Think to Move: a Neuromagnetic Brain-Computer Interface (BCI) System for Chronic Stroke

Background and Purpose— Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients e...

Full description

Saved in:
Bibliographic Details
Published inStroke (1970) Vol. 39; no. 3; pp. 910 - 917
Main Authors Buch, Ethan, Weber, Cornelia, Cohen, Leonardo G., Braun, Christoph, Dimyan, Michael A., Ard, Tyler, Mellinger, Jurgen, Caria, Andrea, Soekadar, Surjo, Fourkas, Alissa, Birbaumer, Niels
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott Williams & Wilkins 01.03.2008
Subjects
Online AccessGet full text
ISSN0039-2499
1524-4628
1524-4628
DOI10.1161/STROKEAHA.107.505313

Cover

Abstract Background and Purpose— Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients experiencing hand plegia as a result of a single, unilateral subcortical, cortical or mixed stroke occurring at least 1 year previously, could be trained to operate a mechanical hand orthosis through a brain-computer interface (BCI). Methods— Eight patients with chronic hand plegia resulting from stroke (residual finger extension function rated on the Medical Research Council scale=0/5) were recruited from the Stroke Neurorehabilitation Clinic, Human Cortical Physiology Section of the National Institute for Neurological Disorders and Stroke (NINDS) (n=5) and the Clinic of Neurology of the University of Tübingen (n=3). Diagnostic MRIs revealed single, unilateral subcortical, cortical or mixed lesions in all patients. A magnetoencephalography-based BCI system was used for this study. Patients participated in between 13 to 22 training sessions geared to volitionally modulate μ rhythm amplitude originating in sensorimotor areas of the cortex, which in turn raised or lowered a screen cursor in the direction of a target displayed on the screen through the BCI interface. Performance feedback was provided visually in real-time. Successful trials (in which the cursor made contact with the target) resulted in opening/closing of an orthosis attached to the paralyzed hand. Results— Training resulted in successful BCI control in 6 of 8 patients. This control was associated with increased range and specificity of μ rhythm modulation as recorded from sensors overlying central ipsilesional (4 patients) or contralesional (2 patients) regions of the array. Clinical scales used to rate hand function showed no significant improvement after training. Conclusions— These results suggest that volitional control of neuromagnetic activity features recorded over central scalp regions can be achieved with BCI training after stroke, and used to control grasping actions through a mechanical hand orthosis.
AbstractList Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients experiencing hand plegia as a result of a single, unilateral subcortical, cortical or mixed stroke occurring at least 1 year previously, could be trained to operate a mechanical hand orthosis through a brain-computer interface (BCI).BACKGROUND AND PURPOSEStroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients experiencing hand plegia as a result of a single, unilateral subcortical, cortical or mixed stroke occurring at least 1 year previously, could be trained to operate a mechanical hand orthosis through a brain-computer interface (BCI).Eight patients with chronic hand plegia resulting from stroke (residual finger extension function rated on the Medical Research Council scale=0/5) were recruited from the Stroke Neurorehabilitation Clinic, Human Cortical Physiology Section of the National Institute for Neurological Disorders and Stroke (NINDS) (n=5) and the Clinic of Neurology of the University of Tübingen (n=3). Diagnostic MRIs revealed single, unilateral subcortical, cortical or mixed lesions in all patients. A magnetoencephalography-based BCI system was used for this study. Patients participated in between 13 to 22 training sessions geared to volitionally modulate micro rhythm amplitude originating in sensorimotor areas of the cortex, which in turn raised or lowered a screen cursor in the direction of a target displayed on the screen through the BCI interface. Performance feedback was provided visually in real-time. Successful trials (in which the cursor made contact with the target) resulted in opening/closing of an orthosis attached to the paralyzed hand.METHODSEight patients with chronic hand plegia resulting from stroke (residual finger extension function rated on the Medical Research Council scale=0/5) were recruited from the Stroke Neurorehabilitation Clinic, Human Cortical Physiology Section of the National Institute for Neurological Disorders and Stroke (NINDS) (n=5) and the Clinic of Neurology of the University of Tübingen (n=3). Diagnostic MRIs revealed single, unilateral subcortical, cortical or mixed lesions in all patients. A magnetoencephalography-based BCI system was used for this study. Patients participated in between 13 to 22 training sessions geared to volitionally modulate micro rhythm amplitude originating in sensorimotor areas of the cortex, which in turn raised or lowered a screen cursor in the direction of a target displayed on the screen through the BCI interface. Performance feedback was provided visually in real-time. Successful trials (in which the cursor made contact with the target) resulted in opening/closing of an orthosis attached to the paralyzed hand.Training resulted in successful BCI control in 6 of 8 patients. This control was associated with increased range and specificity of mu rhythm modulation as recorded from sensors overlying central ipsilesional (4 patients) or contralesional (2 patients) regions of the array. Clinical scales used to rate hand function showed no significant improvement after training.RESULTSTraining resulted in successful BCI control in 6 of 8 patients. This control was associated with increased range and specificity of mu rhythm modulation as recorded from sensors overlying central ipsilesional (4 patients) or contralesional (2 patients) regions of the array. Clinical scales used to rate hand function showed no significant improvement after training.These results suggest that volitional control of neuromagnetic activity features recorded over central scalp regions can be achieved with BCI training after stroke, and used to control grasping actions through a mechanical hand orthosis.CONCLUSIONSThese results suggest that volitional control of neuromagnetic activity features recorded over central scalp regions can be achieved with BCI training after stroke, and used to control grasping actions through a mechanical hand orthosis.
Background and Purpose— Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients experiencing hand plegia as a result of a single, unilateral subcortical, cortical or mixed stroke occurring at least 1 year previously, could be trained to operate a mechanical hand orthosis through a brain-computer interface (BCI). Methods— Eight patients with chronic hand plegia resulting from stroke (residual finger extension function rated on the Medical Research Council scale=0/5) were recruited from the Stroke Neurorehabilitation Clinic, Human Cortical Physiology Section of the National Institute for Neurological Disorders and Stroke (NINDS) (n=5) and the Clinic of Neurology of the University of Tübingen (n=3). Diagnostic MRIs revealed single, unilateral subcortical, cortical or mixed lesions in all patients. A magnetoencephalography-based BCI system was used for this study. Patients participated in between 13 to 22 training sessions geared to volitionally modulate μ rhythm amplitude originating in sensorimotor areas of the cortex, which in turn raised or lowered a screen cursor in the direction of a target displayed on the screen through the BCI interface. Performance feedback was provided visually in real-time. Successful trials (in which the cursor made contact with the target) resulted in opening/closing of an orthosis attached to the paralyzed hand. Results— Training resulted in successful BCI control in 6 of 8 patients. This control was associated with increased range and specificity of μ rhythm modulation as recorded from sensors overlying central ipsilesional (4 patients) or contralesional (2 patients) regions of the array. Clinical scales used to rate hand function showed no significant improvement after training. Conclusions— These results suggest that volitional control of neuromagnetic activity features recorded over central scalp regions can be achieved with BCI training after stroke, and used to control grasping actions through a mechanical hand orthosis.
BACKGROUND: and Purpose- Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients experiencing hand plegia as a result of a single, unilateral subcortical, cortical or mixed stroke occurring at least 1 year previously, could be trained to operate a mechanical hand orthosis through a brain-computer interface (BCI). METHODS: Eight patients with chronic hand plegia resulting from stroke (residual finger extension function rated on the Medical Research Council scale=0/5) were recruited from the Stroke Neurorehabilitation Clinic, Human Cortical Physiology Section of the National Institute for Neurological Disorders and Stroke (NINDS) (n=5) and the Clinic of Neurology of the University of Tuebingen (n=3). Diagnostic MRIs revealed single, unilateral subcortical, cortical or mixed lesions in all patients. A magnetoencephalography-based BCI system was used for this study. Patients participated in between 13 to 22 training sessions geared to volitionally modulate mu rhythm amplitude originating in sensorimotor areas of the cortex, which in turn raised or lowered a screen cursor in the direction of a target displayed on the screen through the BCI interface. Performance feedback was provided visually in real-time. Successful trials (in which the cursor made contact with the target) resulted in opening/closing of an orthosis attached to the paralyzed hand. RESULTS: Training resulted in successful BCI control in 6 of 8 patients. This control was associated with increased range and specificity of mu rhythm modulation as recorded from sensors overlying central ipsilesional (4 patients) or contralesional (2 patients) regions of the array. Clinical scales used to rate hand function showed no significant improvement after training. CONCLUSIONS: These results suggest that volitional control of neuromagnetic activity features recorded over central scalp regions can be achieved with BCI training after stroke, and used to control grasping actions through a mechanical hand orthosis.
Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients experiencing hand plegia as a result of a single, unilateral subcortical, cortical or mixed stroke occurring at least 1 year previously, could be trained to operate a mechanical hand orthosis through a brain-computer interface (BCI). Eight patients with chronic hand plegia resulting from stroke (residual finger extension function rated on the Medical Research Council scale=0/5) were recruited from the Stroke Neurorehabilitation Clinic, Human Cortical Physiology Section of the National Institute for Neurological Disorders and Stroke (NINDS) (n=5) and the Clinic of Neurology of the University of Tübingen (n=3). Diagnostic MRIs revealed single, unilateral subcortical, cortical or mixed lesions in all patients. A magnetoencephalography-based BCI system was used for this study. Patients participated in between 13 to 22 training sessions geared to volitionally modulate micro rhythm amplitude originating in sensorimotor areas of the cortex, which in turn raised or lowered a screen cursor in the direction of a target displayed on the screen through the BCI interface. Performance feedback was provided visually in real-time. Successful trials (in which the cursor made contact with the target) resulted in opening/closing of an orthosis attached to the paralyzed hand. Training resulted in successful BCI control in 6 of 8 patients. This control was associated with increased range and specificity of mu rhythm modulation as recorded from sensors overlying central ipsilesional (4 patients) or contralesional (2 patients) regions of the array. Clinical scales used to rate hand function showed no significant improvement after training. These results suggest that volitional control of neuromagnetic activity features recorded over central scalp regions can be achieved with BCI training after stroke, and used to control grasping actions through a mechanical hand orthosis.
Author Weber, Cornelia
Braun, Christoph
Mellinger, Jurgen
Dimyan, Michael A.
Caria, Andrea
Ard, Tyler
Fourkas, Alissa
Soekadar, Surjo
Buch, Ethan
Cohen, Leonardo G.
Birbaumer, Niels
Author_xml – sequence: 1
  givenname: Ethan
  surname: Buch
  fullname: Buch, Ethan
  organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany
– sequence: 2
  givenname: Cornelia
  surname: Weber
  fullname: Weber, Cornelia
  organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany
– sequence: 3
  givenname: Leonardo G.
  surname: Cohen
  fullname: Cohen, Leonardo G.
  organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany
– sequence: 4
  givenname: Christoph
  surname: Braun
  fullname: Braun, Christoph
  organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany
– sequence: 5
  givenname: Michael A.
  surname: Dimyan
  fullname: Dimyan, Michael A.
  organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany
– sequence: 6
  givenname: Tyler
  surname: Ard
  fullname: Ard, Tyler
  organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany
– sequence: 7
  givenname: Jurgen
  surname: Mellinger
  fullname: Mellinger, Jurgen
  organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany
– sequence: 8
  givenname: Andrea
  surname: Caria
  fullname: Caria, Andrea
  organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany
– sequence: 9
  givenname: Surjo
  surname: Soekadar
  fullname: Soekadar, Surjo
  organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany
– sequence: 10
  givenname: Alissa
  surname: Fourkas
  fullname: Fourkas, Alissa
  organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany
– sequence: 11
  givenname: Niels
  surname: Birbaumer
  fullname: Birbaumer, Niels
  organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20161845$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18258825$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhS1URNPCP0DIGxAsJvg1nnEXldJRoRGFSiSIpeXM2I3pjB1sT6X-exwlhMcCJD9k-ztHV9fnBBw57zQAzzGaYszx28Xy882Hy9nVbIpRNS1RSTF9BCa4JKxgnNRHYIIQFQVhQhyDkxi_IYQIrcsn4BjXpKzznICvy7V1dzB5-NHf6zOo4Cc9Bj-oW6eTbeFFUNYVjR82Y9IBzl1ejWo1fH3RzN_AxUNMeoDGB9isg3dZsUjB3-mn4LFRfdTP9vsp-PLuctlcFdc37-fN7LpoS16nglNTdbSkXb1aUUN1q7BCAgnGy05URCPWIaM1YZSLGgshuKEGUY3zybAS0VNwvvPdjKtBd612KaheboIdVHiQXln554uza3nr72XJBBOcZ4NXe4Pgv486JjnY2Oq-V077McoKUZYH-S9IEOeMEprBF7-XdKjlZ9Mz8HIPqNiq3gTlWhsPHEH5e2u25diOa4OPMWjzywrJbQbkIQP5ppK7DGTZ2V-y1iaVrN82wPb_Fv8AKEO2Ig
CODEN SJCCA7
CitedBy_id crossref_primary_10_3389_fneng_2014_00018
crossref_primary_10_1088_1741_2560_11_5_056009
crossref_primary_10_3389_fneng_2014_00019
crossref_primary_10_3390_biom11091316
crossref_primary_10_1088_1741_2552_aa70d2
crossref_primary_10_3390_diagnostics12112607
crossref_primary_10_1109_TRO_2009_2020347
crossref_primary_10_3389_fnins_2020_00553
crossref_primary_10_5302_J_ICROS_2013_13_1866
crossref_primary_10_1038_nrneurol_2012_219
crossref_primary_10_3390_brainsci11070853
crossref_primary_10_3389_fnins_2021_699428
crossref_primary_10_3389_fnhum_2017_00469
crossref_primary_10_3390_automation2030012
crossref_primary_10_1007_s00521_013_1523_7
crossref_primary_10_3389_fnhum_2014_00620
crossref_primary_10_1299_transjsme_16_00195
crossref_primary_10_1016_j_neures_2017_10_002
crossref_primary_10_3389_fneng_2014_00025
crossref_primary_10_1088_1757_899X_402_1_012017
crossref_primary_10_3389_fneng_2014_00026
crossref_primary_10_1007_s42600_023_00329_0
crossref_primary_10_1016_j_clinph_2019_06_008
crossref_primary_10_1134_S0362119716010102
crossref_primary_10_1038_s41598_018_28295_z
crossref_primary_10_1088_1741_2560_12_3_036007
crossref_primary_10_1016_j_neucli_2018_10_068
crossref_primary_10_1038_ncomms13209
crossref_primary_10_1152_physrev_00034_2020
crossref_primary_10_3389_fneng_2014_00030
crossref_primary_10_1371_journal_pone_0168766
crossref_primary_10_1007_s13311_019_00816_2
crossref_primary_10_1016_j_neuropsychologia_2021_107866
crossref_primary_10_1109_RBME_2024_3449790
crossref_primary_10_1097_NPT_0b013e3181c1fc0b
crossref_primary_10_1109_TNSRE_2020_2998778
crossref_primary_10_1109_TNSRE_2023_3339612
crossref_primary_10_1016_j_neuroimage_2013_10_028
crossref_primary_10_1371_journal_pone_0072085
crossref_primary_10_1142_S0219635213500192
crossref_primary_10_1088_1741_2552_abecc3
crossref_primary_10_1177_1073858418775355
crossref_primary_10_1016_j_bspc_2012_12_005
crossref_primary_10_3389_fnins_2016_00122
crossref_primary_10_1177_15459683221138751
crossref_primary_10_3390_electronics12030604
crossref_primary_10_1016_j_nbd_2009_05_027
crossref_primary_10_1016_j_eswa_2023_119736
crossref_primary_10_1002_hbm_22611
crossref_primary_10_1007_s10548_014_0382_6
crossref_primary_10_1088_1741_2560_13_2_026002
crossref_primary_10_1117_1_NPh_5_1_011008
crossref_primary_10_1515_bmt_2021_0422
crossref_primary_10_1002_acn3_544
crossref_primary_10_2490_jjrmc_53_465
crossref_primary_10_1038_srep24663
crossref_primary_10_1088_1741_2552_aadeed
crossref_primary_10_1109_JPROC_2015_2415800
crossref_primary_10_1088_1741_2560_10_3_036015
crossref_primary_10_1080_2326263X_2020_1763060
crossref_primary_10_1177_1550059417717398
crossref_primary_10_1088_2057_1976_ab872c
crossref_primary_10_1186_1743_0003_11_153
crossref_primary_10_1109_TAFFC_2020_3025004
crossref_primary_10_1109_TNSRE_2014_2371391
crossref_primary_10_31857_S013116462270014X
crossref_primary_10_1097_WCO_0b013e32831cbb85
crossref_primary_10_1016_j_neuroimage_2015_05_009
crossref_primary_10_1088_1741_2560_8_6_066009
crossref_primary_10_1134_S0362119716010126
crossref_primary_10_1371_journal_pone_0188293
crossref_primary_10_1109_TNSRE_2023_3272372
crossref_primary_10_1002_hbm_26767
crossref_primary_10_1016_j_neuroimage_2013_10_003
crossref_primary_10_3389_fneur_2021_772199
crossref_primary_10_1016_j_neuroimage_2013_04_097
crossref_primary_10_3389_fnins_2014_00320
crossref_primary_10_1109_TBME_2013_2294203
crossref_primary_10_1155_2020_8882764
crossref_primary_10_3389_fnhum_2015_00003
crossref_primary_10_3390_machines11070747
crossref_primary_10_3389_fnint_2015_00040
crossref_primary_10_3389_fnins_2020_00918
crossref_primary_10_7554_eLife_76411
crossref_primary_10_1109_ACCESS_2019_2941491
crossref_primary_10_1155_2014_797128
crossref_primary_10_1088_1741_2560_9_4_046003
crossref_primary_10_1109_ACCESS_2023_3321067
crossref_primary_10_3389_fnins_2016_00584
crossref_primary_10_1007_s10484_017_9383_z
crossref_primary_10_1007_s11055_018_0668_3
crossref_primary_10_1002_hbm_26284
crossref_primary_10_1177_15500594211009065
crossref_primary_10_1093_brain_awz181
crossref_primary_10_1109_TBME_2014_2313867
crossref_primary_10_1016_j_neuron_2018_01_040
crossref_primary_10_1088_1741_2560_12_6_066021
crossref_primary_10_1186_s12984_018_0383_x
crossref_primary_10_1177_1550059414522229
crossref_primary_10_3390_app14104147
crossref_primary_10_1152_jn_00239_2010
crossref_primary_10_1088_1741_2560_8_2_025004
crossref_primary_10_1093_brain_awr331
crossref_primary_10_1088_1741_2560_8_2_025001
crossref_primary_10_1016_j_jneumeth_2018_11_010
crossref_primary_10_1080_2326263X_2015_1008956
crossref_primary_10_3389_fnbeh_2014_00429
crossref_primary_10_1039_D1TB01795K
crossref_primary_10_1016_j_neuroimage_2016_03_016
crossref_primary_10_1109_RBME_2009_2035356
crossref_primary_10_3389_fnins_2020_575081
crossref_primary_10_3389_fnrgo_2022_837307
crossref_primary_10_1146_annurev_med_60_042707_104248
crossref_primary_10_1016_j_jneumeth_2013_11_009
crossref_primary_10_1109_JBHI_2018_2863212
crossref_primary_10_17537_2018_13_84
crossref_primary_10_1186_1743_0003_11_168
crossref_primary_10_1177_1545968312445910
crossref_primary_10_1016_j_jneumeth_2022_109658
crossref_primary_10_1109_JSYST_2020_3021485
crossref_primary_10_1162_imag_a_00178
crossref_primary_10_1038_srep21781
crossref_primary_10_1371_journal_pone_0131547
crossref_primary_10_3389_fnins_2017_00575
crossref_primary_10_1007_s40141_014_0051_4
crossref_primary_10_1007_s11465_011_0207_1
crossref_primary_10_1152_jn_00070_2017
crossref_primary_10_12677_AP_2019_93060
crossref_primary_10_5692_clinicalneurol_52_1178
crossref_primary_10_1016_j_jneumeth_2014_06_016
crossref_primary_10_1088_1741_2552_aaf12e
crossref_primary_10_1109_JSEN_2021_3119074
crossref_primary_10_38025_2078_1962_2023_22_3_49_58
crossref_primary_10_3389_fnhum_2020_597864
crossref_primary_10_1111_j_1469_8986_2010_01117_x
crossref_primary_10_1371_journal_pone_0121896
crossref_primary_10_1038_s41598_024_53261_3
crossref_primary_10_3390_brainsci14060590
crossref_primary_10_1109_TNSRE_2015_2466079
crossref_primary_10_1523_ENEURO_0144_19_2019
crossref_primary_10_3389_fnins_2023_1243151
crossref_primary_10_1016_j_pmr_2009_07_003
crossref_primary_10_1134_S0362119713020035
crossref_primary_10_3389_fnhum_2023_1070404
crossref_primary_10_31363_2313_7053_2019_1_82_92
crossref_primary_10_1109_TBME_2013_2280143
crossref_primary_10_1016_j_clinph_2019_04_004
crossref_primary_10_1088_1741_2552_ab7cfb
crossref_primary_10_1007_s00221_011_2573_7
crossref_primary_10_1080_2326263X_2018_1493073
crossref_primary_10_3389_fncel_2016_00092
crossref_primary_10_1109_THMS_2020_2968411
crossref_primary_10_3390_app14146347
crossref_primary_10_1007_s40815_016_0259_9
crossref_primary_10_3389_fnhum_2015_00716
crossref_primary_10_1152_physrev_00027_2016
crossref_primary_10_1134_S0362119719040042
crossref_primary_10_7554_eLife_40843
crossref_primary_10_1371_journal_pone_0088443
crossref_primary_10_3389_fnbeh_2014_00093
crossref_primary_10_1109_ACCESS_2024_3430838
crossref_primary_10_1134_S0362119717050097
crossref_primary_10_1016_j_nbd_2014_11_025
crossref_primary_10_3390_jimaging4050070
crossref_primary_10_1016_j_pmrj_2017_04_016
crossref_primary_10_3389_fnhum_2023_1121481
crossref_primary_10_1186_s12938_018_0534_0
crossref_primary_10_1038_s41467_018_04673_z
crossref_primary_10_1088_1741_2552_aaa8c0
crossref_primary_10_1016_j_bspc_2017_11_012
crossref_primary_10_1016_j_neuroimage_2014_06_066
crossref_primary_10_3233_NRE_172394
crossref_primary_10_1098_rsos_170660
crossref_primary_10_1109_TNSRE_2012_2205707
crossref_primary_10_3182_20130902_3_CN_3020_00048
crossref_primary_10_3389_fnhum_2015_00564
crossref_primary_10_1016_j_neuroimage_2015_01_058
crossref_primary_10_1186_s12984_015_0087_4
crossref_primary_10_3389_fnins_2014_00123
crossref_primary_10_1007_s42600_021_00196_7
crossref_primary_10_1080_1357650X_2014_998679
crossref_primary_10_1016_j_neurobiolaging_2016_10_011
crossref_primary_10_3390_electronics13030565
crossref_primary_10_1016_j_brainres_2012_05_053
crossref_primary_10_1186_s12984_020_00686_2
crossref_primary_10_3233_JID_220001
crossref_primary_10_1523_JNEUROSCI_2471_09_2009
crossref_primary_10_3109_17483107_2014_961569
crossref_primary_10_3390_s20082362
crossref_primary_10_1109_TNSRE_2021_3123969
crossref_primary_10_1002_acn3_122
crossref_primary_10_1016_j_neuroimage_2015_04_020
crossref_primary_10_1177_0967033518787331
crossref_primary_10_1155_2011_327953
crossref_primary_10_1097_NPT_0b013e31825064cc
crossref_primary_10_1017_S0317167100012622
crossref_primary_10_1016_j_clinph_2014_11_023
crossref_primary_10_1038_nrneurol_2010_200
crossref_primary_10_1088_1741_2552_aba162
crossref_primary_10_1186_s12984_015_0076_7
crossref_primary_10_1016_j_ijpsycho_2013_10_008
crossref_primary_10_1134_S0362119722700116
crossref_primary_10_1523_ENEURO_0246_18_2018
crossref_primary_10_1038_s41598_017_13482_1
crossref_primary_10_3390_app9183845
crossref_primary_10_1002_ana_24390
crossref_primary_10_1007_s11569_021_00392_w
crossref_primary_10_1016_j_heliyon_2024_e26521
crossref_primary_10_1186_s12984_016_0120_2
crossref_primary_10_1136_svn_2022_001506
crossref_primary_10_1155_2012_187965
crossref_primary_10_3109_21678421_2014_969275
crossref_primary_10_1109_TNSRE_2018_2817924
crossref_primary_10_1038_s41598_018_21717_y
crossref_primary_10_1016_j_neuroimage_2020_117298
crossref_primary_10_2302_kjm_2022_0002_OA
crossref_primary_10_1080_17434440_2016_1174572
crossref_primary_10_1080_07388551_2021_1993126
crossref_primary_10_1098_rstb_2023_0081
crossref_primary_10_1097_WCO_0b013e328315ee2d
crossref_primary_10_1080_27706710_2023_2183096
crossref_primary_10_1007_s11055_018_0667_4
crossref_primary_10_1007_s11055_021_01176_1
crossref_primary_10_5391_JKIIS_2012_22_4_429
crossref_primary_10_1007_s40846_016_0102_7
crossref_primary_10_1016_j_cmpb_2018_05_026
crossref_primary_10_1586_17434440_2014_882766
crossref_primary_10_3389_fnhum_2014_00817
crossref_primary_10_5626_JCSE_2013_7_2_139
crossref_primary_10_1088_1741_2552_ab08c8
crossref_primary_10_1109_TBME_2014_2312397
crossref_primary_10_1007_s10270_020_00797_3
crossref_primary_10_1145_3335815
crossref_primary_10_1002_hbm_24876
crossref_primary_10_1093_braincomms_fcac264
crossref_primary_10_3109_00207454_2013_850082
crossref_primary_10_1007_s00221_012_3166_9
crossref_primary_10_3390_s120201211
crossref_primary_10_1093_pnasnexus_pgae240
crossref_primary_10_1177_1545968315597069
crossref_primary_10_1016_j_pmrj_2018_05_028
crossref_primary_10_1152_jn_00918_2015
crossref_primary_10_1109_TNSRE_2016_2528167
crossref_primary_10_1586_17434440_2014_941811
crossref_primary_10_1016_j_neuroimage_2009_12_055
crossref_primary_10_1016_j_neuroimage_2011_01_021
crossref_primary_10_1088_1741_2552_aad724
crossref_primary_10_1177_1545968314543308
crossref_primary_10_1016_j_neuroimage_2015_09_074
crossref_primary_10_1109_TBME_2016_2541084
crossref_primary_10_2217_14796708_4_2_133
crossref_primary_10_31857_S0044467723010069
crossref_primary_10_3109_02699052_2012_698362
crossref_primary_10_1186_1743_0003_7_60
crossref_primary_10_1177_0271678X221105677
crossref_primary_10_1002_ana_23879
crossref_primary_10_1177_1545968310368683
crossref_primary_10_1016_j_irbm_2010_12_004
crossref_primary_10_3389_fneur_2018_00212
crossref_primary_10_1038_nrn_2016_164
crossref_primary_10_1113_JP281314
crossref_primary_10_1186_s12984_021_00838_y
crossref_primary_10_1016_j_neulet_2019_134727
crossref_primary_10_1007_s10676_018_9453_9
crossref_primary_10_1016_j_compbiomed_2020_103843
crossref_primary_10_1523_ENEURO_0145_22_2022
crossref_primary_10_1109_TBME_2018_2865941
crossref_primary_10_1088_1741_2560_11_6_066008
crossref_primary_10_1159_000371714
crossref_primary_10_3389_fncel_2021_653487
crossref_primary_10_1007_s11055_023_01478_6
crossref_primary_10_1016_j_asmr_2022_11_015
crossref_primary_10_1038_s41598_018_29091_5
crossref_primary_10_1088_1741_2552_abbd21
crossref_primary_10_1186_1743_0003_10_4
crossref_primary_10_1371_journal_pone_0074433
crossref_primary_10_1007_s10439_014_1066_9
crossref_primary_10_1093_braincomms_fcad055
crossref_primary_10_1080_10790268_2017_1305036
crossref_primary_10_1016_S1474_4422_08_70223_0
crossref_primary_10_3389_fnins_2020_00528
crossref_primary_10_4103_1673_5374_290884
crossref_primary_10_1109_JSYST_2020_3021751
crossref_primary_10_1371_journal_pone_0270366
crossref_primary_10_1016_j_rehab_2014_11_002
crossref_primary_10_1002_adsr_202200055
crossref_primary_10_2217_iim_11_77
crossref_primary_10_1177_155005941104200410
crossref_primary_10_1177_155005941104200411
crossref_primary_10_1007_s10548_017_0586_7
crossref_primary_10_1016_j_neuron_2022_06_024
crossref_primary_10_1109_ACCESS_2020_2993620
crossref_primary_10_1002_pri_1764
crossref_primary_10_3171_2009_4_FOCUS0979
crossref_primary_10_1113_JP278167
crossref_primary_10_3389_fnsys_2022_840922
crossref_primary_10_1093_cercor_bhu043
crossref_primary_10_1038_ncpneuro0779
crossref_primary_10_1134_S0362119716010035
crossref_primary_10_1016_j_cobme_2021_100354
crossref_primary_10_1016_j_hkpj_2012_05_001
crossref_primary_10_17116_jnevro202212212267
crossref_primary_10_1016_j_measurement_2016_12_001
crossref_primary_10_3389_fnhum_2019_00069
crossref_primary_10_1088_1741_2560_13_4_046015
crossref_primary_10_26599_JNR_2020_9040001
crossref_primary_10_1080_13554794_2015_1130232
crossref_primary_10_1007_s12152_013_9188_6
crossref_primary_10_1186_s12984_017_0307_1
crossref_primary_10_1109_TNSRE_2011_2168542
crossref_primary_10_1109_TNSRE_2019_2908125
crossref_primary_10_1111_1744_1633_70002
crossref_primary_10_1155_2014_176857
crossref_primary_10_1016_j_pmrj_2014_01_006
crossref_primary_10_3389_fnins_2021_661569
crossref_primary_10_3389_fneur_2016_00035
crossref_primary_10_1016_j_clinph_2014_07_007
crossref_primary_10_7759_cureus_45873
crossref_primary_10_1016_j_neulet_2017_03_013
crossref_primary_10_1310_tsr1604_254
crossref_primary_10_3390_s18061779
crossref_primary_10_1109_TNSRE_2011_2166809
crossref_primary_10_1088_1741_2552_aa7fc4
crossref_primary_10_1155_2013_369425
crossref_primary_10_3389_fnins_2020_629572
crossref_primary_10_1016_j_heliyon_2023_e18308
crossref_primary_10_1016_j_cortex_2015_10_024
crossref_primary_10_1177_1545968313520410
crossref_primary_10_1016_j_rehab_2014_09_016
Cites_doi 10.1016/S1388-2457(02)00057-3
10.1113/jphysiol.2006.125633
10.1161/01.str.0000226902.43357.fc
10.1093/ptj/67.2.206
10.1016/j.neulet.2004.12.034
10.1016/0013-4694(94)90135-X
10.1016/S0304-3940(00)01471-3
10.1126/science.1070291
10.1523/JNEUROSCI.2214-04.2004
10.1161/str.31.10.2390
10.1016/j.neuroimage.2007.02.058
10.1310/KYD7-HN2K-VGYG-8C98
10.1161/01.str.0000019289.15440.f2
10.1016/j.neuroimage.2007.03.019
10.1038/nature04970
10.1016/S1388-2457(99)00141-8
10.1109/TBME.2004.827072
10.1016/S1053-8119(03)00145-9
10.1001/jama.296.17.2095
10.1161/str.25.6.8202977
10.1038/18581
10.1109/TNSRE.2006.875536
10.1007/BF03327406
10.1023/A:1023437823106
10.1016/0022-3956(75)90026-6
10.1212/01.WNL.0000158616.43002.6D
10.1016/S0006-3495(90)82635-7
10.1038/35053191
10.1113/jphysiol.2006.125948
10.1016/j.neuroimage.2006.11.005
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright_xml – notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1161/STROKEAHA.107.505313
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4628
EndPage 917
ExternalDocumentID PMC5494966
18258825
20161845
10_1161_STROKEAHA_107_505313
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z99 NS999999
GroupedDBID ---
.3C
.55
.GJ
.XZ
.Z2
01R
0R~
123
1J1
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5RE
5VS
6PF
71W
77Y
7O~
A9M
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AAQQT
AARTV
AASCR
AASOK
AAUEB
AAXQO
AAYEP
AAYJJ
AAYXX
ABASU
ABBUW
ABDIG
ABJNI
ABPXF
ABQRW
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACCJW
ACDDN
ACDOF
ACEWG
ACGFS
ACGOD
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADFPA
ADGGA
ADGHP
ADHPY
ADNKB
AE3
AE6
AEBDS
AEETU
AENEX
AFBFQ
AFDTB
AFEXH
AFFNX
AFMBP
AFNMH
AFSOK
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHQVU
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
AYCSE
BAWUL
BCGUY
BOYCO
BQLVK
BS7
C45
CITATION
CS3
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
J5H
JF9
JG8
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
M18
N4W
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB3
OCUKA
ODA
ODMTH
OGROG
OHYEH
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
R58
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TSPGW
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YHZ
YQJ
YYP
ZB8
ZGI
ZZMQN
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c568t-63f7d353d8bb3f3eca1a0909465d972e04d0fee24369819996f3f03e1981f4503
ISSN 0039-2499
1524-4628
IngestDate Thu Aug 21 18:42:53 EDT 2025
Fri Jul 11 05:33:52 EDT 2025
Fri Jul 11 16:17:20 EDT 2025
Fri May 30 11:01:15 EDT 2025
Mon Jul 21 09:14:51 EDT 2025
Tue Jul 01 03:03:42 EDT 2025
Thu Apr 24 22:58:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords motor
Stroke
Nervous system diseases
brain-computer interface
Cardiovascular disease
MEG
Cerebral disorder
Encephalon
Vascular disease
Chronic
Central nervous system disease
Plasticity
Cerebrovascular disease
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c568t-63f7d353d8bb3f3eca1a0909465d972e04d0fee24369819996f3f03e1981f4503
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
These authors contributed equally to this work.
OpenAccessLink http://doi.org/10.1161/STROKEAHA.107.505313
PMID 18258825
PQID 20664323
PQPubID 23462
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5494966
proquest_miscellaneous_70340342
proquest_miscellaneous_20664323
pubmed_primary_18258825
pascalfrancis_primary_20161845
crossref_primary_10_1161_STROKEAHA_107_505313
crossref_citationtrail_10_1161_STROKEAHA_107_505313
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-03-01
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Stroke (1970)
PublicationTitleAlternate Stroke
PublicationYear 2008
Publisher Lippincott Williams & Wilkins
Publisher_xml – name: Lippincott Williams & Wilkins
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_10_2
  doi: 10.1016/S1388-2457(02)00057-3
– ident: e_1_3_3_6_2
  doi: 10.1113/jphysiol.2006.125633
– ident: e_1_3_3_31_2
  doi: 10.1161/01.str.0000226902.43357.fc
– ident: e_1_3_3_15_2
  doi: 10.1093/ptj/67.2.206
– ident: e_1_3_3_23_2
  doi: 10.1016/j.neulet.2004.12.034
– ident: e_1_3_3_24_2
  doi: 10.1016/0013-4694(94)90135-X
– ident: e_1_3_3_30_2
  doi: 10.1016/S0304-3940(00)01471-3
– ident: e_1_3_3_14_2
  doi: 10.1126/science.1070291
– ident: e_1_3_3_27_2
  doi: 10.1523/JNEUROSCI.2214-04.2004
– ident: e_1_3_3_5_2
  doi: 10.1161/str.31.10.2390
– ident: e_1_3_3_17_2
  doi: 10.1016/j.neuroimage.2007.02.058
– ident: e_1_3_3_3_2
  doi: 10.1310/KYD7-HN2K-VGYG-8C98
– ident: e_1_3_3_1_2
  doi: 10.1161/01.str.0000019289.15440.f2
– ident: e_1_3_3_11_2
  doi: 10.1016/j.neuroimage.2007.03.019
– ident: e_1_3_3_8_2
  doi: 10.1038/nature04970
– ident: e_1_3_3_20_2
  doi: 10.1016/S1388-2457(99)00141-8
– ident: e_1_3_3_19_2
  doi: 10.1109/TBME.2004.827072
– ident: e_1_3_3_12_2
  doi: 10.1016/S1053-8119(03)00145-9
– ident: e_1_3_3_4_2
  doi: 10.1001/jama.296.17.2095
– ident: e_1_3_3_2_2
  doi: 10.1161/str.25.6.8202977
– ident: e_1_3_3_25_2
– ident: e_1_3_3_29_2
  doi: 10.1038/18581
– ident: e_1_3_3_9_2
  doi: 10.1109/TNSRE.2006.875536
– ident: e_1_3_3_26_2
  doi: 10.1007/BF03327406
– ident: e_1_3_3_21_2
  doi: 10.1023/A:1023437823106
– ident: e_1_3_3_16_2
  doi: 10.1016/0022-3956(75)90026-6
– ident: e_1_3_3_22_2
  doi: 10.1212/01.WNL.0000158616.43002.6D
– ident: e_1_3_3_18_2
  doi: 10.1016/S0006-3495(90)82635-7
– ident: e_1_3_3_7_2
  doi: 10.1038/35053191
– ident: e_1_3_3_28_2
  doi: 10.1113/jphysiol.2006.125948
– ident: e_1_3_3_13_2
  doi: 10.1016/j.neuroimage.2006.11.005
SSID ssj0002385
Score 2.4691029
Snippet Background and Purpose— Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in...
Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most...
BACKGROUND: and Purpose- Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 910
SubjectTerms Adolescent
Adult
Aged
Biological and medical sciences
Brain - physiopathology
Chronic Disease
Hand - physiopathology
Hand Strength
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Humans
Magnetic Resonance Imaging
Magnetoencephalography
Medical sciences
Middle Aged
Nervous system (semeiology, syndromes)
Neurology
Orthotic Devices
Paralysis - etiology
Stroke - complications
Stroke - diagnosis
Stroke - physiopathology
Stroke Rehabilitation
User-Computer Interface
Vascular diseases and vascular malformations of the nervous system
Volition
Title Think to Move: a Neuromagnetic Brain-Computer Interface (BCI) System for Chronic Stroke
URI https://www.ncbi.nlm.nih.gov/pubmed/18258825
https://www.proquest.com/docview/20664323
https://www.proquest.com/docview/70340342
https://pubmed.ncbi.nlm.nih.gov/PMC5494966
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FIiEkhLgJR9kHHkDIYeM9HPOWRoFACWeq9s3ysQsVrR2lNg_8An42s4cvFAT0xUo2duL4-zye2Z35BqHHhGZcu7HemGXEY3EsvERkvpco7WwTP2U22-KdWBywN0f8aDD42claqspklP7YWldyHlRhDHDVVbL_gWzzpTAArwFf2ALCsP1HjCGS1N7jsvgubdmyEds4jb_kujgRkIPA36s7N9jpPxWnxq_cm73WUwJWstxkGzqhXL1SXXzrpQjZESPqFAakM3uwV9lWUnM9A99Z5XHlhcUmlyfHbTJQXQvyVkIAsMmKZ69GnUX9Ku_JHfQmJCZtRlZtZKletLF9j0bS2VWfeboMtmt4rYqRIxjtWNHQZbpK9y7YbuuFtvWfV5_e78-ni-kIAtkR1zaFdneHi78-NfhDJMUhnuDtk6_JR_ywnHEt0yPEBXTRDwKz4L__sdWdB8fG9sJwf80VYcIpPN92AlqK1v1az9-5so7P4NZTtmfKtqDm99zcjrOzuoauuigFTy3lrqOBzG-gS0uXh3ETHRrm4bLAmnkvcIx7vMN93uGGd_gJsO4ptpzDwDnsOIctw26hg5fz1WzhuRYdXsrFpPQEVUFGOc0mSUIVlWk8jklIQiZ4Fga-JGABlJQ-oyKcaMULoagiVI7hnWKc0NtoJy9yeRdhCGyzgPKYBRKiiJSEiZKCsERlKZ34KhwiWl_IKHX69bqNyklk4lgxjhokYCSILBJD5DVHra1-y1_23-1h1Bzkm9YSjA_Roxq0CCyxXl6Lc1lUZ5FujMCoT_-8BzxdmZbcHKI7FuT2lBxbhijowd_soFXg-5_kx1-NGrwj7r1zH3kfXW5v4wdop9xU8iF42mWya26CX0kEzHs
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Think+to+Move%3A+a+Neuromagnetic+Brain-Computer+Interface+%28BCI%29+System+for+Chronic+Stroke&rft.jtitle=Stroke+%281970%29&rft.au=Buch%2C+Ethan&rft.au=Weber%2C+Cornelia&rft.au=Cohen%2C+Leonardo+G.&rft.au=Braun%2C+Christoph&rft.date=2008-03-01&rft.issn=0039-2499&rft.eissn=1524-4628&rft.volume=39&rft.issue=3&rft.spage=910&rft.epage=917&rft_id=info:doi/10.1161%2FSTROKEAHA.107.505313&rft_id=info%3Apmid%2F18258825&rft.externalDocID=PMC5494966
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-2499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-2499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-2499&client=summon