Central limit theorem: the cornerstone of modern statistics
According to the central limit theorem, the means of a random sample of size, , from a population with mean, µ, and variance, σ , distribute normally with mean, µ, and variance, [Formula: see text]. Using the central limit theorem, a variety of parametric tests have been developed under assumptions...
Saved in:
Published in | Korean journal of anesthesiology Vol. 70; no. 2; pp. 144 - 156 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
The Korean Society of Anesthesiologists
01.04.2017
Korean Society of Anesthesiologists 대한마취통증의학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2005-6419 2005-7563 |
DOI | 10.4097/kjae.2017.70.2.144 |
Cover
Abstract | According to the central limit theorem, the means of a random sample of size,
, from a population with mean, µ, and variance, σ
, distribute normally with mean, µ, and variance, [Formula: see text]. Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding. |
---|---|
AbstractList | According to the central limit theorem, the means of a random sample of size, n, from a population with mean, µ, and variance, σ2, distribute normally with mean, µ, and variance, σ2n. Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding. According to the central limit theorem, the means of a random sample of size, n, from a population with mean, µ, and variance, σ2, distribute normally with mean, µ, and variance, [Formula: see text]. Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding.According to the central limit theorem, the means of a random sample of size, n, from a population with mean, µ, and variance, σ2, distribute normally with mean, µ, and variance, [Formula: see text]. Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding. According to the central limit theorem, the means of a random sample of size, n, from a population with mean, μ, and variance, σ2, distribute normally with mean, μ, and variance, σ2 n . Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student’s t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its nearcomplete understanding. KCI Citation Count: 2 According to the central limit theorem, the means of a random sample of size, , from a population with mean, µ, and variance, σ , distribute normally with mean, µ, and variance, [Formula: see text]. Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding. According to the central limit theorem, the means of a random sample of size, n , from a population with mean, µ, and variance, σ 2 , distribute normally with mean, µ, and variance, σ 2 n . Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding. |
Author | Kim, Jong Hae Kwak, Sang Gyu |
AuthorAffiliation | 1 Department of Medical Statistics, School of Medicine, Catholic University of Daegu, Daegu, Korea 2 Department of Anesthesiology and Pain Medicine, School of Medicine, Catholic University of Daegu, Daegu, Korea |
AuthorAffiliation_xml | – name: 2 Department of Anesthesiology and Pain Medicine, School of Medicine, Catholic University of Daegu, Daegu, Korea – name: 1 Department of Medical Statistics, School of Medicine, Catholic University of Daegu, Daegu, Korea |
Author_xml | – sequence: 1 givenname: Sang Gyu orcidid: 0000-0003-0398-5514 surname: Kwak fullname: Kwak, Sang Gyu organization: Department of Medical Statistics, School of Medicine, Catholic University of Daegu, Daegu, Korea – sequence: 2 givenname: Jong Hae orcidid: 0000-0003-1222-0054 surname: Kim fullname: Kim, Jong Hae organization: Department of Anesthesiology and Pain Medicine, School of Medicine, Catholic University of Daegu, Daegu, Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28367284$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002211182$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9Ul1rFDEUDVKxH_YP-CDzqA875jsZBaEsVhcKgtTnkMncabM7M6lJVvDfm9lZi_XBvNxLcu45h9xzjk6mMAFCrwiuOW7Uu93WQk0xUbXCNa0J58_QGcVYrJSQ7OTYS06aU3SZ0haXwxjGkr5Ap1QzqajmZ-jDGqYc7VANfvS5yvcQIozv56ZyIU4QUy7CVeirMXQQpyplm33K3qWX6HlvhwSXx3qBvl9_ul1_Wd18_bxZX92snJA6rxqiLBBiHW6BUScsp51slRVMkB73rO8paXrXdMQR4TjroFi3rCkeuRJYsgv0duGdYm92zptg_aHeBbOL5urb7cYoSUghLNjNgu2C3ZqH6Ecbfx0GDhch3hkbi_kBDNbMdR1ToAVwpbuGtcIxzFvunJV01v24cD3s2xE6t_zUE9KnL5O_L55-GsEUZng28-ZIEMOPPaRsRp8cDIOdIOyTIVozzRohaYG-_lvrUeTPpgqALgAXQ0oR-kcIwWZOhJkTYeZEGIUNNSURZUj_M-T8vL4w-_XD_0Z_A27Guw8 |
CitedBy_id | crossref_primary_10_29252_johe_7_2_112 crossref_primary_10_3390_life10090185 crossref_primary_10_1016_j_dajour_2023_100369 crossref_primary_10_1016_j_jep_2019_112229 crossref_primary_10_1093_jmammal_gyac094 crossref_primary_10_1007_s44217_024_00090_1 crossref_primary_10_3389_fphys_2023_1227871 crossref_primary_10_3390_bios14040204 crossref_primary_10_3389_fpsyg_2022_948423 crossref_primary_10_29252_johe_7_3_153 crossref_primary_10_1080_17474124_2024_2443574 crossref_primary_10_1108_JSM_12_2023_0476 crossref_primary_10_1186_s12912_021_00623_1 crossref_primary_10_1007_s13239_024_00769_4 crossref_primary_10_25159_1998_8125_6714 crossref_primary_10_1017_S0266462321001707 crossref_primary_10_1109_TMECH_2022_3214419 crossref_primary_10_3389_fnagi_2023_1299451 crossref_primary_10_1016_j_jse_2023_07_011 crossref_primary_10_1016_j_quageo_2022_101323 crossref_primary_10_1016_j_injury_2024_111536 crossref_primary_10_1186_s13620_019_0145_5 crossref_primary_10_3389_fnut_2024_1451400 crossref_primary_10_1016_j_pedn_2024_08_007 crossref_primary_10_3758_s13423_023_02410_2 crossref_primary_10_1016_j_engappai_2023_106344 crossref_primary_10_1016_j_ssaho_2022_100281 crossref_primary_10_1523_JNEUROSCI_0942_22_2022 crossref_primary_10_1016_j_neucom_2023_126933 crossref_primary_10_1109_TVT_2024_3439707 crossref_primary_10_1007_s11126_024_10094_7 crossref_primary_10_1371_journal_pmen_0000125 crossref_primary_10_3390_cancers16112155 crossref_primary_10_1001_jamaoto_2022_2847 crossref_primary_10_1021_acs_jchemed_4c00851 crossref_primary_10_3171_2019_4_PEDS18717 crossref_primary_10_1109_ACCESS_2022_3204392 crossref_primary_10_1111_bdi_13356 crossref_primary_10_1016_j_biosystemseng_2019_04_009 crossref_primary_10_1080_02697459_2024_2442804 crossref_primary_10_17352_2455_5487_000057 crossref_primary_10_3390_antibiotics11010058 crossref_primary_10_3390_jcm13010240 crossref_primary_10_1002_jeo2_70066 crossref_primary_10_1109_JXCDC_2024_3502053 crossref_primary_10_1016_j_envint_2022_107375 crossref_primary_10_1097_AJP_0000000000001152 crossref_primary_10_1109_ACCESS_2023_3273605 crossref_primary_10_4103_jrpp_jrpp_52_24 crossref_primary_10_1038_s41598_018_36041_8 crossref_primary_10_17275_per_24_28_11_2 crossref_primary_10_1109_JSEN_2023_3256039 crossref_primary_10_3390_philosophies6020046 crossref_primary_10_1088_2058_9565_aca821 crossref_primary_10_5005_jp_journals_10015_1557 crossref_primary_10_1016_j_enbuild_2023_113285 crossref_primary_10_1016_j_jdent_2023_104829 crossref_primary_10_3390_environments11070139 crossref_primary_10_5005_jp_journals_10015_1556 crossref_primary_10_1016_j_nepr_2025_104320 crossref_primary_10_1186_s12871_021_01529_w crossref_primary_10_1016_j_jaip_2021_10_012 crossref_primary_10_1016_j_puhe_2023_08_023 crossref_primary_10_1038_s41598_022_11483_3 crossref_primary_10_2110_jsr_2020_204 crossref_primary_10_3390_cancers14133091 crossref_primary_10_3389_fpsyg_2020_00906 crossref_primary_10_2196_35356 crossref_primary_10_1007_s43681_024_00527_1 crossref_primary_10_1155_2022_8178930 crossref_primary_10_1145_3603535 crossref_primary_10_3390_acoustics6020021 crossref_primary_10_1177_0272989X231214782 crossref_primary_10_14260_jemds_2021_552 crossref_primary_10_1155_2018_5937059 crossref_primary_10_1007_s00405_021_06629_4 crossref_primary_10_3390_plants10091954 crossref_primary_10_1016_j_ebiom_2021_103316 crossref_primary_10_1177_20552076221084461 crossref_primary_10_3389_frtra_2023_1237112 crossref_primary_10_47134_pjp_v1i3_2423 crossref_primary_10_1080_2326263X_2024_2345449 crossref_primary_10_1108_QEA_12_2023_0019 crossref_primary_10_2196_26868 crossref_primary_10_1109_TVLSI_2023_3297125 crossref_primary_10_1111_vru_12714 crossref_primary_10_1038_s41534_022_00592_6 crossref_primary_10_1109_TIV_2023_3322261 crossref_primary_10_1093_heapro_daaf002 crossref_primary_10_1108_BEPAM_11_2022_0181 crossref_primary_10_1111_ans_18575 crossref_primary_10_3390_jcm13164645 crossref_primary_10_1016_j_vrih_2022_06_004 crossref_primary_10_1049_rsn2_12132 crossref_primary_10_3389_fpsyt_2024_1217102 crossref_primary_10_1016_j_jad_2024_12_098 crossref_primary_10_1016_j_procs_2022_01_216 crossref_primary_10_1186_s12879_024_09067_9 crossref_primary_10_1016_j_dialog_2023_100116 crossref_primary_10_1016_j_compbiomed_2024_108126 crossref_primary_10_18699_vjgb_24_89 crossref_primary_10_1016_j_cub_2023_09_049 crossref_primary_10_1016_j_ssmph_2023_101580 crossref_primary_10_1007_s00296_025_05819_1 crossref_primary_10_3389_fphar_2023_1265541 crossref_primary_10_24857_rgsa_v18n9_067 crossref_primary_10_1159_000510268 crossref_primary_10_1371_journal_pone_0296911 crossref_primary_10_1007_s10639_025_13401_2 crossref_primary_10_1177_23814683221116304 crossref_primary_10_5093_psed2024a3 crossref_primary_10_1007_s00394_023_03303_9 crossref_primary_10_1038_s41598_024_63757_7 crossref_primary_10_1111_acps_13286 crossref_primary_10_1007_s10163_024_02121_3 crossref_primary_10_1097_CCM_0000000000003781 crossref_primary_10_1073_pnas_2301607120 crossref_primary_10_55329_llfl7748 crossref_primary_10_3389_fpsyg_2025_1488102 crossref_primary_10_3390_healthcare11141991 crossref_primary_10_1021_acs_cgd_3c01027 crossref_primary_10_1039_D3RA06690H crossref_primary_10_3390_su16052130 crossref_primary_10_1108_MBE_03_2021_0045 crossref_primary_10_1111_papr_13438 crossref_primary_10_1007_s42243_023_01109_x crossref_primary_10_2196_58950 crossref_primary_10_3389_frcha_2024_1364617 crossref_primary_10_1109_TNSM_2024_3485545 crossref_primary_10_1111_jcal_12821 crossref_primary_10_1186_s12859_023_05430_w crossref_primary_10_3390_su13168799 crossref_primary_10_1016_j_jphys_2024_08_006 crossref_primary_10_1097_MLR_0000000000001313 crossref_primary_10_1186_s12967_024_05008_x crossref_primary_10_1111_ijcp_13812 crossref_primary_10_1007_s11019_024_10206_x crossref_primary_10_1177_1971400920983678 crossref_primary_10_2147_IJGM_S486189 crossref_primary_10_1097_JNC_0000000000000400 crossref_primary_10_1007_s11042_024_20072_7 crossref_primary_10_1016_j_aip_2025_102254 crossref_primary_10_1093_clinchem_hvae109 crossref_primary_10_1200_CCI_24_00014 crossref_primary_10_1017_S0033291721002075 crossref_primary_10_2147_OPTO_S406407 crossref_primary_10_1080_14459795_2024_2400356 crossref_primary_10_1055_s_0042_1756171 crossref_primary_10_1140_epjs_s11734_024_01323_y crossref_primary_10_3390_jcm9092897 crossref_primary_10_7717_peerj_10970 crossref_primary_10_1016_j_jvoice_2022_07_022 crossref_primary_10_33399_biibfad_1277489 crossref_primary_10_1016_j_neuroimage_2021_118207 crossref_primary_10_3389_fpsyg_2021_647964 crossref_primary_10_3390_insects16030320 crossref_primary_10_3389_fpsyt_2021_661483 crossref_primary_10_3389_fpsyt_2024_1474003 crossref_primary_10_1080_08974438_2024_2313200 crossref_primary_10_1111_ajr_70033 crossref_primary_10_56294_mw2025668 crossref_primary_10_1108_BEPAM_12_2023_0233 crossref_primary_10_1177_17589983231211813 crossref_primary_10_1016_j_tipsro_2024_100249 crossref_primary_10_1080_10401334_2024_2331649 crossref_primary_10_30773_pi_2024_0097 crossref_primary_10_1016_j_jum_2024_10_003 crossref_primary_10_3390_nu12102970 crossref_primary_10_2340_17453674_2025_43083 crossref_primary_10_1016_j_brs_2022_10_001 crossref_primary_10_1097_HP_0000000000001355 crossref_primary_10_2196_40284 crossref_primary_10_1016_j_nexres_2025_100170 crossref_primary_10_1021_acs_analchem_3c03708 crossref_primary_10_3390_axioms10040307 crossref_primary_10_1016_j_jnutbio_2024_109759 crossref_primary_10_1159_000504063 crossref_primary_10_1093_mnras_stz1791 crossref_primary_10_4103_aca_aca_160_23 crossref_primary_10_1016_j_sftr_2024_100273 crossref_primary_10_1109_ACCESS_2024_3394036 crossref_primary_10_1007_s11695_023_06489_3 crossref_primary_10_1016_j_ijchp_2023_100375 crossref_primary_10_3389_frsip_2022_984901 crossref_primary_10_1080_15402002_2024_2441786 crossref_primary_10_1590_1516_4446_2021_1747 crossref_primary_10_1177_1055665619851432 crossref_primary_10_1016_j_eplepsyres_2018_12_009 crossref_primary_10_1016_j_tate_2021_103478 crossref_primary_10_1080_03067319_2021_1897797 crossref_primary_10_1177_19375867241237501 crossref_primary_10_1080_23995270_2024_2449346 crossref_primary_10_3390_jcm13133878 crossref_primary_10_2139_ssrn_4430586 crossref_primary_10_2298_SJEE2203273M crossref_primary_10_1093_jsxmed_qdae040 crossref_primary_10_1186_s12909_024_06071_0 crossref_primary_10_1016_j_jnucmat_2023_154697 crossref_primary_10_1007_s11269_025_04145_2 crossref_primary_10_2166_h2oj_2022_054 crossref_primary_10_2196_60719 crossref_primary_10_1136_rmdopen_2023_003196 crossref_primary_10_2132_personality_28_2_9 crossref_primary_10_1016_j_jhsa_2017_05_015 crossref_primary_10_1038_s41598_023_34234_4 crossref_primary_10_1016_j_artd_2024_101466 crossref_primary_10_1111_jan_15182 crossref_primary_10_1111_lit_12393 crossref_primary_10_1111_jsr_14218 crossref_primary_10_1186_s41155_020_00154_9 crossref_primary_10_1177_25424823251317177 crossref_primary_10_1093_jme_tjac122 crossref_primary_10_1038_s41371_024_00933_2 crossref_primary_10_1080_08941920_2024_2440922 crossref_primary_10_1007_s40620_018_0500_8 crossref_primary_10_1088_1755_1315_466_1_012026 crossref_primary_10_1016_j_swevo_2022_101145 crossref_primary_10_1071_AH24063 crossref_primary_10_1016_j_ress_2024_110578 crossref_primary_10_1259_dmfr_20220016 crossref_primary_10_1080_07347324_2024_2387045 crossref_primary_10_1016_j_jacadv_2024_101176 crossref_primary_10_3847_2041_8213_acd645 crossref_primary_10_3390_agriculture14030330 crossref_primary_10_12688_f1000research_27629_1 crossref_primary_10_12688_f1000research_27629_2 crossref_primary_10_1016_j_pcorm_2023_100332 crossref_primary_10_1186_s41182_025_00701_z crossref_primary_10_1371_journal_pone_0315313 crossref_primary_10_1016_j_ajo_2021_04_038 crossref_primary_10_1519_JSC_0000000000004869 crossref_primary_10_1049_ipr2_13237 crossref_primary_10_1067_j_cpradiol_2021_09_007 crossref_primary_10_2147_PRBM_S405580 crossref_primary_10_2196_32233 crossref_primary_10_1038_s41467_021_26636_7 crossref_primary_10_1016_j_compbiomed_2022_105479 crossref_primary_10_3390_vetsci11120630 crossref_primary_10_1007_s40257_024_00844_5 crossref_primary_10_3389_fendo_2022_841971 crossref_primary_10_1111_1556_4029_14635 crossref_primary_10_3390_nu12051413 crossref_primary_10_3390_ani12172201 crossref_primary_10_3390_vaccines9080890 crossref_primary_10_1016_j_ijggc_2025_104336 crossref_primary_10_1002_gea_21990 crossref_primary_10_1002_brb3_2800 crossref_primary_10_4078_jrd_2019_26_1_5 crossref_primary_10_1016_j_jas_2023_105825 crossref_primary_10_1016_j_medcle_2019_05_011 crossref_primary_10_3389_fpsyg_2022_859020 crossref_primary_10_7717_peerj_8756 crossref_primary_10_1016_j_arthro_2020_09_042 crossref_primary_10_1038_s41418_023_01167_4 crossref_primary_10_1182_bloodadvances_2021006623 crossref_primary_10_1109_TNSM_2022_3165202 crossref_primary_10_1016_j_medcli_2019_05_017 crossref_primary_10_1371_journal_pcbi_1011733 crossref_primary_10_3390_w16192866 crossref_primary_10_1016_j_conctc_2020_100535 crossref_primary_10_3389_fvets_2023_1160200 crossref_primary_10_1002_jsfa_12861 crossref_primary_10_1186_s40359_024_01737_2 crossref_primary_10_1007_s00779_021_01647_9 crossref_primary_10_3390_healthcare10071304 crossref_primary_10_1055_a_2150_2077 crossref_primary_10_1002_btpr_3306 crossref_primary_10_32604_cmc_2022_021492 crossref_primary_10_3389_fpsyg_2021_762418 crossref_primary_10_7759_cureus_33351 crossref_primary_10_4097_kja_d_18_00292 crossref_primary_10_1038_s41598_025_90185_y crossref_primary_10_1016_j_cub_2024_07_043 crossref_primary_10_3390_s21196644 crossref_primary_10_4097_kja_19497 crossref_primary_10_1093_swr_svad012 crossref_primary_10_3389_fpsyg_2020_01540 crossref_primary_10_1016_j_childyouth_2020_105347 crossref_primary_10_1108_ECAM_05_2021_0457 crossref_primary_10_3389_fpubh_2021_719668 crossref_primary_10_1177_0046958020950999 crossref_primary_10_1007_s10389_023_02166_y crossref_primary_10_12973_ijem_9_4_711 crossref_primary_10_3390_pathogens11091045 crossref_primary_10_3847_1538_4357_ab2a0c crossref_primary_10_1186_s43088_023_00431_3 crossref_primary_10_3390_app13084823 crossref_primary_10_1109_TCOMM_2024_3442694 crossref_primary_10_1111_ijcs_12870 crossref_primary_10_1016_j_appet_2022_106303 crossref_primary_10_3390_app11072992 crossref_primary_10_1021_acs_jcim_3c00588 crossref_primary_10_1021_acs_jchemed_3c00516 crossref_primary_10_1109_ACCESS_2022_3162925 crossref_primary_10_3390_ani12070806 crossref_primary_10_1111_jan_14882 crossref_primary_10_1111_jan_15970 crossref_primary_10_2174_1874609816666230816152105 crossref_primary_10_1186_s13104_022_05910_x crossref_primary_10_3389_frma_2021_670226 crossref_primary_10_1093_sleep_zsae075 crossref_primary_10_1016_j_fas_2023_02_013 crossref_primary_10_33225_jbse_24_23_315 crossref_primary_10_1007_s13187_024_02564_0 crossref_primary_10_1109_TNSRE_2024_3488052 crossref_primary_10_1371_journal_pone_0263683 crossref_primary_10_3390_rs17040722 crossref_primary_10_3390_nu16020298 crossref_primary_10_3390_children11091072 crossref_primary_10_1109_ACCESS_2022_3166175 crossref_primary_10_7759_cureus_23131 crossref_primary_10_1001_jamadermatol_2022_6378 crossref_primary_10_1016_j_tourman_2024_105057 crossref_primary_10_1177_0145482X221108703 crossref_primary_10_3390_rs13245018 crossref_primary_10_1016_j_clnu_2019_10_002 crossref_primary_10_2196_53330 crossref_primary_10_1016_j_arr_2018_10_007 crossref_primary_10_1186_s12906_023_04199_y crossref_primary_10_4055_cios23081 crossref_primary_10_1080_00219266_2019_1687106 crossref_primary_10_1007_s11042_023_14701_w crossref_primary_10_1093_texcom_tgac046 crossref_primary_10_1002_jso_27946 crossref_primary_10_1136_bmjph_2023_000566 crossref_primary_10_1016_j_cageo_2024_105818 crossref_primary_10_3390_jcm11175194 crossref_primary_10_52053_jpap_v5i3_302 crossref_primary_10_1016_j_plefa_2024_102661 crossref_primary_10_1136_bjsports_2019_101436 crossref_primary_10_1080_09638288_2022_2130445 crossref_primary_10_1515_cclm_2019_0596 crossref_primary_10_1007_s42010_023_00184_z crossref_primary_10_1016_j_surg_2024_03_033 crossref_primary_10_51300_JSM_2024_127 crossref_primary_10_17718_tojde_1093630 crossref_primary_10_3390_bs12050116 crossref_primary_10_1016_j_asoc_2023_110376 crossref_primary_10_1007_s12596_023_01190_1 crossref_primary_10_1186_s13102_021_00390_1 crossref_primary_10_1371_journal_pone_0273032 crossref_primary_10_15446_recolma_v57n2_115856 crossref_primary_10_1016_j_heliyon_2023_e22526 crossref_primary_10_1186_s40409_018_0159_6 crossref_primary_10_3389_fphys_2021_554026 crossref_primary_10_1002_adts_202300619 crossref_primary_10_1016_j_enbuild_2024_113948 crossref_primary_10_3389_fpsyg_2023_1269216 crossref_primary_10_1097_NNR_0000000000000660 crossref_primary_10_1177_16094069221149487 crossref_primary_10_3390_vetsci10060371 crossref_primary_10_1016_j_knosys_2023_110396 crossref_primary_10_1007_s00167_019_05803_w crossref_primary_10_1016_j_cjca_2024_11_010 crossref_primary_10_1007_s10489_023_05149_4 crossref_primary_10_1016_j_ceramint_2024_12_499 crossref_primary_10_1016_j_jpainsymman_2023_08_005 crossref_primary_10_1002_jor_24611 crossref_primary_10_1016_j_aei_2022_101822 crossref_primary_10_1186_s12872_022_02464_5 crossref_primary_10_1002_bse_3496 crossref_primary_10_1016_j_jped_2025_01_007 crossref_primary_10_1080_19361610_2025_2466000 crossref_primary_10_1136_bmjopen_2023_073294 crossref_primary_10_1016_j_nurpra_2024_105130 crossref_primary_10_3934_QFE_2022018 crossref_primary_10_1016_j_jss_2023_11_065 crossref_primary_10_3390_app122413019 crossref_primary_10_3390_s22239143 crossref_primary_10_1016_j_epsr_2023_109341 crossref_primary_10_1007_s11207_023_02179_6 crossref_primary_10_1093_jimmun_vkaf006 crossref_primary_10_1103_PhysRevMaterials_7_063801 crossref_primary_10_1159_000505850 crossref_primary_10_3934_mbe_2025021 crossref_primary_10_1002_npr2_12407 crossref_primary_10_1007_s11423_024_10417_2 crossref_primary_10_1109_ACCESS_2022_3219844 crossref_primary_10_52711_0974_360X_2024_00269 crossref_primary_10_31211_rpics_2024_10_1_333 crossref_primary_10_1007_s00423_021_02360_0 crossref_primary_10_1016_j_isci_2023_107934 crossref_primary_10_3389_falgy_2023_1101321 crossref_primary_10_1080_00295639_2024_2323217 crossref_primary_10_35699_2316_9389_2022_38489 crossref_primary_10_33225_jbse_23_22_881 crossref_primary_10_3390_su141710527 crossref_primary_10_1002_ejp_1665 crossref_primary_10_1007_s11126_025_10115_z crossref_primary_10_1016_j_rsase_2024_101426 crossref_primary_10_3390_ijerph18084235 crossref_primary_10_1002_appl_202300054 crossref_primary_10_1016_j_apnr_2024_151824 crossref_primary_10_30773_pi_2023_0165 crossref_primary_10_3389_fphys_2023_1198162 crossref_primary_10_1002_adem_202300075 crossref_primary_10_1093_noajnl_vdad091 crossref_primary_10_1049_rsn2_12573 crossref_primary_10_1016_j_ajem_2024_05_013 crossref_primary_10_1016_j_clet_2024_100765 crossref_primary_10_3390_s22031180 crossref_primary_10_1080_14681811_2023_2255543 crossref_primary_10_1061_JCEMD4_COENG_14821 crossref_primary_10_3390_healthcare11233061 crossref_primary_10_1177_20552076241242559 crossref_primary_10_4236_ojbm_2024_123098 crossref_primary_10_1016_j_jdiacomp_2017_05_007 crossref_primary_10_1007_s00484_021_02180_3 crossref_primary_10_1016_j_actpsy_2022_103535 crossref_primary_10_3389_fneur_2021_662510 crossref_primary_10_1061__ASCE_CO_1943_7862_0002139 crossref_primary_10_1186_s40001_023_01223_2 crossref_primary_10_1038_s41598_021_02888_7 crossref_primary_10_3390_s22218548 crossref_primary_10_1177_0300060519873752 crossref_primary_10_1016_j_nlm_2018_01_001 crossref_primary_10_2196_51852 crossref_primary_10_26442_00403660_2023_10_202464 crossref_primary_10_1002_oby_23557 crossref_primary_10_1038_s41380_018_0096_3 crossref_primary_10_1108_ECAM_05_2024_0600 crossref_primary_10_3390_ani13071171 crossref_primary_10_29219_fnr_v65_5730 crossref_primary_10_1016_j_archoralbio_2022_105361 crossref_primary_10_1016_j_scitotenv_2023_167035 crossref_primary_10_3389_fphys_2022_870154 crossref_primary_10_1016_j_eswa_2024_124469 crossref_primary_10_1002_ca_24150 crossref_primary_10_1002_ece3_10009 crossref_primary_10_1177_03635465241302797 crossref_primary_10_2196_37377 crossref_primary_10_1785_0120190238 crossref_primary_10_1007_s00415_023_12057_7 crossref_primary_10_1111_jonm_12853 crossref_primary_10_1080_09500693_2023_2275327 crossref_primary_10_2147_IJWH_S360465 crossref_primary_10_1044_2020_AJSLP_20_00275 crossref_primary_10_7717_peerj_9089 crossref_primary_10_1063_5_0243888 crossref_primary_10_1080_02640414_2021_1927314 crossref_primary_10_1371_journal_pone_0296652 crossref_primary_10_1093_gji_ggad095 crossref_primary_10_1016_j_autcon_2024_105871 crossref_primary_10_1016_j_jaim_2020_12_004 crossref_primary_10_1117_1_JMI_11_2_024011 crossref_primary_10_1063_5_0243520 crossref_primary_10_1080_1068316X_2022_2132247 crossref_primary_10_1093_milmed_usab399 crossref_primary_10_1109_TITS_2023_3348074 crossref_primary_10_3390_nu16132059 crossref_primary_10_5294_edu_2023_26_3_5 crossref_primary_10_1016_j_biopha_2023_115424 crossref_primary_10_1016_j_msard_2021_102924 crossref_primary_10_1002_jclp_22943 crossref_primary_10_1017_S0022215121000621 crossref_primary_10_3390_laws13040050 crossref_primary_10_1590_2317_1782_20212020207 crossref_primary_10_1016_j_earlhumdev_2018_02_018 crossref_primary_10_1007_s00395_022_00912_z crossref_primary_10_3390_foods10050909 crossref_primary_10_1136_postgradmedj_2020_139013 crossref_primary_10_1016_j_jebdp_2025_102135 crossref_primary_10_30798_makuiibf_1282080 crossref_primary_10_1007_s12144_024_06515_2 crossref_primary_10_1017_pab_2024_40 crossref_primary_10_7748_nr_2022_e1792 crossref_primary_10_1002_aisy_202200365 crossref_primary_10_3390_healthcare11050773 crossref_primary_10_30935_cedtech_14707 crossref_primary_10_3390_su14042072 crossref_primary_10_1080_13873954_2024_2395808 crossref_primary_10_1080_15391523_2020_1722977 crossref_primary_10_15332_22563067_10714 crossref_primary_10_1039_D3CP02790B crossref_primary_10_1080_01431161_2021_1890266 crossref_primary_10_1007_s00167_021_06654_0 crossref_primary_10_1080_13552600_2020_1850894 crossref_primary_10_3390_ijms252312802 crossref_primary_10_1007_s11412_021_09356_4 crossref_primary_10_5005_jp_journals_10030_1415 crossref_primary_10_1016_j_dim_2022_100020 crossref_primary_10_1016_j_jad_2021_11_017 crossref_primary_10_1016_j_ssci_2024_106460 crossref_primary_10_12688_f1000research_74484_1 crossref_primary_10_3201_eid2809_220092 crossref_primary_10_1371_journal_pone_0285762 crossref_primary_10_3389_fimmu_2023_1231813 crossref_primary_10_1029_2024JF007695 crossref_primary_10_1177_23337214231215274 crossref_primary_10_1136_bmjspcare_2020_002661 crossref_primary_10_1364_AO_547089 crossref_primary_10_1111_jan_16615 crossref_primary_10_3390_informatics9010021 crossref_primary_10_1245_s10434_020_08638_9 crossref_primary_10_1038_s41598_023_30214_w crossref_primary_10_3389_fphar_2021_654459 crossref_primary_10_1371_journal_pone_0227683 crossref_primary_10_3389_frsus_2021_649715 crossref_primary_10_1007_s10815_024_03257_9 crossref_primary_10_1590_1980_0037_2022v24e84048 crossref_primary_10_1140_epjds_s13688_025_00531_3 |
Cites_doi | 10.4097/kjae.2015.68.6.540 |
ContentType | Journal Article |
Copyright | Copyright © the Korean Society of Anesthesiologists, 2017 2017 |
Copyright_xml | – notice: Copyright © the Korean Society of Anesthesiologists, 2017 2017 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA ACYCR |
DOI | 10.4097/kjae.2017.70.2.144 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 2005-7563 |
EndPage | 156 |
ExternalDocumentID | oai_kci_go_kr_ARTI_7611535 oai_doaj_org_article_083cdd37e85e478d93b5c304b4cca626 PMC5370305 28367284 10_4097_kjae_2017_70_2_144 |
Genre | Journal Article Review |
GroupedDBID | 5-W 53G 8JR 8XY 9ZL AAYXX ABDBF ACUHS ADRAZ ALMA_UNASSIGNED_HOLDINGS CITATION DIK E3Z EBD EF. ESX F5P GROUPED_DOAJ HYE KQ8 M48 O5R O5S OK1 PGMZT RPM TUS HZB NPM 7X8 5PM ABPTK ACYCR |
ID | FETCH-LOGICAL-c568t-917ae11ac0be32c5a42d6b7a5351f0f3ff219fc9d1c15c43de200a39836475063 |
IEDL.DBID | M48 |
ISSN | 2005-6419 |
IngestDate | Tue Nov 21 21:36:48 EST 2023 Wed Aug 27 01:21:22 EDT 2025 Thu Aug 21 18:33:06 EDT 2025 Fri Jul 11 13:23:39 EDT 2025 Thu Jan 02 22:22:37 EST 2025 Tue Jul 01 01:42:48 EDT 2025 Thu Apr 24 22:52:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Probability Normal distribution Statistics Statistical distributions |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c568t-917ae11ac0be32c5a42d6b7a5351f0f3ff219fc9d1c15c43de200a39836475063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 G704-000679.2017.70.2.010 |
ORCID | 0000-0003-0398-5514 0000-0003-1222-0054 |
OpenAccessLink | https://doaj.org/article/083cdd37e85e478d93b5c304b4cca626 |
PMID | 28367284 |
PQID | 1883839562 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_7611535 doaj_primary_oai_doaj_org_article_083cdd37e85e478d93b5c304b4cca626 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5370305 proquest_miscellaneous_1883839562 pubmed_primary_28367284 crossref_primary_10_4097_kjae_2017_70_2_144 crossref_citationtrail_10_4097_kjae_2017_70_2_144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-01 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) |
PublicationTitle | Korean journal of anesthesiology |
PublicationTitleAlternate | Korean J Anesthesiol |
PublicationYear | 2017 |
Publisher | The Korean Society of Anesthesiologists Korean Society of Anesthesiologists 대한마취통증의학회 |
Publisher_xml | – name: The Korean Society of Anesthesiologists – name: Korean Society of Anesthesiologists – name: 대한마취통증의학회 |
References | Kim (10.4097/kjae.2017.70.2.144_ref1) 2015; 68 26634076 - Korean J Anesthesiol. 2015 Dec;68(6):540-6 |
References_xml | – volume: 68 start-page: 540 year: 2015 ident: 10.4097/kjae.2017.70.2.144_ref1 publication-title: Korean J Anesthesiol doi: 10.4097/kjae.2015.68.6.540 – reference: 26634076 - Korean J Anesthesiol. 2015 Dec;68(6):540-6 |
SSID | ssj0000330062 |
Score | 2.5862916 |
SecondaryResourceType | review_article |
Snippet | According to the central limit theorem, the means of a random sample of size,
, from a population with mean, µ, and variance, σ
, distribute normally with... According to the central limit theorem, the means of a random sample of size, n, from a population with mean, µ, and variance, σ2, distribute normally with... According to the central limit theorem, the means of a random sample of size, n , from a population with mean, µ, and variance, σ 2 , distribute normally with... According to the central limit theorem, the means of a random sample of size, n, from a population with mean, μ, and variance, σ2, distribute normally with... |
SourceID | nrf doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 144 |
SubjectTerms | normal distribution probability statistical distributions Statistical Round statistics 마취과학 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgECbGkxfj2_WVaryZ1VKe1ZMajZroSRNvhFLwsdo16_r_nYG62TVGL17apoUUBjp8X4FvCNmVBcAQxVTXI13llS27WnM4WMattIJbi78Grm_kxR2_uhf3Y6G-cE1YkgdOhjsAiODqmimvhedK1yWrhAMOXnF4N6Bx9L55mY-RqeiDgabnMZpolNqUnJZpxwzKOx30ni0qZFK1r_L9Auc3J0alKN4PY00zCD_hzu_LJ8fGo_M5MtsCyew4VWCeTPlmgcwgdkzSy4vkqP1zm73gJqYsbVl8PcSLDDhnk4Cfz_ohe40R0bL3Ue4lcnd-dnt60W1jJXSdkHoIPktZT6l1eeVZ4YTlRS0rZQUTNOSBhQCuKbiypo4Kx1ntwTCWlRr14wXglGUy3cA7V0mWC8us49ojmApFqAAlyOARmSngV0WH0C9bGdcKiWM8ixcDhALta9C-Bu1rVG4KYBe8Q_ZGed6SjMavqU-wCUYpUQI73oCOYdqOYf7qGB2yAw1oeu4p5sfzQ9_0BgaIwqVREqAwEx2y_dW-Br4rnCyxje9_vBuqNZB3YI9Q35XU3qPyACSTYAoop5roCRMFnnzSPD1G7W7Bootd-48arpMZNFtaR7RBpoeDD78JEGlYbcWv4RO7aQpf priority: 102 providerName: Directory of Open Access Journals |
Title | Central limit theorem: the cornerstone of modern statistics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28367284 https://www.proquest.com/docview/1883839562 https://pubmed.ncbi.nlm.nih.gov/PMC5370305 https://doaj.org/article/083cdd37e85e478d93b5c304b4cca626 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002211182 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Anesthesiology, 2017, 70(2), , pp.144-156 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwGLVYLr2gImgZCiggbtUMcbwGDqggECDBqSNxsxzHZpkhA2GQ2n_P9zmZUacCxCWJsjrP23tO_D5CdmUGNEQx1fUoV3lh867WHBaWcSut4Nbi0MDllTzr84trcT1HJuGOWgCf35R2GE-qXw97f57-HkKFB_7aQ7emvcG9RcNLqnoq7WX4uXKeLELPJFGMXbZ0P7bMIN7TGGM0GnBKTvNmHs07t5npq6KlP_RAVR3eYqP__1T5Ty91-pUstfQy-dWUh2Uy56sVctAO4SZDnM2UNHMXH_ZxIwHxWTUM0CejkDzE0GgJTjNqHJxXSf_05PfxWbcNmtB1QuoxNF7KekqtSwvPMicsz0pZKCuYoCENLARoo4LLS-qocJyVHrCwLNdoJC-AsHwjCxU8c40kqbDMOq49sqqQhQLoggweKZoCoZV1CJ3AY1zrKI6BLYYGlAVCahBSg5AalZoMZAbvkJ_Tax4bP40Pzz5C1Kdnohd23DGqb0xbtQyQSFeWTHktPFe6zFkhHEt5waF0gl7rkB3IMzNwd_F6XN-MzKA2oBjOjZLAiZnokO1JlhqoYPjVxFZ-9PJsqNag4kFGwvt-b7J4mh7gZhKggHSqmcyfSfDskeruNpp4Cxbb2vVPPPcH-YKoNP8LbZCFcf3iN4EKjYutOISwFUv5K8yjBD4 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Central+limit+theorem%3A+the+cornerstone+of+modern+statistics&rft.jtitle=Korean+journal+of+anesthesiology&rft.au=Kwak%2C+Sang+Gyu&rft.au=Kim%2C+Jong+Hae&rft.date=2017-04-01&rft.issn=2005-6419&rft.volume=70&rft.issue=2&rft.spage=144&rft_id=info:doi/10.4097%2Fkjae.2017.70.2.144&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2005-6419&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2005-6419&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2005-6419&client=summon |