Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions

Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artific...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 8; no. 1; pp. 1276 - 12
Main Authors Li, Li-Li, Qiao, Sheng-Lin, Liu, Wei-Jiao, Ma, Yang, Wan, Dong, Pan, Jie, Wang, Hao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.11.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artificially control the natural assemblies and their biofunctions. Here, we report an intracellular enzyme-catalyzed polymerization approach for efficient synthesis of polypeptides and in situ construction of topology-controlled nanostructures. We reveal that the phase behavior and topological structure of polypeptides are encoded in monomeric peptide sequences. Next, we elucidate the relationship between polymerization dynamics and their temperature-dependent topological transition in biological conditions. Importantly, the linearly grown elastin-like polypeptides are biocompatible and aggregate into nanoparticles that exhibit significant molecular accumulation and retention effects. However, 3D gel-like structures with thermo-induced multi-directional traction interfere with cellular fates. These findings allow us to exploit new nanomaterials in living subjects for biomedical applications. The intracellular topology of a nanostructure plays a major role in its interactions with the cell and accordingly, its biological applications. Here, the authors design peptides that intracellularly polymerize into elastin-like polypeptides and assemble into various topologies, each of which exhibits a distinct set of biological functions.
AbstractList Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artificially control the natural assemblies and their biofunctions. Here, we report an intracellular enzyme-catalyzed polymerization approach for efficient synthesis of polypeptides and in situ construction of topology-controlled nanostructures. We reveal that the phase behavior and topological structure of polypeptides are encoded in monomeric peptide sequences. Next, we elucidate the relationship between polymerization dynamics and their temperature-dependent topological transition in biological conditions. Importantly, the linearly grown elastin-like polypeptides are biocompatible and aggregate into nanoparticles that exhibit significant molecular accumulation and retention effects. However, 3D gel-like structures with thermo-induced multi-directional traction interfere with cellular fates. These findings allow us to exploit new nanomaterials in living subjects for biomedical applications. The intracellular topology of a nanostructure plays a major role in its interactions with the cell and accordingly, its biological applications. Here, the authors design peptides that intracellularly polymerize into elastin-like polypeptides and assemble into various topologies, each of which exhibits a distinct set of biological functions.
Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artificially control the natural assemblies and their biofunctions. Here, we report an intracellular enzyme-catalyzed polymerization approach for efficient synthesis of polypeptides and in situ construction of topology-controlled nanostructures. We reveal that the phase behavior and topological structure of polypeptides are encoded in monomeric peptide sequences. Next, we elucidate the relationship between polymerization dynamics and their temperature-dependent topological transition in biological conditions. Importantly, the linearly grown elastin-like polypeptides are biocompatible and aggregate into nanoparticles that exhibit significant molecular accumulation and retention effects. However, 3D gel-like structures with thermo-induced multi-directional traction interfere with cellular fates. These findings allow us to exploit new nanomaterials in living subjects for biomedical applications.Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artificially control the natural assemblies and their biofunctions. Here, we report an intracellular enzyme-catalyzed polymerization approach for efficient synthesis of polypeptides and in situ construction of topology-controlled nanostructures. We reveal that the phase behavior and topological structure of polypeptides are encoded in monomeric peptide sequences. Next, we elucidate the relationship between polymerization dynamics and their temperature-dependent topological transition in biological conditions. Importantly, the linearly grown elastin-like polypeptides are biocompatible and aggregate into nanoparticles that exhibit significant molecular accumulation and retention effects. However, 3D gel-like structures with thermo-induced multi-directional traction interfere with cellular fates. These findings allow us to exploit new nanomaterials in living subjects for biomedical applications.
The intracellular topology of a nanostructure plays a major role in its interactions with the cell and accordingly, its biological applications. Here, the authors design peptides that intracellularly polymerize into elastin-like polypeptides and assemble into various topologies, each of which exhibits a distinct set of biological functions.
Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artificially control the natural assemblies and their biofunctions. Here, we report an intracellular enzyme-catalyzed polymerization approach for efficient synthesis of polypeptides and in situ construction of topology-controlled nanostructures. We reveal that the phase behavior and topological structure of polypeptides are encoded in monomeric peptide sequences. Next, we elucidate the relationship between polymerization dynamics and their temperature-dependent topological transition in biological conditions. Importantly, the linearly grown elastin-like polypeptides are biocompatible and aggregate into nanoparticles that exhibit significant molecular accumulation and retention effects. However, 3D gel-like structures with thermo-induced multi-directional traction interfere with cellular fates. These findings allow us to exploit new nanomaterials in living subjects for biomedical applications. The intracellular topology of a nanostructure plays a major role in its interactions with the cell and accordingly, its biological applications. Here, the authors design peptides that intracellularly polymerize into elastin-like polypeptides and assemble into various topologies, each of which exhibits a distinct set of biological functions.
Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix, and cells. In-depth understanding of natural self-assembly mechanisms and mimicking functional structures provide us opportunities to artificially control the natural assemblies and their biofunctions. Here, we report an intracellular enzyme-catalyzed polymerization approach for efficient synthesis of polypeptides and in situ construction of topology-controlled nanostructures. We reveal that the phase behavior and topological structure of polypeptides are encoded in monomeric peptide sequences. Next, we elucidate the relationship between polymerization dynamics and their temperature-dependent topological transition in biological conditions. Importantly, the linearly grown elastin-like polypeptides are biocompatible and aggregate into nanoparticles that exhibit significant molecular accumulation and retention effects. However, 3D gel-like structures with thermo-induced multi-directional traction interfere with cellular fates. These findings allow us to exploit new nanomaterials in living subjects for biomedical applications.
ArticleNumber 1276
Author Qiao, Sheng-Lin
Liu, Wei-Jiao
Ma, Yang
Li, Li-Li
Wan, Dong
Pan, Jie
Wang, Hao
Author_xml – sequence: 1
  givenname: Li-Li
  surname: Li
  fullname: Li, Li-Li
  organization: CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)
– sequence: 2
  givenname: Sheng-Lin
  surname: Qiao
  fullname: Qiao, Sheng-Lin
  organization: CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), University of Chinese Academy of Sciences (UCAS)
– sequence: 3
  givenname: Wei-Jiao
  surname: Liu
  fullname: Liu, Wei-Jiao
  organization: CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University
– sequence: 4
  givenname: Yang
  surname: Ma
  fullname: Ma, Yang
  organization: CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), University of Chinese Academy of Sciences (UCAS)
– sequence: 5
  givenname: Dong
  surname: Wan
  fullname: Wan, Dong
  organization: State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University
– sequence: 6
  givenname: Jie
  surname: Pan
  fullname: Pan, Jie
  organization: State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University
– sequence: 7
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  email: wanghao@nanoctr.cn
  organization: CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), University of Chinese Academy of Sciences (UCAS)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29097677$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1r3DAQNSWlSbf5Az0UQy-9uNWX9XEplNCPhUAv7VnI8nijxSttJTlh_33ldVI2gUYgJGbee8y8mdfVmQ8equotRh8xovJTYphx0SA8X6J4I19UFwQx3GBB6NnJ_7y6TGmLyqEKS8ZeVedEISW4EBeVX_scjYVxnEYTaxt8ynGy2QVfh6HOYR_GsDk0JZFjGEfo6xI57GGfXQ-1Nz4shClCqu9cvql7dwsxQd25meqsGeth8kfJ9KZ6OZgxweX9u6p-f_v66-pHc_3z-_rqy3VjWy5zY0nbAmMtVgwJBUIa0XE89NYyC21rYADoEOdWdbjrKO0tplJxznqQHbKCrqr1otsHs9X76HYmHnQwTh8DIW60idnZETRvWcskVYyRjlE8qGKSYaIjPVgki2mr6vOitZ-6HfQWZsfGR6KPM97d6E241S3nsjRSBD7cC8TwZ4KU9c6l2XLjIUxJY8UJowwrXKDvn0C3YYq-WKUJJkJRUcb-HAqrVhGCBFMF9e607n8FPwy_AOQCsDGkFGHQ1mUzz6m04UaNkZ5XTS-rpsuq6eOqaVmo5An1Qf1ZEl1IqYD9BuJJ2f9n_QWzWuf-
CitedBy_id crossref_primary_10_1016_j_cclet_2021_01_007
crossref_primary_10_1016_j_jconrel_2025_02_026
crossref_primary_10_1002_anie_202114267
crossref_primary_10_1002_ange_202500998
crossref_primary_10_1021_acsnano_0c00883
crossref_primary_10_1002_smll_201901813
crossref_primary_10_1039_D2CS00999D
crossref_primary_10_1002_smll_202203448
crossref_primary_10_1021_acs_nanolett_2c00540
crossref_primary_10_1016_j_jconrel_2022_02_018
crossref_primary_10_1002_adma_202419941
crossref_primary_10_1021_acsnano_0c00118
crossref_primary_10_1021_acs_chemrev_0c00306
crossref_primary_10_1039_D0NR00444H
crossref_primary_10_1002_adma_202300086
crossref_primary_10_1016_j_apsb_2022_08_013
crossref_primary_10_1002_ange_202103706
crossref_primary_10_1002_chem_201801112
crossref_primary_10_1002_adma_201804814
crossref_primary_10_1002_adhm_201800344
crossref_primary_10_1021_acs_biomac_4c00864
crossref_primary_10_1002_ange_202110512
crossref_primary_10_1021_acsnano_3c08752
crossref_primary_10_1039_C9BM01546A
crossref_primary_10_1038_s41596_024_00970_8
crossref_primary_10_1088_1748_605X_abc2e9
crossref_primary_10_1038_s41570_022_00373_x
crossref_primary_10_1007_s12274_018_2121_x
crossref_primary_10_1021_acs_langmuir_9b03652
crossref_primary_10_3390_molecules27196557
crossref_primary_10_1002_anbr_202300137
crossref_primary_10_1002_adfm_201900004
crossref_primary_10_1021_acsnano_4c10194
crossref_primary_10_1007_s11426_021_1091_x
crossref_primary_10_1360_SSV_2022_0143
crossref_primary_10_1002_adma_202403588
crossref_primary_10_1002_anie_202103706
crossref_primary_10_1016_j_nantod_2022_101481
crossref_primary_10_1021_jacs_4c14847
crossref_primary_10_1002_adtp_201800067
crossref_primary_10_1039_C8CC05174G
crossref_primary_10_1002_anie_202110512
crossref_primary_10_1021_acsnano_0c05423
crossref_primary_10_1021_acs_nanolett_2c01123
crossref_primary_10_1021_jacs_4c15644
crossref_primary_10_1002_EXP_20230037
crossref_primary_10_1021_acs_biomac_4c01179
crossref_primary_10_1002_chem_202000525
crossref_primary_10_1016_j_nantod_2020_101036
crossref_primary_10_1002_smll_202303541
crossref_primary_10_1039_D2LC00067A
crossref_primary_10_1021_acsanm_7b00203
crossref_primary_10_1002_agt2_533
crossref_primary_10_1021_acsabm_0c00707
crossref_primary_10_1002_adfm_202312182
crossref_primary_10_1021_jacs_8b07727
crossref_primary_10_1002_anie_201908185
crossref_primary_10_1021_acs_nanolett_4c01587
crossref_primary_10_1038_s41467_022_29693_8
crossref_primary_10_3389_fonc_2023_1122322
crossref_primary_10_1002_adhm_201800670
crossref_primary_10_1016_j_apcatb_2019_117802
crossref_primary_10_1039_D3MH00592E
crossref_primary_10_1016_j_giant_2023_100189
crossref_primary_10_1016_j_tibtech_2023_08_006
crossref_primary_10_1002_marc_202401014
crossref_primary_10_1016_j_progpolymsci_2022_101578
crossref_primary_10_1039_D2BM00212D
crossref_primary_10_3390_pharmaceutics13050753
crossref_primary_10_1039_C9TB01227C
crossref_primary_10_1007_s11426_019_9517_9
crossref_primary_10_1016_j_mattod_2020_11_001
crossref_primary_10_1021_acs_accounts_2c00420
crossref_primary_10_1002_ange_202114267
crossref_primary_10_1007_s40242_021_1181_8
crossref_primary_10_1007_s11426_020_9829_x
crossref_primary_10_1016_j_biomaterials_2018_03_056
crossref_primary_10_1002_anie_202410579
crossref_primary_10_1002_anie_202500998
crossref_primary_10_1039_D0CC03365K
crossref_primary_10_1016_j_isci_2022_105789
crossref_primary_10_3390_molecules26030693
crossref_primary_10_1002_advs_202102508
crossref_primary_10_1002_anie_202009387
crossref_primary_10_1038_s41557_024_01565_2
crossref_primary_10_1021_accountsmr_2c00194
crossref_primary_10_1002_adfm_202000229
crossref_primary_10_1002_adma_201804971
crossref_primary_10_1002_ange_202109729
crossref_primary_10_1021_jacs_8b13512
crossref_primary_10_3389_fchem_2020_00591
crossref_primary_10_1039_C9QM00159J
crossref_primary_10_1039_D3CS00280B
crossref_primary_10_1126_sciadv_aba3190
crossref_primary_10_1002_anbr_202200174
crossref_primary_10_1002_anie_201712803
crossref_primary_10_1002_anie_202109729
crossref_primary_10_1002_ange_202009387
crossref_primary_10_1016_j_apmt_2021_100966
crossref_primary_10_1002_adma_202008518
crossref_primary_10_1021_acscentsci_9b01139
crossref_primary_10_1002_ange_201908185
crossref_primary_10_1039_C8MH01670D
crossref_primary_10_1021_acs_nanolett_8b02286
crossref_primary_10_1021_acssynbio_4c00420
crossref_primary_10_1007_s11426_018_9397_5
crossref_primary_10_1039_C9ME00002J
crossref_primary_10_1016_j_biomaterials_2017_11_048
crossref_primary_10_1007_s10118_018_2170_3
crossref_primary_10_1002_ange_202410579
crossref_primary_10_1016_j_biomaterials_2021_120855
crossref_primary_10_1016_j_progpolymsci_2022_101545
crossref_primary_10_1021_acsnano_9b08209
crossref_primary_10_1002_ange_201712803
Cites_doi 10.1021/ja042566j
10.1007/s10059-012-2201-9
10.1021/nn304439f
10.1016/j.biomaterials.2009.12.006
10.1038/nchembio.2085
10.1021/jacs.5b09941
10.1016/j.pep.2015.03.013
10.1073/pnas.88.23.10601
10.1039/b909777e
10.1002/adfm.201501489
10.1038/nchem.2564
10.1021/ja015585r
10.1021/bm0255037
10.2217/17435889.4.1.65
10.1002/adma.201503437
10.1002/bip.22582
10.1038/491S58a
10.1021/nl402628n
10.1038/ncomms12041
10.1021/bm201031m
10.1038/onc.2009.342
10.1038/nnano.2010.246
10.1021/jacs.6b00067
10.1038/nmat4294
10.1016/j.addr.2010.04.002
10.1038/nchem.2349
10.1038/ncomms8683
10.1093/protein/gzh006
10.1038/nmat4418
10.1007/s11095-008-9697-x
10.1021/ja904411z
10.1038/nature11082
10.1073/pnas.97.1.44
10.1021/bm034215n
10.1038/ncomms2040
10.1002/bip.10512
10.1021/acsnano.7b03375
10.1021/ja408182p
10.1021/nn501040h
10.1038/nchem.1920
10.1021/ar5000264
10.1038/15100
10.1155/2014/714561
10.1038/ncb2775
10.1021/jacs.5b13541
10.1242/jcs.093229
ContentType Journal Article
Copyright The Author(s) 2017
Nature Communications is a copyright of Springer, 2017.
2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2017
– notice: Nature Communications is a copyright of Springer, 2017.
– notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-017-01296-8
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Publicly Available Content Database
CrossRef
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_65454839442b431f9918a47b2dec0800
PMC5668255
29097677
10_1038_s41467_017_01296_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c568t-c255e445194079e78a7b61fdcc4ce55aefeeb066c9b1bb33dc1389664de8b0c73
IEDL.DBID C6C
ISSN 2041-1723
IngestDate Wed Aug 27 01:25:19 EDT 2025
Thu Aug 21 18:18:09 EDT 2025
Fri Jul 11 08:29:30 EDT 2025
Wed Aug 13 06:33:06 EDT 2025
Wed Aug 13 06:23:36 EDT 2025
Thu Apr 03 07:03:23 EDT 2025
Tue Jul 01 02:21:06 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Fri Feb 21 02:39:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-c255e445194079e78a7b61fdcc4ce55aefeeb066c9b1bb33dc1389664de8b0c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41467-017-01296-8
PMID 29097677
PQID 1959220749
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_65454839442b431f9918a47b2dec0800
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5668255
proquest_miscellaneous_1962434191
proquest_journals_2127937414
proquest_journals_1959220749
pubmed_primary_29097677
crossref_citationtrail_10_1038_s41467_017_01296_8
crossref_primary_10_1038_s41467_017_01296_8
springer_journals_10_1038_s41467_017_01296_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-02
PublicationDateYYYYMMDD 2017-11-02
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-02
  day: 02
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Zhou, Du, Yamagata, Xu (CR44) 2016; 138
Vinogradova (CR13) 2016; 12
Chien (CR18) 2013; 135
Li (CR15) 2016
Ravasio (CR1) 2015; 6
Rana (CR46) 2016; 138
Inostroza-Brito (CR33) 2015; 7
Martínez (CR4) 2008; 4
Huang, Zhang, Yuan, Gao, Zhang (CR8) 2013; 13
Qiao (CR19) 2017; 11
Tozluoğlu (CR7) 2013; 15
Qiao (CR10) 2016
Gao (CR17) 2009; 131
Nath, Chilkoti (CR26) 2001; 123
He (CR42) 2016; 7
Potocky, Menon, Gellman (CR9) 2005; 127
Meyer, Chilkoti (CR47) 1999; 17
Li (CR20) 2014; 8
Meyer, Chilkoti (CR41) 2004; 5
Cho (CR37) 2012; 33
Ghoorchian, Holland (CR40) 2011; 12
Bourzac (CR21) 2012; 491
Betre, Setton, Meyer, Chilkoti (CR32) 2002; 3
Martin, De Vivo, Gentile (CR49) 2011; 2011
Bellingham (CR38) 2003; 70
Zhang, Ma, Shi (CR28) 2014; 47
Murthy, Wilson, Guy, Lorand (CR35) 1991; 88
Bataille (CR24) 2015; 110
Gao, Shi, Yuan, Xu (CR23) 2012; 3
Dvir, Timko, Kohane, Langer (CR2) 2011; 6
Li (CR16) 2016; 28
Jang (CR48) 2009; 29
Dixon (CR11) 2012; 485
Liu, Chen, Akhter, Cronin, Weizmann (CR12) 2016; 8
Zhang (CR29) 2015; 25
Trabbic‐Carlson (CR43) 2004; 17
Quiroz, Chilkoti (CR30) 2015; 14
Murthy (CR34) 2000; 97
Nettles, Chilkoti, Setton (CR31) 2010; 62
Odii, Coussons (CR36) 2014; 2014
Herd (CR14) 2013; 7
Teeuwen, de Wolf, Zuilhof, van Hest (CR39) 2009; 5
Le, Okubo, Sugawara-Narutaki (CR45) 2015; 103
Luo, Kiick (CR27) 2015; 137
Griffin, Weaver, Scumpia, Di Carlo, Segura (CR25) 2015; 14
Decuzzi, Pasqualini, Arap, Ferrari (CR3) 2008; 26
Zouani (CR6) 2012; 125
Tang, Peng, Ding (CR5) 2010; 31
Ye (CR22) 2014; 6
N Nath (1296_CR26) 2001; 123
SL Qiao (1296_CR19) 2017; 11
JR Dixon (1296_CR11) 2012; 485
RLM Teeuwen (1296_CR39) 2009; 5
E Martínez (1296_CR4) 2008; 4
Y Gao (1296_CR17) 2009; 131
M Tozluoğlu (1296_CR7) 2013; 15
T Luo (1296_CR27) 2015; 137
LL Li (1296_CR15) 2016
M-P Chien (1296_CR18) 2013; 135
H Betre (1296_CR32) 2002; 3
A Ravasio (1296_CR1) 2015; 6
Y-N Zhang (1296_CR29) 2015; 25
T Dvir (1296_CR2) 2011; 6
L He (1296_CR42) 2016; 7
SNP Murthy (1296_CR34) 2000; 97
J Tang (1296_CR5) 2010; 31
FG Quiroz (1296_CR30) 2015; 14
DE Meyer (1296_CR41) 2004; 5
D Liu (1296_CR12) 2016; 8
H Herd (1296_CR14) 2013; 7
TB Potocky (1296_CR9) 2005; 127
GY Jang (1296_CR48) 2009; 29
DL Nettles (1296_CR31) 2010; 62
LL Li (1296_CR16) 2016; 28
P Decuzzi (1296_CR3) 2008; 26
SN Murthy (1296_CR35) 1991; 88
BO Odii (1296_CR36) 2014; 2014
A Martin (1296_CR49) 2011; 2011
L Bataille (1296_CR24) 2015; 110
DR Griffin (1296_CR25) 2015; 14
DE Meyer (1296_CR47) 1999; 17
C Huang (1296_CR8) 2013; 13
S Rana (1296_CR46) 2016; 138
LL Li (1296_CR20) 2014; 8
K Bourzac (1296_CR21) 2012; 491
A Ghoorchian (1296_CR40) 2011; 12
CM Bellingham (1296_CR38) 2003; 70
Y Gao (1296_CR23) 2012; 3
Z Zhang (1296_CR28) 2014; 47
DHT Le (1296_CR45) 2015; 103
KE Inostroza-Brito (1296_CR33) 2015; 7
K Trabbic‐Carlson (1296_CR43) 2004; 17
M Vinogradova (1296_CR13) 2016; 12
J Zhou (1296_CR44) 2016; 138
SL Qiao (1296_CR10) 2016
D Ye (1296_CR22) 2014; 6
OF Zouani (1296_CR6) 2012; 125
S-Y Cho (1296_CR37) 2012; 33
27214401 - Nat Chem Biol. 2016 Jul;12 (7):531-8
19731909 - J Am Chem Soc. 2009 Sep 30;131(38):13576-7
21151110 - Nat Nanotechnol. 2011 Jan;6(1):13-22
22302989 - J Cell Sci. 2012 Mar 1;125(Pt 5):1217-24
26492010 - Nat Chem. 2015 Nov;7(11):897-904
24694280 - Acc Chem Res. 2014 Apr 15;47(4):1426-37
23792690 - Nat Cell Biol. 2013 Jul;15(7):751-62
26966844 - J Am Chem Soc. 2016 Mar 23;138(11):3813-23
26158873 - Nat Commun. 2015 Jul 09;6:7683
12217035 - Biomacromolecules. 2002 Sep-Oct;3(5):910-6
26967961 - J Am Chem Soc. 2016 Apr 6;138(13):4522-9
28628744 - ACS Nano. 2017 Jul 25;11(7):7301-7311
11516269 - J Am Chem Soc. 2001 Aug 29;123(34):8197-202
26633746 - J Am Chem Soc. 2015 Dec 16;137(49):15362-5
24308273 - J Am Chem Soc. 2013 Dec 18;135(50):18710-3
24848238 - Nat Chem. 2014 Jun;6(6):519-26
26523134 - Adv Funct Mater. 2015 Aug 12;25(30):4814-4826
26390327 - Nat Mater. 2015 Nov;14(11):1164-71
10545920 - Nat Biotechnol. 1999 Nov;17 (11):1112-5
20385185 - Adv Drug Deliv Rev. 2010 Dec 30;62(15):1479-85
24778599 - ScientificWorldJournal. 2014 Mar 23;2014:714561
23402533 - ACS Nano. 2013 Mar 26;7(3):1961-73
27349934 - Nat Commun. 2016 Jun 28;7:12041
25363567 - Biopolymers. 2015 Mar;103(3):175-85
19093897 - Nanomedicine (Lond). 2009 Jan;4(1):65-82
18712584 - Pharm Res. 2009 Jan;26(1):235-43
24716550 - ACS Nano. 2014 May 27;8(5):4975-83
22382681 - Mol Cells. 2012 Mar;33(3):235-41
21972921 - Biomacromolecules. 2011 Nov 14;12(11):4022-9
23972158 - Nano Lett. 2013 Sep 11;13(9):4546-50
14985538 - Protein Eng Des Sel. 2004 Jan;17(1):57-66
14648756 - Biopolymers. 2003 Dec;70(4):445-55
26030305 - Nat Mater. 2015 Jul;14(7):737-44
25819942 - Protein Expr Purif. 2015 Jun;110:165-71
27657865 - Nat Chem. 2016 Oct;8(10):907-14
27341352 - ACS Appl Mater Interfaces. 2016 Jul 20;8(28):17936-43
10618368 - Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):44-8
23320289 - Nature. 2012 Nov 22;491(7425):S58-60
1683705 - Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10601-4
22929790 - Nat Commun. 2012;3:1033
27348260 - ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17016-22
15771489 - J Am Chem Soc. 2005 Mar 23;127(11):3686-7
22495300 - Nature. 2012 Apr 11;485(7398):376-80
20022630 - Biomaterials. 2010 Mar;31(9):2470-6
19838207 - Oncogene. 2010 Jan 21;29(3):356-67
15132671 - Biomacromolecules. 2004 May-Jun;5(3):846-51
26568542 - Adv Mater. 2016 Jan 13;28(2):254-62
21350675 - Int J Alzheimers Dis. 2011 Feb 16;2011:865432
References_xml – volume: 127
  start-page: 3686
  year: 2005
  end-page: 3687
  ident: CR9
  article-title: Effects of conformational stability and geometry of guanidinium display on cell entry by β-peptides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja042566j
– volume: 33
  start-page: 235
  year: 2012
  end-page: 241
  ident: CR37
  article-title: Doxorubicin induces the persistent activation of intracellular transglutaminase 2 that protects from cell death
  publication-title: Mol. Cells
  doi: 10.1007/s10059-012-2201-9
– volume: 7
  start-page: 1961
  year: 2013
  end-page: 1973
  ident: CR14
  article-title: Nanoparticle geometry and surface orientation influence mode of cellular uptake
  publication-title: ACS Nano
  doi: 10.1021/nn304439f
– volume: 31
  start-page: 2470
  year: 2010
  end-page: 2476
  ident: CR5
  article-title: The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.12.006
– volume: 12
  start-page: 531
  year: 2016
  end-page: 538
  ident: CR13
  article-title: An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2085
– volume: 137
  start-page: 15362
  year: 2015
  end-page: 15365
  ident: CR27
  article-title: Noncovalent modulation of the inverse temperature transition and self-assembly of elastin-b-collagen-like peptide bioconjugates
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09941
– volume: 110
  start-page: 165
  year: 2015
  end-page: 171
  ident: CR24
  article-title: Expression and purification of short hydrophobic elastin-like polypeptides with maltose-binding protein as a solubility tag
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2015.03.013
– volume: 88
  start-page: 10601
  year: 1991
  end-page: 10604
  ident: CR35
  article-title: Intramolecular crosslinking of monomeric fibrinogen by tissue transglutaminase
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.88.23.10601
– volume: 5
  start-page: 4305
  year: 2009
  end-page: 4310
  ident: CR39
  article-title: Elastin-like polypeptides of different molecular weights show independent transition temperatures when mixed
  publication-title: Soft Matter
  doi: 10.1039/b909777e
– volume: 25
  start-page: 4814
  year: 2015
  end-page: 4826
  ident: CR29
  article-title: A highly elastic and rapidly crosslinkable elastin-like polypeptide-based hydrogel for biomedical applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501489
– volume: 8
  start-page: 907
  year: 2016
  end-page: 914
  ident: CR12
  article-title: Creating complex molecular topologies by configuring DNA four-way junctions
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2564
– volume: 123
  start-page: 8197
  year: 2001
  end-page: 8202
  ident: CR26
  article-title: Interfacial phase transition of an environmentally responsive elastin biopolymer adsorbed on functionalized gold nanoparticles studied by colloidal surface plasmon resonance
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja015585r
– volume: 3
  start-page: 910
  year: 2002
  end-page: 916
  ident: CR32
  article-title: Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair
  publication-title: Biomacromolecules
  doi: 10.1021/bm0255037
– volume: 4
  start-page: 65
  year: 2008
  end-page: 82
  ident: CR4
  article-title: Stem cell differentiation by functionalized micro- and nanostructured surfaces
  publication-title: Nanomedicine
  doi: 10.2217/17435889.4.1.65
– volume: 28
  start-page: 254
  year: 2016
  end-page: 262
  ident: CR16
  article-title: Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503437
– volume: 103
  start-page: 175
  year: 2015
  end-page: 185
  ident: CR45
  article-title: Beaded nanofibers assembled from double-hydrophobic elastin-like block polypeptides: effects of trifluoroethanol
  publication-title: Biopolymers
  doi: 10.1002/bip.22582
– start-page: 17936
  year: 2016
  end-page: 17943
  ident: CR15
  article-title: Quantitative analysis of caspase-1 activity in living cells through dynamic equilibrium of chlorophyll-based nano-assembly modulated photoacoustic signals
  publication-title: ACS Appl. Mater. Interfaces
– volume: 491
  start-page: S58
  year: 2012
  end-page: S60
  ident: CR21
  article-title: Nanotechnology: carrying drugs
  publication-title: Nature
  doi: 10.1038/491S58a
– volume: 13
  start-page: 4546
  year: 2013
  end-page: 4550
  ident: CR8
  article-title: Role of nanoparticle geometry in endocytosis: laying down to stand up
  publication-title: Nano Lett.
  doi: 10.1021/nl402628n
– volume: 7
  year: 2016
  ident: CR42
  article-title: Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12041
– volume: 12
  start-page: 4022
  year: 2011
  end-page: 4029
  ident: CR40
  article-title: Molecular architecture influences the thermally induced aggregation behaviour of elastin-like polypeptides
  publication-title: Biomacromolecules
  doi: 10.1021/bm201031m
– volume: 29
  start-page: 356
  year: 2009
  end-page: 367
  ident: CR48
  article-title: Transglutaminase 2 suppresses apoptosis by modulating caspase 3 and NF-[kappa]B activity in hypoxic tumor cells
  publication-title: Oncogene
  doi: 10.1038/onc.2009.342
– volume: 6
  start-page: 13
  year: 2011
  end-page: 22
  ident: CR2
  article-title: Nanotechnological strategies for engineering complex tissues
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.246
– volume: 138
  start-page: 4522
  year: 2016
  end-page: 4529
  ident: CR46
  article-title: Ratiometric array of conjugated polymers–fluorescent protein provides a robust mammalian cell sensor
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00067
– volume: 14
  start-page: 737
  year: 2015
  end-page: 744
  ident: CR25
  article-title: Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4294
– volume: 62
  start-page: 1479
  year: 2010
  end-page: 1485
  ident: CR31
  article-title: Applications of elastin-like polypeptides in tissue engineering
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2010.04.002
– volume: 7
  start-page: 897
  year: 2015
  end-page: 904
  ident: CR33
  article-title: Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein–peptide system
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2349
– volume: 6
  year: 2015
  ident: CR1
  article-title: Gap geometry dictates epithelial closure efficiency
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8683
– volume: 17
  start-page: 57
  year: 2004
  end-page: 66
  ident: CR43
  article-title: Effect of protein fusion on the transition temperature of an environmentally responsive elastin‐like polypeptide: a role for surface hydrophobicity?
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzh006
– volume: 14
  start-page: 1164
  year: 2015
  end-page: 1171
  ident: CR30
  article-title: Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4418
– volume: 26
  year: 2008
  ident: CR3
  article-title: Intravascular delivery of particulate systems: does geometry really matter?
  publication-title: Pharmaceut. Res.
  doi: 10.1007/s11095-008-9697-x
– volume: 131
  start-page: 13576
  year: 2009
  end-page: 13577
  ident: CR17
  article-title: Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904411z
– volume: 485
  start-page: 376
  year: 2012
  end-page: 380
  ident: CR11
  article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions
  publication-title: Nature
  doi: 10.1038/nature11082
– volume: 97
  start-page: 44
  year: 2000
  end-page: 48
  ident: CR34
  article-title: Transglutaminase-catalyzed crosslinking of the Aα and γ constituent chains in fibrinogen
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.1.44
– volume: 5
  start-page: 846
  year: 2004
  end-page: 851
  ident: CR41
  article-title: Quantification of the effects of chain length and concentration on the thermal behaviour of elastin-like polypeptides
  publication-title: Biomacromolecules
  doi: 10.1021/bm034215n
– volume: 3
  year: 2012
  ident: CR23
  article-title: Imaging enzyme-triggered self-assembly of small molecules inside live cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2040
– volume: 70
  start-page: 445
  year: 2003
  end-page: 455
  ident: CR38
  article-title: Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties
  publication-title: Biopolymers
  doi: 10.1002/bip.10512
– volume: 11
  start-page: 7301
  year: 2017
  end-page: 7311
  ident: CR19
  article-title: General approach of stimuli-induced aggregation for monitoring tumor therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03375
– volume: 135
  start-page: 18710
  year: 2013
  end-page: 18713
  ident: CR18
  article-title: Enzyme-directed assembly of nanoparticles in tumors monitored by in vivo whole animal imaging and ex vivo super-resolution fluorescence imaging
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408182p
– volume: 8
  start-page: 4975
  year: 2014
  end-page: 4983
  ident: CR20
  article-title: Core-shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery
  publication-title: ACS Nano
  doi: 10.1021/nn501040h
– volume: 6
  start-page: 519
  year: 2014
  end-page: 526
  ident: CR22
  article-title: Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1920
– volume: 47
  start-page: 1426
  year: 2014
  end-page: 1437
  ident: CR28
  article-title: Cooperative macromolecular self-assembly toward polymeric assemblies with multiple and bioactive functions
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar5000264
– volume: 17
  start-page: 1112
  year: 1999
  end-page: 1115
  ident: CR47
  article-title: Purification of recombinant proteins by fusion with thermally-responsive polypeptides
  publication-title: Nat. Biotech.
  doi: 10.1038/15100
– volume: 2014
  year: 2014
  ident: CR36
  article-title: Biological functionalities of transglutaminase 2 and the possibility of its compensation by other members of the transglutaminase family
  publication-title: Sci. World J.
  doi: 10.1155/2014/714561
– volume: 15
  start-page: 751
  year: 2013
  end-page: 762
  ident: CR7
  article-title: Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2775
– volume: 138
  start-page: 3813
  year: 2016
  end-page: 3823
  ident: CR44
  article-title: Enzyme-instructed self-assembly of small d-peptides as a multiple-step process for selectively killing cancer cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13541
– start-page: 17016
  year: 2016
  end-page: 17022
  ident: CR10
  article-title: Thermo-controlled in situ phase transition of polymer-peptides on cell surfaces for high-performance proliferative inhibition
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2011
  year: 2011
  ident: CR49
  article-title: Possible role of the transglutaminases in the pathogenesis of Alzheimer’s disease and other neurodegenerative diseases
  publication-title: Int. J. Alzheimers Dis.
– volume: 125
  start-page: 1217
  year: 2012
  end-page: 1224
  ident: CR6
  article-title: Altered nanofeature size dictates stem cell differentiation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.093229
– volume: 127
  start-page: 3686
  year: 2005
  ident: 1296_CR9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja042566j
– volume: 62
  start-page: 1479
  year: 2010
  ident: 1296_CR31
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2010.04.002
– volume: 6
  year: 2015
  ident: 1296_CR1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8683
– volume: 47
  start-page: 1426
  year: 2014
  ident: 1296_CR28
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar5000264
– volume: 12
  start-page: 4022
  year: 2011
  ident: 1296_CR40
  publication-title: Biomacromolecules
  doi: 10.1021/bm201031m
– volume: 4
  start-page: 65
  year: 2008
  ident: 1296_CR4
  publication-title: Nanomedicine
  doi: 10.2217/17435889.4.1.65
– volume: 138
  start-page: 4522
  year: 2016
  ident: 1296_CR46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00067
– volume: 25
  start-page: 4814
  year: 2015
  ident: 1296_CR29
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501489
– volume: 11
  start-page: 7301
  year: 2017
  ident: 1296_CR19
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03375
– volume: 2014
  year: 2014
  ident: 1296_CR36
  publication-title: Sci. World J.
  doi: 10.1155/2014/714561
– volume: 2011
  year: 2011
  ident: 1296_CR49
  publication-title: Int. J. Alzheimers Dis.
– volume: 13
  start-page: 4546
  year: 2013
  ident: 1296_CR8
  publication-title: Nano Lett.
  doi: 10.1021/nl402628n
– volume: 15
  start-page: 751
  year: 2013
  ident: 1296_CR7
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2775
– volume: 17
  start-page: 1112
  year: 1999
  ident: 1296_CR47
  publication-title: Nat. Biotech.
  doi: 10.1038/15100
– volume: 110
  start-page: 165
  year: 2015
  ident: 1296_CR24
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2015.03.013
– volume: 6
  start-page: 13
  year: 2011
  ident: 1296_CR2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.246
– start-page: 17016
  volume-title: ACS Appl. Mater. Interfaces
  year: 2016
  ident: 1296_CR10
– volume: 8
  start-page: 4975
  year: 2014
  ident: 1296_CR20
  publication-title: ACS Nano
  doi: 10.1021/nn501040h
– volume: 17
  start-page: 57
  year: 2004
  ident: 1296_CR43
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzh006
– volume: 7
  start-page: 897
  year: 2015
  ident: 1296_CR33
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2349
– volume: 8
  start-page: 907
  year: 2016
  ident: 1296_CR12
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2564
– volume: 28
  start-page: 254
  year: 2016
  ident: 1296_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503437
– volume: 131
  start-page: 13576
  year: 2009
  ident: 1296_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904411z
– volume: 135
  start-page: 18710
  year: 2013
  ident: 1296_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408182p
– volume: 3
  year: 2012
  ident: 1296_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2040
– volume: 26
  year: 2008
  ident: 1296_CR3
  publication-title: Pharmaceut. Res.
  doi: 10.1007/s11095-008-9697-x
– volume: 125
  start-page: 1217
  year: 2012
  ident: 1296_CR6
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.093229
– volume: 5
  start-page: 4305
  year: 2009
  ident: 1296_CR39
  publication-title: Soft Matter
  doi: 10.1039/b909777e
– volume: 29
  start-page: 356
  year: 2009
  ident: 1296_CR48
  publication-title: Oncogene
  doi: 10.1038/onc.2009.342
– volume: 31
  start-page: 2470
  year: 2010
  ident: 1296_CR5
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.12.006
– volume: 14
  start-page: 1164
  year: 2015
  ident: 1296_CR30
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4418
– volume: 33
  start-page: 235
  year: 2012
  ident: 1296_CR37
  publication-title: Mol. Cells
  doi: 10.1007/s10059-012-2201-9
– volume: 138
  start-page: 3813
  year: 2016
  ident: 1296_CR44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13541
– volume: 70
  start-page: 445
  year: 2003
  ident: 1296_CR38
  publication-title: Biopolymers
  doi: 10.1002/bip.10512
– volume: 6
  start-page: 519
  year: 2014
  ident: 1296_CR22
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1920
– volume: 14
  start-page: 737
  year: 2015
  ident: 1296_CR25
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4294
– volume: 5
  start-page: 846
  year: 2004
  ident: 1296_CR41
  publication-title: Biomacromolecules
  doi: 10.1021/bm034215n
– volume: 12
  start-page: 531
  year: 2016
  ident: 1296_CR13
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2085
– volume: 103
  start-page: 175
  year: 2015
  ident: 1296_CR45
  publication-title: Biopolymers
  doi: 10.1002/bip.22582
– volume: 3
  start-page: 910
  year: 2002
  ident: 1296_CR32
  publication-title: Biomacromolecules
  doi: 10.1021/bm0255037
– volume: 123
  start-page: 8197
  year: 2001
  ident: 1296_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja015585r
– volume: 97
  start-page: 44
  year: 2000
  ident: 1296_CR34
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.1.44
– volume: 88
  start-page: 10601
  year: 1991
  ident: 1296_CR35
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.88.23.10601
– volume: 7
  year: 2016
  ident: 1296_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12041
– volume: 7
  start-page: 1961
  year: 2013
  ident: 1296_CR14
  publication-title: ACS Nano
  doi: 10.1021/nn304439f
– start-page: 17936
  volume-title: ACS Appl. Mater. Interfaces
  year: 2016
  ident: 1296_CR15
– volume: 491
  start-page: S58
  year: 2012
  ident: 1296_CR21
  publication-title: Nature
  doi: 10.1038/491S58a
– volume: 137
  start-page: 15362
  year: 2015
  ident: 1296_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09941
– volume: 485
  start-page: 376
  year: 2012
  ident: 1296_CR11
  publication-title: Nature
  doi: 10.1038/nature11082
– reference: 21972921 - Biomacromolecules. 2011 Nov 14;12(11):4022-9
– reference: 28628744 - ACS Nano. 2017 Jul 25;11(7):7301-7311
– reference: 20022630 - Biomaterials. 2010 Mar;31(9):2470-6
– reference: 26633746 - J Am Chem Soc. 2015 Dec 16;137(49):15362-5
– reference: 22929790 - Nat Commun. 2012;3:1033
– reference: 25363567 - Biopolymers. 2015 Mar;103(3):175-85
– reference: 19093897 - Nanomedicine (Lond). 2009 Jan;4(1):65-82
– reference: 1683705 - Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10601-4
– reference: 26390327 - Nat Mater. 2015 Nov;14(11):1164-71
– reference: 24716550 - ACS Nano. 2014 May 27;8(5):4975-83
– reference: 10545920 - Nat Biotechnol. 1999 Nov;17 (11):1112-5
– reference: 24308273 - J Am Chem Soc. 2013 Dec 18;135(50):18710-3
– reference: 23320289 - Nature. 2012 Nov 22;491(7425):S58-60
– reference: 26158873 - Nat Commun. 2015 Jul 09;6:7683
– reference: 25819942 - Protein Expr Purif. 2015 Jun;110:165-71
– reference: 27657865 - Nat Chem. 2016 Oct;8(10):907-14
– reference: 24694280 - Acc Chem Res. 2014 Apr 15;47(4):1426-37
– reference: 24848238 - Nat Chem. 2014 Jun;6(6):519-26
– reference: 15132671 - Biomacromolecules. 2004 May-Jun;5(3):846-51
– reference: 12217035 - Biomacromolecules. 2002 Sep-Oct;3(5):910-6
– reference: 19731909 - J Am Chem Soc. 2009 Sep 30;131(38):13576-7
– reference: 11516269 - J Am Chem Soc. 2001 Aug 29;123(34):8197-202
– reference: 15771489 - J Am Chem Soc. 2005 Mar 23;127(11):3686-7
– reference: 22382681 - Mol Cells. 2012 Mar;33(3):235-41
– reference: 10618368 - Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):44-8
– reference: 14985538 - Protein Eng Des Sel. 2004 Jan;17(1):57-66
– reference: 21151110 - Nat Nanotechnol. 2011 Jan;6(1):13-22
– reference: 26523134 - Adv Funct Mater. 2015 Aug 12;25(30):4814-4826
– reference: 27348260 - ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17016-22
– reference: 27214401 - Nat Chem Biol. 2016 Jul;12 (7):531-8
– reference: 20385185 - Adv Drug Deliv Rev. 2010 Dec 30;62(15):1479-85
– reference: 24778599 - ScientificWorldJournal. 2014 Mar 23;2014:714561
– reference: 26967961 - J Am Chem Soc. 2016 Apr 6;138(13):4522-9
– reference: 26492010 - Nat Chem. 2015 Nov;7(11):897-904
– reference: 27341352 - ACS Appl Mater Interfaces. 2016 Jul 20;8(28):17936-43
– reference: 26966844 - J Am Chem Soc. 2016 Mar 23;138(11):3813-23
– reference: 23402533 - ACS Nano. 2013 Mar 26;7(3):1961-73
– reference: 14648756 - Biopolymers. 2003 Dec;70(4):445-55
– reference: 27349934 - Nat Commun. 2016 Jun 28;7:12041
– reference: 26030305 - Nat Mater. 2015 Jul;14(7):737-44
– reference: 18712584 - Pharm Res. 2009 Jan;26(1):235-43
– reference: 22302989 - J Cell Sci. 2012 Mar 1;125(Pt 5):1217-24
– reference: 26568542 - Adv Mater. 2016 Jan 13;28(2):254-62
– reference: 23792690 - Nat Cell Biol. 2013 Jul;15(7):751-62
– reference: 21350675 - Int J Alzheimers Dis. 2011 Feb 16;2011:865432
– reference: 23972158 - Nano Lett. 2013 Sep 11;13(9):4546-50
– reference: 22495300 - Nature. 2012 Apr 11;485(7398):376-80
– reference: 19838207 - Oncogene. 2010 Jan 21;29(3):356-67
SSID ssj0000391844
Score 2.5539749
Snippet Topological structures of bio-architectonics and bio-interfaces play major roles in maintaining the normal functions of organs, tissues, extracellular matrix,...
The intracellular topology of a nanostructure plays a major role in its interactions with the cell and accordingly, its biological applications. Here, the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1276
SubjectTerms 639/301/357/341
639/301/54/990
639/638/45/953
Biocompatibility
Biomedical materials
Cellular structure
Chemical synthesis
Coding
Construction
Elastin
Extracellular matrix
Humanities and Social Sciences
Interfaces
Intracellular
Mimicry
multidisciplinary
Nanomaterials
Nanoparticles
Nanostructure
Nanotechnology
Organs
Peptides
Polymerization
Polypeptides
Science
Science (multidisciplinary)
Self-assembly
Temperature dependence
Topology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSki9VDxKSVuQkbhB1I3jxPYREFXhwIlKvVmxPVaRqgSp20P_fWfs7LILLVy4xg85nrHnG3v8DcBbQg3adNbXOlpdK8NpXlSDtQze23YwixhzlO-3_uxcfb3oLjZSfXFMWKEHLhN30pOJV4afb0pPxi4RnjGD0l5GZJLs7K2TzdtwpvIe3FI1peZXMovWnFyrvCfwpsxnL31ttixRJuy_D2X-GSz5241pNkSnT2BvRpDiQxn5U3iE4zN4XHJK3j6H8Qt3wOfxHGAqwvSLIlZMSSxLUoTbeo5Rv8Io6At5o7R3RBTjME6lwQ054oKPaUXMsRsoCmETS1WwOcwauw_np5-_fzqr56QKdeh6s6wD-RDIrGSWXDmL2gza902KIaiAXTdgQvSEQ4L1jfdtGwNfZfa9imj8Iuj2BeyM04gvQVjlg0rRky-blFbB2uhTwqFpYvJDshU0qwl2YWYc58QXVy7ffLfGFaE4EorLQnGmgnfrNj8L38Zfa39kua1rMld2_kAa5GYNcv_SoAqOV1J38wK-dsy5IyXhK3tvMfPiE7CjAVXwZl1MK5PFO4w43XAXvVRMl9dUcFB0aD1QaReEA7WuQG9p19afbJeMPy4z-zfhb_Lquwrer_RwY9QPztTh_5ipI9iVvID4VF0eww5pI74iTLb0r_PyuwMHKDMT
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJtAQUbiBlYTx4ntEwJEVThwotLerPgFSFXSsttD_z0zjjdlofQaJ5Hjefib8eQbgNeIGpTujOMqGMWlpjYvsolceOdMO-g6hFzl-7U_OpZfVt2qJNzWpaxy6xOzow6Tpxz5AZGgCIEbnnl3esapaxSdrpYWGjfhFlGXUUmXWqklx0Ls51rK8q9M3eqDtcyegVwzZWB6rnf2o0zbfxXW_Ldk8q9z07wdHd6DuwVHsvez4O_DjTg-gNtzZ8mLhzB-phdQVp7KTJmfLoli2ZTYZm6NcMFLpfpJDAyvYEyKHiRENg7jND9wjuE4o2QtC7mCI7KZtolky2hTzHr7CI4PP337eMRLawXuu15vuMdIIhI3mcGAzkSlB-X6JgXvpY9dN8QUo0M04o1rnGvb4OlAs-9liNrVXrWPYW-cxvgUmJHOyxQcRrRJKumNCS6lODRNSG5IpoJmu8DWF95xan9xYvP5d6vtLBSLQrFZKFZX8GZ55nRm3bj27g8kt-VOYszOF6Zf320xQNsjVJSafgMWDkFTQlysB6mcCJHI1usK9rdSt8WM1_ZS6a4cJnZ8hHc4oQpeLcNonyTeYYzTOb2iF5JI85oKnsw6tExUmBrRoFIVqB3t2vmS3ZHx54_MAY4oHGP7roK3Wz38Y9b_Xaln13_kc7gjyDQoay72YQ_1LL5AzLVxL7Nh_QYzKyxk
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiPJMaZGRuEFg4zixfUBVQVQFCU6s1JsVvwBplUC7lbr_nhk7WVhYkLjGDzmeGfsbe_wNwFNEDVI12pbSa1kKRWleRBVK7qzVdadm3qco34_t6Vy8P2vOdmBKdzRO4MVW147ySc3PFy-uvq-O0OBf5Sfj6uWFSOZO6y0dq7SlugbXcWeSZKgfRrifVuZao0Mjxrcz25tu7E-Jxn8b9vwzhPK3e9S0PZ3chlsjrmTHWRH2YCf0d-BGzjS5ugv9O-qATukp7JS54SdxLBsiW-ZUCatyjFxfBM_wC_qouKL4wPquH3KDS3TPGR3eMp8iOgLLNE4ka0abZNLjezA_efvpzWk5plooXdOqZenQswjEVabRwdNBqk7atoreOeFC03QhhmARnThtK2vr2ju64Gxb4YOyMyfr-7DbD314CEwL60T0Fj3cKKRwWnsbY-iqykfbRV1ANU2wcSMPOaXDWJh0H14rk4ViUCgmCcWoAp6t23zLLBz_rP2a5LauSQza6cNw_tmMBmlahI5C0bNgbhFERcTJqhPSch-IfH1WwMEkdTNppSEmHs4RdemtxcSWj3APB1TAk3Ux2iuJt-vDcEldtFwQiV5VwIOsQ-uBcj1DdChlAXJDuzb-ZLOk__olcYIjKkdfvyng-aSHv4z6rzO1_3_VH8FNTqZCp-r8AHZR78IhYrKlfZwM7QfXZDPG
  priority: 102
  providerName: Scholars Portal
Title Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions
URI https://link.springer.com/article/10.1038/s41467-017-01296-8
https://www.ncbi.nlm.nih.gov/pubmed/29097677
https://www.proquest.com/docview/1959220749
https://www.proquest.com/docview/2127937414
https://www.proquest.com/docview/1962434191
https://pubmed.ncbi.nlm.nih.gov/PMC5668255
https://doaj.org/article/65454839442b431f9918a47b2dec0800
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEC72geBFfNu6DhG8aWM_0p3kODvsuA64iLowt9B5qbB0izMe9t9blX7o6Ch46YFO0mRSleSrSuUrgOeIGoSslEmFUyLlktK88NynhTVGlY3MnItRvhf1-SVfrav1ARTjXZgYtB8pLeMyPUaHvdrwOKVpTSXXSZ3KQzgm6nbS6kW9mPwqxHguOR_ux2Sl3NN0Zw-KVP378OWfYZK_nZXGLWh5G24N2JHN-97egQPf3oUbfTbJ63vQvqEPkCeeQkuZ7X6Sw7IusG2fDuE6HaLTr7xj-AbtUFw1nGdt03Z9AxyWDSMHLXMxasOznqqJ5MloI4y6eh8ul2cfF-fpkE4htVUtt6lF68ETH5lCI055IRth6jw4a7n1VdX44L1BBGKVyY0pS2fpELOuufPSZFaUD-Co7Vr_CJjixvLgDFqxgQtulXImBN_kuQumCSqBfBxgbQeucUp5caXjmXcpdS8UjULRUShaJvBiavO1Z9r4Z-1TkttUk1iy44vu2yc9aI2uER5ySVd_C4NAKSAWlg0XpnCeCNazBE5Gqeth6m40se0UBSIrtbeYGPER0mGHEng2FeOcJPE2re--0yfqghNRXp7Aw16Hpo4WKkMEKEQCYke7dv7Jbkn75XPk_UbkjfZ8lcDLUQ9_6fVfR-rx_1V_AjcLmirkOS9O4Aj1zj9F3LU1MzgUa4FPuXw9g-P5fPVhhb-nZxfv3s_iJJxFjwY-33L5A5MAMOo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaImjhPbB4R4Vbu09NRKezPxI4BUJYXdCu2f4jcy4yRbFkpvvcaJ5Xienhl_A_AMvQapSm1T6bVMhaI2LyIPKXfW6qJWmfexyne_mhyKj7NytgG_xrswVFY56sSoqH3nKEa-TSAonKPB06-Pv6fUNYqyq2MLjZ4tdsPyJx7Z5q-m75G-zznf-XDwbpIOXQVSV1ZqkTp0ogPBcmk8y-ggVS1tlTfeOeFCWdahCcGiIXba5tYWhXeUy6sq4YOymZMFznsJLqPhzUii5EyuYjqEtq6EGO7mZIXanouoicgUUMSnStWa_YttAs7ybf8t0fwrTxvN384NuD74rexNz2g3YSO0t-BK38lyeRvaKU1AWQAqa2WuOwWmZV3DFn0rhmU6VMYfBc_wCZ6BUWP5wNq67foPTvD4zyg4zHysGAmsh4kiXmJkhKOc3IHDC9n0u7DZdm24D0wL60TjLZ6gGyGF09rbpgl1nvvG1o1OIB832LgB55zabRyZmG8vlOmJYpAoJhLFqARerL457lE-zn37LdFt9SYhdMcH3Y8vZhB4U6FrKhRdO-YWeaVBP1zVQlruA4G7ZwlsjVQ3g9qYm1MmP3OY0PjRncQFJfB0NYz6gMhbt6E7oSkqLgikL0_gXs9Dq4VynaH3KWUCco271v5kfaT99jVijqPXr5CGCbwc-fCPVf93px6c_5NP4Ork4NOe2Zvu7z6Ea5zEhCL2fAs2kefCI_T3FvZxFDIGny9aqn8DUnZqRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAviHcDBYwEJ4h24zixfUAIKKsuRRUHKu0txC9AqpLS3QrtX-PXMeMkWxZKb73GieV4np4ZfwPwDL0GqQptUum0TIWiNi8i8ym3xui8VmPnYpXvQbl3KD7MitkG_BruwlBZ5aATo6J2raUY-YhAUDhHg6dHoS-L-LQ7eX38I6UOUpRpHdppdCyy75c_8fg2fzXdRVo_53zy_vO7vbTvMJDaolSL1KJD7QmiS-O5RnupamnKLDhrhfVFUfvgvUGjbLXJjMlzZymvV5bCeWXGVuY47xW4KvMiIxmTM7mK7xDyuhKiv6czztVoLqJWIrNA0Z8yVWu2MLYMOM_P_bdc86-cbTSFk5two_dh2ZuO6W7Bhm9uw7Wuq-XyDjRTmoAyAlTiymx7BlLL2sAWXVuGZdpXyR95x_AJnodReznPmrppuw9OT_ycUaCYuVg94lkHGUV8xcggR5m5C4eXsun3YLNpG78NTAtjRXAGT9NBSGG1diYEX2eZC6YOOoFs2ODK9pjn1HrjqIq591xVHVEqJEoViVKpBF6svjnuED8ufPst0W31JqF1xwftydeqF_6qRDdVKLqCzA06bAF9clULabjzBPQ-TmBnoHrVq5B5dcbw5w4TMj-6lrigBJ6uhlE3EHnrxrenNEXJBQH2ZQnc73hotVCux-iJSpmAXOOutT9ZH2m-f4v443gCUEjDBF4OfPjHqv-7Uw8u_skncB3lufo4Pdh_CFucpISC93wHNpHl_CN0_RbmcZQxBl8uW6h_Axx7bn0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracellular+construction+of+topology-controlled+polypeptide+nanostructures+with+diverse+biological+functions&rft.jtitle=Nature+communications&rft.au=Li%2C+Li-Li&rft.au=Qiao%2C+Sheng-Lin&rft.au=Liu%2C+Wei-Jiao&rft.au=Ma%2C+Yang&rft.date=2017-11-02&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-017-01296-8&rft.externalDocID=10_1038_s41467_017_01296_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon