Topological optical differentiator
Optical computing holds significant promise of information processing with ultrahigh speed and low power consumption. Recent developments in nanophotonic structures have generated renewed interests due to the prospects of performing analog optical computing with compact devices. As one prominent exa...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 680 - 8 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.01.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optical computing holds significant promise of information processing with ultrahigh speed and low power consumption. Recent developments in nanophotonic structures have generated renewed interests due to the prospects of performing analog optical computing with compact devices. As one prominent example, spatial differentiation has been demonstrated with nanophotonic structures and directly applied for edge detection in image processing. However, broadband isotropic two-dimensional differentiation, which is required in most imaging processing applications, has not been experimentally demonstrated yet. Here, we establish a connection between two-dimensional optical spatial differentiation and a nontrivial topological charge in the optical transfer function. Based on this connection, we experimentally demonstrate an isotropic two-dimensional differentiation with a broad spectral bandwidth, by using the simplest photonic device, i.e. a single unpatterned interface. Our work indicates that exploiting concepts from topological photonics can lead to new opportunities in optical computing.
Spatial differentiation is a form of optical computation which has applications in image processing. Here, the authors exploit nontrivial topological charges in the transfer function to realise broadband isotropic two-dimensional differentiation. |
---|---|
AbstractList | Optical computing holds significant promise of information processing with ultrahigh speed and low power consumption. Recent developments in nanophotonic structures have generated renewed interests due to the prospects of performing analog optical computing with compact devices. As one prominent example, spatial differentiation has been demonstrated with nanophotonic structures and directly applied for edge detection in image processing. However, broadband isotropic two-dimensional differentiation, which is required in most imaging processing applications, has not been experimentally demonstrated yet. Here, we establish a connection between two-dimensional optical spatial differentiation and a nontrivial topological charge in the optical transfer function. Based on this connection, we experimentally demonstrate an isotropic two-dimensional differentiation with a broad spectral bandwidth, by using the simplest photonic device, i.e. a single unpatterned interface. Our work indicates that exploiting concepts from topological photonics can lead to new opportunities in optical computing.Spatial differentiation is a form of optical computation which has applications in image processing. Here, the authors exploit nontrivial topological charges in the transfer function to realise broadband isotropic two-dimensional differentiation. Optical computing holds significant promise of information processing with ultrahigh speed and low power consumption. Recent developments in nanophotonic structures have generated renewed interests due to the prospects of performing analog optical computing with compact devices. As one prominent example, spatial differentiation has been demonstrated with nanophotonic structures and directly applied for edge detection in image processing. However, broadband isotropic two-dimensional differentiation, which is required in most imaging processing applications, has not been experimentally demonstrated yet. Here, we establish a connection between two-dimensional optical spatial differentiation and a nontrivial topological charge in the optical transfer function. Based on this connection, we experimentally demonstrate an isotropic two-dimensional differentiation with a broad spectral bandwidth, by using the simplest photonic device, i.e. a single unpatterned interface. Our work indicates that exploiting concepts from topological photonics can lead to new opportunities in optical computing.Optical computing holds significant promise of information processing with ultrahigh speed and low power consumption. Recent developments in nanophotonic structures have generated renewed interests due to the prospects of performing analog optical computing with compact devices. As one prominent example, spatial differentiation has been demonstrated with nanophotonic structures and directly applied for edge detection in image processing. However, broadband isotropic two-dimensional differentiation, which is required in most imaging processing applications, has not been experimentally demonstrated yet. Here, we establish a connection between two-dimensional optical spatial differentiation and a nontrivial topological charge in the optical transfer function. Based on this connection, we experimentally demonstrate an isotropic two-dimensional differentiation with a broad spectral bandwidth, by using the simplest photonic device, i.e. a single unpatterned interface. Our work indicates that exploiting concepts from topological photonics can lead to new opportunities in optical computing. Optical computing holds significant promise of information processing with ultrahigh speed and low power consumption. Recent developments in nanophotonic structures have generated renewed interests due to the prospects of performing analog optical computing with compact devices. As one prominent example, spatial differentiation has been demonstrated with nanophotonic structures and directly applied for edge detection in image processing. However, broadband isotropic two-dimensional differentiation, which is required in most imaging processing applications, has not been experimentally demonstrated yet. Here, we establish a connection between two-dimensional optical spatial differentiation and a nontrivial topological charge in the optical transfer function. Based on this connection, we experimentally demonstrate an isotropic two-dimensional differentiation with a broad spectral bandwidth, by using the simplest photonic device, i.e. a single unpatterned interface. Our work indicates that exploiting concepts from topological photonics can lead to new opportunities in optical computing. Optical computing holds significant promise of information processing with ultrahigh speed and low power consumption. Recent developments in nanophotonic structures have generated renewed interests due to the prospects of performing analog optical computing with compact devices. As one prominent example, spatial differentiation has been demonstrated with nanophotonic structures and directly applied for edge detection in image processing. However, broadband isotropic two-dimensional differentiation, which is required in most imaging processing applications, has not been experimentally demonstrated yet. Here, we establish a connection between two-dimensional optical spatial differentiation and a nontrivial topological charge in the optical transfer function. Based on this connection, we experimentally demonstrate an isotropic two-dimensional differentiation with a broad spectral bandwidth, by using the simplest photonic device, i.e. a single unpatterned interface. Our work indicates that exploiting concepts from topological photonics can lead to new opportunities in optical computing. Spatial differentiation is a form of optical computation which has applications in image processing. Here, the authors exploit nontrivial topological charges in the transfer function to realise broadband isotropic two-dimensional differentiation. Spatial differentiation is a form of optical computation which has applications in image processing. Here, the authors exploit nontrivial topological charges in the transfer function to realise broadband isotropic two-dimensional differentiation. |
ArticleNumber | 680 |
Author | Guo, Cheng Huang, Junyi Wang, Haiwen Zhu, Tengfeng Fan, Shanhui Orenstein, Meir Ruan, Zhichao |
Author_xml | – sequence: 1 givenname: Tengfeng surname: Zhu fullname: Zhu, Tengfeng organization: Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University – sequence: 2 givenname: Cheng orcidid: 0000-0003-4913-8150 surname: Guo fullname: Guo, Cheng organization: Department of Electrical Engineering, Ginzton Laboratory, Stanford University – sequence: 3 givenname: Junyi surname: Huang fullname: Huang, Junyi organization: Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University – sequence: 4 givenname: Haiwen surname: Wang fullname: Wang, Haiwen organization: Department of Electrical Engineering, Ginzton Laboratory, Stanford University – sequence: 5 givenname: Meir surname: Orenstein fullname: Orenstein, Meir organization: Department of Electrical Engineering, Technion-Israel Institute of Technology – sequence: 6 givenname: Zhichao orcidid: 0000-0001-8311-6970 surname: Ruan fullname: Ruan, Zhichao email: zhichao@zju.edu.cn organization: Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University – sequence: 7 givenname: Shanhui orcidid: 0000-0002-0081-9732 surname: Fan fullname: Fan, Shanhui email: shanhui@stanford.edu organization: Department of Electrical Engineering, Ginzton Laboratory, Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33514708$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuFDEQtKJEJIT8AAeE4MJlgh_tx16QUMQjUiQu4Wz1eHo2Xs2OF3sWib_Hu5NAksP60pZdVa5u10t2PKaRGHst-KXgyn0sIMDYhkvRSL6wsoEjdiY5iEZYqY4f7U_ZRSkrXpdaCAfwgp0qpQVY7s7Yu9u0SUNaxoDD27SZ9rWLfU-ZxinilPIrdtLjUOjivp6zn1-_3F59b25-fLu--nzTBG3c1JiuC6GTvQLiDrkgqdG2CJpaJ0RL2thOWW21kggmBNMrIulUtdSC0kGds-tZt0u48psc15j_-ITR7w9SXnrM1eBAXiI3RnXWciuAo0BLLSoIXd8vgJytWp9mrc22XVMXai8ZhyeiT2_GeOeX6be3DowzvAp8uBfI6deWyuTXsQQaBhwpbYuX4JTb_cDurffPoKu0zWMdlZdaGw1WKH4QVbVA1Pmoinrz2Pc_ww8fVgFuBoScSsnU-xAnnGLatREHL7jfxcPP8fA1Hn4fDw-VKp9RH9QPktRMKhU8Lin_t32A9ReRSsm- |
CitedBy_id | crossref_primary_10_1063_5_0142637 crossref_primary_10_3103_S1060992X24700607 crossref_primary_10_1038_s41377_024_01623_x crossref_primary_10_1038_s41467_025_57715_8 crossref_primary_10_1021_acsphotonics_1c02005 crossref_primary_10_1364_OL_535063 crossref_primary_10_3788_AOS231152 crossref_primary_10_1109_LPT_2023_3325635 crossref_primary_10_1038_s41467_024_46758_y crossref_primary_10_1364_OE_498629 crossref_primary_10_1002_adom_202303263 crossref_primary_10_1364_OL_430699 crossref_primary_10_1002_advs_202406819 crossref_primary_10_1038_s41377_022_00792_x crossref_primary_10_1063_5_0161145 crossref_primary_10_3390_nano14010028 crossref_primary_10_1103_PhysRevApplied_20_L051001 crossref_primary_10_1063_5_0219511 crossref_primary_10_3788_gzxb20235209_0923001 crossref_primary_10_1002_adma_202301505 crossref_primary_10_1038_s41467_023_42921_z crossref_primary_10_1103_PhysRevX_13_031039 crossref_primary_10_1515_nanoph_2024_0540 crossref_primary_10_1016_j_chip_2025_100132 crossref_primary_10_1364_OE_491380 crossref_primary_10_1515_nanoph_2021_0823 crossref_primary_10_1002_adfm_202204734 crossref_primary_10_1038_s41467_023_42271_w crossref_primary_10_1126_sciadv_abq6198 crossref_primary_10_1103_PhysRevA_109_L061503 crossref_primary_10_1063_5_0223545 crossref_primary_10_1039_D3TC00092C crossref_primary_10_1016_j_apsusc_2025_162737 crossref_primary_10_1103_PhysRevA_109_012623 crossref_primary_10_1117_1_AP_4_6_064002 crossref_primary_10_3390_nano13071235 crossref_primary_10_1103_PhysRevLett_127_043902 crossref_primary_10_1364_AOP_470264 crossref_primary_10_1364_OE_450981 crossref_primary_10_1038_s41377_022_00752_5 crossref_primary_10_1038_s41467_024_47303_7 crossref_primary_10_1002_lpor_202200230 crossref_primary_10_1016_j_optcom_2024_131084 crossref_primary_10_1109_JSTQE_2023_3279586 crossref_primary_10_1126_sciadv_abp8073 crossref_primary_10_1002_lpor_202300182 crossref_primary_10_1002_adma_202206399 crossref_primary_10_1063_5_0048758 crossref_primary_10_1364_OL_465128 crossref_primary_10_1016_j_optcom_2023_129838 crossref_primary_10_1103_PhysRevLett_132_044001 crossref_primary_10_3788_AOS231951 crossref_primary_10_1002_lpor_202400032 crossref_primary_10_1002_lpor_202200368 crossref_primary_10_1103_PhysRevApplied_21_034045 crossref_primary_10_1364_OE_544316 crossref_primary_10_1364_OL_525230 crossref_primary_10_1364_OE_547820 crossref_primary_10_1038_s44287_024_00057_2 crossref_primary_10_1021_acsphotonics_2c01449 crossref_primary_10_1126_sciadv_adg6238 crossref_primary_10_1002_lpor_202400718 crossref_primary_10_1103_PhysRevApplied_17_024029 crossref_primary_10_1002_adom_202300746 crossref_primary_10_1364_PRJ_426827 crossref_primary_10_1002_adfm_202106050 crossref_primary_10_1038_s42005_021_00741_x crossref_primary_10_1002_adom_202102400 crossref_primary_10_1364_OE_521661 crossref_primary_10_1364_OL_465194 crossref_primary_10_1364_OL_492568 crossref_primary_10_1021_acs_nanolett_1c02838 crossref_primary_10_1002_lpor_202100369 crossref_primary_10_1103_PhysRevB_108_104106 crossref_primary_10_1364_OL_468452 crossref_primary_10_1515_nanoph_2021_0583 crossref_primary_10_1016_j_optlastec_2024_111884 crossref_primary_10_1126_sciadv_adk0024 crossref_primary_10_1364_OPTICA_524984 crossref_primary_10_1364_OE_476492 crossref_primary_10_1021_acsphotonics_2c00882 crossref_primary_10_1103_PhysRevB_108_155418 crossref_primary_10_1038_s41377_024_01734_5 crossref_primary_10_1364_OPTICA_500121 crossref_primary_10_1016_j_pquantelec_2023_100470 crossref_primary_10_1021_acs_nanolett_3c03437 crossref_primary_10_1364_OL_434502 crossref_primary_10_1063_5_0140272 crossref_primary_10_1103_PhysRevA_104_032221 crossref_primary_10_1002_adom_202400512 crossref_primary_10_1364_OE_528982 crossref_primary_10_1021_acs_nanolett_1c03817 crossref_primary_10_1364_OL_473999 crossref_primary_10_1364_AO_541798 crossref_primary_10_37188_lam_2024_017 crossref_primary_10_1515_nanoph_2023_0402 crossref_primary_10_1038_s41566_024_01394_2 crossref_primary_10_1364_OE_466136 crossref_primary_10_1088_1367_2630_ad50fe crossref_primary_10_1002_lpor_202100357 crossref_primary_10_1016_j_optlaseng_2024_108669 crossref_primary_10_1007_s11467_023_1271_9 crossref_primary_10_1021_acsphotonics_4c01058 crossref_primary_10_1103_PhysRevB_110_035431 crossref_primary_10_1002_lpor_202200038 crossref_primary_10_1038_s41467_023_37606_6 crossref_primary_10_1038_s41467_024_48783_3 crossref_primary_10_1515_nanoph_2021_0313 crossref_primary_10_1038_s41467_022_35588_5 crossref_primary_10_1038_s41565_022_01297_9 crossref_primary_10_1021_acsphotonics_4c00521 crossref_primary_10_1002_lpor_202200051 crossref_primary_10_1038_s44172_023_00135_7 crossref_primary_10_34133_adi_0002 crossref_primary_10_1103_PhysRevLett_133_063801 crossref_primary_10_1364_OPTICA_426460 crossref_primary_10_1038_s44310_024_00039_0 crossref_primary_10_1038_s41467_024_53463_3 crossref_primary_10_1016_j_ijmecsci_2025_110080 crossref_primary_10_1063_5_0131424 crossref_primary_10_1038_s41467_022_29354_w crossref_primary_10_1038_s41467_022_29716_4 crossref_primary_10_1134_S0021364021240012 crossref_primary_10_1021_acsphotonics_4c00359 crossref_primary_10_1038_s41377_021_00595_6 |
Cites_doi | 10.1103/PhysRevLett.121.173004 10.1364/OL.41.003467 10.1364/OL.39.001278 10.1117/1.AP.2.1.016001 10.1021/acsphotonics.9b01465 10.1038/nphoton.2010.94 10.1103/PhysRevApplied.11.034043 10.1038/s41586-019-1157-8 10.1098/rspb.1980.0020 10.1038/s41566-019-0536-x 10.1002/adom.201901523 10.1103/PhysRevApplied.11.054033 10.1364/OL.42.003840 10.1364/OL.390566 10.1021/acs.nanolett.9b02477 10.1038/s41467-019-10086-3 10.1103/PhysRevLett.94.233902 10.1021/nl5047297 10.1038/s41566-020-0591-3 10.1088/2040-8978/15/1/014001 10.1364/OE.379492 10.1103/PhysRevLett.119.167401 10.1364/OPTICA.388205 10.1038/nphoton.2017.93 10.1364/OPTICA.5.000864 10.1038/ncomms15391 10.1364/OPEX.13.000689 10.1364/OE.22.025084 10.1103/PhysRevLett.123.013901 10.1038/nphoton.2015.208 10.1364/OL.40.000601 10.1063/1.5113650 10.1126/science.aaw2498 10.1103/PhysRevApplied.11.064042 10.1126/science.1242818 10.1073/pnas.1820636116 10.1364/OPTICA.5.000251 10.1021/acs.nanolett.0c00471 10.1109/LPT.2018.2820045 10.1021/acsphotonics.0c00473 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. corrected publication 2021 The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021, corrected publication 2021 |
Copyright_xml | – notice: The Author(s) 2021. corrected publication 2021 – notice: The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021, corrected publication 2021 |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-20972-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_2a0663d7707140a1a7eba34cdff94e87 PMC7846860 33514708 10_1038_s41467_021_20972_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Vannevar Bush Faculty Fellowship from the U. S. Department of Defense (N00014-17-1-3030) – fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research) grantid: FA9550-17-1-0002 funderid: https://doi.org/10.13039/100000181 – fundername: United States Department of Defense | United States Navy | Office of Naval Research (ONR) grantid: N00014-20-1-2450 funderid: https://doi.org/10.13039/100000006 – fundername: China Scholarship Council (CSC) grantid: 201906320169 funderid: https://doi.org/10.13039/501100004543 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 91850108; 61675179 funderid: https://doi.org/10.13039/501100001809 – fundername: China Scholarship Council (CSC) grantid: 201906320169 – fundername: United States Department of Defense | United States Navy | Office of Naval Research (ONR) grantid: N00014-20-1-2450 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 61675179 – fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research) grantid: FA9550-17-1-0002 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 91850108 – fundername: ; – fundername: ; grantid: N00014-20-1-2450 – fundername: ; grantid: FA9550-17-1-0002 – fundername: ; grantid: 91850108; 61675179 – fundername: ; grantid: 201906320169 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI AARCD 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c568t-6ddccd2f34e08a01e25a7ba45eb811be567d3757532a46cc6f3ee283184b435c3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:54 EDT 2025 Thu Aug 21 18:21:17 EDT 2025 Fri Jul 11 06:25:33 EDT 2025 Wed Aug 13 04:10:32 EDT 2025 Fri Jul 25 10:03:56 EDT 2025 Wed Feb 19 02:27:45 EST 2025 Tue Jul 01 04:17:15 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Fri Feb 21 02:39:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c568t-6ddccd2f34e08a01e25a7ba45eb811be567d3757532a46cc6f3ee283184b435c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0081-9732 0000-0001-8311-6970 0000-0003-4913-8150 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-20972-4 |
PMID | 33514708 |
PQID | 2483415673 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2a0663d7707140a1a7eba34cdff94e87 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7846860 proquest_miscellaneous_2483814677 proquest_journals_2556547130 proquest_journals_2483415673 pubmed_primary_33514708 crossref_citationtrail_10_1038_s41467_021_20972_4 crossref_primary_10_1038_s41467_021_20972_4 springer_journals_10_1038_s41467_021_20972_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-29 |
PublicationDateYYYYMMDD | 2021-01-29 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Fang, Lou, Ruan (CR19) 2017; 42 Wesemann (CR39) 2019; 4 Solli, Jalali (CR1) 2015; 9 Youssefi, Zangeneh-Nejad, Abdollahramezani, Khavasi (CR18) 2016; 41 Marr, Hildreth (CR13) 1980; 207 Pors, Nielsen, Bozhevolnyi (CR31) 2014; 15 Moughames (CR12) 2020; 7 Wang, Guo, Zhao, Fan (CR24) 2020; 7 Hughes, Minkov, Shi, Fan (CR8) 2018; 5 Feldmann, Youngblood, Wright, Bhaskaran, Pernice (CR9) 2019; 569 Caulfield, Dolev (CR2) 2010; 4 Guo, Xiao, Fan (CR40) 2017; 119 Ruan (CR17) 2015; 40 Kwon, Arbabi, Kamali, Faraji-Dana, Faraon (CR37) 2020; 14 Karimi, Khavasi, Khaleghi (CR20) 2020; 28 Momeni, Rajabalipanah, Abdolali, Achouri (CR22) 2019; 11 Bykov, Doskolovich, Bezus, Soifer (CR16) 2014; 22 Yang, Yu, Zhang, Deng (CR36) 2020; 45 CR3 CR6 Cordaro (CR33) 2019; 19 Fürhapter, Jesacher, Bernet, Ritsch-Marte (CR4) 2005; 13 Guo, Xiao, Minkov, Shi, Fan (CR25) 2018; 5 CR28 Zhou (CR35) 2020; 8 Zhou, Zheng, Kravchenko, Valentine (CR38) 2020; 14 Estakhri, Edwards, Engheta (CR10) 2019; 363 Silva (CR14) 2014; 343 Davis, Eftekhari, Gómez, Roberts (CR21) 2019; 123 CR26 Zangeneh-Nejad, Fleury (CR11) 2019; 10 Doskolovich, Bykov, Bezus, Soifer (CR15) 2014; 39 Zhou (CR32) 2019; 116 Bliokh, Aiello (CR41) 2013; 15 Zhu (CR30) 2019; 11 Shen (CR7) 2017; 11 Kwon, Sounas, Cordaro, Polman, Alù (CR27) 2018; 121 Zhu, Huang, Ruan (CR34) 2020; 2 Zhang, Zhang (CR23) 2019; 11 Zhu (CR29) 2017; 8 Jesacher, Fürhapter, Bernet, Ritsch-Marte (CR5) 2005; 94 W Zhang (20972_CR23) 2019; 11 A Momeni (20972_CR22) 2019; 11 L Wesemann (20972_CR39) 2019; 4 J Feldmann (20972_CR9) 2019; 569 DA Bykov (20972_CR16) 2014; 22 A Jesacher (20972_CR5) 2005; 94 H Kwon (20972_CR37) 2020; 14 Y Zhou (20972_CR38) 2020; 14 TJ Davis (20972_CR21) 2019; 123 20972_CR28 A Pors (20972_CR31) 2014; 15 H Wang (20972_CR24) 2020; 7 20972_CR26 HJ Caulfield (20972_CR2) 2010; 4 T Zhu (20972_CR29) 2017; 8 J Zhou (20972_CR32) 2019; 116 A Cordaro (20972_CR33) 2019; 19 C Guo (20972_CR25) 2018; 5 P Karimi (20972_CR20) 2020; 28 T Zhu (20972_CR34) 2020; 2 20972_CR3 20972_CR6 KY Bliokh (20972_CR41) 2013; 15 DR Solli (20972_CR1) 2015; 9 W Yang (20972_CR36) 2020; 45 Y Shen (20972_CR7) 2017; 11 F Zangeneh-Nejad (20972_CR11) 2019; 10 H Kwon (20972_CR27) 2018; 121 A Youssefi (20972_CR18) 2016; 41 T Zhu (20972_CR30) 2019; 11 S Fürhapter (20972_CR4) 2005; 13 J Moughames (20972_CR12) 2020; 7 Z Ruan (20972_CR17) 2015; 40 LL Doskolovich (20972_CR15) 2014; 39 NM Estakhri (20972_CR10) 2019; 363 D Marr (20972_CR13) 1980; 207 Y Zhou (20972_CR35) 2020; 8 TW Hughes (20972_CR8) 2018; 5 A Silva (20972_CR14) 2014; 343 Y Guo (20972_CR40) 2017; 119 Y Fang (20972_CR19) 2017; 42 33828094 - Nat Commun. 2021 Apr 7;12(1):2209 |
References_xml | – volume: 121 start-page: 173004 year: 2018 ident: CR27 article-title: Nonlocal metasurfaces for optical signal processing publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.173004 – volume: 41 start-page: 3467 year: 2016 ident: CR18 article-title: Analog computing by Brewster effect publication-title: Opt. Lett. doi: 10.1364/OL.41.003467 – volume: 39 start-page: 1278 year: 2014 ident: CR15 article-title: Spatial differentiation of optical beams using phase-shifted Bragg grating publication-title: Opt. Lett. doi: 10.1364/OL.39.001278 – volume: 2 start-page: 016001 year: 2020 ident: CR34 article-title: Optical phase mining by adjustable spatial differentiator publication-title: Adv. Photonics doi: 10.1117/1.AP.2.1.016001 – volume: 7 start-page: 338 year: 2020 ident: CR24 article-title: Compact incoherent image differentiation with nanophotonic structures publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b01465 – volume: 4 start-page: 261 year: 2010 ident: CR2 article-title: Why future supercomputing requires optics publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.94 – volume: 11 start-page: 034043 year: 2019 ident: CR30 article-title: Generalized spatial differentiation from the spin hall effect of light and its application in image processing of edge detection publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.034043 – volume: 569 start-page: 208 year: 2019 ident: CR9 article-title: All-optical spiking neurosynaptic networks with self-learning capabilities publication-title: Nature doi: 10.1038/s41586-019-1157-8 – volume: 207 start-page: 187 year: 1980 ident: CR13 article-title: Theory of edge detection publication-title: Proc. R. Soc. Lond. B: Biol. Sci. doi: 10.1098/rspb.1980.0020 – volume: 14 start-page: 109 year: 2020 ident: CR37 article-title: Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces publication-title: Nat. Photonics doi: 10.1038/s41566-019-0536-x – volume: 8 start-page: 1901523 year: 2020 ident: CR35 article-title: Analog optical spatial differentiators based on dielectric metasurfaces publication-title: Adv. Optical Mater. doi: 10.1002/adom.201901523 – volume: 11 start-page: 054033 year: 2019 ident: CR23 article-title: Backscattering-immune computing of spatial differentiation by nonreciprocal plasmonics publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.054033 – ident: CR6 – volume: 42 start-page: 3840 year: 2017 ident: CR19 article-title: On-grating graphene surface plasmons enabling spatial differentiation in the terahertz region publication-title: Opt. Lett. doi: 10.1364/OL.42.003840 – volume: 45 start-page: 2295 year: 2020 ident: CR36 article-title: Plasmonic transmitted optical differentiator based on the subwavelength gold gratings publication-title: Opt. Lett. doi: 10.1364/OL.390566 – volume: 19 start-page: 8418 year: 2019 ident: CR33 article-title: High-index dielectric metasurfaces performing mathematical operations publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02477 – volume: 10 year: 2019 ident: CR11 article-title: Topological analog signal processing publication-title: Nat. Commun. doi: 10.1038/s41467-019-10086-3 – volume: 94 start-page: 233902 year: 2005 ident: CR5 article-title: Shadow effects in spiral phase contrast microscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.233902 – volume: 15 start-page: 791 year: 2014 ident: CR31 article-title: Analog computing using reflective plasmonic metasurfaces publication-title: Nano Lett. doi: 10.1021/nl5047297 – volume: 14 start-page: 316 year: 2020 ident: CR38 article-title: Flat optics for image differentiation publication-title: Nat. Photonics doi: 10.1038/s41566-020-0591-3 – volume: 15 start-page: 014001 year: 2013 ident: CR41 article-title: Goos-Hänchen and Imbert-Fedorov beam shifts: an overview publication-title: J. Opt. doi: 10.1088/2040-8978/15/1/014001 – volume: 28 start-page: 898 year: 2020 ident: CR20 article-title: Fundamental limit for gain and resolution in analog optical edge detection publication-title: Opt. Express doi: 10.1364/OE.379492 – volume: 119 start-page: 167401 year: 2017 ident: CR40 article-title: Topologically protected complete polarization conversion publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.167401 – ident: CR3 – volume: 7 start-page: 640 year: 2020 ident: CR12 article-title: Three-dimensional waveguide interconnects for scalable integration of photonic neural networks publication-title: Optica doi: 10.1364/OPTICA.388205 – volume: 11 start-page: 441 year: 2017 ident: CR7 article-title: Deep learning with coherent nanophotonic circuits publication-title: Nat. Photonics doi: 10.1038/nphoton.2017.93 – volume: 5 start-page: 864 year: 2018 ident: CR8 article-title: Training of photonic neural networks through in situ backpropagation and gradient measurement publication-title: Optica doi: 10.1364/OPTICA.5.000864 – volume: 8 year: 2017 ident: CR29 article-title: Plasmonic computing of spatial differentiation publication-title: Nat. Commun. doi: 10.1038/ncomms15391 – volume: 13 start-page: 689 year: 2005 ident: CR4 article-title: Spiral phase contrast imaging in microscopy publication-title: Opt. Express doi: 10.1364/OPEX.13.000689 – volume: 22 start-page: 25084 year: 2014 ident: CR16 article-title: Optical computation of the laplace operator using phase-shifted bragg grating publication-title: Opt. Express doi: 10.1364/OE.22.025084 – volume: 123 start-page: 013901 year: 2019 ident: CR21 article-title: Metasurfaces with asymmetric optical transfer functions for optical signal processing publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.013901 – volume: 9 start-page: 704 year: 2015 ident: CR1 article-title: Analog optical computing publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.208 – volume: 40 start-page: 601 year: 2015 ident: CR17 article-title: Spatial mode control of surface plasmon polariton excitation with gain medium: from spatial differentiator to integrator publication-title: Opt. Lett. doi: 10.1364/OL.40.000601 – volume: 4 start-page: 100801 year: 2019 ident: CR39 article-title: Selective near-perfect absorbing mirror as a spatial frequency filter for optical image processing publication-title: APL Photonics doi: 10.1063/1.5113650 – volume: 363 start-page: 1333 year: 2019 ident: CR10 article-title: Inverse-designed metastructures that solve equations publication-title: Science doi: 10.1126/science.aaw2498 – volume: 11 start-page: 064042 year: 2019 ident: CR22 article-title: Generalized optical signal processing based on multioperator metasurfaces synthesized by susceptibility tensors publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.064042 – ident: CR28 – volume: 343 start-page: 160 year: 2014 ident: CR14 article-title: Performing mathematical operations with metamaterials publication-title: Science doi: 10.1126/science.1242818 – ident: CR26 – volume: 116 start-page: 11137 year: 2019 ident: CR32 article-title: Optical edge detection based on high-efficiency dielectric metasurface publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1820636116 – volume: 5 start-page: 251 year: 2018 ident: CR25 article-title: Photonic crystal slab laplace operator for image differentiation publication-title: Optica doi: 10.1364/OPTICA.5.000251 – volume: 116 start-page: 11137 year: 2019 ident: 20972_CR32 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1820636116 – volume: 14 start-page: 109 year: 2020 ident: 20972_CR37 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0536-x – volume: 363 start-page: 1333 year: 2019 ident: 20972_CR10 publication-title: Science doi: 10.1126/science.aaw2498 – volume: 343 start-page: 160 year: 2014 ident: 20972_CR14 publication-title: Science doi: 10.1126/science.1242818 – volume: 11 start-page: 064042 year: 2019 ident: 20972_CR22 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.064042 – volume: 41 start-page: 3467 year: 2016 ident: 20972_CR18 publication-title: Opt. Lett. doi: 10.1364/OL.41.003467 – volume: 28 start-page: 898 year: 2020 ident: 20972_CR20 publication-title: Opt. Express doi: 10.1364/OE.379492 – volume: 2 start-page: 016001 year: 2020 ident: 20972_CR34 publication-title: Adv. Photonics doi: 10.1117/1.AP.2.1.016001 – ident: 20972_CR6 doi: 10.1021/acs.nanolett.0c00471 – volume: 4 start-page: 261 year: 2010 ident: 20972_CR2 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.94 – volume: 19 start-page: 8418 year: 2019 ident: 20972_CR33 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02477 – volume: 4 start-page: 100801 year: 2019 ident: 20972_CR39 publication-title: APL Photonics doi: 10.1063/1.5113650 – volume: 45 start-page: 2295 year: 2020 ident: 20972_CR36 publication-title: Opt. Lett. doi: 10.1364/OL.390566 – volume: 15 start-page: 014001 year: 2013 ident: 20972_CR41 publication-title: J. Opt. doi: 10.1088/2040-8978/15/1/014001 – volume: 40 start-page: 601 year: 2015 ident: 20972_CR17 publication-title: Opt. Lett. doi: 10.1364/OL.40.000601 – ident: 20972_CR3 – volume: 11 start-page: 441 year: 2017 ident: 20972_CR7 publication-title: Nat. Photonics doi: 10.1038/nphoton.2017.93 – volume: 9 start-page: 704 year: 2015 ident: 20972_CR1 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.208 – volume: 569 start-page: 208 year: 2019 ident: 20972_CR9 publication-title: Nature doi: 10.1038/s41586-019-1157-8 – volume: 8 year: 2017 ident: 20972_CR29 publication-title: Nat. Commun. doi: 10.1038/ncomms15391 – volume: 7 start-page: 338 year: 2020 ident: 20972_CR24 publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b01465 – ident: 20972_CR26 doi: 10.1109/LPT.2018.2820045 – volume: 8 start-page: 1901523 year: 2020 ident: 20972_CR35 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201901523 – volume: 123 start-page: 013901 year: 2019 ident: 20972_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.013901 – volume: 121 start-page: 173004 year: 2018 ident: 20972_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.173004 – volume: 5 start-page: 864 year: 2018 ident: 20972_CR8 publication-title: Optica doi: 10.1364/OPTICA.5.000864 – volume: 10 year: 2019 ident: 20972_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10086-3 – volume: 11 start-page: 034043 year: 2019 ident: 20972_CR30 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.034043 – volume: 39 start-page: 1278 year: 2014 ident: 20972_CR15 publication-title: Opt. Lett. doi: 10.1364/OL.39.001278 – volume: 11 start-page: 054033 year: 2019 ident: 20972_CR23 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.054033 – volume: 94 start-page: 233902 year: 2005 ident: 20972_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.233902 – volume: 207 start-page: 187 year: 1980 ident: 20972_CR13 publication-title: Proc. R. Soc. Lond. B: Biol. Sci. doi: 10.1098/rspb.1980.0020 – volume: 22 start-page: 25084 year: 2014 ident: 20972_CR16 publication-title: Opt. Express doi: 10.1364/OE.22.025084 – volume: 42 start-page: 3840 year: 2017 ident: 20972_CR19 publication-title: Opt. Lett. doi: 10.1364/OL.42.003840 – volume: 15 start-page: 791 year: 2014 ident: 20972_CR31 publication-title: Nano Lett. doi: 10.1021/nl5047297 – volume: 119 start-page: 167401 year: 2017 ident: 20972_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.167401 – volume: 5 start-page: 251 year: 2018 ident: 20972_CR25 publication-title: Optica doi: 10.1364/OPTICA.5.000251 – volume: 7 start-page: 640 year: 2020 ident: 20972_CR12 publication-title: Optica doi: 10.1364/OPTICA.388205 – volume: 14 start-page: 316 year: 2020 ident: 20972_CR38 publication-title: Nat. Photonics doi: 10.1038/s41566-020-0591-3 – volume: 13 start-page: 689 year: 2005 ident: 20972_CR4 publication-title: Opt. Express doi: 10.1364/OPEX.13.000689 – ident: 20972_CR28 doi: 10.1021/acsphotonics.0c00473 – reference: 33828094 - Nat Commun. 2021 Apr 7;12(1):2209 |
SSID | ssj0000391844 |
Score | 2.655644 |
Snippet | Optical computing holds significant promise of information processing with ultrahigh speed and low power consumption. Recent developments in nanophotonic... Spatial differentiation is a form of optical computation which has applications in image processing. Here, the authors exploit nontrivial topological charges... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 680 |
SubjectTerms | 639/624/1075 639/624/399 639/624/400 639/766/930/2735 Broadband Charge transfer Computation Data processing Differentiation Edge detection Electric fields Electrical engineering Humanities and Social Sciences Image processing Information processing Laboratories multidisciplinary Optical transfer function Photonics Power consumption Propagation Science Science (multidisciplinary) Topology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZQJKReENAH2waUVtzaVXbt8SNHWjWKeugJJG6WvfYKpGoTQXLov--MvQmkDeXCde1de7-xPTO25xvGziHI1vnal1wFItWWvjSqaUoN4N2kBWLCodsWP9XsCn5cy-tHqb7oTlimB87AjbkjpRi0pkibytVOR-8ENKFtJxBNiiNHnffImUprsJig6wJ9lEwlzPge0ppANxI4UdaUsKWJEmH_Livz38uSf52YJkU0PWQHvQU5usg9P2J7sTtm-zmn5O_X7NNlTntA4I_mi7RVPVqnQcHpjD72G3Y1_X75bVb2iRDKRiqzLFUITRN4KyBWxlV15NJp70BGb-raR6l0EBoNL8EdINKqFTGi3YAQeDSHGvGWDbp5F0_YqA1YVwKHGCKYSnlHMSLop1Z14IHXBavXoNimZwmnZBW_bDqtFsZmIC0CaROQFgr2efPOInNk_Lf2V8J6U5P4rdMDlLrtpW6fk3rBhmtJ2X7S3VtOG6Poj2qxu1hKyrSMSrtgHzfFOJvoiMR1cb7Kn6BNUY0tvMty33RUUNCDrkzB9NaI2PqT7ZLu9iYxdmu08ozCdr-sx85Dt55G6v1LIPWBveI06Csc95MhGyzvVvEU7ailP0tT5g-OPBXp priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLKu9AQQviBlH9tvdUFcRSceDUSr1ZfgWQULJ0twf-PTOOk2qh9Bo7cTwvj8fjbwh5K5PqfGCh5TohqLYKrdUxtkbK4JedRCQczLb4qk_O5JdzdV4DbpuaVjnZxGKo0xAxRn6IUFkKLKmgR-tfLVaNwtPVWkLjNrnDYKXBlC67-jzHWBD93EpZ78pQYQ83slgGzEvgCFzTyp31qMD2X-dr_psy-de5aVmOVvvkfvUjF8cj4x-QW7l_SO6OlSV_PyJvTsfiB8iCxbAuAevFVAwFlBp22o_J2erT6ceTtpZDaKPSdtvqlGJMvBMyU-spy1x5E7xUOVjGQlbaJGHA_RLcS6C37kTO4D0ACQI4RVE8IXv90OdnZNEl6KsklzllaakOHm-KwG6VssQTZw1hE1FcrFjhWLLipytn1sK6kZAOCOkKIZ1syLv5nfWIlHFj7w9I67knolyXB8PFN1eVxnGPDlEyBm9ZUc-8ycELGVPXLWW2piEHE6dcVb2N4xgehV2pEdc3z3LUkNdzM-gUHpT4Pg-X4ycwNGpghKcj3-cfFXj1wVDbELMjETsz2W3pf3wvuN0GfD2rYdz3k-xc_db_KfX85lm8IPc4ijMFiV4ekL3txWV-CX7SNrwqyvAHZl4NUw priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEOXVlBYtiBtEJPb4scelalXtgQut1Jtlxw4goWzVbg_8-844D7SwIHGN7dj5PBOP7ZlvAN5hVK0PdSiFjkyqrUJpddOUBjH4eYvMhMPeFp_1-SUur9TVDogxFiY77WdKy_ybHr3DPt5iVml2KBDMOFPiA9hjqnaS7b3FYvllOZ2sMOe5RRwiZCpptzTeWIUyWf82C_NPR8nfbkvzInT2BB4P1uNs0Y93H3ZS9xQe9vkkfz6Dtxd9ygMGfra6zsfUszEFCqky7a-fw-XZ6cXJeTkkQSgbpe261DE2TRStxFRZX9VJKG-CR5WCreuQlDZRGjK6pPBIKOtWpkQ2A0EQyBRq5AvY7VZdOoBZG6muQoEpJrSVDp7jQ2iPWtVRRFEXUI-guGZgCOdEFT9cvqmW1vVAOgLSZSAdFvB-anPd82P8s_YnxnqqydzW-cHq5qsb5toJz2ZQNIZjqypfe5OCl9jEtp1jsqaAo3Gm3KBwt07woSjtRY3cXqwUZ1mmBbuAN1MxaRJfj_gure76V_CBqKEeXvbzPg1UcsCDqWwBZkMiNr5ks6T7_i2zdRuy8Kymfj-MsvNrWH9H6vD_qr-CR4LFuyIJnx_B7vrmLh2TtbQOrwf1uAcYRwx8 priority: 102 providerName: Springer Nature |
Title | Topological optical differentiator |
URI | https://link.springer.com/article/10.1038/s41467-021-20972-4 https://www.ncbi.nlm.nih.gov/pubmed/33514708 https://www.proquest.com/docview/2483415673 https://www.proquest.com/docview/2556547130 https://www.proquest.com/docview/2483814677 https://pubmed.ncbi.nlm.nih.gov/PMC7846860 https://doaj.org/article/2a0663d7707140a1a7eba34cdff94e87 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_tQ0i8THwTGFVBvEEg8XcfEOqqlakSE4JV6ptlxw4gTe3WdRL777lzkqJC4YmXRIqdOPn5Lv6d7bsDeCmCrJ0vfc5UoKDa0udGVVWuhfBuUAuKhEO7LU7VyVRMZnK2A126oxbAq62mHeWTmi7P3_y4vHmPCv-ucRk3b69EUnfabMAoGk0udmEfRyZNGQ0-tnQ__Zn5AA0a0frObL91Y3xKYfy3cc8_t1D-to6ahqfxHThoeWV_2AjCXdiJ83twq8k0eXMfXpw1yRCoS_qLizSB3e-So6CSo-X9AKbj47PRSd6mR8grqcwqVyFUVWA1F7Ewrigjk057J2T0pix9lEoHrpGOceYE4q9qHiOyCYTAI0mq-EPYmy_m8TH064B1pWAihihMobwjzxG0XosysMDKDMoOFFu1scMphcW5TWvY3NgGSItA2gSkFRm8Wt9z0UTO-GftI8J6XZOiXqcLi-VX2yqRZY4IUtCavK4KVzodveOiCnU9ENHoDA67nrKdJFlG06VopWq-vVhKyr-MQ3kGz9fFqGO0cOLmcXHdPIKmSjW28Kjp9_WLcnKF0IXJQG9IxMaXbJbMv39Lcbw1cj-jsN3Xnez8eq2_I_XkfyD1FG4zEvoC5X5wCHur5XV8huxq5Xuwq2caj2b8oQf7w-HkywTPR8ennz7j1ZEa9dK8RS-p1k9xnCRU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgYDgBFEd24m9B4R4LVtaetpKvRk7dgAJJUt3K9Q_xW9kxnmghdJbr7GT2OOZ8czY8w3AU-mL2rrcZbz0BKpduEyXVZUpKZ2d1JKQcOi2xX45O5AfD4vDDfg15MLQtcpBJ0ZF7duKYuTbBJVVoCYV7NXiR0ZVo-h0dSih0bHFbjj5iS7b8uXOO1zfZ5xP38_fzrK-qkBWFaVeZaX3VeV5LWRg2rI88MIqZ2URnM5zF4pSeaHQihHcShx2WYsQcBNGV8ihbVEJ_O4FuCgF7uSUmT79MMZ0CG1dS9nn5jCht5cyaiK6B8EJKCeTa_tfLBNwmm377xXNv85p4_Y3vQZXe7s1fd0x2nXYCM0NuNRVsjy5CU_mXbEFWvK0XcQAeToUX0Elgp79LTg4F0Ldhs2mbcJdSGuPfQvJZfBBalY6S5kp6B2z3HPP8wTygSim6rHJqUTGdxPPyIU2HSENEtJEQhqZwPPxnUWHzHFm7zdE67EnoWrHB-3RF9MLqeGWDDCvFGV1MZtbFZwVsvJ1PZFBqwS2hpUyvagvDadwLHrBSpzePPJtAo_HZpRhOpixTWiPu09QKFbhH-506z4OVFCqhWI6AbXGEWszWW9pvn2NOOEKbUtd4n9fDLzzZ1j_p9S9s2fxCC7P5p_2zN7O_u59uMKJtRly92QLNldHx-EB2mgr9zAKRgqfz1sSfwNV0EpV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGTaC9IL4pDCgInqC6NEmb3ANCjO20MXSa0CbtLSRNypBQe-xuQvvX-Ouw-4UOxt72esm1jWM7tmP_DPBS-qy0LnUJzz2Bamcu0XlRJEpKZyelJCQcyraY5btH8uNxdrwGv_paGEqr7HVio6h9XVCMfExQWRlqUsHGZZcWcbA9fTf_kVAHKbpp7dtptCyyH85_ovu2eLu3jXv9ivPpzuGH3aTrMJAUWa6XSe59UXheChmYtiwNPLPKWZkFp9PUhSxXXii0aAS3EpeQlyIEPJDRLXJoZxQCn3sN1hV5RSNY39qZHXweIjyEva6l7Cp1mNDjhWz0EmVFcILNSeTKadg0DbjI0v03YfOvW9vmMJzegpudFRu_b9nuNqyF6g5cb_tant-FF4dt6wVigLieN-HyuG_FgioF_fx7cHQlpLoPo6quwkOIS49zM8ll8EFqljtLdSroK7PUc8_TCNKeKKbokMqpYcZ309yYC21aQhokpGkIaWQEr4f_zFucjktnbxGth5mEsd38UJ9-NZ3IGm7JHPNKUY0Xs6lVwVkhC1-WExm0imCz3ynTCf7CcArOok-sxMXDAxdH8HwYRommaxpbhfqsfQQFZhW-4UG778OHCiq8UExHoFY4YmUlqyPVt5MGNVyhpalzfO-bnnf-fNb_KfXo8lU8gxsohebT3mz_MWxw4myGzD3ZhNHy9Cw8QYNt6Z52khHDl6sWxt97Qk_n |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+optical+differentiator&rft.jtitle=Nature+communications&rft.au=Tengfeng+Zhu&rft.au=Cheng+Guo&rft.au=Junyi+Huang&rft.au=Haiwen+Wang&rft.date=2021-01-29&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-021-20972-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2a0663d7707140a1a7eba34cdff94e87 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |