Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions
Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artific...
Saved in:
Published in | Nature communications Vol. 8; no. 1; pp. 1276 - 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.11.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artificially control the natural assemblies and their biofunctions. Here, we report an intracellular enzyme-catalyzed polymerization approach for efficient synthesis of polypeptides and in situ construction of topology-controlled nanostructures. We reveal that the phase behavior and topological structure of polypeptides are encoded in monomeric peptide sequences. Next, we elucidate the relationship between polymerization dynamics and their temperature-dependent topological transition in biological conditions. Importantly, the linearly grown elastin-like polypeptides are biocompatible and aggregate into nanoparticles that exhibit significant molecular accumulation and retention effects. However, 3D gel-like structures with thermo-induced multi-directional traction interfere with cellular fates. These findings allow us to exploit new nanomaterials in living subjects for biomedical applications.
The intracellular topology of a nanostructure plays a major role in its interactions with the cell and accordingly, its biological applications. Here, the authors design peptides that intracellularly polymerize into elastin-like polypeptides and assemble into various topologies, each of which exhibits a distinct set of biological functions. |
---|---|
AbstractList | Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artificially control the natural assemblies and their biofunctions. Here, we report an intracellular enzyme-catalyzed polymerization approach for efficient synthesis of polypeptides and in situ construction of topology-controlled nanostructures. We reveal that the phase behavior and topological structure of polypeptides are encoded in monomeric peptide sequences. Next, we elucidate the relationship between polymerization dynamics and their temperature-dependent topological transition in biological conditions. Importantly, the linearly grown elastin-like polypeptides are biocompatible and aggregate into nanoparticles that exhibit significant molecular accumulation and retention effects. However, 3D gel-like structures with thermo-induced multi-directional traction interfere with cellular fates. These findings allow us to exploit new nanomaterials in living subjects for biomedical applications.
The intracellular topology of a nanostructure plays a major role in its interactions with the cell and accordingly, its biological applications. Here, the authors design peptides that intracellularly polymerize into elastin-like polypeptides and assemble into various topologies, each of which exhibits a distinct set of biological functions. Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artificially control the natural assemblies and their biofunctions. Here, we report an intracellular enzyme-catalyzed polymerization approach for efficient synthesis of polypeptides and in situ construction of topology-controlled nanostructures. We reveal that the phase behavior and topological structure of polypeptides are encoded in monomeric peptide sequences. Next, we elucidate the relationship between polymerization dynamics and their temperature-dependent topological transition in biological conditions. Importantly, the linearly grown elastin-like polypeptides are biocompatible and aggregate into nanoparticles that exhibit significant molecular accumulation and retention effects. However, 3D gel-like structures with thermo-induced multi-directional traction interfere with cellular fates. These findings allow us to exploit new nanomaterials in living subjects for biomedical applications.Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artificially control the natural assemblies and their biofunctions. Here, we report an intracellular enzyme-catalyzed polymerization approach for efficient synthesis of polypeptides and in situ construction of topology-controlled nanostructures. We reveal that the phase behavior and topological structure of polypeptides are encoded in monomeric peptide sequences. Next, we elucidate the relationship between polymerization dynamics and their temperature-dependent topological transition in biological conditions. Importantly, the linearly grown elastin-like polypeptides are biocompatible and aggregate into nanoparticles that exhibit significant molecular accumulation and retention effects. However, 3D gel-like structures with thermo-induced multi-directional traction interfere with cellular fates. These findings allow us to exploit new nanomaterials in living subjects for biomedical applications. The intracellular topology of a nanostructure plays a major role in its interactions with the cell and accordingly, its biological applications. Here, the authors design peptides that intracellularly polymerize into elastin-like polypeptides and assemble into various topologies, each of which exhibits a distinct set of biological functions. Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artificially control the natural assemblies and their biofunctions. Here, we report an intracellular enzyme-catalyzed polymerization approach for efficient synthesis of polypeptides and in situ construction of topology-controlled nanostructures. We reveal that the phase behavior and topological structure of polypeptides are encoded in monomeric peptide sequences. Next, we elucidate the relationship between polymerization dynamics and their temperature-dependent topological transition in biological conditions. Importantly, the linearly grown elastin-like polypeptides are biocompatible and aggregate into nanoparticles that exhibit significant molecular accumulation and retention effects. However, 3D gel-like structures with thermo-induced multi-directional traction interfere with cellular fates. These findings allow us to exploit new nanomaterials in living subjects for biomedical applications. The intracellular topology of a nanostructure plays a major role in its interactions with the cell and accordingly, its biological applications. Here, the authors design peptides that intracellularly polymerize into elastin-like polypeptides and assemble into various topologies, each of which exhibits a distinct set of biological functions. Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artificially control the natural assemblies and their biofunctions. Here, we report an intracellular enzyme-catalyzed polymerization approach for efficient synthesis of polypeptides and in situ construction of topology-controlled nanostructures. We reveal that the phase behavior and topological structure of polypeptides are encoded in monomeric peptide sequences. Next, we elucidate the relationship between polymerization dynamics and their temperature-dependent topological transition in biological conditions. Importantly, the linearly grown elastin-like polypeptides are biocompatible and aggregate into nanoparticles that exhibit significant molecular accumulation and retention effects. However, 3D gel-like structures with thermo-induced multi-directional traction interfere with cellular fates. These findings allow us to exploit new nanomaterials in living subjects for biomedical applications. |
ArticleNumber | 1276 |
Author | Qiao, Sheng-Lin Liu, Wei-Jiao Ma, Yang Li, Li-Li Wan, Dong Pan, Jie Wang, Hao |
Author_xml | – sequence: 1 givenname: Li-Li surname: Li fullname: Li, Li-Li organization: CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) – sequence: 2 givenname: Sheng-Lin surname: Qiao fullname: Qiao, Sheng-Lin organization: CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), University of Chinese Academy of Sciences (UCAS) – sequence: 3 givenname: Wei-Jiao surname: Liu fullname: Liu, Wei-Jiao organization: CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University – sequence: 4 givenname: Yang surname: Ma fullname: Ma, Yang organization: CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), University of Chinese Academy of Sciences (UCAS) – sequence: 5 givenname: Dong surname: Wan fullname: Wan, Dong organization: State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University – sequence: 6 givenname: Jie surname: Pan fullname: Pan, Jie organization: State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University – sequence: 7 givenname: Hao surname: Wang fullname: Wang, Hao email: wanghao@nanoctr.cn organization: CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), University of Chinese Academy of Sciences (UCAS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29097677$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1r3DAQNSWlSbf5Az0UQy-9uNWX9XEplNCPhUAv7VnI8nijxSttJTlh_33ldVI2gUYgJGbee8y8mdfVmQ8equotRh8xovJTYphx0SA8X6J4I19UFwQx3GBB6NnJ_7y6TGmLyqEKS8ZeVedEISW4EBeVX_scjYVxnEYTaxt8ynGy2QVfh6HOYR_GsDk0JZFjGEfo6xI57GGfXQ-1Nz4shClCqu9cvql7dwsxQd25meqsGeth8kfJ9KZ6OZgxweX9u6p-f_v66-pHc_3z-_rqy3VjWy5zY0nbAmMtVgwJBUIa0XE89NYyC21rYADoEOdWdbjrKO0tplJxznqQHbKCrqr1otsHs9X76HYmHnQwTh8DIW60idnZETRvWcskVYyRjlE8qGKSYaIjPVgki2mr6vOitZ-6HfQWZsfGR6KPM97d6E241S3nsjRSBD7cC8TwZ4KU9c6l2XLjIUxJY8UJowwrXKDvn0C3YYq-WKUJJkJRUcb-HAqrVhGCBFMF9e607n8FPwy_AOQCsDGkFGHQ1mUzz6m04UaNkZ5XTS-rpsuq6eOqaVmo5An1Qf1ZEl1IqYD9BuJJ2f9n_QWzWuf- |
CitedBy_id | crossref_primary_10_1016_j_cclet_2021_01_007 crossref_primary_10_1016_j_jconrel_2025_02_026 crossref_primary_10_1002_anie_202114267 crossref_primary_10_1002_ange_202500998 crossref_primary_10_1021_acsnano_0c00883 crossref_primary_10_1002_smll_201901813 crossref_primary_10_1039_D2CS00999D crossref_primary_10_1002_smll_202203448 crossref_primary_10_1021_acs_nanolett_2c00540 crossref_primary_10_1016_j_jconrel_2022_02_018 crossref_primary_10_1002_adma_202419941 crossref_primary_10_1021_acsnano_0c00118 crossref_primary_10_1021_acs_chemrev_0c00306 crossref_primary_10_1039_D0NR00444H crossref_primary_10_1002_adma_202300086 crossref_primary_10_1016_j_apsb_2022_08_013 crossref_primary_10_1002_ange_202103706 crossref_primary_10_1002_chem_201801112 crossref_primary_10_1002_adma_201804814 crossref_primary_10_1002_adhm_201800344 crossref_primary_10_1021_acs_biomac_4c00864 crossref_primary_10_1002_ange_202110512 crossref_primary_10_1021_acsnano_3c08752 crossref_primary_10_1039_C9BM01546A crossref_primary_10_1038_s41596_024_00970_8 crossref_primary_10_1088_1748_605X_abc2e9 crossref_primary_10_1038_s41570_022_00373_x crossref_primary_10_1007_s12274_018_2121_x crossref_primary_10_1021_acs_langmuir_9b03652 crossref_primary_10_3390_molecules27196557 crossref_primary_10_1002_anbr_202300137 crossref_primary_10_1002_adfm_201900004 crossref_primary_10_1021_acsnano_4c10194 crossref_primary_10_1007_s11426_021_1091_x crossref_primary_10_1360_SSV_2022_0143 crossref_primary_10_1002_adma_202403588 crossref_primary_10_1002_anie_202103706 crossref_primary_10_1016_j_nantod_2022_101481 crossref_primary_10_1021_jacs_4c14847 crossref_primary_10_1002_adtp_201800067 crossref_primary_10_1039_C8CC05174G crossref_primary_10_1002_anie_202110512 crossref_primary_10_1021_acsnano_0c05423 crossref_primary_10_1021_acs_nanolett_2c01123 crossref_primary_10_1021_jacs_4c15644 crossref_primary_10_1002_EXP_20230037 crossref_primary_10_1021_acs_biomac_4c01179 crossref_primary_10_1002_chem_202000525 crossref_primary_10_1016_j_nantod_2020_101036 crossref_primary_10_1002_smll_202303541 crossref_primary_10_1039_D2LC00067A crossref_primary_10_1021_acsanm_7b00203 crossref_primary_10_1002_agt2_533 crossref_primary_10_1021_acsabm_0c00707 crossref_primary_10_1002_adfm_202312182 crossref_primary_10_1021_jacs_8b07727 crossref_primary_10_1002_anie_201908185 crossref_primary_10_1021_acs_nanolett_4c01587 crossref_primary_10_1038_s41467_022_29693_8 crossref_primary_10_3389_fonc_2023_1122322 crossref_primary_10_1002_adhm_201800670 crossref_primary_10_1016_j_apcatb_2019_117802 crossref_primary_10_1039_D3MH00592E crossref_primary_10_1016_j_giant_2023_100189 crossref_primary_10_1016_j_tibtech_2023_08_006 crossref_primary_10_1002_marc_202401014 crossref_primary_10_1016_j_progpolymsci_2022_101578 crossref_primary_10_1039_D2BM00212D crossref_primary_10_3390_pharmaceutics13050753 crossref_primary_10_1039_C9TB01227C crossref_primary_10_1007_s11426_019_9517_9 crossref_primary_10_1016_j_mattod_2020_11_001 crossref_primary_10_1021_acs_accounts_2c00420 crossref_primary_10_1002_ange_202114267 crossref_primary_10_1007_s40242_021_1181_8 crossref_primary_10_1007_s11426_020_9829_x crossref_primary_10_1016_j_biomaterials_2018_03_056 crossref_primary_10_1002_anie_202410579 crossref_primary_10_1002_anie_202500998 crossref_primary_10_1039_D0CC03365K crossref_primary_10_1016_j_isci_2022_105789 crossref_primary_10_3390_molecules26030693 crossref_primary_10_1002_advs_202102508 crossref_primary_10_1002_anie_202009387 crossref_primary_10_1038_s41557_024_01565_2 crossref_primary_10_1021_accountsmr_2c00194 crossref_primary_10_1002_adfm_202000229 crossref_primary_10_1002_adma_201804971 crossref_primary_10_1002_ange_202109729 crossref_primary_10_1021_jacs_8b13512 crossref_primary_10_3389_fchem_2020_00591 crossref_primary_10_1039_C9QM00159J crossref_primary_10_1039_D3CS00280B crossref_primary_10_1126_sciadv_aba3190 crossref_primary_10_1002_anbr_202200174 crossref_primary_10_1002_anie_201712803 crossref_primary_10_1002_anie_202109729 crossref_primary_10_1002_ange_202009387 crossref_primary_10_1016_j_apmt_2021_100966 crossref_primary_10_1002_adma_202008518 crossref_primary_10_1021_acscentsci_9b01139 crossref_primary_10_1002_ange_201908185 crossref_primary_10_1039_C8MH01670D crossref_primary_10_1021_acs_nanolett_8b02286 crossref_primary_10_1021_acssynbio_4c00420 crossref_primary_10_1007_s11426_018_9397_5 crossref_primary_10_1039_C9ME00002J crossref_primary_10_1016_j_biomaterials_2017_11_048 crossref_primary_10_1007_s10118_018_2170_3 crossref_primary_10_1002_ange_202410579 crossref_primary_10_1016_j_biomaterials_2021_120855 crossref_primary_10_1016_j_progpolymsci_2022_101545 crossref_primary_10_1021_acsnano_9b08209 crossref_primary_10_1002_ange_201712803 |
Cites_doi | 10.1021/ja042566j 10.1007/s10059-012-2201-9 10.1021/nn304439f 10.1016/j.biomaterials.2009.12.006 10.1038/nchembio.2085 10.1021/jacs.5b09941 10.1016/j.pep.2015.03.013 10.1073/pnas.88.23.10601 10.1039/b909777e 10.1002/adfm.201501489 10.1038/nchem.2564 10.1021/ja015585r 10.1021/bm0255037 10.2217/17435889.4.1.65 10.1002/adma.201503437 10.1002/bip.22582 10.1038/491S58a 10.1021/nl402628n 10.1038/ncomms12041 10.1021/bm201031m 10.1038/onc.2009.342 10.1038/nnano.2010.246 10.1021/jacs.6b00067 10.1038/nmat4294 10.1016/j.addr.2010.04.002 10.1038/nchem.2349 10.1038/ncomms8683 10.1093/protein/gzh006 10.1038/nmat4418 10.1007/s11095-008-9697-x 10.1021/ja904411z 10.1038/nature11082 10.1073/pnas.97.1.44 10.1021/bm034215n 10.1038/ncomms2040 10.1002/bip.10512 10.1021/acsnano.7b03375 10.1021/ja408182p 10.1021/nn501040h 10.1038/nchem.1920 10.1021/ar5000264 10.1038/15100 10.1155/2014/714561 10.1038/ncb2775 10.1021/jacs.5b13541 10.1242/jcs.093229 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Nature Communications is a copyright of Springer, 2017. 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2017 – notice: Nature Communications is a copyright of Springer, 2017. – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-017-01296-8 |
DatabaseName | Springer Nature OA/Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_65454839442b431f9918a47b2dec0800 PMC5668255 29097677 10_1038_s41467_017_01296_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c568t-c255e445194079e78a7b61fdcc4ce55aefeeb066c9b1bb33dc1389664de8b0c73 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:25:19 EDT 2025 Thu Aug 21 18:18:09 EDT 2025 Fri Jul 11 08:29:30 EDT 2025 Wed Aug 13 06:33:06 EDT 2025 Wed Aug 13 06:23:36 EDT 2025 Thu Apr 03 07:03:23 EDT 2025 Tue Jul 01 02:21:06 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 21 02:39:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c568t-c255e445194079e78a7b61fdcc4ce55aefeeb066c9b1bb33dc1389664de8b0c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41467-017-01296-8 |
PMID | 29097677 |
PQID | 1959220749 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_65454839442b431f9918a47b2dec0800 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5668255 proquest_miscellaneous_1962434191 proquest_journals_2127937414 proquest_journals_1959220749 pubmed_primary_29097677 crossref_citationtrail_10_1038_s41467_017_01296_8 crossref_primary_10_1038_s41467_017_01296_8 springer_journals_10_1038_s41467_017_01296_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-02 |
PublicationDateYYYYMMDD | 2017-11-02 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Zhou, Du, Yamagata, Xu (CR44) 2016; 138 Vinogradova (CR13) 2016; 12 Chien (CR18) 2013; 135 Li (CR15) 2016 Ravasio (CR1) 2015; 6 Rana (CR46) 2016; 138 Inostroza-Brito (CR33) 2015; 7 Martínez (CR4) 2008; 4 Huang, Zhang, Yuan, Gao, Zhang (CR8) 2013; 13 Qiao (CR19) 2017; 11 Tozluoğlu (CR7) 2013; 15 Qiao (CR10) 2016 Gao (CR17) 2009; 131 Nath, Chilkoti (CR26) 2001; 123 He (CR42) 2016; 7 Potocky, Menon, Gellman (CR9) 2005; 127 Meyer, Chilkoti (CR47) 1999; 17 Li (CR20) 2014; 8 Meyer, Chilkoti (CR41) 2004; 5 Cho (CR37) 2012; 33 Ghoorchian, Holland (CR40) 2011; 12 Bourzac (CR21) 2012; 491 Betre, Setton, Meyer, Chilkoti (CR32) 2002; 3 Martin, De Vivo, Gentile (CR49) 2011; 2011 Bellingham (CR38) 2003; 70 Zhang, Ma, Shi (CR28) 2014; 47 Murthy, Wilson, Guy, Lorand (CR35) 1991; 88 Bataille (CR24) 2015; 110 Gao, Shi, Yuan, Xu (CR23) 2012; 3 Dvir, Timko, Kohane, Langer (CR2) 2011; 6 Li (CR16) 2016; 28 Jang (CR48) 2009; 29 Dixon (CR11) 2012; 485 Liu, Chen, Akhter, Cronin, Weizmann (CR12) 2016; 8 Zhang (CR29) 2015; 25 Trabbic‐Carlson (CR43) 2004; 17 Quiroz, Chilkoti (CR30) 2015; 14 Murthy (CR34) 2000; 97 Nettles, Chilkoti, Setton (CR31) 2010; 62 Odii, Coussons (CR36) 2014; 2014 Herd (CR14) 2013; 7 Teeuwen, de Wolf, Zuilhof, van Hest (CR39) 2009; 5 Le, Okubo, Sugawara-Narutaki (CR45) 2015; 103 Luo, Kiick (CR27) 2015; 137 Griffin, Weaver, Scumpia, Di Carlo, Segura (CR25) 2015; 14 Decuzzi, Pasqualini, Arap, Ferrari (CR3) 2008; 26 Zouani (CR6) 2012; 125 Tang, Peng, Ding (CR5) 2010; 31 Ye (CR22) 2014; 6 N Nath (1296_CR26) 2001; 123 SL Qiao (1296_CR19) 2017; 11 JR Dixon (1296_CR11) 2012; 485 RLM Teeuwen (1296_CR39) 2009; 5 E Martínez (1296_CR4) 2008; 4 Y Gao (1296_CR17) 2009; 131 M Tozluoğlu (1296_CR7) 2013; 15 T Luo (1296_CR27) 2015; 137 LL Li (1296_CR15) 2016 M-P Chien (1296_CR18) 2013; 135 H Betre (1296_CR32) 2002; 3 A Ravasio (1296_CR1) 2015; 6 Y-N Zhang (1296_CR29) 2015; 25 T Dvir (1296_CR2) 2011; 6 L He (1296_CR42) 2016; 7 SNP Murthy (1296_CR34) 2000; 97 J Tang (1296_CR5) 2010; 31 FG Quiroz (1296_CR30) 2015; 14 DE Meyer (1296_CR41) 2004; 5 D Liu (1296_CR12) 2016; 8 H Herd (1296_CR14) 2013; 7 TB Potocky (1296_CR9) 2005; 127 GY Jang (1296_CR48) 2009; 29 DL Nettles (1296_CR31) 2010; 62 LL Li (1296_CR16) 2016; 28 P Decuzzi (1296_CR3) 2008; 26 SN Murthy (1296_CR35) 1991; 88 BO Odii (1296_CR36) 2014; 2014 A Martin (1296_CR49) 2011; 2011 L Bataille (1296_CR24) 2015; 110 DR Griffin (1296_CR25) 2015; 14 DE Meyer (1296_CR47) 1999; 17 C Huang (1296_CR8) 2013; 13 S Rana (1296_CR46) 2016; 138 LL Li (1296_CR20) 2014; 8 K Bourzac (1296_CR21) 2012; 491 A Ghoorchian (1296_CR40) 2011; 12 CM Bellingham (1296_CR38) 2003; 70 Y Gao (1296_CR23) 2012; 3 Z Zhang (1296_CR28) 2014; 47 DHT Le (1296_CR45) 2015; 103 KE Inostroza-Brito (1296_CR33) 2015; 7 K Trabbic‐Carlson (1296_CR43) 2004; 17 M Vinogradova (1296_CR13) 2016; 12 J Zhou (1296_CR44) 2016; 138 SL Qiao (1296_CR10) 2016 D Ye (1296_CR22) 2014; 6 OF Zouani (1296_CR6) 2012; 125 S-Y Cho (1296_CR37) 2012; 33 27214401 - Nat Chem Biol. 2016 Jul;12 (7):531-8 19731909 - J Am Chem Soc. 2009 Sep 30;131(38):13576-7 21151110 - Nat Nanotechnol. 2011 Jan;6(1):13-22 22302989 - J Cell Sci. 2012 Mar 1;125(Pt 5):1217-24 26492010 - Nat Chem. 2015 Nov;7(11):897-904 24694280 - Acc Chem Res. 2014 Apr 15;47(4):1426-37 23792690 - Nat Cell Biol. 2013 Jul;15(7):751-62 26966844 - J Am Chem Soc. 2016 Mar 23;138(11):3813-23 26158873 - Nat Commun. 2015 Jul 09;6:7683 12217035 - Biomacromolecules. 2002 Sep-Oct;3(5):910-6 26967961 - J Am Chem Soc. 2016 Apr 6;138(13):4522-9 28628744 - ACS Nano. 2017 Jul 25;11(7):7301-7311 11516269 - J Am Chem Soc. 2001 Aug 29;123(34):8197-202 26633746 - J Am Chem Soc. 2015 Dec 16;137(49):15362-5 24308273 - J Am Chem Soc. 2013 Dec 18;135(50):18710-3 24848238 - Nat Chem. 2014 Jun;6(6):519-26 26523134 - Adv Funct Mater. 2015 Aug 12;25(30):4814-4826 26390327 - Nat Mater. 2015 Nov;14(11):1164-71 10545920 - Nat Biotechnol. 1999 Nov;17 (11):1112-5 20385185 - Adv Drug Deliv Rev. 2010 Dec 30;62(15):1479-85 24778599 - ScientificWorldJournal. 2014 Mar 23;2014:714561 23402533 - ACS Nano. 2013 Mar 26;7(3):1961-73 27349934 - Nat Commun. 2016 Jun 28;7:12041 25363567 - Biopolymers. 2015 Mar;103(3):175-85 19093897 - Nanomedicine (Lond). 2009 Jan;4(1):65-82 18712584 - Pharm Res. 2009 Jan;26(1):235-43 24716550 - ACS Nano. 2014 May 27;8(5):4975-83 22382681 - Mol Cells. 2012 Mar;33(3):235-41 21972921 - Biomacromolecules. 2011 Nov 14;12(11):4022-9 23972158 - Nano Lett. 2013 Sep 11;13(9):4546-50 14985538 - Protein Eng Des Sel. 2004 Jan;17(1):57-66 14648756 - Biopolymers. 2003 Dec;70(4):445-55 26030305 - Nat Mater. 2015 Jul;14(7):737-44 25819942 - Protein Expr Purif. 2015 Jun;110:165-71 27657865 - Nat Chem. 2016 Oct;8(10):907-14 27341352 - ACS Appl Mater Interfaces. 2016 Jul 20;8(28):17936-43 10618368 - Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):44-8 23320289 - Nature. 2012 Nov 22;491(7425):S58-60 1683705 - Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10601-4 22929790 - Nat Commun. 2012;3:1033 27348260 - ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17016-22 15771489 - J Am Chem Soc. 2005 Mar 23;127(11):3686-7 22495300 - Nature. 2012 Apr 11;485(7398):376-80 20022630 - Biomaterials. 2010 Mar;31(9):2470-6 19838207 - Oncogene. 2010 Jan 21;29(3):356-67 15132671 - Biomacromolecules. 2004 May-Jun;5(3):846-51 26568542 - Adv Mater. 2016 Jan 13;28(2):254-62 21350675 - Int J Alzheimers Dis. 2011 Feb 16;2011:865432 |
References_xml | – volume: 127 start-page: 3686 year: 2005 end-page: 3687 ident: CR9 article-title: Effects of conformational stability and geometry of guanidinium display on cell entry by β-peptides publication-title: J. Am. Chem. Soc. doi: 10.1021/ja042566j – volume: 33 start-page: 235 year: 2012 end-page: 241 ident: CR37 article-title: Doxorubicin induces the persistent activation of intracellular transglutaminase 2 that protects from cell death publication-title: Mol. Cells doi: 10.1007/s10059-012-2201-9 – volume: 7 start-page: 1961 year: 2013 end-page: 1973 ident: CR14 article-title: Nanoparticle geometry and surface orientation influence mode of cellular uptake publication-title: ACS Nano doi: 10.1021/nn304439f – volume: 31 start-page: 2470 year: 2010 end-page: 2476 ident: CR5 article-title: The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.12.006 – volume: 12 start-page: 531 year: 2016 end-page: 538 ident: CR13 article-title: An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2085 – volume: 137 start-page: 15362 year: 2015 end-page: 15365 ident: CR27 article-title: Noncovalent modulation of the inverse temperature transition and self-assembly of elastin-b-collagen-like peptide bioconjugates publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09941 – volume: 110 start-page: 165 year: 2015 end-page: 171 ident: CR24 article-title: Expression and purification of short hydrophobic elastin-like polypeptides with maltose-binding protein as a solubility tag publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2015.03.013 – volume: 88 start-page: 10601 year: 1991 end-page: 10604 ident: CR35 article-title: Intramolecular crosslinking of monomeric fibrinogen by tissue transglutaminase publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.88.23.10601 – volume: 5 start-page: 4305 year: 2009 end-page: 4310 ident: CR39 article-title: Elastin-like polypeptides of different molecular weights show independent transition temperatures when mixed publication-title: Soft Matter doi: 10.1039/b909777e – volume: 25 start-page: 4814 year: 2015 end-page: 4826 ident: CR29 article-title: A highly elastic and rapidly crosslinkable elastin-like polypeptide-based hydrogel for biomedical applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501489 – volume: 8 start-page: 907 year: 2016 end-page: 914 ident: CR12 article-title: Creating complex molecular topologies by configuring DNA four-way junctions publication-title: Nat. Chem. doi: 10.1038/nchem.2564 – volume: 123 start-page: 8197 year: 2001 end-page: 8202 ident: CR26 article-title: Interfacial phase transition of an environmentally responsive elastin biopolymer adsorbed on functionalized gold nanoparticles studied by colloidal surface plasmon resonance publication-title: J. Am. Chem. Soc. doi: 10.1021/ja015585r – volume: 3 start-page: 910 year: 2002 end-page: 916 ident: CR32 article-title: Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair publication-title: Biomacromolecules doi: 10.1021/bm0255037 – volume: 4 start-page: 65 year: 2008 end-page: 82 ident: CR4 article-title: Stem cell differentiation by functionalized micro- and nanostructured surfaces publication-title: Nanomedicine doi: 10.2217/17435889.4.1.65 – volume: 28 start-page: 254 year: 2016 end-page: 262 ident: CR16 article-title: Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection publication-title: Adv. Mater. doi: 10.1002/adma.201503437 – volume: 103 start-page: 175 year: 2015 end-page: 185 ident: CR45 article-title: Beaded nanofibers assembled from double-hydrophobic elastin-like block polypeptides: effects of trifluoroethanol publication-title: Biopolymers doi: 10.1002/bip.22582 – start-page: 17936 year: 2016 end-page: 17943 ident: CR15 article-title: Quantitative analysis of caspase-1 activity in living cells through dynamic equilibrium of chlorophyll-based nano-assembly modulated photoacoustic signals publication-title: ACS Appl. Mater. Interfaces – volume: 491 start-page: S58 year: 2012 end-page: S60 ident: CR21 article-title: Nanotechnology: carrying drugs publication-title: Nature doi: 10.1038/491S58a – volume: 13 start-page: 4546 year: 2013 end-page: 4550 ident: CR8 article-title: Role of nanoparticle geometry in endocytosis: laying down to stand up publication-title: Nano Lett. doi: 10.1021/nl402628n – volume: 7 year: 2016 ident: CR42 article-title: Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles publication-title: Nat. Commun. doi: 10.1038/ncomms12041 – volume: 12 start-page: 4022 year: 2011 end-page: 4029 ident: CR40 article-title: Molecular architecture influences the thermally induced aggregation behaviour of elastin-like polypeptides publication-title: Biomacromolecules doi: 10.1021/bm201031m – volume: 29 start-page: 356 year: 2009 end-page: 367 ident: CR48 article-title: Transglutaminase 2 suppresses apoptosis by modulating caspase 3 and NF-[kappa]B activity in hypoxic tumor cells publication-title: Oncogene doi: 10.1038/onc.2009.342 – volume: 6 start-page: 13 year: 2011 end-page: 22 ident: CR2 article-title: Nanotechnological strategies for engineering complex tissues publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.246 – volume: 138 start-page: 4522 year: 2016 end-page: 4529 ident: CR46 article-title: Ratiometric array of conjugated polymers–fluorescent protein provides a robust mammalian cell sensor publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00067 – volume: 14 start-page: 737 year: 2015 end-page: 744 ident: CR25 article-title: Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks publication-title: Nat. Mater. doi: 10.1038/nmat4294 – volume: 62 start-page: 1479 year: 2010 end-page: 1485 ident: CR31 article-title: Applications of elastin-like polypeptides in tissue engineering publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2010.04.002 – volume: 7 start-page: 897 year: 2015 end-page: 904 ident: CR33 article-title: Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein–peptide system publication-title: Nat. Chem. doi: 10.1038/nchem.2349 – volume: 6 year: 2015 ident: CR1 article-title: Gap geometry dictates epithelial closure efficiency publication-title: Nat. Commun. doi: 10.1038/ncomms8683 – volume: 17 start-page: 57 year: 2004 end-page: 66 ident: CR43 article-title: Effect of protein fusion on the transition temperature of an environmentally responsive elastin‐like polypeptide: a role for surface hydrophobicity? publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzh006 – volume: 14 start-page: 1164 year: 2015 end-page: 1171 ident: CR30 article-title: Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers publication-title: Nat. Mater. doi: 10.1038/nmat4418 – volume: 26 year: 2008 ident: CR3 article-title: Intravascular delivery of particulate systems: does geometry really matter? publication-title: Pharmaceut. Res. doi: 10.1007/s11095-008-9697-x – volume: 131 start-page: 13576 year: 2009 end-page: 13577 ident: CR17 article-title: Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904411z – volume: 485 start-page: 376 year: 2012 end-page: 380 ident: CR11 article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions publication-title: Nature doi: 10.1038/nature11082 – volume: 97 start-page: 44 year: 2000 end-page: 48 ident: CR34 article-title: Transglutaminase-catalyzed crosslinking of the Aα and γ constituent chains in fibrinogen publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.1.44 – volume: 5 start-page: 846 year: 2004 end-page: 851 ident: CR41 article-title: Quantification of the effects of chain length and concentration on the thermal behaviour of elastin-like polypeptides publication-title: Biomacromolecules doi: 10.1021/bm034215n – volume: 3 year: 2012 ident: CR23 article-title: Imaging enzyme-triggered self-assembly of small molecules inside live cells publication-title: Nat. Commun. doi: 10.1038/ncomms2040 – volume: 70 start-page: 445 year: 2003 end-page: 455 ident: CR38 article-title: Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties publication-title: Biopolymers doi: 10.1002/bip.10512 – volume: 11 start-page: 7301 year: 2017 end-page: 7311 ident: CR19 article-title: General approach of stimuli-induced aggregation for monitoring tumor therapy publication-title: ACS Nano doi: 10.1021/acsnano.7b03375 – volume: 135 start-page: 18710 year: 2013 end-page: 18713 ident: CR18 article-title: Enzyme-directed assembly of nanoparticles in tumors monitored by in vivo whole animal imaging and ex vivo super-resolution fluorescence imaging publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408182p – volume: 8 start-page: 4975 year: 2014 end-page: 4983 ident: CR20 article-title: Core-shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery publication-title: ACS Nano doi: 10.1021/nn501040h – volume: 6 start-page: 519 year: 2014 end-page: 526 ident: CR22 article-title: Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo publication-title: Nat. Chem. doi: 10.1038/nchem.1920 – volume: 47 start-page: 1426 year: 2014 end-page: 1437 ident: CR28 article-title: Cooperative macromolecular self-assembly toward polymeric assemblies with multiple and bioactive functions publication-title: Acc. Chem. Res. doi: 10.1021/ar5000264 – volume: 17 start-page: 1112 year: 1999 end-page: 1115 ident: CR47 article-title: Purification of recombinant proteins by fusion with thermally-responsive polypeptides publication-title: Nat. Biotech. doi: 10.1038/15100 – volume: 2014 year: 2014 ident: CR36 article-title: Biological functionalities of transglutaminase 2 and the possibility of its compensation by other members of the transglutaminase family publication-title: Sci. World J. doi: 10.1155/2014/714561 – volume: 15 start-page: 751 year: 2013 end-page: 762 ident: CR7 article-title: Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions publication-title: Nat. Cell Biol. doi: 10.1038/ncb2775 – volume: 138 start-page: 3813 year: 2016 end-page: 3823 ident: CR44 article-title: Enzyme-instructed self-assembly of small d-peptides as a multiple-step process for selectively killing cancer cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13541 – start-page: 17016 year: 2016 end-page: 17022 ident: CR10 article-title: Thermo-controlled in situ phase transition of polymer-peptides on cell surfaces for high-performance proliferative inhibition publication-title: ACS Appl. Mater. Interfaces – volume: 2011 year: 2011 ident: CR49 article-title: Possible role of the transglutaminases in the pathogenesis of Alzheimer’s disease and other neurodegenerative diseases publication-title: Int. J. Alzheimers Dis. – volume: 125 start-page: 1217 year: 2012 end-page: 1224 ident: CR6 article-title: Altered nanofeature size dictates stem cell differentiation publication-title: J. Cell Sci. doi: 10.1242/jcs.093229 – volume: 127 start-page: 3686 year: 2005 ident: 1296_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja042566j – volume: 62 start-page: 1479 year: 2010 ident: 1296_CR31 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2010.04.002 – volume: 6 year: 2015 ident: 1296_CR1 publication-title: Nat. Commun. doi: 10.1038/ncomms8683 – volume: 47 start-page: 1426 year: 2014 ident: 1296_CR28 publication-title: Acc. Chem. Res. doi: 10.1021/ar5000264 – volume: 12 start-page: 4022 year: 2011 ident: 1296_CR40 publication-title: Biomacromolecules doi: 10.1021/bm201031m – volume: 4 start-page: 65 year: 2008 ident: 1296_CR4 publication-title: Nanomedicine doi: 10.2217/17435889.4.1.65 – volume: 138 start-page: 4522 year: 2016 ident: 1296_CR46 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00067 – volume: 25 start-page: 4814 year: 2015 ident: 1296_CR29 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501489 – volume: 11 start-page: 7301 year: 2017 ident: 1296_CR19 publication-title: ACS Nano doi: 10.1021/acsnano.7b03375 – volume: 2014 year: 2014 ident: 1296_CR36 publication-title: Sci. World J. doi: 10.1155/2014/714561 – volume: 2011 year: 2011 ident: 1296_CR49 publication-title: Int. J. Alzheimers Dis. – volume: 13 start-page: 4546 year: 2013 ident: 1296_CR8 publication-title: Nano Lett. doi: 10.1021/nl402628n – volume: 15 start-page: 751 year: 2013 ident: 1296_CR7 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2775 – volume: 17 start-page: 1112 year: 1999 ident: 1296_CR47 publication-title: Nat. Biotech. doi: 10.1038/15100 – volume: 110 start-page: 165 year: 2015 ident: 1296_CR24 publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2015.03.013 – volume: 6 start-page: 13 year: 2011 ident: 1296_CR2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.246 – start-page: 17016 volume-title: ACS Appl. Mater. Interfaces year: 2016 ident: 1296_CR10 – volume: 8 start-page: 4975 year: 2014 ident: 1296_CR20 publication-title: ACS Nano doi: 10.1021/nn501040h – volume: 17 start-page: 57 year: 2004 ident: 1296_CR43 publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzh006 – volume: 7 start-page: 897 year: 2015 ident: 1296_CR33 publication-title: Nat. Chem. doi: 10.1038/nchem.2349 – volume: 8 start-page: 907 year: 2016 ident: 1296_CR12 publication-title: Nat. Chem. doi: 10.1038/nchem.2564 – volume: 28 start-page: 254 year: 2016 ident: 1296_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.201503437 – volume: 131 start-page: 13576 year: 2009 ident: 1296_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904411z – volume: 135 start-page: 18710 year: 2013 ident: 1296_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408182p – volume: 3 year: 2012 ident: 1296_CR23 publication-title: Nat. Commun. doi: 10.1038/ncomms2040 – volume: 26 year: 2008 ident: 1296_CR3 publication-title: Pharmaceut. Res. doi: 10.1007/s11095-008-9697-x – volume: 125 start-page: 1217 year: 2012 ident: 1296_CR6 publication-title: J. Cell Sci. doi: 10.1242/jcs.093229 – volume: 5 start-page: 4305 year: 2009 ident: 1296_CR39 publication-title: Soft Matter doi: 10.1039/b909777e – volume: 29 start-page: 356 year: 2009 ident: 1296_CR48 publication-title: Oncogene doi: 10.1038/onc.2009.342 – volume: 31 start-page: 2470 year: 2010 ident: 1296_CR5 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.12.006 – volume: 14 start-page: 1164 year: 2015 ident: 1296_CR30 publication-title: Nat. Mater. doi: 10.1038/nmat4418 – volume: 33 start-page: 235 year: 2012 ident: 1296_CR37 publication-title: Mol. Cells doi: 10.1007/s10059-012-2201-9 – volume: 138 start-page: 3813 year: 2016 ident: 1296_CR44 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13541 – volume: 70 start-page: 445 year: 2003 ident: 1296_CR38 publication-title: Biopolymers doi: 10.1002/bip.10512 – volume: 6 start-page: 519 year: 2014 ident: 1296_CR22 publication-title: Nat. Chem. doi: 10.1038/nchem.1920 – volume: 14 start-page: 737 year: 2015 ident: 1296_CR25 publication-title: Nat. Mater. doi: 10.1038/nmat4294 – volume: 5 start-page: 846 year: 2004 ident: 1296_CR41 publication-title: Biomacromolecules doi: 10.1021/bm034215n – volume: 12 start-page: 531 year: 2016 ident: 1296_CR13 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2085 – volume: 103 start-page: 175 year: 2015 ident: 1296_CR45 publication-title: Biopolymers doi: 10.1002/bip.22582 – volume: 3 start-page: 910 year: 2002 ident: 1296_CR32 publication-title: Biomacromolecules doi: 10.1021/bm0255037 – volume: 123 start-page: 8197 year: 2001 ident: 1296_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja015585r – volume: 97 start-page: 44 year: 2000 ident: 1296_CR34 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.1.44 – volume: 88 start-page: 10601 year: 1991 ident: 1296_CR35 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.88.23.10601 – volume: 7 year: 2016 ident: 1296_CR42 publication-title: Nat. Commun. doi: 10.1038/ncomms12041 – volume: 7 start-page: 1961 year: 2013 ident: 1296_CR14 publication-title: ACS Nano doi: 10.1021/nn304439f – start-page: 17936 volume-title: ACS Appl. Mater. Interfaces year: 2016 ident: 1296_CR15 – volume: 491 start-page: S58 year: 2012 ident: 1296_CR21 publication-title: Nature doi: 10.1038/491S58a – volume: 137 start-page: 15362 year: 2015 ident: 1296_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09941 – volume: 485 start-page: 376 year: 2012 ident: 1296_CR11 publication-title: Nature doi: 10.1038/nature11082 – reference: 21972921 - Biomacromolecules. 2011 Nov 14;12(11):4022-9 – reference: 28628744 - ACS Nano. 2017 Jul 25;11(7):7301-7311 – reference: 20022630 - Biomaterials. 2010 Mar;31(9):2470-6 – reference: 26633746 - J Am Chem Soc. 2015 Dec 16;137(49):15362-5 – reference: 22929790 - Nat Commun. 2012;3:1033 – reference: 25363567 - Biopolymers. 2015 Mar;103(3):175-85 – reference: 19093897 - Nanomedicine (Lond). 2009 Jan;4(1):65-82 – reference: 1683705 - Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10601-4 – reference: 26390327 - Nat Mater. 2015 Nov;14(11):1164-71 – reference: 24716550 - ACS Nano. 2014 May 27;8(5):4975-83 – reference: 10545920 - Nat Biotechnol. 1999 Nov;17 (11):1112-5 – reference: 24308273 - J Am Chem Soc. 2013 Dec 18;135(50):18710-3 – reference: 23320289 - Nature. 2012 Nov 22;491(7425):S58-60 – reference: 26158873 - Nat Commun. 2015 Jul 09;6:7683 – reference: 25819942 - Protein Expr Purif. 2015 Jun;110:165-71 – reference: 27657865 - Nat Chem. 2016 Oct;8(10):907-14 – reference: 24694280 - Acc Chem Res. 2014 Apr 15;47(4):1426-37 – reference: 24848238 - Nat Chem. 2014 Jun;6(6):519-26 – reference: 15132671 - Biomacromolecules. 2004 May-Jun;5(3):846-51 – reference: 12217035 - Biomacromolecules. 2002 Sep-Oct;3(5):910-6 – reference: 19731909 - J Am Chem Soc. 2009 Sep 30;131(38):13576-7 – reference: 11516269 - J Am Chem Soc. 2001 Aug 29;123(34):8197-202 – reference: 15771489 - J Am Chem Soc. 2005 Mar 23;127(11):3686-7 – reference: 22382681 - Mol Cells. 2012 Mar;33(3):235-41 – reference: 10618368 - Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):44-8 – reference: 14985538 - Protein Eng Des Sel. 2004 Jan;17(1):57-66 – reference: 21151110 - Nat Nanotechnol. 2011 Jan;6(1):13-22 – reference: 26523134 - Adv Funct Mater. 2015 Aug 12;25(30):4814-4826 – reference: 27348260 - ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17016-22 – reference: 27214401 - Nat Chem Biol. 2016 Jul;12 (7):531-8 – reference: 20385185 - Adv Drug Deliv Rev. 2010 Dec 30;62(15):1479-85 – reference: 24778599 - ScientificWorldJournal. 2014 Mar 23;2014:714561 – reference: 26967961 - J Am Chem Soc. 2016 Apr 6;138(13):4522-9 – reference: 26492010 - Nat Chem. 2015 Nov;7(11):897-904 – reference: 27341352 - ACS Appl Mater Interfaces. 2016 Jul 20;8(28):17936-43 – reference: 26966844 - J Am Chem Soc. 2016 Mar 23;138(11):3813-23 – reference: 23402533 - ACS Nano. 2013 Mar 26;7(3):1961-73 – reference: 14648756 - Biopolymers. 2003 Dec;70(4):445-55 – reference: 27349934 - Nat Commun. 2016 Jun 28;7:12041 – reference: 26030305 - Nat Mater. 2015 Jul;14(7):737-44 – reference: 18712584 - Pharm Res. 2009 Jan;26(1):235-43 – reference: 22302989 - J Cell Sci. 2012 Mar 1;125(Pt 5):1217-24 – reference: 26568542 - Adv Mater. 2016 Jan 13;28(2):254-62 – reference: 23792690 - Nat Cell Biol. 2013 Jul;15(7):751-62 – reference: 21350675 - Int J Alzheimers Dis. 2011 Feb 16;2011:865432 – reference: 23972158 - Nano Lett. 2013 Sep 11;13(9):4546-50 – reference: 22495300 - Nature. 2012 Apr 11;485(7398):376-80 – reference: 19838207 - Oncogene. 2010 Jan 21;29(3):356-67 |
SSID | ssj0000391844 |
Score | 2.5539749 |
Snippet | Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix,... The intracellular topology of a nanostructure plays a major role in its interactions with the cell and accordingly, its biological applications. Here, the... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1276 |
SubjectTerms | 639/301/357/341 639/301/54/990 639/638/45/953 Biocompatibility Biomedical materials Cellular structure Chemical synthesis Coding Construction Elastin Extracellular matrix Humanities and Social Sciences Interfaces Intracellular Mimicry multidisciplinary Nanomaterials Nanoparticles Nanostructure Nanotechnology Organs Peptides Polymerization Polypeptides Science Science (multidisciplinary) Self-assembly Temperature dependence Topology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSki9VDxKSVuQkbhB1I3jxPYREFXhwIlKvVmxPVaRqgSp20P_fWfs7LILLVy4xg85nrHnG3v8DcBbQg3adNbXOlpdK8NpXlSDtQze23YwixhzlO-3_uxcfb3oLjZSfXFMWKEHLhN30pOJV4afb0pPxi4RnjGD0l5GZJLs7K2TzdtwpvIe3FI1peZXMovWnFyrvCfwpsxnL31ttixRJuy_D2X-GSz5241pNkSnT2BvRpDiQxn5U3iE4zN4XHJK3j6H8Qt3wOfxHGAqwvSLIlZMSSxLUoTbeo5Rv8Io6At5o7R3RBTjME6lwQ054oKPaUXMsRsoCmETS1WwOcwauw_np5-_fzqr56QKdeh6s6wD-RDIrGSWXDmL2gza902KIaiAXTdgQvSEQ4L1jfdtGwNfZfa9imj8Iuj2BeyM04gvQVjlg0rRky-blFbB2uhTwqFpYvJDshU0qwl2YWYc58QXVy7ffLfGFaE4EorLQnGmgnfrNj8L38Zfa39kua1rMld2_kAa5GYNcv_SoAqOV1J38wK-dsy5IyXhK3tvMfPiE7CjAVXwZl1MK5PFO4w43XAXvVRMl9dUcFB0aD1QaReEA7WuQG9p19afbJeMPy4z-zfhb_Lquwrer_RwY9QPztTh_5ipI9iVvID4VF0eww5pI74iTLb0r_PyuwMHKDMT priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJtAQUbiBlYTx4ntEwJEVThwotLerPgFSFXSsttD_z0zjjdlofQaJ5Hjefib8eQbgNeIGpTujOMqGMWlpjYvsolceOdMO-g6hFzl-7U_OpZfVt2qJNzWpaxy6xOzow6Tpxz5AZGgCIEbnnl3esapaxSdrpYWGjfhFlGXUUmXWqklx0Ls51rK8q9M3eqDtcyegVwzZWB6rnf2o0zbfxXW_Ldk8q9z07wdHd6DuwVHsvez4O_DjTg-gNtzZ8mLhzB-phdQVp7KTJmfLoli2ZTYZm6NcMFLpfpJDAyvYEyKHiRENg7jND9wjuE4o2QtC7mCI7KZtolky2hTzHr7CI4PP337eMRLawXuu15vuMdIIhI3mcGAzkSlB-X6JgXvpY9dN8QUo0M04o1rnGvb4OlAs-9liNrVXrWPYW-cxvgUmJHOyxQcRrRJKumNCS6lODRNSG5IpoJmu8DWF95xan9xYvP5d6vtLBSLQrFZKFZX8GZ55nRm3bj27g8kt-VOYszOF6Zf320xQNsjVJSafgMWDkFTQlysB6mcCJHI1usK9rdSt8WM1_ZS6a4cJnZ8hHc4oQpeLcNonyTeYYzTOb2iF5JI85oKnsw6tExUmBrRoFIVqB3t2vmS3ZHx54_MAY4oHGP7roK3Wz38Y9b_Xaln13_kc7gjyDQoay72YQ_1LL5AzLVxL7Nh_QYzKyxk priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiPJMaZGRuEFg4zixfUBVQVQFCU6s1JsVvwBplUC7lbr_nhk7WVhYkLjGDzmeGfsbe_wNwFNEDVI12pbSa1kKRWleRBVK7qzVdadm3qco34_t6Vy8P2vOdmBKdzRO4MVW147ySc3PFy-uvq-O0OBf5Sfj6uWFSOZO6y0dq7SlugbXcWeSZKgfRrifVuZao0Mjxrcz25tu7E-Jxn8b9vwzhPK3e9S0PZ3chlsjrmTHWRH2YCf0d-BGzjS5ugv9O-qATukp7JS54SdxLBsiW-ZUCatyjFxfBM_wC_qouKL4wPquH3KDS3TPGR3eMp8iOgLLNE4ka0abZNLjezA_efvpzWk5plooXdOqZenQswjEVabRwdNBqk7atoreOeFC03QhhmARnThtK2vr2ju64Gxb4YOyMyfr-7DbD314CEwL60T0Fj3cKKRwWnsbY-iqykfbRV1ANU2wcSMPOaXDWJh0H14rk4ViUCgmCcWoAp6t23zLLBz_rP2a5LauSQza6cNw_tmMBmlahI5C0bNgbhFERcTJqhPSch-IfH1WwMEkdTNppSEmHs4RdemtxcSWj3APB1TAk3Ux2iuJt-vDcEldtFwQiV5VwIOsQ-uBcj1DdChlAXJDuzb-ZLOk__olcYIjKkdfvyng-aSHv4z6rzO1_3_VH8FNTqZCp-r8AHZR78IhYrKlfZwM7QfXZDPG priority: 102 providerName: Scholars Portal |
Title | Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions |
URI | https://link.springer.com/article/10.1038/s41467-017-01296-8 https://www.ncbi.nlm.nih.gov/pubmed/29097677 https://www.proquest.com/docview/1959220749 https://www.proquest.com/docview/2127937414 https://www.proquest.com/docview/1962434191 https://pubmed.ncbi.nlm.nih.gov/PMC5668255 https://doaj.org/article/65454839442b431f9918a47b2dec0800 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEC72geBFfNu6DhG8aWM_0p3kODvsuA64iLowt9B5qbB0izMe9t9blX7o6Ch46YFO0mRSleSrSuUrgOeIGoSslEmFUyLlktK88NynhTVGlY3MnItRvhf1-SVfrav1ARTjXZgYtB8pLeMyPUaHvdrwOKVpTSXXSZ3KQzgm6nbS6kW9mPwqxHguOR_ux2Sl3NN0Zw-KVP378OWfYZK_nZXGLWh5G24N2JHN-97egQPf3oUbfTbJ63vQvqEPkCeeQkuZ7X6Sw7IusG2fDuE6HaLTr7xj-AbtUFw1nGdt03Z9AxyWDSMHLXMxasOznqqJ5MloI4y6eh8ul2cfF-fpkE4htVUtt6lF68ETH5lCI055IRth6jw4a7n1VdX44L1BBGKVyY0pS2fpELOuufPSZFaUD-Co7Vr_CJjixvLgDFqxgQtulXImBN_kuQumCSqBfBxgbQeucUp5caXjmXcpdS8UjULRUShaJvBiavO1Z9r4Z-1TkttUk1iy44vu2yc9aI2uER5ySVd_C4NAKSAWlg0XpnCeCNazBE5Gqeth6m40se0UBSIrtbeYGPER0mGHEng2FeOcJPE2re--0yfqghNRXp7Aw16Hpo4WKkMEKEQCYke7dv7Jbkn75XPk_UbkjfZ8lcDLUQ9_6fVfR-rx_1V_AjcLmirkOS9O4Aj1zj9F3LU1MzgUa4FPuXw9g-P5fPVhhb-nZxfv3s_iJJxFjwY-33L5A5MAMOo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaImjhPbB4R4Vbu09NRKezPxI4BUJYXdCu2f4jcy4yRbFkpvvcaJ5Xienhl_A_AMvQapSm1T6bVMhaI2LyIPKXfW6qJWmfexyne_mhyKj7NytgG_xrswVFY56sSoqH3nKEa-TSAonKPB06-Pv6fUNYqyq2MLjZ4tdsPyJx7Z5q-m75G-zznf-XDwbpIOXQVSV1ZqkTp0ogPBcmk8y-ggVS1tlTfeOeFCWdahCcGiIXba5tYWhXeUy6sq4YOymZMFznsJLqPhzUii5EyuYjqEtq6EGO7mZIXanouoicgUUMSnStWa_YttAs7ybf8t0fwrTxvN384NuD74rexNz2g3YSO0t-BK38lyeRvaKU1AWQAqa2WuOwWmZV3DFn0rhmU6VMYfBc_wCZ6BUWP5wNq67foPTvD4zyg4zHysGAmsh4kiXmJkhKOc3IHDC9n0u7DZdm24D0wL60TjLZ6gGyGF09rbpgl1nvvG1o1OIB832LgB55zabRyZmG8vlOmJYpAoJhLFqARerL457lE-zn37LdFt9SYhdMcH3Y8vZhB4U6FrKhRdO-YWeaVBP1zVQlruA4G7ZwlsjVQ3g9qYm1MmP3OY0PjRncQFJfB0NYz6gMhbt6E7oSkqLgikL0_gXs9Dq4VynaH3KWUCco271v5kfaT99jVijqPXr5CGCbwc-fCPVf93px6c_5NP4Ork4NOe2Zvu7z6Ea5zEhCL2fAs2kefCI_T3FvZxFDIGny9aqn8DUnZqRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAviHcDBYwEJ4h24zixfUAIKKsuRRUHKu0txC9AqpLS3QrtX-PXMeMkWxZKb73GieV4np4ZfwPwDL0GqQptUum0TIWiNi8i8ym3xui8VmPnYpXvQbl3KD7MitkG_BruwlBZ5aATo6J2raUY-YhAUDhHg6dHoS-L-LQ7eX38I6UOUpRpHdppdCyy75c_8fg2fzXdRVo_53zy_vO7vbTvMJDaolSL1KJD7QmiS-O5RnupamnKLDhrhfVFUfvgvUGjbLXJjMlzZymvV5bCeWXGVuY47xW4KvMiIxmTM7mK7xDyuhKiv6czztVoLqJWIrNA0Z8yVWu2MLYMOM_P_bdc86-cbTSFk5two_dh2ZuO6W7Bhm9uw7Wuq-XyDjRTmoAyAlTiymx7BlLL2sAWXVuGZdpXyR95x_AJnodReznPmrppuw9OT_ycUaCYuVg94lkHGUV8xcggR5m5C4eXsun3YLNpG78NTAtjRXAGT9NBSGG1diYEX2eZC6YOOoFs2ODK9pjn1HrjqIq591xVHVEqJEoViVKpBF6svjnuED8ufPst0W31JqF1xwftydeqF_6qRDdVKLqCzA06bAF9clULabjzBPQ-TmBnoHrVq5B5dcbw5w4TMj-6lrigBJ6uhlE3EHnrxrenNEXJBQH2ZQnc73hotVCux-iJSpmAXOOutT9ZH2m-f4v443gCUEjDBF4OfPjHqv-7Uw8u_skncB3lufo4Pdh_CFucpISC93wHNpHl_CN0_RbmcZQxBl8uW6h_Axx7bn0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracellular+construction+of+topology-controlled+polypeptide+nanostructures+with+diverse+biological+functions&rft.jtitle=Nature+communications&rft.au=Li%2C+Li-Li&rft.au=Qiao%2C+Sheng-Lin&rft.au=Liu%2C+Wei-Jiao&rft.au=Ma%2C+Yang&rft.date=2017-11-02&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-017-01296-8&rft.externalDocID=10_1038_s41467_017_01296_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |