Homology-mediated end joining-based targeted integration using CRISPR/Cas9
Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), mi- crohomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because i...
Saved in:
Published in | Cell research Vol. 27; no. 6; pp. 801 - 814 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), mi- crohomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and -800 bp of homology arms, and the targeted genome. We found no significant improve- ment of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblas- toma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock- in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies. |
---|---|
AbstractList | Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), microhomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and ∼800 bp of homology arms, and the targeted genome. We found no significant improvement of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblastoma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock-in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies. Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), microhomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and ∼800 bp of homology arms, and the targeted genome. We found no significant improvement of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblastoma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock-in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo , with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies. Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), microhomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and 800 bp of homology arms, and the targeted genome. We found no significant improvement of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblastoma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock-in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies. Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), mi- crohomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and -800 bp of homology arms, and the targeted genome. We found no significant improve- ment of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblas- toma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock- in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies. Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), microhomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and ∼800 bp of homology arms, and the targeted genome. We found no significant improvement of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblastoma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock-in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies.Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), microhomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and ∼800 bp of homology arms, and the targeted genome. We found no significant improvement of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblastoma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock-in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies. |
Author | Huang, Pengyu Shi, Linyu Hu, Xinde Nie, Yan-Hong Wang, Xing Ying, Wenqin Sun, Qiang Wang, Qifang Liu, Zhen Liu, Junlai Li, Sanlan Huang, Zijian Cheng, Leping Wang, Yan Yang, Hui Zhang, Chen-Chen Wu, Yan Zhou, Haibo Yao, Xuan Wei, Yu Shen, Xiaowen |
Author_xml | – sequence: 1 givenname: Xuan surname: Yao fullname: Yao, Xuan organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Xing surname: Wang fullname: Wang, Xing organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences – sequence: 3 givenname: Xinde surname: Hu fullname: Hu, Xinde organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 4 givenname: Zhen surname: Liu fullname: Liu, Zhen organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 5 givenname: Junlai surname: Liu fullname: Liu, Junlai organization: College of Life Sciences, University of Chinese Academy of Sciences, School of Life Science and Technology, ShanghaiTech University, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 6 givenname: Haibo surname: Zhou fullname: Zhou, Haibo organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 7 givenname: Xiaowen surname: Shen fullname: Shen, Xiaowen organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 8 givenname: Yu surname: Wei fullname: Wei, Yu organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai University – sequence: 9 givenname: Zijian surname: Huang fullname: Huang, Zijian organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences – sequence: 10 givenname: Wenqin surname: Ying fullname: Ying, Wenqin organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 11 givenname: Yan surname: Wang fullname: Wang, Yan organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 12 givenname: Yan-Hong surname: Nie fullname: Nie, Yan-Hong organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 13 givenname: Chen-Chen surname: Zhang fullname: Zhang, Chen-Chen organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 14 givenname: Sanlan surname: Li fullname: Li, Sanlan organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 15 givenname: Leping surname: Cheng fullname: Cheng, Leping organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 16 givenname: Qifang surname: Wang fullname: Wang, Qifang organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 17 givenname: Yan surname: Wu fullname: Wu, Yan organization: National Institute of Biological Sciences – sequence: 18 givenname: Pengyu surname: Huang fullname: Huang, Pengyu organization: School of Life Science and Technology, ShanghaiTech University – sequence: 19 givenname: Qiang surname: Sun fullname: Sun, Qiang email: qsun@ion.ac.cn organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 20 givenname: Linyu surname: Shi fullname: Shi, Linyu email: shilinyu@ion.ac.cn organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences – sequence: 21 givenname: Hui surname: Yang fullname: Yang, Hui email: huiyang@ion.ac.cn organization: Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28524166$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1LHDEUhoMofmx74w8oS3sjlVnzncyNUBatFqHF1uuQyWTGLLOJJjOC_96Muy4qXvQqIec573lz3gOw7YO3ABwiOEOQyBMTZxgiMRN8C-wjQWUhJJHb-Q4hKiCHeA8cpLSAEDPK0C7Yw5JhijjfB78uwjJ0oX0slrZ2urf11Pp6ugjOO98WlU75pdextWPJ-d62Ufcu-OmQMjCdX1_-_XN9Mtep_AR2Gt0l-3l9TsDN-dm_-UVx9fvn5fzHVWEYl31hKsSwqAVhxGJRVQJiUQqiIeUUo6ZkDEmqZYMpqyiVsGGCGZ4vjDec4JpMwOlK926osmljfR91p-6iW-r4qIJ26m3Fu1vVhgc1KkuJssDRWiCG-8GmXi1dMrbrtLdhSAqVCHFUCkj-A4VQEsTzwifg2zt0EYbo8yZGigrJGBlnf3ltfuP6JZEMfF8BJoaUom02CIJqjFuZqMa4lRhh-A42rn-OJ3_cdR-3HK9aUtb1rY2vbH5Ef10PuA2-vc8NGztcYFoKwUvyBGShw6g |
CitedBy_id | crossref_primary_10_1016_j_celrep_2023_112941 crossref_primary_10_1089_crispr_2021_0063 crossref_primary_10_1073_pnas_1909720116 crossref_primary_10_1186_s12915_024_01918_w crossref_primary_10_2174_1574893616666210601105553 crossref_primary_10_1007_s40259_024_00654_5 crossref_primary_10_1093_nar_gkz459 crossref_primary_10_1007_s00439_020_02198_4 crossref_primary_10_1021_acsomega_0c02396 crossref_primary_10_1016_j_biotechadv_2024_108402 crossref_primary_10_1093_nar_gkae1213 crossref_primary_10_1038_nbt_4166 crossref_primary_10_1093_nar_gkaa779 crossref_primary_10_1371_journal_pbio_3001527 crossref_primary_10_1007_s12033_020_00276_6 crossref_primary_10_3389_fgeed_2021_623519 crossref_primary_10_1016_j_omtn_2021_04_009 crossref_primary_10_1093_nar_gkz462 crossref_primary_10_1002_anbr_202200082 crossref_primary_10_3389_fgene_2020_614688 crossref_primary_10_3390_ijms23115948 crossref_primary_10_1038_s41598_019_47721_4 crossref_primary_10_1089_hum_2023_059 crossref_primary_10_1038_s41422_019_0213_0 crossref_primary_10_1021_acssynbio_4c00632 crossref_primary_10_3390_ijms21165821 crossref_primary_10_1016_j_ymeth_2018_04_008 crossref_primary_10_1002_bit_28329 crossref_primary_10_1016_j_jbc_2021_100497 crossref_primary_10_3390_cells9010112 crossref_primary_10_1016_j_lfs_2022_120409 crossref_primary_10_1126_sciadv_abm5578 crossref_primary_10_1038_s41596_023_00833_8 crossref_primary_10_1002_acg2_10 crossref_primary_10_1042_BSR20191914 crossref_primary_10_1038_s41467_024_48092_9 crossref_primary_10_1016_j_omtn_2018_01_012 crossref_primary_10_1038_s41417_023_00597_z crossref_primary_10_1016_j_celrep_2019_06_042 crossref_primary_10_3389_fgene_2021_615491 crossref_primary_10_1016_j_jbiotec_2019_11_010 crossref_primary_10_1016_j_jinsphys_2021_104325 crossref_primary_10_1016_j_stemcr_2021_03_021 crossref_primary_10_1007_s00018_024_05154_x crossref_primary_10_3389_fcell_2021_672564 crossref_primary_10_1007_s10142_025_01566_5 crossref_primary_10_1038_s41598_023_38397_y crossref_primary_10_1016_j_omtn_2024_102138 crossref_primary_10_3389_fgene_2021_658295 crossref_primary_10_1038_s41598_024_57551_8 crossref_primary_10_1080_23808993_2017_1375851 crossref_primary_10_1002_ajp_22931 crossref_primary_10_3390_ijms23179749 crossref_primary_10_1016_j_ymthe_2020_12_010 crossref_primary_10_1038_s41467_018_05773_6 crossref_primary_10_1007_s00412_018_0677_6 crossref_primary_10_3389_fnins_2020_579062 crossref_primary_10_1093_nar_gkad165 crossref_primary_10_1371_journal_pone_0244515 crossref_primary_10_3389_fgene_2021_648482 crossref_primary_10_1093_jmcb_mjaa060 crossref_primary_10_3389_fgeed_2021_644319 crossref_primary_10_1007_s13238_021_00838_7 crossref_primary_10_1089_crispr_2020_0022 crossref_primary_10_1186_s13578_023_01021_7 crossref_primary_10_3389_fvets_2020_00199 crossref_primary_10_1016_j_tibtech_2018_07_017 crossref_primary_10_1038_s41556_020_00610_9 crossref_primary_10_1038_s41467_020_17551_4 crossref_primary_10_1002_biot_202000057 crossref_primary_10_3389_fbioe_2021_775309 crossref_primary_10_1038_cr_2018_9 crossref_primary_10_1016_j_ijantimicag_2024_107390 crossref_primary_10_1038_s41467_020_20810_z crossref_primary_10_1089_hum_2018_190 crossref_primary_10_1007_s00018_022_04152_1 crossref_primary_10_1038_s41467_024_48503_x crossref_primary_10_1002_bit_27315 crossref_primary_10_1007_s13596_023_00728_9 crossref_primary_10_1007_s12257_020_0093_7 crossref_primary_10_1523_ENEURO_0056_22_2022 crossref_primary_10_1186_s13068_021_02056_z crossref_primary_10_1007_s11033_023_08529_8 crossref_primary_10_1038_s41467_022_29550_8 crossref_primary_10_1016_j_chembiol_2022_10_007 crossref_primary_10_1042_BCJ20200536 crossref_primary_10_1038_s41556_023_01232_7 crossref_primary_10_1093_femsle_fnz086 crossref_primary_10_1016_j_stem_2018_07_008 crossref_primary_10_1002_bit_27441 crossref_primary_10_1016_j_biotechadv_2019_04_002 crossref_primary_10_1016_j_bej_2021_108015 crossref_primary_10_1038_s41467_023_40344_4 crossref_primary_10_3389_fphar_2018_00749 crossref_primary_10_3390_genes13050921 crossref_primary_10_1134_S0026893324700201 crossref_primary_10_1007_s10529_022_03282_7 crossref_primary_10_1186_s13059_019_1907_9 crossref_primary_10_3389_fnins_2020_00838 crossref_primary_10_1186_s13059_021_02312_3 crossref_primary_10_1016_j_omtn_2023_102050 crossref_primary_10_1007_s00438_018_1437_2 crossref_primary_10_1186_s42826_020_00039_z crossref_primary_10_34133_2021_9898769 crossref_primary_10_1038_s41422_022_00624_y crossref_primary_10_1242_dev_202076 crossref_primary_10_3390_genes10090654 crossref_primary_10_1093_nar_gkx1272 crossref_primary_10_1002_bmm2_12025 crossref_primary_10_15252_embj_2022113033 crossref_primary_10_31857_S0026898424040029 crossref_primary_10_1016_j_mattod_2018_12_003 crossref_primary_10_3389_fgeed_2022_793010 crossref_primary_10_1038_s41588_020_0677_3 crossref_primary_10_1016_j_devcel_2018_04_021 crossref_primary_10_3390_cells14020103 crossref_primary_10_1016_j_celrep_2022_111061 crossref_primary_10_3389_fgene_2019_00551 crossref_primary_10_1126_science_abb3420 crossref_primary_10_1186_s40643_018_0222_8 crossref_primary_10_1038_s41401_023_01115_5 crossref_primary_10_1038_s41467_021_24035_6 crossref_primary_10_1038_s41598_022_22639_6 crossref_primary_10_1038_s41551_023_01157_4 crossref_primary_10_1038_s41581_018_0047_x crossref_primary_10_1002_bit_28393 crossref_primary_10_1002_jcp_26141 crossref_primary_10_1016_j_bj_2021_11_002 crossref_primary_10_1038_s12276_020_0466_1 crossref_primary_10_1186_s12943_024_02187_5 crossref_primary_10_1128_mSphere_00446_17 crossref_primary_10_1038_s41419_019_1471_y crossref_primary_10_3390_ph18010087 crossref_primary_10_1007_s11033_023_09066_0 crossref_primary_10_1016_j_bcp_2023_115555 crossref_primary_10_1016_j_jevs_2020_103025 crossref_primary_10_3390_ijms241814128 crossref_primary_10_1016_j_gene_2023_148038 crossref_primary_10_1111_cpr_13163 crossref_primary_10_1038_s41419_024_07088_5 crossref_primary_10_3389_fcell_2022_913996 crossref_primary_10_1016_j_apsb_2021_05_020 crossref_primary_10_1038_s41598_020_72902_x crossref_primary_10_1016_j_jmoldx_2018_02_002 crossref_primary_10_1002_jcb_29140 crossref_primary_10_1016_j_omtn_2021_06_011 crossref_primary_10_1038_s41598_020_70804_6 crossref_primary_10_1186_s12929_024_01020_x crossref_primary_10_1007_s10295_019_02251_w crossref_primary_10_1038_s41434_018_0003_1 crossref_primary_10_3390_genes11090976 crossref_primary_10_1038_s41598_023_29468_1 crossref_primary_10_1038_s10038_017_0352_4 crossref_primary_10_1016_j_omtm_2025_101437 crossref_primary_10_1021_acssynbio_2c00252 crossref_primary_10_7554_eLife_56008 crossref_primary_10_1089_crispr_2019_0026 crossref_primary_10_2139_ssrn_3050912 crossref_primary_10_3390_cells9051318 crossref_primary_10_54097_814b9h72 crossref_primary_10_3389_fmicb_2023_1160031 crossref_primary_10_1016_j_celrep_2019_08_065 crossref_primary_10_1089_crispr_2023_0036 crossref_primary_10_1007_s13205_019_1966_3 crossref_primary_10_3389_fgene_2023_1115831 crossref_primary_10_1007_s00253_018_9366_x crossref_primary_10_1038_s41598_021_97579_8 crossref_primary_10_1016_j_stemcr_2018_04_013 crossref_primary_10_1089_crispr_2022_0020 crossref_primary_10_1002_biot_201700590 crossref_primary_10_1021_acs_jafc_8b03545 crossref_primary_10_3390_genes11020140 crossref_primary_10_1016_j_drudis_2020_03_018 crossref_primary_10_1016_j_ijbiomac_2024_130413 crossref_primary_10_1038_s41421_023_00552_0 crossref_primary_10_3390_genes15081005 crossref_primary_10_4142_jvs_23133 crossref_primary_10_3390_ijms25052456 crossref_primary_10_1016_j_tibtech_2018_03_004 crossref_primary_10_1038_s41593_017_0060_6 crossref_primary_10_3390_ijms26031331 crossref_primary_10_3390_jcm10030513 crossref_primary_10_7554_eLife_67926 crossref_primary_10_7554_eLife_75050 crossref_primary_10_1021_acschembio_7b00689 crossref_primary_10_1038_s41419_020_03187_1 crossref_primary_10_1186_s13036_019_0217_9 crossref_primary_10_1038_s41467_022_29120_y crossref_primary_10_1093_nar_gky571 crossref_primary_10_1007_s10565_017_9409_6 crossref_primary_10_1177_00236772211051842 crossref_primary_10_1007_s10142_025_01560_x crossref_primary_10_1093_biolre_ioab196 crossref_primary_10_1093_nar_gkac567 crossref_primary_10_3389_fimmu_2021_670280 crossref_primary_10_1371_journal_pbio_3000665 crossref_primary_10_1016_j_jia_2022_08_105 crossref_primary_10_1007_s12519_024_00843_w crossref_primary_10_1007_s40778_020_00173_3 crossref_primary_10_1016_j_celrep_2020_107653 crossref_primary_10_1186_s13059_023_02987_w crossref_primary_10_1016_j_omtn_2022_08_002 crossref_primary_10_1038_s41598_019_50731_x crossref_primary_10_1007_s12264_021_00685_w crossref_primary_10_1186_s12864_021_07418_3 crossref_primary_10_1590_1984_3143_ar2020_0055 crossref_primary_10_1021_acssynbio_8b00478 crossref_primary_10_1155_2018_9465028 crossref_primary_10_1111_pbi_13490 crossref_primary_10_1126_sciadv_abb7107 crossref_primary_10_1007_s00253_024_13056_y crossref_primary_10_1038_s41467_020_14981_y crossref_primary_10_1016_j_cobme_2018_08_004 crossref_primary_10_1038_s41598_022_26107_z crossref_primary_10_1016_j_cobme_2018_08_006 crossref_primary_10_3389_fgeed_2019_00001 crossref_primary_10_15302_J_FASE_2019305 crossref_primary_10_1073_pnas_1711979114 crossref_primary_10_1089_crispr_2022_0032 crossref_primary_10_1016_j_ymthe_2021_09_019 crossref_primary_10_1016_j_addr_2023_115026 crossref_primary_10_1016_j_jgg_2022_06_001 crossref_primary_10_5483_BMBRep_2019_52_8_149 crossref_primary_10_1093_nar_gkae401 crossref_primary_10_1038_s41598_022_24810_5 crossref_primary_10_3390_genes10090660 |
Cites_doi | 10.1038/srep08841 10.1038/cr.2015.43 10.1073/pnas.93.3.1156 10.1101/gr.161638.113 10.1038/nature20565 10.1016/j.neuron.2015.03.021 10.1186/s13059-017-1164-8 10.1126/science.1079512 10.1038/nbt.1927 10.1126/science.1078395 10.1038/nn.4362 10.1016/j.mrgentox.2013.06.004 10.1523/JNEUROSCI.3975-14.2015 10.1016/j.cell.2014.01.027 10.1038/ncomms6560 10.1038/srep06545 10.1126/science.1231143 10.1038/nature10116 10.1073/pnas.0611478104 10.1126/science.1232033 10.1038/nbt.3190 10.1101/gr.145441.112 10.1016/j.cell.2013.08.022 10.1002/bit.24733 10.1534/genetics.110.120717 10.1111/j.1440-169X.2008.01046.x 10.1038/nm.3793 10.1093/hmg/ddv120 10.1038/nprot.2015.140 10.1073/pnas.0805639105 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Jun 2017 Copyright © 2017 The Author(s) 2017 The Author(s) |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Jun 2017 – notice: Copyright © 2017 The Author(s) 2017 The Author(s) |
DBID | 2RA 92L CQIGP W94 WU4 ~WA C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/cr.2017.76 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Homology-mediated end joining-based targeted integration using CRISPR/Cas9 Homology-mediated end joining-dependent gene knock-in |
EISSN | 1748-7838 |
EndPage | 814 |
ExternalDocumentID | PMC5518881 4322655953 28524166 10_1038_cr_2017_76 672497769 |
Genre | Journal Article |
GroupedDBID | --- -01 -0A -Q- -SA -S~ 0R~ 29B 2B. 2C. 2RA 2WC 36B 39C 3V. 4.4 406 53G 5GY 5VR 5XA 5XB 5XL 6J9 70F 7X7 88E 8FE 8FH 8FI 8FJ 92E 92I 92L 92M 92Q 93N 9D9 9DA AADWK AANZL AATNV AAWBL AAYFA AAYJO AAZLF ABAWZ ABGIJ ABJNI ABUWG ACAOD ACBMV ACBRV ACBYP ACGFO ACGFS ACIGE ACIWK ACKTT ACPRK ACRQY ACTTH ACVWB ACZOJ ADBBV ADFRT ADHDB ADMDM ADQMX ADYYL AEDAW AEFTE AEJRE AENEX AESKC AEVLU AEXYK AFKRA AFNRJ AFRAH AFSHS AFUIB AGEZK AGGBP AGHAI AHMBA AHSBF AILAN AJCLW AJDOV AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMRJV AMYLF AOIJS AXYYD BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C1A CAG CAJEA CAJUS CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CW9 DIK DNIVK DPUIP DU5 E3Z EBLON EBS EE. EIOEI EJD EMB EMOBN F5P FA0 FDQFY FERAY FIZPM FSGXE FYUFA GX1 HCIFZ HMCUK HYE HZ~ IWAJR JSO JUIAU JZLTJ KQ8 LK8 M1P M7P NAO NQJWS NXXTH NYICJ O9- OK1 P2P PQQKQ PROAC PSQYO Q-- Q-0 R-A RNS RNT RNTTT RPM RT1 S.. SNX SNYQT SOHCF SRMVM SV3 SWTZT T8Q TAOOD TBHMF TCJ TDRGL TGP TR2 U1F U1G U5A U5K UKHRP W94 WFFXF WU4 XSB ~88 ~WA AACDK AAHBH AASML AAXDM AAYZH ABAKF ABZZP ACMJI AEFQL AEMSY AEUYN AFBBN AGQEE AIGIU ALIPV C6C FIGPU LGEZI LOTEE NADUK ROL SOJ AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c568t-cb1527d7353e27bb7027973a046421f955184a8f245b4480f575c648056f632d3 |
IEDL.DBID | C6C |
ISSN | 1001-0602 1748-7838 |
IngestDate | Thu Aug 21 17:47:09 EDT 2025 Fri Jul 11 11:15:26 EDT 2025 Fri Jul 11 02:15:22 EDT 2025 Fri Jul 25 09:11:53 EDT 2025 Mon Jul 21 05:33:52 EDT 2025 Tue Jul 01 03:41:35 EDT 2025 Thu Apr 24 23:11:26 EDT 2025 Fri Feb 21 02:38:12 EST 2025 Wed Feb 14 10:00:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | monkey embryos homology-mediated end joining CRISPR/Cas9 neurons knock-in |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 Unported License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c568t-cb1527d7353e27bb7027973a046421f955184a8f245b4480f575c648056f632d3 |
Notes | Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), mi- crohomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and -800 bp of homology arms, and the targeted genome. We found no significant improve- ment of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblas- toma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock- in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies. Xuan Yaol'2', Xing Wang , Xinde Hu1 , Zhen Liu, Junlai Liu2'3' 4, Haibo Zhou, Xiaowen Shen, Yu Wei~'5, Zijian Huang1'2, Wenqin Ying, Yan Wang, Yan-Hong Nie, Chen-Chen Zhang, Sanlan Li, Leping Cheng, Qifang Wang1, Yan Wu6, Pengyu Huang3, Qiang Sun1, Linyu Shi1, Hui Yang~(1Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Ex- cellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China," e College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; 41nstitute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; 5Shanghai University, Shang- hai 200444, China; 6National _Institute of Biological Sciences, Beijing 102206, China) 31-1568 homology-mediated end joining; CRISPR/Cas9; monkey embryos; neurons; knock-in ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These four authors contributed equally to this work. |
OpenAccessLink | https://www.nature.com/articles/cr.2017.76 |
PMID | 28524166 |
PQID | 1904785531 |
PQPubID | 536307 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5518881 proquest_miscellaneous_1911619703 proquest_miscellaneous_1900831678 proquest_journals_1904785531 pubmed_primary_28524166 crossref_primary_10_1038_cr_2017_76 crossref_citationtrail_10_1038_cr_2017_76 springer_journals_10_1038_cr_2017_76 chongqing_primary_672497769 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-01 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Cell research |
PublicationTitleAbbrev | Cell Res |
PublicationTitleAlternate | Cell Research |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Maresca, Lin, Guo, Yang (CR12) 2013; 23 Hisano, Sakuma, Nakade (CR15) 2015; 5 Izpisua, Callaway, Caddick (CR21) 2015; 86 Sun, Dong, Yang (CR28) 2008; 105 Cong, Ran, Cox (CR9) 2013; 339 Suzuki, Tsunekawa, Hernandez-Benitez (CR17) 2016; 540 Moehle, Rock, Lee (CR6) 2007; 104 Takahashi, Nomura, Osumi (CR29) 2008; 50 Kimura, Hisano, Kawahara, Higashijima (CR26) 2014; 4 Auer, Duroure, De Cian, Concordet, Del Bene (CR13) 2014; 24 Porteus, Baltimore (CR5) 2003; 300 Sakuma, Nakade, Sakane, Suzuki, Yamamoto (CR16) 2016; 11 Huang, He, Ji (CR30) 2011; 475 Zhang, Li, Li (CR20) 2017; 18 Cox, Platt, Zhang (CR10) 2015; 21 Chen, Zheng, Kang (CR24) 2015; 24 Maruyama, Dougan, Truttmann, Bilate, Ingram, Ploegh (CR11) 2015; 33 Niu, Shen, Cui (CR22) 2014; 156 Taleei, Nikjoo (CR25) 2013; 756 Mali, Yang, Esvelt (CR8) 2013; 339 Nakade, Tsubota, Sakane (CR14) 2014; 5 Yang, Wang, Shivalila, Cheng, Shi, Jaenisch (CR1) 2013; 154 Li, Zhang, Ren, Gu, Xiang, Du (CR18) 2015; 25 Liu, Miao, Yuan (CR27) 2015; 35 Bibikova, Beumer, Trautman, Carroll (CR4) 2003; 300 Jennings, Landman, Zhou (CR23) 2016; 19 Christian, Cermak, Doyle (CR7) 2010; 186 Hockemeyer, Wang, Kiani (CR2) 2011; 29 Cristea, Freyvert, Santiago (CR19) 2013; 110 Kim, Cha, Chandrasegaran (CR3) 1996; 93 S Cristea (BFcr201776_CR19) 2013; 110 Y Kimura (BFcr201776_CR26) 2014; 4 M Christian (BFcr201776_CR7) 2010; 186 R Taleei (BFcr201776_CR25) 2013; 756 P Mali (BFcr201776_CR8) 2013; 339 MH Porteus (BFcr201776_CR5) 2003; 300 M Bibikova (BFcr201776_CR4) 2003; 300 S Nakade (BFcr201776_CR14) 2014; 5 JP Zhang (BFcr201776_CR20) 2017; 18 Y Liu (BFcr201776_CR27) 2015; 35 Y Chen (BFcr201776_CR24) 2015; 24 Q Sun (BFcr201776_CR28) 2008; 105 DB Cox (BFcr201776_CR10) 2015; 21 L Cong (BFcr201776_CR9) 2013; 339 EA Moehle (BFcr201776_CR6) 2007; 104 T Sakuma (BFcr201776_CR16) 2016; 11 M Takahashi (BFcr201776_CR29) 2008; 50 H Yang (BFcr201776_CR1) 2013; 154 P Huang (BFcr201776_CR30) 2011; 475 J Li (BFcr201776_CR18) 2015; 25 Y Niu (BFcr201776_CR22) 2014; 156 Y Hisano (BFcr201776_CR15) 2015; 5 BJC Izpisua (BFcr201776_CR21) 2015; 86 K Suzuki (BFcr201776_CR17) 2016; 540 D Hockemeyer (BFcr201776_CR2) 2011; 29 M Maresca (BFcr201776_CR12) 2013; 23 CG Jennings (BFcr201776_CR23) 2016; 19 YG Kim (BFcr201776_CR3) 1996; 93 T Maruyama (BFcr201776_CR11) 2015; 33 TO Auer (BFcr201776_CR13) 2014; 24 |
References_xml | – volume: 5 start-page: 8841 year: 2015 ident: CR15 article-title: Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish publication-title: Sci Rep doi: 10.1038/srep08841 – volume: 25 start-page: 634 year: 2015 end-page: 637 ident: CR18 article-title: Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system publication-title: Cell Res doi: 10.1038/cr.2015.43 – volume: 93 start-page: 1156 year: 1996 end-page: 1160 ident: CR3 article-title: Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.3.1156 – volume: 24 start-page: 142 year: 2014 end-page: 153 ident: CR13 article-title: Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair publication-title: Genome Res doi: 10.1101/gr.161638.113 – volume: 540 start-page: 144 year: 2016 end-page: 149 ident: CR17 article-title: genome editing via CRISPR/Cas9 mediated homology-independent targeted integration publication-title: Nature doi: 10.1038/nature20565 – volume: 86 start-page: 617 year: 2015 end-page: 631 ident: CR21 article-title: Brains, genes, and primates publication-title: Neuron doi: 10.1016/j.neuron.2015.03.021 – volume: 18 start-page: 35 year: 2017 ident: CR20 article-title: Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage publication-title: Genome Biol doi: 10.1186/s13059-017-1164-8 – volume: 300 start-page: 764 year: 2003 ident: CR4 article-title: Enhancing gene targeting with designed zinc finger nucleases publication-title: Science doi: 10.1126/science.1079512 – volume: 29 start-page: 731 year: 2011 end-page: 734 ident: CR2 article-title: Genetic engineering of human pluripotent cells using TALE nucleases publication-title: Nat Biotechnol doi: 10.1038/nbt.1927 – volume: 300 start-page: 763 year: 2003 ident: CR5 article-title: Chimeric nucleases stimulate gene targeting in human cells publication-title: Science doi: 10.1126/science.1078395 – volume: 19 start-page: 1123 year: 2016 end-page: 1130 ident: CR23 article-title: Opportunities and challenges in modeling human brain disorders in transgenic primates publication-title: Nat Neurosci doi: 10.1038/nn.4362 – volume: 756 start-page: 206 year: 2013 end-page: 212 ident: CR25 article-title: Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle publication-title: Mut Res doi: 10.1016/j.mrgentox.2013.06.004 – volume: 35 start-page: 9336 year: 2015 end-page: 9355 ident: CR27 article-title: Ascl1 converts dorsal midbrain astrocytes into functional neurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3975-14.2015 – volume: 156 start-page: 836 year: 2014 end-page: 843 ident: CR22 article-title: Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos publication-title: Cell doi: 10.1016/j.cell.2014.01.027 – volume: 5 start-page: 5560 year: 2014 ident: CR14 article-title: Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9 publication-title: Nat Commun doi: 10.1038/ncomms6560 – volume: 4 start-page: 6545 year: 2014 ident: CR26 article-title: Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering publication-title: Sci Rep doi: 10.1038/srep06545 – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: CR9 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 475 start-page: 386 year: 2011 end-page: 389 ident: CR30 article-title: Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors publication-title: Nature doi: 10.1038/nature10116 – volume: 104 start-page: 3055 year: 2007 end-page: 3060 ident: CR6 article-title: Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0611478104 – volume: 339 start-page: 823 year: 2013 end-page: 826 ident: CR8 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science doi: 10.1126/science.1232033 – volume: 33 start-page: 538 year: 2015 end-page: 542 ident: CR11 article-title: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining publication-title: Nat Biotechnol doi: 10.1038/nbt.3190 – volume: 23 start-page: 539 year: 2013 end-page: 546 ident: CR12 article-title: Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining publication-title: Genome Res doi: 10.1101/gr.145441.112 – volume: 154 start-page: 1370 year: 2013 end-page: 1379 ident: CR1 article-title: One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering publication-title: Cell doi: 10.1016/j.cell.2013.08.022 – volume: 110 start-page: 871 year: 2013 end-page: 880 ident: CR19 article-title: cleavage of transgene donors promotes nuclease-mediated targeted integration publication-title: Biotechnol Bioeng doi: 10.1002/bit.24733 – volume: 186 start-page: 757 year: 2010 end-page: 761 ident: CR7 article-title: Targeting DNA double-strand breaks with TAL effector nucleases publication-title: Genetics doi: 10.1534/genetics.110.120717 – volume: 50 start-page: 485 year: 2008 end-page: 497 ident: CR29 article-title: Transferring genes into cultured mammalian embryos by electroporation publication-title: Dev Growth Differ doi: 10.1111/j.1440-169X.2008.01046.x – volume: 21 start-page: 121 year: 2015 end-page: 131 ident: CR10 article-title: Therapeutic genome editing: prospects and challenges publication-title: Nat Med doi: 10.1038/nm.3793 – volume: 24 start-page: 3764 year: 2015 end-page: 3774 ident: CR24 article-title: Functional disruption of the dystrophin gene in Rhesus monkey using CRISPR/Cas9 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddv120 – volume: 11 start-page: 118 year: 2016 end-page: 133 ident: CR16 article-title: MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems publication-title: Nat Protoc doi: 10.1038/nprot.2015.140 – volume: 105 start-page: 12956 year: 2008 end-page: 12960 ident: CR28 article-title: Efficient reproduction of cynomolgus monkey using pronuclear embryo transfer technique publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0805639105 – volume: 756 start-page: 206 year: 2013 ident: BFcr201776_CR25 publication-title: Mut Res doi: 10.1016/j.mrgentox.2013.06.004 – volume: 154 start-page: 1370 year: 2013 ident: BFcr201776_CR1 publication-title: Cell doi: 10.1016/j.cell.2013.08.022 – volume: 11 start-page: 118 year: 2016 ident: BFcr201776_CR16 publication-title: Nat Protoc doi: 10.1038/nprot.2015.140 – volume: 24 start-page: 142 year: 2014 ident: BFcr201776_CR13 publication-title: Genome Res doi: 10.1101/gr.161638.113 – volume: 156 start-page: 836 year: 2014 ident: BFcr201776_CR22 publication-title: Cell doi: 10.1016/j.cell.2014.01.027 – volume: 300 start-page: 763 year: 2003 ident: BFcr201776_CR5 publication-title: Science doi: 10.1126/science.1078395 – volume: 105 start-page: 12956 year: 2008 ident: BFcr201776_CR28 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0805639105 – volume: 50 start-page: 485 year: 2008 ident: BFcr201776_CR29 publication-title: Dev Growth Differ doi: 10.1111/j.1440-169X.2008.01046.x – volume: 23 start-page: 539 year: 2013 ident: BFcr201776_CR12 publication-title: Genome Res doi: 10.1101/gr.145441.112 – volume: 339 start-page: 819 year: 2013 ident: BFcr201776_CR9 publication-title: Science doi: 10.1126/science.1231143 – volume: 21 start-page: 121 year: 2015 ident: BFcr201776_CR10 publication-title: Nat Med doi: 10.1038/nm.3793 – volume: 5 start-page: 5560 year: 2014 ident: BFcr201776_CR14 publication-title: Nat Commun doi: 10.1038/ncomms6560 – volume: 4 start-page: 6545 year: 2014 ident: BFcr201776_CR26 publication-title: Sci Rep doi: 10.1038/srep06545 – volume: 339 start-page: 823 year: 2013 ident: BFcr201776_CR8 publication-title: Science doi: 10.1126/science.1232033 – volume: 475 start-page: 386 year: 2011 ident: BFcr201776_CR30 publication-title: Nature doi: 10.1038/nature10116 – volume: 86 start-page: 617 year: 2015 ident: BFcr201776_CR21 publication-title: Neuron doi: 10.1016/j.neuron.2015.03.021 – volume: 110 start-page: 871 year: 2013 ident: BFcr201776_CR19 publication-title: Biotechnol Bioeng doi: 10.1002/bit.24733 – volume: 18 start-page: 35 year: 2017 ident: BFcr201776_CR20 publication-title: Genome Biol doi: 10.1186/s13059-017-1164-8 – volume: 35 start-page: 9336 year: 2015 ident: BFcr201776_CR27 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3975-14.2015 – volume: 300 start-page: 764 year: 2003 ident: BFcr201776_CR4 publication-title: Science doi: 10.1126/science.1079512 – volume: 25 start-page: 634 year: 2015 ident: BFcr201776_CR18 publication-title: Cell Res doi: 10.1038/cr.2015.43 – volume: 29 start-page: 731 year: 2011 ident: BFcr201776_CR2 publication-title: Nat Biotechnol doi: 10.1038/nbt.1927 – volume: 5 start-page: 8841 year: 2015 ident: BFcr201776_CR15 publication-title: Sci Rep doi: 10.1038/srep08841 – volume: 19 start-page: 1123 year: 2016 ident: BFcr201776_CR23 publication-title: Nat Neurosci doi: 10.1038/nn.4362 – volume: 186 start-page: 757 year: 2010 ident: BFcr201776_CR7 publication-title: Genetics doi: 10.1534/genetics.110.120717 – volume: 93 start-page: 1156 year: 1996 ident: BFcr201776_CR3 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.3.1156 – volume: 24 start-page: 3764 year: 2015 ident: BFcr201776_CR24 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddv120 – volume: 540 start-page: 144 year: 2016 ident: BFcr201776_CR17 publication-title: Nature doi: 10.1038/nature20565 – volume: 104 start-page: 3055 year: 2007 ident: BFcr201776_CR6 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0611478104 – volume: 33 start-page: 538 year: 2015 ident: BFcr201776_CR11 publication-title: Nat Biotechnol doi: 10.1038/nbt.3190 |
SSID | ssj0025451 |
Score | 2.6069741 |
Snippet | Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), mi- crohomology-mediated end joining (MMEJ) or... Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), microhomology-mediated end joining (MMEJ) or... |
SourceID | pubmedcentral proquest pubmed crossref springer chongqing |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 801 |
SubjectTerms | 631/1647/1511 631/1647/1513/1967/3196 631/337/1427 631/61/201 Animal models Animals Biomedical and Life Sciences Cell Biology CRISPR-Cas Systems - genetics CRISPR-Cas Systems - physiology DNA End-Joining Repair - genetics DNA End-Joining Repair - physiology Embryos Gene Knock-In Techniques Genetic Engineering - methods HEK293 HEK293 Cells Hepatocytes - metabolism Humans Life Sciences Mice Original original-article RNA, Guide, CRISPR-Cas Systems - genetics Stem cells 一体化 人力资源 介导 外源基因 定点整合 小鼠胚胎干细胞 非同源末端连接 |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RUKVeKgp9pFCUqlx6cHcTJ7ZzQtWqaEGiqmiR9mbZTgxUbQLscui_74zzgGURN0seRXbG9nzjGX8DsF-W3CXOolvicssyrgwzvsrYuEL8MC4Lk6T0wPnku5ieZcezfNZduM27tMr-TAwHddk4uiMfoeHKpMpxyRxcXTOqGkXR1a6ExjPYIOoySumSszuHC9FBcLhC2pCgTJ6WnpSrkSMu0ER-kYFU4aKpz6_RVCwbpxXEuZo4-SB6GozS4Sa87NBk_LVV_ytYq-oteN7Wl_y3DcfT5m9osvBABMFlXNVl_LsJVSEYWbAybnPBsdEzR6CmYkqHP48np0c_f5yOJmZevIazw2-_JlPWFU9gLhdqwZylgrWl5DmvUmmtRP-zkNxQKDNNfEFMbJlRPs1yiy7a2CNucwIbufCCpyV_A-t1U1fvILZpIlJrHPce_QmbmSIx3nppROJdpngEO8Mf1FctSYYWEh07KUURwef-n2rX8Y5T-Ys_OsS_udLuRpMutBQRfBpk-w89JrXbq0Z3O26u79ZHBB-HbtwrFAAxddXcBhkqrIb2-SmZBEFwgQdhBG9bbQ9DSVWOgEfgAOTSOhgEiKt7uae-vAic3YH4TuHY9vsVc2_oKzN8__QMd-AFCbYZa7uwvri5rT4gNlrYvbAB_gOgqwwY priority: 102 providerName: ProQuest |
Title | Homology-mediated end joining-based targeted integration using CRISPR/Cas9 |
URI | http://lib.cqvip.com/qk/85240X/201706/672497769.html https://link.springer.com/article/10.1038/cr.2017.76 https://www.ncbi.nlm.nih.gov/pubmed/28524166 https://www.proquest.com/docview/1904785531 https://www.proquest.com/docview/1900831678 https://www.proquest.com/docview/1911619703 https://pubmed.ncbi.nlm.nih.gov/PMC5518881 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xUKVeKqAPUmCVqlw4pGzixHaObQRakEBoC9LeLNuJoRVNWnY59N8z4zzEdquqN0uZRBOP7flGM_4G4LAsmY2twbDEZiZKmdSRdlUajSvED-My13FCF5wvLvnkJj2fZbOOJmfelVW2lJb-mO6rw44tcXfG4pPg67BJlO20mgteDMEVIgEfXPkSIU5VOy0VKZPP3iUChbumvv2FbmHZEa2gy9UiyT8ypd4BnW7Bqw45hp9bXbdhrap34EXbS_L3azifND_8MPKXQRBIhlVdht8b3wEiIm9Vhm3dNw56lgi0Skil77dhMT37ejU9LvQ8fwM3pyfXxSTqGiVENuNyEVlDzWlLwTJWJcIYgbFmLpimtGUSu5xY11ItXZJmBsOxsUOMZjkOMu44S0r2Fjbqpq52ITRJzBOjLXMOYweT6jzWzjiheexsKlkAe8MMqp8tIYbiAoM4IXgewFE_p8p2HOPU6uJe-Vw3k8o-KLKFEjyAj4Ns_6G_Se33plHd7porBDGpkBkeHwF8GB7jvqBkh66r5tHLUBM19MX_kokR8OZ46AXwrrX2oEoiMwQ3HBUQS-tgECBe7uUn9bc7z8_tSe4k6nbYr5hnqq_84fv_E9uDlzRqq9T2YWPx8FgdIB5amBGsi5kYweaXk8ur6chviyflnwlP |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG9CCwRRDhzCbuzETg4IwdJqt49VtbRSb8Z27BYESdvdCvVP8RsZOw9YFvXWmyVPIscee77JjL8B2CgKqmOt0C3RqYoSmslIWpNEA4P4YVDkMibugvPehI0Ok-2j9GgFfrV3YVxaZXsm-oO6qLT7R95Hw5XwLEWVeX96FrmqUS662pbQqNVix1z-RJdt9m78Cdf3NSFbmwfDUdRUFYh0yrJ5pJWr5FpwmlJDuFIcHbOcU-lifCS2uaMoS2RmSZIq9F0GFgGNZthImWWUFBTfewNWE4quTA9WP25O9qedi4d4xLt4PlGJudyhmhCVZn3t2Edj_pZ7GoeTqjw-Q-O0aA6XMO5yquY_8VpvBrfuwp0Gv4YfaoW7ByumvA8364qWlw9ge1T98M3IX0lBOBuasgi_Vb4OReRsZhHW2efYaLkqUDdCl4B_HA6n48_70_5QzvKHcHgtE_sIemVVmicQKhIzoqSm1qIHoxKZx9IqyyWLrU4yGsBaN4PitKblEIyjK8k5ywN4086p0A3TuSu48V34iDvNhD4Xbi0EZwG86mTbF_1Par1dGtHs8Zn4o5EBvOy6cXe6kIssTXXhZVwpN0QEV8nECLtzPHoDeFyvdjcUkqUIsRgOgC_oQSfg2MEXe8qvJ54l3FPtZTi2jVZj_hr60hc-vfoLX8Ct0cHertgdT3bW4LZ7qM6XW4fe_PzCPENkNlfPm-0Qwpfr3oG_AROeRt8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIhAXxDehBYIoBw5hN3ZiJweE0JbVbgtVVai0N2M7cUtVkra7Fepf49cx4yRblkW99WYpduTYM543mfEbgI2i4Da2Bt0Sm5oo4ZmOtCuTqF8ifugXuY4ZXXD-siNG-8nWJJ2swO_uLgylVXZnoj-oi9rSP_IeGq5EZimKTM-1aRG7m8MPJ6cRVZCiSGtXTqMRke3y4he6b9P3403c6zeMDT99G4yitsJAZFORzSJrqKprIXnKSyaNkeik5ZJrivex2OVEV5bozLEkNejH9B2CGyuwkQonOCs4vvcG3MTxMemYnFw6e4hMvLPnU5YEZRE11Kg861niIY3lO-kJHQ7r6uAUzdSiYVxCu8tJm_9Ebr1BHN6Duy2SDT82oncfVsrqAdxqaltePIStUf3TNyN_OQWBbVhWRXhU-4oUEVnPImzy0LHRsVaglISUin8QDvbGX3f3egM9zR_B_rUs62NYreqqfAqhYbFgRlvuHPoyJtF5rJ1xUovY2STjAazNV1CdNAQdSkh0KqUUeQBvuzVVtuU8p9Ibx8rH3nmm7JmivVBSBPB63rd70f96rXdbo1ptn6pL2Qzg1fwx6ikFX3RV1ue-DxV1Q2xwVZ8YAXiOh3AAT5rdnk-FZSmCLYETkAtyMO9APOGLT6ofh54v3JPuZTi3jU5i_pr60hc-u_oLX8Jt1Dv1ebyzvQZ3aEyTOLcOq7Oz8_I5QrSZeeF1IYTv1618fwDlKEmv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homology-mediated+end+joining-based+targeted+integration+using+CRISPR%2FCas9&rft.jtitle=Cell+research&rft.au=Yao%2C+Xuan&rft.au=Wang%2C+Xing&rft.au=Hu%2C+Xinde&rft.au=Liu%2C+Zhen&rft.date=2017-06-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1001-0602&rft.eissn=1748-7838&rft.volume=27&rft.issue=6&rft.spage=801&rft.epage=814&rft_id=info:doi/10.1038%2Fcr.2017.76&rft.externalDocID=10_1038_cr_2017_76 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg |