Commun
  doi: 10.1038/ncomms6560
– volume: 4
  start-page: 6545
  year: 2014
  ident: CR26
  article-title: Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering
  publication-title: Sci Rep
  doi: 10.1038/srep06545
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: CR9
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 475
  start-page: 386
  year: 2011
  end-page: 389
  ident: CR30
  article-title: Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors
  publication-title: Nature
  doi: 10.1038/nature10116
– volume: 104
  start-page: 3055
  year: 2007
  end-page: 3060
  ident: CR6
  article-title: Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0611478104
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  ident: CR8
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
  doi: 10.1126/science.1232033
– volume: 33
  start-page: 538
  year: 2015
  end-page: 542
  ident: CR11
  article-title: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3190
– volume: 23
  start-page: 539
  year: 2013
  end-page: 546
  ident: CR12
  article-title: Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining
  publication-title: Genome Res
  doi: 10.1101/gr.145441.112
– volume: 154
  start-page: 1370
  year: 2013
  end-page: 1379
  ident: CR1
  article-title: One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.022
– volume: 110
  start-page: 871
  year: 2013
  end-page: 880
  ident: CR19
  article-title: cleavage of transgene donors promotes nuclease-mediated targeted integration
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.24733
– volume: 186
  start-page: 757
  year: 2010
  end-page: 761
  ident: CR7
  article-title: Targeting DNA double-strand breaks with TAL effector nucleases
  publication-title: Genetics
  doi: 10.1534/genetics.110.120717
– volume: 50
  start-page: 485
  year: 2008
  end-page: 497
  ident: CR29
  article-title: Transferring genes into cultured mammalian embryos by electroporation
  publication-title: Dev Growth Differ
  doi: 10.1111/j.1440-169X.2008.01046.x
– volume: 21
  start-page: 121
  year: 2015
  end-page: 131
  ident: CR10
  article-title: Therapeutic genome editing: prospects and challenges
  publication-title: Nat Med
  doi: 10.1038/nm.3793
– volume: 24
  start-page: 3764
  year: 2015
  end-page: 3774
  ident: CR24
  article-title: Functional disruption of the dystrophin gene in Rhesus monkey using CRISPR/Cas9
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddv120
– volume: 11
  start-page: 118
  year: 2016
  end-page: 133
  ident: CR16
  article-title: MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2015.140
– volume: 105
  start-page: 12956
  year: 2008
  end-page: 12960
  ident: CR28
  article-title: Efficient reproduction of cynomolgus monkey using pronuclear embryo transfer technique
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0805639105
– volume: 756
  start-page: 206
  year: 2013
  ident: BFcr201776_CR25
  publication-title: Mut Res
  doi: 10.1016/j.mrgentox.2013.06.004
– volume: 154
  start-page: 1370
  year: 2013
  ident: BFcr201776_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.022
– volume: 11
  start-page: 118
  year: 2016
  ident: BFcr201776_CR16
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2015.140
– volume: 24
  start-page: 142
  year: 2014
  ident: BFcr201776_CR13
  publication-title: Genome Res
  doi: 10.1101/gr.161638.113
– volume: 156
  start-page: 836
  year: 2014
  ident: BFcr201776_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2014.01.027
– volume: 300
  start-page: 763
  year: 2003
  ident: BFcr201776_CR5
  publication-title: Science
  doi: 10.1126/science.1078395
– volume: 105
  start-page: 12956
  year: 2008
  ident: BFcr201776_CR28
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0805639105
– volume: 50
  start-page: 485
  year: 2008
  ident: BFcr201776_CR29
  publication-title: Dev Growth Differ
  doi: 10.1111/j.1440-169X.2008.01046.x
– volume: 23
  start-page: 539
  year: 2013
  ident: BFcr201776_CR12
  publication-title: Genome Res
  doi: 10.1101/gr.145441.112
– volume: 339
  start-page: 819
  year: 2013
  ident: BFcr201776_CR9
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 21
  start-page: 121
  year: 2015
  ident: BFcr201776_CR10
  publication-title: Nat Med
  doi: 10.1038/nm.3793
– volume: 5
  start-page: 5560
  year: 2014
  ident: BFcr201776_CR14
  publication-title: Nat Commun
  doi: 10.1038/ncomms6560
– volume: 4
  start-page: 6545
  year: 2014
  ident: BFcr201776_CR26
  publication-title: Sci Rep
  doi: 10.1038/srep06545
– volume: 339
  start-page: 823
  year: 2013
  ident: BFcr201776_CR8
  publication-title: Science
  doi: 10.1126/science.1232033
– volume: 475
  start-page: 386
  year: 2011
  ident: BFcr201776_CR30
  publication-title: Nature
  doi: 10.1038/nature10116
– volume: 86
  start-page: 617
  year: 2015
  ident: BFcr201776_CR21
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.03.021
– volume: 110
  start-page: 871
  year: 2013
  ident: BFcr201776_CR19
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.24733
– volume: 18
  start-page: 35
  year: 2017
  ident: BFcr201776_CR20
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1164-8
– volume: 35
  start-page: 9336
  year: 2015
  ident: BFcr201776_CR27
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3975-14.2015
– volume: 300
  start-page: 764
  year: 2003
  ident: BFcr201776_CR4
  publication-title: Science
  doi: 10.1126/science.1079512
– volume: 25
  start-page: 634
  year: 2015
  ident: BFcr201776_CR18
  publication-title: Cell Res
  doi: 10.1038/cr.2015.43
– volume: 29
  start-page: 731
  year: 2011
  ident: BFcr201776_CR2
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1927
– volume: 5
  start-page: 8841
  year: 2015
  ident: BFcr201776_CR15
  publication-title: Sci Rep
  doi: 10.1038/srep08841
– volume: 19
  start-page: 1123
  year: 2016
  ident: BFcr201776_CR23
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4362
– volume: 186
  start-page: 757
  year: 2010
  ident: BFcr201776_CR7
  publication-title: Genetics
  doi: 10.1534/genetics.110.120717
– volume: 93
  start-page: 1156
  year: 1996
  ident: BFcr201776_CR3
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.93.3.1156
– volume: 24
  start-page: 3764
  year: 2015
  ident: BFcr201776_CR24
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddv120
– volume: 540
  start-page: 144
  year: 2016
  ident: BFcr201776_CR17
  publication-title: Nature
  doi: 10.1038/nature20565
– volume: 104
  start-page: 3055
  year: 2007
  ident: BFcr201776_CR6
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0611478104
– volume: 33
  start-page: 538
  year: 2015
  ident: BFcr201776_CR11
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3190
SSID ssj0025451
Score 2.6069741
Snippet Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), mi- crohomology-mediated end joining (MMEJ) or...
Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), microhomology-mediated end joining (MMEJ) or...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
chongqing
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 801
SubjectTerms 631/1647/1511
631/1647/1513/1967/3196
631/337/1427
631/61/201
Animal models
Animals
Biomedical and Life Sciences
Cell Biology
CRISPR-Cas Systems - genetics
CRISPR-Cas Systems - physiology
DNA End-Joining Repair - genetics
DNA End-Joining Repair - physiology
Embryos
Gene Knock-In Techniques
Genetic Engineering - methods
HEK293
HEK293 Cells
Hepatocytes - metabolism
Humans
Life Sciences
Mice
Original
original-article
RNA, Guide, CRISPR-Cas Systems - genetics
Stem cells
一体化
人力资源
介导
外源基因
定点整合
小鼠胚胎干细胞
非同源末端连接
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RUKVeKgp9pFCUqlx6cHcTJ7ZzQtWqaEGiqmiR9mbZTgxUbQLscui_74zzgGURN0seRXbG9nzjGX8DsF-W3CXOolvicssyrgwzvsrYuEL8MC4Lk6T0wPnku5ieZcezfNZduM27tMr-TAwHddk4uiMfoeHKpMpxyRxcXTOqGkXR1a6ExjPYIOoySumSszuHC9FBcLhC2pCgTJ6WnpSrkSMu0ER-kYFU4aKpz6_RVCwbpxXEuZo4-SB6GozS4Sa87NBk_LVV_ytYq-oteN7Wl_y3DcfT5m9osvBABMFlXNVl_LsJVSEYWbAybnPBsdEzR6CmYkqHP48np0c_f5yOJmZevIazw2-_JlPWFU9gLhdqwZylgrWl5DmvUmmtRP-zkNxQKDNNfEFMbJlRPs1yiy7a2CNucwIbufCCpyV_A-t1U1fvILZpIlJrHPce_QmbmSIx3nppROJdpngEO8Mf1FctSYYWEh07KUURwef-n2rX8Y5T-Ys_OsS_udLuRpMutBQRfBpk-w89JrXbq0Z3O26u79ZHBB-HbtwrFAAxddXcBhkqrIb2-SmZBEFwgQdhBG9bbQ9DSVWOgEfgAOTSOhgEiKt7uae-vAic3YH4TuHY9vsVc2_oKzN8__QMd-AFCbYZa7uwvri5rT4gNlrYvbAB_gOgqwwY
  priority: 102
  providerName: ProQuest
Title Homology-mediated end joining-based targeted integration using CRISPR/Cas9
URI http://lib.cqvip.com/qk/85240X/201706/672497769.html
https://link.springer.com/article/10.1038/cr.2017.76
https://www.ncbi.nlm.nih.gov/pubmed/28524166
https://www.proquest.com/docview/1904785531
https://www.proquest.com/docview/1900831678
https://www.proquest.com/docview/1911619703
https://pubmed.ncbi.nlm.nih.gov/PMC5518881
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xUKVeKqAPUmCVqlw4pGzixHaObQRakEBoC9LeLNuJoRVNWnY59N8z4zzEdquqN0uZRBOP7flGM_4G4LAsmY2twbDEZiZKmdSRdlUajSvED-My13FCF5wvLvnkJj2fZbOOJmfelVW2lJb-mO6rw44tcXfG4pPg67BJlO20mgteDMEVIgEfXPkSIU5VOy0VKZPP3iUChbumvv2FbmHZEa2gy9UiyT8ypd4BnW7Bqw45hp9bXbdhrap34EXbS_L3azifND_8MPKXQRBIhlVdht8b3wEiIm9Vhm3dNw56lgi0Skil77dhMT37ejU9LvQ8fwM3pyfXxSTqGiVENuNyEVlDzWlLwTJWJcIYgbFmLpimtGUSu5xY11ItXZJmBsOxsUOMZjkOMu44S0r2Fjbqpq52ITRJzBOjLXMOYweT6jzWzjiheexsKlkAe8MMqp8tIYbiAoM4IXgewFE_p8p2HOPU6uJe-Vw3k8o-KLKFEjyAj4Ns_6G_Se33plHd7porBDGpkBkeHwF8GB7jvqBkh66r5tHLUBM19MX_kokR8OZ46AXwrrX2oEoiMwQ3HBUQS-tgECBe7uUn9bc7z8_tSe4k6nbYr5hnqq_84fv_E9uDlzRqq9T2YWPx8FgdIB5amBGsi5kYweaXk8ur6chviyflnwlP
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG9CCwRRDhzCbuzETg4IwdJqt49VtbRSb8Z27BYESdvdCvVP8RsZOw9YFvXWmyVPIscee77JjL8B2CgKqmOt0C3RqYoSmslIWpNEA4P4YVDkMibugvPehI0Ok-2j9GgFfrV3YVxaZXsm-oO6qLT7R95Hw5XwLEWVeX96FrmqUS662pbQqNVix1z-RJdt9m78Cdf3NSFbmwfDUdRUFYh0yrJ5pJWr5FpwmlJDuFIcHbOcU-lifCS2uaMoS2RmSZIq9F0GFgGNZthImWWUFBTfewNWE4quTA9WP25O9qedi4d4xLt4PlGJudyhmhCVZn3t2Edj_pZ7GoeTqjw-Q-O0aA6XMO5yquY_8VpvBrfuwp0Gv4YfaoW7ByumvA8364qWlw9ge1T98M3IX0lBOBuasgi_Vb4OReRsZhHW2efYaLkqUDdCl4B_HA6n48_70_5QzvKHcHgtE_sIemVVmicQKhIzoqSm1qIHoxKZx9IqyyWLrU4yGsBaN4PitKblEIyjK8k5ywN4086p0A3TuSu48V34iDvNhD4Xbi0EZwG86mTbF_1Par1dGtHs8Zn4o5EBvOy6cXe6kIssTXXhZVwpN0QEV8nECLtzPHoDeFyvdjcUkqUIsRgOgC_oQSfg2MEXe8qvJ54l3FPtZTi2jVZj_hr60hc-vfoLX8Ct0cHertgdT3bW4LZ7qM6XW4fe_PzCPENkNlfPm-0Qwpfr3oG_AROeRt8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIhAXxDehBYIoBw5hN3ZiJweE0JbVbgtVVai0N2M7cUtVkra7Fepf49cx4yRblkW99WYpduTYM543mfEbgI2i4Da2Bt0Sm5oo4ZmOtCuTqF8ifugXuY4ZXXD-siNG-8nWJJ2swO_uLgylVXZnoj-oi9rSP_IeGq5EZimKTM-1aRG7m8MPJ6cRVZCiSGtXTqMRke3y4he6b9P3403c6zeMDT99G4yitsJAZFORzSJrqKprIXnKSyaNkeik5ZJrivex2OVEV5bozLEkNejH9B2CGyuwkQonOCs4vvcG3MTxMemYnFw6e4hMvLPnU5YEZRE11Kg861niIY3lO-kJHQ7r6uAUzdSiYVxCu8tJm_9Ebr1BHN6Duy2SDT82oncfVsrqAdxqaltePIStUf3TNyN_OQWBbVhWRXhU-4oUEVnPImzy0LHRsVaglISUin8QDvbGX3f3egM9zR_B_rUs62NYreqqfAqhYbFgRlvuHPoyJtF5rJ1xUovY2STjAazNV1CdNAQdSkh0KqUUeQBvuzVVtuU8p9Ibx8rH3nmm7JmivVBSBPB63rd70f96rXdbo1ptn6pL2Qzg1fwx6ikFX3RV1ue-DxV1Q2xwVZ8YAXiOh3AAT5rdnk-FZSmCLYETkAtyMO9APOGLT6ofh54v3JPuZTi3jU5i_pr60hc-u_oLX8Jt1Dv1ebyzvQZ3aEyTOLcOq7Oz8_I5QrSZeeF1IYTv1618fwDlKEmv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homology-mediated+end+joining-based+targeted+integration+using+CRISPR%2FCas9&rft.jtitle=Cell+research&rft.au=Yao%2C+Xuan&rft.au=Wang%2C+Xing&rft.au=Hu%2C+Xinde&rft.au=Liu%2C+Zhen&rft.date=2017-06-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1001-0602&rft.eissn=1748-7838&rft.volume=27&rft.issue=6&rft.spage=801&rft.epage=814&rft_id=info:doi/10.1038%2Fcr.2017.76&rft.externalDocID=10_1038_cr_2017_76
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg