Central limit theorem: the cornerstone of modern statistics

According to the central limit theorem, the means of a random sample of size, , from a population with mean, µ, and variance, σ , distribute normally with mean, µ, and variance, [Formula: see text]. Using the central limit theorem, a variety of parametric tests have been developed under assumptions...

Full description

Saved in:
Bibliographic Details
Published inKorean journal of anesthesiology Vol. 70; no. 2; pp. 144 - 156
Main Authors Kwak, Sang Gyu, Kim, Jong Hae
Format Journal Article
LanguageEnglish
Published Korea (South) The Korean Society of Anesthesiologists 01.04.2017
Korean Society of Anesthesiologists
대한마취통증의학회
Subjects
Online AccessGet full text
ISSN2005-6419
2005-7563
DOI10.4097/kjae.2017.70.2.144

Cover

Abstract According to the central limit theorem, the means of a random sample of size, , from a population with mean, µ, and variance, σ , distribute normally with mean, µ, and variance, [Formula: see text]. Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding.
AbstractList According to the central limit theorem, the means of a random sample of size, n, from a population with mean, µ, and variance, σ2, distribute normally with mean, µ, and variance, σ2n. Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding.
According to the central limit theorem, the means of a random sample of size, n, from a population with mean, µ, and variance, σ2, distribute normally with mean, µ, and variance, [Formula: see text]. Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding.According to the central limit theorem, the means of a random sample of size, n, from a population with mean, µ, and variance, σ2, distribute normally with mean, µ, and variance, [Formula: see text]. Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding.
According to the central limit theorem, the means of a random sample of size, n, from a population with mean, μ, and variance, σ2, distribute normally with mean, μ, and variance, σ2 n . Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student’s t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its nearcomplete understanding. KCI Citation Count: 2
According to the central limit theorem, the means of a random sample of size, , from a population with mean, µ, and variance, σ , distribute normally with mean, µ, and variance, [Formula: see text]. Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding.
According to the central limit theorem, the means of a random sample of size, n , from a population with mean, µ, and variance, σ 2 , distribute normally with mean, µ, and variance, σ 2 n . Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding.
Author Kim, Jong Hae
Kwak, Sang Gyu
AuthorAffiliation 1 Department of Medical Statistics, School of Medicine, Catholic University of Daegu, Daegu, Korea
2 Department of Anesthesiology and Pain Medicine, School of Medicine, Catholic University of Daegu, Daegu, Korea
AuthorAffiliation_xml – name: 2 Department of Anesthesiology and Pain Medicine, School of Medicine, Catholic University of Daegu, Daegu, Korea
– name: 1 Department of Medical Statistics, School of Medicine, Catholic University of Daegu, Daegu, Korea
Author_xml – sequence: 1
  givenname: Sang Gyu
  orcidid: 0000-0003-0398-5514
  surname: Kwak
  fullname: Kwak, Sang Gyu
  organization: Department of Medical Statistics, School of Medicine, Catholic University of Daegu, Daegu, Korea
– sequence: 2
  givenname: Jong Hae
  orcidid: 0000-0003-1222-0054
  surname: Kim
  fullname: Kim, Jong Hae
  organization: Department of Anesthesiology and Pain Medicine, School of Medicine, Catholic University of Daegu, Daegu, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28367284$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002211182$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9Ul1rFDEUDVKxH_YP-CDzqA875jsZBaEsVhcKgtTnkMncabM7M6lJVvDfm9lZi_XBvNxLcu45h9xzjk6mMAFCrwiuOW7Uu93WQk0xUbXCNa0J58_QGcVYrJSQ7OTYS06aU3SZ0haXwxjGkr5Ap1QzqajmZ-jDGqYc7VANfvS5yvcQIozv56ZyIU4QUy7CVeirMXQQpyplm33K3qWX6HlvhwSXx3qBvl9_ul1_Wd18_bxZX92snJA6rxqiLBBiHW6BUScsp51slRVMkB73rO8paXrXdMQR4TjroFi3rCkeuRJYsgv0duGdYm92zptg_aHeBbOL5urb7cYoSUghLNjNgu2C3ZqH6Ecbfx0GDhch3hkbi_kBDNbMdR1ToAVwpbuGtcIxzFvunJV01v24cD3s2xE6t_zUE9KnL5O_L55-GsEUZng28-ZIEMOPPaRsRp8cDIOdIOyTIVozzRohaYG-_lvrUeTPpgqALgAXQ0oR-kcIwWZOhJkTYeZEGIUNNSURZUj_M-T8vL4w-_XD_0Z_A27Guw8
CitedBy_id crossref_primary_10_29252_johe_7_2_112
crossref_primary_10_3390_life10090185
crossref_primary_10_1016_j_dajour_2023_100369
crossref_primary_10_1016_j_jep_2019_112229
crossref_primary_10_1093_jmammal_gyac094
crossref_primary_10_1007_s44217_024_00090_1
crossref_primary_10_3389_fphys_2023_1227871
crossref_primary_10_3390_bios14040204
crossref_primary_10_3389_fpsyg_2022_948423
crossref_primary_10_29252_johe_7_3_153
crossref_primary_10_1080_17474124_2024_2443574
crossref_primary_10_1108_JSM_12_2023_0476
crossref_primary_10_1186_s12912_021_00623_1
crossref_primary_10_1007_s13239_024_00769_4
crossref_primary_10_25159_1998_8125_6714
crossref_primary_10_1017_S0266462321001707
crossref_primary_10_1109_TMECH_2022_3214419
crossref_primary_10_3389_fnagi_2023_1299451
crossref_primary_10_1016_j_jse_2023_07_011
crossref_primary_10_1016_j_quageo_2022_101323
crossref_primary_10_1016_j_injury_2024_111536
crossref_primary_10_1186_s13620_019_0145_5
crossref_primary_10_3389_fnut_2024_1451400
crossref_primary_10_1016_j_pedn_2024_08_007
crossref_primary_10_3758_s13423_023_02410_2
crossref_primary_10_1016_j_engappai_2023_106344
crossref_primary_10_1016_j_ssaho_2022_100281
crossref_primary_10_1523_JNEUROSCI_0942_22_2022
crossref_primary_10_1016_j_neucom_2023_126933
crossref_primary_10_1109_TVT_2024_3439707
crossref_primary_10_1007_s11126_024_10094_7
crossref_primary_10_1371_journal_pmen_0000125
crossref_primary_10_3390_cancers16112155
crossref_primary_10_1001_jamaoto_2022_2847
crossref_primary_10_1021_acs_jchemed_4c00851
crossref_primary_10_3171_2019_4_PEDS18717
crossref_primary_10_1109_ACCESS_2022_3204392
crossref_primary_10_1111_bdi_13356
crossref_primary_10_1016_j_biosystemseng_2019_04_009
crossref_primary_10_1080_02697459_2024_2442804
crossref_primary_10_17352_2455_5487_000057
crossref_primary_10_3390_antibiotics11010058
crossref_primary_10_3390_jcm13010240
crossref_primary_10_1002_jeo2_70066
crossref_primary_10_1109_JXCDC_2024_3502053
crossref_primary_10_1016_j_envint_2022_107375
crossref_primary_10_1097_AJP_0000000000001152
crossref_primary_10_1109_ACCESS_2023_3273605
crossref_primary_10_4103_jrpp_jrpp_52_24
crossref_primary_10_1038_s41598_018_36041_8
crossref_primary_10_17275_per_24_28_11_2
crossref_primary_10_1109_JSEN_2023_3256039
crossref_primary_10_3390_philosophies6020046
crossref_primary_10_1088_2058_9565_aca821
crossref_primary_10_5005_jp_journals_10015_1557
crossref_primary_10_1016_j_enbuild_2023_113285
crossref_primary_10_1016_j_jdent_2023_104829
crossref_primary_10_3390_environments11070139
crossref_primary_10_5005_jp_journals_10015_1556
crossref_primary_10_1016_j_nepr_2025_104320
crossref_primary_10_1186_s12871_021_01529_w
crossref_primary_10_1016_j_jaip_2021_10_012
crossref_primary_10_1016_j_puhe_2023_08_023
crossref_primary_10_1038_s41598_022_11483_3
crossref_primary_10_2110_jsr_2020_204
crossref_primary_10_3390_cancers14133091
crossref_primary_10_3389_fpsyg_2020_00906
crossref_primary_10_2196_35356
crossref_primary_10_1007_s43681_024_00527_1
crossref_primary_10_1155_2022_8178930
crossref_primary_10_1145_3603535
crossref_primary_10_3390_acoustics6020021
crossref_primary_10_1177_0272989X231214782
crossref_primary_10_14260_jemds_2021_552
crossref_primary_10_1155_2018_5937059
crossref_primary_10_1007_s00405_021_06629_4
crossref_primary_10_3390_plants10091954
crossref_primary_10_1016_j_ebiom_2021_103316
crossref_primary_10_1177_20552076221084461
crossref_primary_10_3389_frtra_2023_1237112
crossref_primary_10_47134_pjp_v1i3_2423
crossref_primary_10_1080_2326263X_2024_2345449
crossref_primary_10_1108_QEA_12_2023_0019
crossref_primary_10_2196_26868
crossref_primary_10_1109_TVLSI_2023_3297125
crossref_primary_10_1111_vru_12714
crossref_primary_10_1038_s41534_022_00592_6
crossref_primary_10_1109_TIV_2023_3322261
crossref_primary_10_1093_heapro_daaf002
crossref_primary_10_1108_BEPAM_11_2022_0181
crossref_primary_10_1111_ans_18575
crossref_primary_10_3390_jcm13164645
crossref_primary_10_1016_j_vrih_2022_06_004
crossref_primary_10_1049_rsn2_12132
crossref_primary_10_3389_fpsyt_2024_1217102
crossref_primary_10_1016_j_jad_2024_12_098
crossref_primary_10_1016_j_procs_2022_01_216
crossref_primary_10_1186_s12879_024_09067_9
crossref_primary_10_1016_j_dialog_2023_100116
crossref_primary_10_1016_j_compbiomed_2024_108126
crossref_primary_10_18699_vjgb_24_89
crossref_primary_10_1016_j_cub_2023_09_049
crossref_primary_10_1016_j_ssmph_2023_101580
crossref_primary_10_1007_s00296_025_05819_1
crossref_primary_10_3389_fphar_2023_1265541
crossref_primary_10_24857_rgsa_v18n9_067
crossref_primary_10_1159_000510268
crossref_primary_10_1371_journal_pone_0296911
crossref_primary_10_1007_s10639_025_13401_2
crossref_primary_10_1177_23814683221116304
crossref_primary_10_5093_psed2024a3
crossref_primary_10_1007_s00394_023_03303_9
crossref_primary_10_1038_s41598_024_63757_7
crossref_primary_10_1111_acps_13286
crossref_primary_10_1007_s10163_024_02121_3
crossref_primary_10_1097_CCM_0000000000003781
crossref_primary_10_1073_pnas_2301607120
crossref_primary_10_55329_llfl7748
crossref_primary_10_3389_fpsyg_2025_1488102
crossref_primary_10_3390_healthcare11141991
crossref_primary_10_1021_acs_cgd_3c01027
crossref_primary_10_1039_D3RA06690H
crossref_primary_10_3390_su16052130
crossref_primary_10_1108_MBE_03_2021_0045
crossref_primary_10_1111_papr_13438
crossref_primary_10_1007_s42243_023_01109_x
crossref_primary_10_2196_58950
crossref_primary_10_3389_frcha_2024_1364617
crossref_primary_10_1109_TNSM_2024_3485545
crossref_primary_10_1111_jcal_12821
crossref_primary_10_1186_s12859_023_05430_w
crossref_primary_10_3390_su13168799
crossref_primary_10_1016_j_jphys_2024_08_006
crossref_primary_10_1097_MLR_0000000000001313
crossref_primary_10_1186_s12967_024_05008_x
crossref_primary_10_1111_ijcp_13812
crossref_primary_10_1007_s11019_024_10206_x
crossref_primary_10_1177_1971400920983678
crossref_primary_10_2147_IJGM_S486189
crossref_primary_10_1097_JNC_0000000000000400
crossref_primary_10_1007_s11042_024_20072_7
crossref_primary_10_1016_j_aip_2025_102254
crossref_primary_10_1093_clinchem_hvae109
crossref_primary_10_1200_CCI_24_00014
crossref_primary_10_1017_S0033291721002075
crossref_primary_10_2147_OPTO_S406407
crossref_primary_10_1080_14459795_2024_2400356
crossref_primary_10_1055_s_0042_1756171
crossref_primary_10_1140_epjs_s11734_024_01323_y
crossref_primary_10_3390_jcm9092897
crossref_primary_10_7717_peerj_10970
crossref_primary_10_1016_j_jvoice_2022_07_022
crossref_primary_10_33399_biibfad_1277489
crossref_primary_10_1016_j_neuroimage_2021_118207
crossref_primary_10_3389_fpsyg_2021_647964
crossref_primary_10_3390_insects16030320
crossref_primary_10_3389_fpsyt_2021_661483
crossref_primary_10_3389_fpsyt_2024_1474003
crossref_primary_10_1080_08974438_2024_2313200
crossref_primary_10_1111_ajr_70033
crossref_primary_10_56294_mw2025668
crossref_primary_10_1108_BEPAM_12_2023_0233
crossref_primary_10_1177_17589983231211813
crossref_primary_10_1016_j_tipsro_2024_100249
crossref_primary_10_1080_10401334_2024_2331649
crossref_primary_10_30773_pi_2024_0097
crossref_primary_10_1016_j_jum_2024_10_003
crossref_primary_10_3390_nu12102970
crossref_primary_10_2340_17453674_2025_43083
crossref_primary_10_1016_j_brs_2022_10_001
crossref_primary_10_1097_HP_0000000000001355
crossref_primary_10_2196_40284
crossref_primary_10_1016_j_nexres_2025_100170
crossref_primary_10_1021_acs_analchem_3c03708
crossref_primary_10_3390_axioms10040307
crossref_primary_10_1016_j_jnutbio_2024_109759
crossref_primary_10_1159_000504063
crossref_primary_10_1093_mnras_stz1791
crossref_primary_10_4103_aca_aca_160_23
crossref_primary_10_1016_j_sftr_2024_100273
crossref_primary_10_1109_ACCESS_2024_3394036
crossref_primary_10_1007_s11695_023_06489_3
crossref_primary_10_1016_j_ijchp_2023_100375
crossref_primary_10_3389_frsip_2022_984901
crossref_primary_10_1080_15402002_2024_2441786
crossref_primary_10_1590_1516_4446_2021_1747
crossref_primary_10_1177_1055665619851432
crossref_primary_10_1016_j_eplepsyres_2018_12_009
crossref_primary_10_1016_j_tate_2021_103478
crossref_primary_10_1080_03067319_2021_1897797
crossref_primary_10_1177_19375867241237501
crossref_primary_10_1080_23995270_2024_2449346
crossref_primary_10_3390_jcm13133878
crossref_primary_10_2139_ssrn_4430586
crossref_primary_10_2298_SJEE2203273M
crossref_primary_10_1093_jsxmed_qdae040
crossref_primary_10_1186_s12909_024_06071_0
crossref_primary_10_1016_j_jnucmat_2023_154697
crossref_primary_10_1007_s11269_025_04145_2
crossref_primary_10_2166_h2oj_2022_054
crossref_primary_10_2196_60719
crossref_primary_10_1136_rmdopen_2023_003196
crossref_primary_10_2132_personality_28_2_9
crossref_primary_10_1016_j_jhsa_2017_05_015
crossref_primary_10_1038_s41598_023_34234_4
crossref_primary_10_1016_j_artd_2024_101466
crossref_primary_10_1111_jan_15182
crossref_primary_10_1111_lit_12393
crossref_primary_10_1111_jsr_14218
crossref_primary_10_1186_s41155_020_00154_9
crossref_primary_10_1177_25424823251317177
crossref_primary_10_1093_jme_tjac122
crossref_primary_10_1038_s41371_024_00933_2
crossref_primary_10_1080_08941920_2024_2440922
crossref_primary_10_1007_s40620_018_0500_8
crossref_primary_10_1088_1755_1315_466_1_012026
crossref_primary_10_1016_j_swevo_2022_101145
crossref_primary_10_1071_AH24063
crossref_primary_10_1016_j_ress_2024_110578
crossref_primary_10_1259_dmfr_20220016
crossref_primary_10_1080_07347324_2024_2387045
crossref_primary_10_1016_j_jacadv_2024_101176
crossref_primary_10_3847_2041_8213_acd645
crossref_primary_10_3390_agriculture14030330
crossref_primary_10_12688_f1000research_27629_1
crossref_primary_10_12688_f1000research_27629_2
crossref_primary_10_1016_j_pcorm_2023_100332
crossref_primary_10_1186_s41182_025_00701_z
crossref_primary_10_1371_journal_pone_0315313
crossref_primary_10_1016_j_ajo_2021_04_038
crossref_primary_10_1519_JSC_0000000000004869
crossref_primary_10_1049_ipr2_13237
crossref_primary_10_1067_j_cpradiol_2021_09_007
crossref_primary_10_2147_PRBM_S405580
crossref_primary_10_2196_32233
crossref_primary_10_1038_s41467_021_26636_7
crossref_primary_10_1016_j_compbiomed_2022_105479
crossref_primary_10_3390_vetsci11120630
crossref_primary_10_1007_s40257_024_00844_5
crossref_primary_10_3389_fendo_2022_841971
crossref_primary_10_1111_1556_4029_14635
crossref_primary_10_3390_nu12051413
crossref_primary_10_3390_ani12172201
crossref_primary_10_3390_vaccines9080890
crossref_primary_10_1016_j_ijggc_2025_104336
crossref_primary_10_1002_gea_21990
crossref_primary_10_1002_brb3_2800
crossref_primary_10_4078_jrd_2019_26_1_5
crossref_primary_10_1016_j_jas_2023_105825
crossref_primary_10_1016_j_medcle_2019_05_011
crossref_primary_10_3389_fpsyg_2022_859020
crossref_primary_10_7717_peerj_8756
crossref_primary_10_1016_j_arthro_2020_09_042
crossref_primary_10_1038_s41418_023_01167_4
crossref_primary_10_1182_bloodadvances_2021006623
crossref_primary_10_1109_TNSM_2022_3165202
crossref_primary_10_1016_j_medcli_2019_05_017
crossref_primary_10_1371_journal_pcbi_1011733
crossref_primary_10_3390_w16192866
crossref_primary_10_1016_j_conctc_2020_100535
crossref_primary_10_3389_fvets_2023_1160200
crossref_primary_10_1002_jsfa_12861
crossref_primary_10_1186_s40359_024_01737_2
crossref_primary_10_1007_s00779_021_01647_9
crossref_primary_10_3390_healthcare10071304
crossref_primary_10_1055_a_2150_2077
crossref_primary_10_1002_btpr_3306
crossref_primary_10_32604_cmc_2022_021492
crossref_primary_10_3389_fpsyg_2021_762418
crossref_primary_10_7759_cureus_33351
crossref_primary_10_4097_kja_d_18_00292
crossref_primary_10_1038_s41598_025_90185_y
crossref_primary_10_1016_j_cub_2024_07_043
crossref_primary_10_3390_s21196644
crossref_primary_10_4097_kja_19497
crossref_primary_10_1093_swr_svad012
crossref_primary_10_3389_fpsyg_2020_01540
crossref_primary_10_1016_j_childyouth_2020_105347
crossref_primary_10_1108_ECAM_05_2021_0457
crossref_primary_10_3389_fpubh_2021_719668
crossref_primary_10_1177_0046958020950999
crossref_primary_10_1007_s10389_023_02166_y
crossref_primary_10_12973_ijem_9_4_711
crossref_primary_10_3390_pathogens11091045
crossref_primary_10_3847_1538_4357_ab2a0c
crossref_primary_10_1186_s43088_023_00431_3
crossref_primary_10_3390_app13084823
crossref_primary_10_1109_TCOMM_2024_3442694
crossref_primary_10_1111_ijcs_12870
crossref_primary_10_1016_j_appet_2022_106303
crossref_primary_10_3390_app11072992
crossref_primary_10_1021_acs_jcim_3c00588
crossref_primary_10_1021_acs_jchemed_3c00516
crossref_primary_10_1109_ACCESS_2022_3162925
crossref_primary_10_3390_ani12070806
crossref_primary_10_1111_jan_14882
crossref_primary_10_1111_jan_15970
crossref_primary_10_2174_1874609816666230816152105
crossref_primary_10_1186_s13104_022_05910_x
crossref_primary_10_3389_frma_2021_670226
crossref_primary_10_1093_sleep_zsae075
crossref_primary_10_1016_j_fas_2023_02_013
crossref_primary_10_33225_jbse_24_23_315
crossref_primary_10_1007_s13187_024_02564_0
crossref_primary_10_1109_TNSRE_2024_3488052
crossref_primary_10_1371_journal_pone_0263683
crossref_primary_10_3390_rs17040722
crossref_primary_10_3390_nu16020298
crossref_primary_10_3390_children11091072
crossref_primary_10_1109_ACCESS_2022_3166175
crossref_primary_10_7759_cureus_23131
crossref_primary_10_1001_jamadermatol_2022_6378
crossref_primary_10_1016_j_tourman_2024_105057
crossref_primary_10_1177_0145482X221108703
crossref_primary_10_3390_rs13245018
crossref_primary_10_1016_j_clnu_2019_10_002
crossref_primary_10_2196_53330
crossref_primary_10_1016_j_arr_2018_10_007
crossref_primary_10_1186_s12906_023_04199_y
crossref_primary_10_4055_cios23081
crossref_primary_10_1080_00219266_2019_1687106
crossref_primary_10_1007_s11042_023_14701_w
crossref_primary_10_1093_texcom_tgac046
crossref_primary_10_1002_jso_27946
crossref_primary_10_1136_bmjph_2023_000566
crossref_primary_10_1016_j_cageo_2024_105818
crossref_primary_10_3390_jcm11175194
crossref_primary_10_52053_jpap_v5i3_302
crossref_primary_10_1016_j_plefa_2024_102661
crossref_primary_10_1136_bjsports_2019_101436
crossref_primary_10_1080_09638288_2022_2130445
crossref_primary_10_1515_cclm_2019_0596
crossref_primary_10_1007_s42010_023_00184_z
crossref_primary_10_1016_j_surg_2024_03_033
crossref_primary_10_51300_JSM_2024_127
crossref_primary_10_17718_tojde_1093630
crossref_primary_10_3390_bs12050116
crossref_primary_10_1016_j_asoc_2023_110376
crossref_primary_10_1007_s12596_023_01190_1
crossref_primary_10_1186_s13102_021_00390_1
crossref_primary_10_1371_journal_pone_0273032
crossref_primary_10_15446_recolma_v57n2_115856
crossref_primary_10_1016_j_heliyon_2023_e22526
crossref_primary_10_1186_s40409_018_0159_6
crossref_primary_10_3389_fphys_2021_554026
crossref_primary_10_1002_adts_202300619
crossref_primary_10_1016_j_enbuild_2024_113948
crossref_primary_10_3389_fpsyg_2023_1269216
crossref_primary_10_1097_NNR_0000000000000660
crossref_primary_10_1177_16094069221149487
crossref_primary_10_3390_vetsci10060371
crossref_primary_10_1016_j_knosys_2023_110396
crossref_primary_10_1007_s00167_019_05803_w
crossref_primary_10_1016_j_cjca_2024_11_010
crossref_primary_10_1007_s10489_023_05149_4
crossref_primary_10_1016_j_ceramint_2024_12_499
crossref_primary_10_1016_j_jpainsymman_2023_08_005
crossref_primary_10_1002_jor_24611
crossref_primary_10_1016_j_aei_2022_101822
crossref_primary_10_1186_s12872_022_02464_5
crossref_primary_10_1002_bse_3496
crossref_primary_10_1016_j_jped_2025_01_007
crossref_primary_10_1080_19361610_2025_2466000
crossref_primary_10_1136_bmjopen_2023_073294
crossref_primary_10_1016_j_nurpra_2024_105130
crossref_primary_10_3934_QFE_2022018
crossref_primary_10_1016_j_jss_2023_11_065
crossref_primary_10_3390_app122413019
crossref_primary_10_3390_s22239143
crossref_primary_10_1016_j_epsr_2023_109341
crossref_primary_10_1007_s11207_023_02179_6
crossref_primary_10_1093_jimmun_vkaf006
crossref_primary_10_1103_PhysRevMaterials_7_063801
crossref_primary_10_1159_000505850
crossref_primary_10_3934_mbe_2025021
crossref_primary_10_1002_npr2_12407
crossref_primary_10_1007_s11423_024_10417_2
crossref_primary_10_1109_ACCESS_2022_3219844
crossref_primary_10_52711_0974_360X_2024_00269
crossref_primary_10_31211_rpics_2024_10_1_333
crossref_primary_10_1007_s00423_021_02360_0
crossref_primary_10_1016_j_isci_2023_107934
crossref_primary_10_3389_falgy_2023_1101321
crossref_primary_10_1080_00295639_2024_2323217
crossref_primary_10_35699_2316_9389_2022_38489
crossref_primary_10_33225_jbse_23_22_881
crossref_primary_10_3390_su141710527
crossref_primary_10_1002_ejp_1665
crossref_primary_10_1007_s11126_025_10115_z
crossref_primary_10_1016_j_rsase_2024_101426
crossref_primary_10_3390_ijerph18084235
crossref_primary_10_1002_appl_202300054
crossref_primary_10_1016_j_apnr_2024_151824
crossref_primary_10_30773_pi_2023_0165
crossref_primary_10_3389_fphys_2023_1198162
crossref_primary_10_1002_adem_202300075
crossref_primary_10_1093_noajnl_vdad091
crossref_primary_10_1049_rsn2_12573
crossref_primary_10_1016_j_ajem_2024_05_013
crossref_primary_10_1016_j_clet_2024_100765
crossref_primary_10_3390_s22031180
crossref_primary_10_1080_14681811_2023_2255543
crossref_primary_10_1061_JCEMD4_COENG_14821
crossref_primary_10_3390_healthcare11233061
crossref_primary_10_1177_20552076241242559
crossref_primary_10_4236_ojbm_2024_123098
crossref_primary_10_1016_j_jdiacomp_2017_05_007
crossref_primary_10_1007_s00484_021_02180_3
crossref_primary_10_1016_j_actpsy_2022_103535
crossref_primary_10_3389_fneur_2021_662510
crossref_primary_10_1061__ASCE_CO_1943_7862_0002139
crossref_primary_10_1186_s40001_023_01223_2
crossref_primary_10_1038_s41598_021_02888_7
crossref_primary_10_3390_s22218548
crossref_primary_10_1177_0300060519873752
crossref_primary_10_1016_j_nlm_2018_01_001
crossref_primary_10_2196_51852
crossref_primary_10_26442_00403660_2023_10_202464
crossref_primary_10_1002_oby_23557
crossref_primary_10_1038_s41380_018_0096_3
crossref_primary_10_1108_ECAM_05_2024_0600
crossref_primary_10_3390_ani13071171
crossref_primary_10_29219_fnr_v65_5730
crossref_primary_10_1016_j_archoralbio_2022_105361
crossref_primary_10_1016_j_scitotenv_2023_167035
crossref_primary_10_3389_fphys_2022_870154
crossref_primary_10_1016_j_eswa_2024_124469
crossref_primary_10_1002_ca_24150
crossref_primary_10_1002_ece3_10009
crossref_primary_10_1177_03635465241302797
crossref_primary_10_2196_37377
crossref_primary_10_1785_0120190238
crossref_primary_10_1007_s00415_023_12057_7
crossref_primary_10_1111_jonm_12853
crossref_primary_10_1080_09500693_2023_2275327
crossref_primary_10_2147_IJWH_S360465
crossref_primary_10_1044_2020_AJSLP_20_00275
crossref_primary_10_7717_peerj_9089
crossref_primary_10_1063_5_0243888
crossref_primary_10_1080_02640414_2021_1927314
crossref_primary_10_1371_journal_pone_0296652
crossref_primary_10_1093_gji_ggad095
crossref_primary_10_1016_j_autcon_2024_105871
crossref_primary_10_1016_j_jaim_2020_12_004
crossref_primary_10_1117_1_JMI_11_2_024011
crossref_primary_10_1063_5_0243520
crossref_primary_10_1080_1068316X_2022_2132247
crossref_primary_10_1093_milmed_usab399
crossref_primary_10_1109_TITS_2023_3348074
crossref_primary_10_3390_nu16132059
crossref_primary_10_5294_edu_2023_26_3_5
crossref_primary_10_1016_j_biopha_2023_115424
crossref_primary_10_1016_j_msard_2021_102924
crossref_primary_10_1002_jclp_22943
crossref_primary_10_1017_S0022215121000621
crossref_primary_10_3390_laws13040050
crossref_primary_10_1590_2317_1782_20212020207
crossref_primary_10_1016_j_earlhumdev_2018_02_018
crossref_primary_10_1007_s00395_022_00912_z
crossref_primary_10_3390_foods10050909
crossref_primary_10_1136_postgradmedj_2020_139013
crossref_primary_10_1016_j_jebdp_2025_102135
crossref_primary_10_30798_makuiibf_1282080
crossref_primary_10_1007_s12144_024_06515_2
crossref_primary_10_1017_pab_2024_40
crossref_primary_10_7748_nr_2022_e1792
crossref_primary_10_1002_aisy_202200365
crossref_primary_10_3390_healthcare11050773
crossref_primary_10_30935_cedtech_14707
crossref_primary_10_3390_su14042072
crossref_primary_10_1080_13873954_2024_2395808
crossref_primary_10_1080_15391523_2020_1722977
crossref_primary_10_15332_22563067_10714
crossref_primary_10_1039_D3CP02790B
crossref_primary_10_1080_01431161_2021_1890266
crossref_primary_10_1007_s00167_021_06654_0
crossref_primary_10_1080_13552600_2020_1850894
crossref_primary_10_3390_ijms252312802
crossref_primary_10_1007_s11412_021_09356_4
crossref_primary_10_5005_jp_journals_10030_1415
crossref_primary_10_1016_j_dim_2022_100020
crossref_primary_10_1016_j_jad_2021_11_017
crossref_primary_10_1016_j_ssci_2024_106460
crossref_primary_10_12688_f1000research_74484_1
crossref_primary_10_3201_eid2809_220092
crossref_primary_10_1371_journal_pone_0285762
crossref_primary_10_3389_fimmu_2023_1231813
crossref_primary_10_1029_2024JF007695
crossref_primary_10_1177_23337214231215274
crossref_primary_10_1136_bmjspcare_2020_002661
crossref_primary_10_1364_AO_547089
crossref_primary_10_1111_jan_16615
crossref_primary_10_3390_informatics9010021
crossref_primary_10_1245_s10434_020_08638_9
crossref_primary_10_1038_s41598_023_30214_w
crossref_primary_10_3389_fphar_2021_654459
crossref_primary_10_1371_journal_pone_0227683
crossref_primary_10_3389_frsus_2021_649715
crossref_primary_10_1007_s10815_024_03257_9
crossref_primary_10_1590_1980_0037_2022v24e84048
crossref_primary_10_1140_epjds_s13688_025_00531_3
Cites_doi 10.4097/kjae.2015.68.6.540
ContentType Journal Article
Copyright Copyright © the Korean Society of Anesthesiologists, 2017 2017
Copyright_xml – notice: Copyright © the Korean Society of Anesthesiologists, 2017 2017
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
ACYCR
DOI 10.4097/kjae.2017.70.2.144
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2005-7563
EndPage 156
ExternalDocumentID oai_kci_go_kr_ARTI_7611535
oai_doaj_org_article_083cdd37e85e478d93b5c304b4cca626
PMC5370305
28367284
10_4097_kjae_2017_70_2_144
Genre Journal Article
Review
GroupedDBID 5-W
53G
8JR
8XY
9ZL
AAYXX
ABDBF
ACUHS
ADRAZ
ALMA_UNASSIGNED_HOLDINGS
CITATION
DIK
E3Z
EBD
EF.
ESX
F5P
GROUPED_DOAJ
HYE
KQ8
M48
O5R
O5S
OK1
PGMZT
RPM
TUS
HZB
NPM
7X8
5PM
ABPTK
ACYCR
ID FETCH-LOGICAL-c568t-917ae11ac0be32c5a42d6b7a5351f0f3ff219fc9d1c15c43de200a39836475063
IEDL.DBID M48
ISSN 2005-6419
IngestDate Tue Nov 21 21:36:48 EST 2023
Wed Aug 27 01:21:22 EDT 2025
Thu Aug 21 18:33:06 EDT 2025
Fri Jul 11 13:23:39 EDT 2025
Thu Jan 02 22:22:37 EST 2025
Tue Jul 01 01:42:48 EDT 2025
Thu Apr 24 22:52:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Probability
Normal distribution
Statistics
Statistical distributions
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-917ae11ac0be32c5a42d6b7a5351f0f3ff219fc9d1c15c43de200a39836475063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
G704-000679.2017.70.2.010
ORCID 0000-0003-0398-5514
0000-0003-1222-0054
OpenAccessLink https://doaj.org/article/083cdd37e85e478d93b5c304b4cca626
PMID 28367284
PQID 1883839562
PQPubID 23479
PageCount 13
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_7611535
doaj_primary_oai_doaj_org_article_083cdd37e85e478d93b5c304b4cca626
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5370305
proquest_miscellaneous_1883839562
pubmed_primary_28367284
crossref_primary_10_4097_kjae_2017_70_2_144
crossref_citationtrail_10_4097_kjae_2017_70_2_144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
PublicationTitle Korean journal of anesthesiology
PublicationTitleAlternate Korean J Anesthesiol
PublicationYear 2017
Publisher The Korean Society of Anesthesiologists
Korean Society of Anesthesiologists
대한마취통증의학회
Publisher_xml – name: The Korean Society of Anesthesiologists
– name: Korean Society of Anesthesiologists
– name: 대한마취통증의학회
References Kim (10.4097/kjae.2017.70.2.144_ref1) 2015; 68
26634076 - Korean J Anesthesiol. 2015 Dec;68(6):540-6
References_xml – volume: 68
  start-page: 540
  year: 2015
  ident: 10.4097/kjae.2017.70.2.144_ref1
  publication-title: Korean J Anesthesiol
  doi: 10.4097/kjae.2015.68.6.540
– reference: 26634076 - Korean J Anesthesiol. 2015 Dec;68(6):540-6
SSID ssj0000330062
Score 2.5862916
SecondaryResourceType review_article
Snippet According to the central limit theorem, the means of a random sample of size, , from a population with mean, µ, and variance, σ , distribute normally with...
According to the central limit theorem, the means of a random sample of size, n, from a population with mean, µ, and variance, σ2, distribute normally with...
According to the central limit theorem, the means of a random sample of size, n , from a population with mean, µ, and variance, σ 2 , distribute normally with...
According to the central limit theorem, the means of a random sample of size, n, from a population with mean, μ, and variance, σ2, distribute normally with...
SourceID nrf
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 144
SubjectTerms normal distribution
probability
statistical distributions
Statistical Round
statistics
마취과학
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgECbGkxfj2_WVaryZ1VKe1ZMajZroSRNvhFLwsdo16_r_nYG62TVGL17apoUUBjp8X4FvCNmVBcAQxVTXI13llS27WnM4WMattIJbi78Grm_kxR2_uhf3Y6G-cE1YkgdOhjsAiODqmimvhedK1yWrhAMOXnF4N6Bx9L55mY-RqeiDgabnMZpolNqUnJZpxwzKOx30ni0qZFK1r_L9Auc3J0alKN4PY00zCD_hzu_LJ8fGo_M5MtsCyew4VWCeTPlmgcwgdkzSy4vkqP1zm73gJqYsbVl8PcSLDDhnk4Cfz_ohe40R0bL3Ue4lcnd-dnt60W1jJXSdkHoIPktZT6l1eeVZ4YTlRS0rZQUTNOSBhQCuKbiypo4Kx1ntwTCWlRr14wXglGUy3cA7V0mWC8us49ojmApFqAAlyOARmSngV0WH0C9bGdcKiWM8ixcDhALta9C-Bu1rVG4KYBe8Q_ZGed6SjMavqU-wCUYpUQI73oCOYdqOYf7qGB2yAw1oeu4p5sfzQ9_0BgaIwqVREqAwEx2y_dW-Br4rnCyxje9_vBuqNZB3YI9Q35XU3qPyACSTYAoop5roCRMFnnzSPD1G7W7Bootd-48arpMZNFtaR7RBpoeDD78JEGlYbcWv4RO7aQpf
  priority: 102
  providerName: Directory of Open Access Journals
Title Central limit theorem: the cornerstone of modern statistics
URI https://www.ncbi.nlm.nih.gov/pubmed/28367284
https://www.proquest.com/docview/1883839562
https://pubmed.ncbi.nlm.nih.gov/PMC5370305
https://doaj.org/article/083cdd37e85e478d93b5c304b4cca626
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002211182
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Anesthesiology, 2017, 70(2), , pp.144-156
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwGLVYLr2gImgZCiggbtUMcbwGDqggECDBqSNxsxzHZpkhA2GQ2n_P9zmZUacCxCWJsjrP23tO_D5CdmUGNEQx1fUoV3lh867WHBaWcSut4Nbi0MDllTzr84trcT1HJuGOWgCf35R2GE-qXw97f57-HkKFB_7aQ7emvcG9RcNLqnoq7WX4uXKeLELPJFGMXbZ0P7bMIN7TGGM0GnBKTvNmHs07t5npq6KlP_RAVR3eYqP__1T5Ty91-pUstfQy-dWUh2Uy56sVctAO4SZDnM2UNHMXH_ZxIwHxWTUM0CejkDzE0GgJTjNqHJxXSf_05PfxWbcNmtB1QuoxNF7KekqtSwvPMicsz0pZKCuYoCENLARoo4LLS-qocJyVHrCwLNdoJC-AsHwjCxU8c40kqbDMOq49sqqQhQLoggweKZoCoZV1CJ3AY1zrKI6BLYYGlAVCahBSg5AalZoMZAbvkJ_Tax4bP40Pzz5C1Kdnohd23DGqb0xbtQyQSFeWTHktPFe6zFkhHEt5waF0gl7rkB3IMzNwd_F6XN-MzKA2oBjOjZLAiZnokO1JlhqoYPjVxFZ-9PJsqNag4kFGwvt-b7J4mh7gZhKggHSqmcyfSfDskeruNpp4Cxbb2vVPPPcH-YKoNP8LbZCFcf3iN4EKjYutOISwFUv5K8yjBD4
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Central+limit+theorem%3A+the+cornerstone+of+modern+statistics&rft.jtitle=Korean+journal+of+anesthesiology&rft.au=Kwak%2C+Sang+Gyu&rft.au=Kim%2C+Jong+Hae&rft.date=2017-04-01&rft.issn=2005-6419&rft.volume=70&rft.issue=2&rft.spage=144&rft_id=info:doi/10.4097%2Fkjae.2017.70.2.144&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2005-6419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2005-6419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2005-6419&client=summon