Think to Move: a Neuromagnetic Brain-Computer Interface (BCI) System for Chronic Stroke
Background and Purpose— Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients e...
Saved in:
Published in | Stroke (1970) Vol. 39; no. 3; pp. 910 - 917 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
Lippincott Williams & Wilkins
01.03.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0039-2499 1524-4628 1524-4628 |
DOI | 10.1161/STROKEAHA.107.505313 |
Cover
Abstract | Background and Purpose—
Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients experiencing hand plegia as a result of a single, unilateral subcortical, cortical or mixed stroke occurring at least 1 year previously, could be trained to operate a mechanical hand orthosis through a brain-computer interface (BCI).
Methods—
Eight patients with chronic hand plegia resulting from stroke (residual finger extension function rated on the Medical Research Council scale=0/5) were recruited from the Stroke Neurorehabilitation Clinic, Human Cortical Physiology Section of the National Institute for Neurological Disorders and Stroke (NINDS) (n=5) and the Clinic of Neurology of the University of Tübingen (n=3). Diagnostic MRIs revealed single, unilateral subcortical, cortical or mixed lesions in all patients. A magnetoencephalography-based BCI system was used for this study. Patients participated in between 13 to 22 training sessions geared to volitionally modulate μ rhythm amplitude originating in sensorimotor areas of the cortex, which in turn raised or lowered a screen cursor in the direction of a target displayed on the screen through the BCI interface. Performance feedback was provided visually in real-time. Successful trials (in which the cursor made contact with the target) resulted in opening/closing of an orthosis attached to the paralyzed hand.
Results—
Training resulted in successful BCI control in 6 of 8 patients. This control was associated with increased range and specificity of μ rhythm modulation as recorded from sensors overlying central ipsilesional (4 patients) or contralesional (2 patients) regions of the array. Clinical scales used to rate hand function showed no significant improvement after training.
Conclusions—
These results suggest that volitional control of neuromagnetic activity features recorded over central scalp regions can be achieved with BCI training after stroke, and used to control grasping actions through a mechanical hand orthosis. |
---|---|
AbstractList | Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients experiencing hand plegia as a result of a single, unilateral subcortical, cortical or mixed stroke occurring at least 1 year previously, could be trained to operate a mechanical hand orthosis through a brain-computer interface (BCI).BACKGROUND AND PURPOSEStroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients experiencing hand plegia as a result of a single, unilateral subcortical, cortical or mixed stroke occurring at least 1 year previously, could be trained to operate a mechanical hand orthosis through a brain-computer interface (BCI).Eight patients with chronic hand plegia resulting from stroke (residual finger extension function rated on the Medical Research Council scale=0/5) were recruited from the Stroke Neurorehabilitation Clinic, Human Cortical Physiology Section of the National Institute for Neurological Disorders and Stroke (NINDS) (n=5) and the Clinic of Neurology of the University of Tübingen (n=3). Diagnostic MRIs revealed single, unilateral subcortical, cortical or mixed lesions in all patients. A magnetoencephalography-based BCI system was used for this study. Patients participated in between 13 to 22 training sessions geared to volitionally modulate micro rhythm amplitude originating in sensorimotor areas of the cortex, which in turn raised or lowered a screen cursor in the direction of a target displayed on the screen through the BCI interface. Performance feedback was provided visually in real-time. Successful trials (in which the cursor made contact with the target) resulted in opening/closing of an orthosis attached to the paralyzed hand.METHODSEight patients with chronic hand plegia resulting from stroke (residual finger extension function rated on the Medical Research Council scale=0/5) were recruited from the Stroke Neurorehabilitation Clinic, Human Cortical Physiology Section of the National Institute for Neurological Disorders and Stroke (NINDS) (n=5) and the Clinic of Neurology of the University of Tübingen (n=3). Diagnostic MRIs revealed single, unilateral subcortical, cortical or mixed lesions in all patients. A magnetoencephalography-based BCI system was used for this study. Patients participated in between 13 to 22 training sessions geared to volitionally modulate micro rhythm amplitude originating in sensorimotor areas of the cortex, which in turn raised or lowered a screen cursor in the direction of a target displayed on the screen through the BCI interface. Performance feedback was provided visually in real-time. Successful trials (in which the cursor made contact with the target) resulted in opening/closing of an orthosis attached to the paralyzed hand.Training resulted in successful BCI control in 6 of 8 patients. This control was associated with increased range and specificity of mu rhythm modulation as recorded from sensors overlying central ipsilesional (4 patients) or contralesional (2 patients) regions of the array. Clinical scales used to rate hand function showed no significant improvement after training.RESULTSTraining resulted in successful BCI control in 6 of 8 patients. This control was associated with increased range and specificity of mu rhythm modulation as recorded from sensors overlying central ipsilesional (4 patients) or contralesional (2 patients) regions of the array. Clinical scales used to rate hand function showed no significant improvement after training.These results suggest that volitional control of neuromagnetic activity features recorded over central scalp regions can be achieved with BCI training after stroke, and used to control grasping actions through a mechanical hand orthosis.CONCLUSIONSThese results suggest that volitional control of neuromagnetic activity features recorded over central scalp regions can be achieved with BCI training after stroke, and used to control grasping actions through a mechanical hand orthosis. Background and Purpose— Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients experiencing hand plegia as a result of a single, unilateral subcortical, cortical or mixed stroke occurring at least 1 year previously, could be trained to operate a mechanical hand orthosis through a brain-computer interface (BCI). Methods— Eight patients with chronic hand plegia resulting from stroke (residual finger extension function rated on the Medical Research Council scale=0/5) were recruited from the Stroke Neurorehabilitation Clinic, Human Cortical Physiology Section of the National Institute for Neurological Disorders and Stroke (NINDS) (n=5) and the Clinic of Neurology of the University of Tübingen (n=3). Diagnostic MRIs revealed single, unilateral subcortical, cortical or mixed lesions in all patients. A magnetoencephalography-based BCI system was used for this study. Patients participated in between 13 to 22 training sessions geared to volitionally modulate μ rhythm amplitude originating in sensorimotor areas of the cortex, which in turn raised or lowered a screen cursor in the direction of a target displayed on the screen through the BCI interface. Performance feedback was provided visually in real-time. Successful trials (in which the cursor made contact with the target) resulted in opening/closing of an orthosis attached to the paralyzed hand. Results— Training resulted in successful BCI control in 6 of 8 patients. This control was associated with increased range and specificity of μ rhythm modulation as recorded from sensors overlying central ipsilesional (4 patients) or contralesional (2 patients) regions of the array. Clinical scales used to rate hand function showed no significant improvement after training. Conclusions— These results suggest that volitional control of neuromagnetic activity features recorded over central scalp regions can be achieved with BCI training after stroke, and used to control grasping actions through a mechanical hand orthosis. BACKGROUND: and Purpose- Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients experiencing hand plegia as a result of a single, unilateral subcortical, cortical or mixed stroke occurring at least 1 year previously, could be trained to operate a mechanical hand orthosis through a brain-computer interface (BCI). METHODS: Eight patients with chronic hand plegia resulting from stroke (residual finger extension function rated on the Medical Research Council scale=0/5) were recruited from the Stroke Neurorehabilitation Clinic, Human Cortical Physiology Section of the National Institute for Neurological Disorders and Stroke (NINDS) (n=5) and the Clinic of Neurology of the University of Tuebingen (n=3). Diagnostic MRIs revealed single, unilateral subcortical, cortical or mixed lesions in all patients. A magnetoencephalography-based BCI system was used for this study. Patients participated in between 13 to 22 training sessions geared to volitionally modulate mu rhythm amplitude originating in sensorimotor areas of the cortex, which in turn raised or lowered a screen cursor in the direction of a target displayed on the screen through the BCI interface. Performance feedback was provided visually in real-time. Successful trials (in which the cursor made contact with the target) resulted in opening/closing of an orthosis attached to the paralyzed hand. RESULTS: Training resulted in successful BCI control in 6 of 8 patients. This control was associated with increased range and specificity of mu rhythm modulation as recorded from sensors overlying central ipsilesional (4 patients) or contralesional (2 patients) regions of the array. Clinical scales used to rate hand function showed no significant improvement after training. CONCLUSIONS: These results suggest that volitional control of neuromagnetic activity features recorded over central scalp regions can be achieved with BCI training after stroke, and used to control grasping actions through a mechanical hand orthosis. Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most severe cases of motor impairment, particularly in relation to hand function. Here we tested the hypothesis that patients experiencing hand plegia as a result of a single, unilateral subcortical, cortical or mixed stroke occurring at least 1 year previously, could be trained to operate a mechanical hand orthosis through a brain-computer interface (BCI). Eight patients with chronic hand plegia resulting from stroke (residual finger extension function rated on the Medical Research Council scale=0/5) were recruited from the Stroke Neurorehabilitation Clinic, Human Cortical Physiology Section of the National Institute for Neurological Disorders and Stroke (NINDS) (n=5) and the Clinic of Neurology of the University of Tübingen (n=3). Diagnostic MRIs revealed single, unilateral subcortical, cortical or mixed lesions in all patients. A magnetoencephalography-based BCI system was used for this study. Patients participated in between 13 to 22 training sessions geared to volitionally modulate micro rhythm amplitude originating in sensorimotor areas of the cortex, which in turn raised or lowered a screen cursor in the direction of a target displayed on the screen through the BCI interface. Performance feedback was provided visually in real-time. Successful trials (in which the cursor made contact with the target) resulted in opening/closing of an orthosis attached to the paralyzed hand. Training resulted in successful BCI control in 6 of 8 patients. This control was associated with increased range and specificity of mu rhythm modulation as recorded from sensors overlying central ipsilesional (4 patients) or contralesional (2 patients) regions of the array. Clinical scales used to rate hand function showed no significant improvement after training. These results suggest that volitional control of neuromagnetic activity features recorded over central scalp regions can be achieved with BCI training after stroke, and used to control grasping actions through a mechanical hand orthosis. |
Author | Weber, Cornelia Braun, Christoph Mellinger, Jurgen Dimyan, Michael A. Caria, Andrea Ard, Tyler Fourkas, Alissa Soekadar, Surjo Buch, Ethan Cohen, Leonardo G. Birbaumer, Niels |
Author_xml | – sequence: 1 givenname: Ethan surname: Buch fullname: Buch, Ethan organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany – sequence: 2 givenname: Cornelia surname: Weber fullname: Weber, Cornelia organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany – sequence: 3 givenname: Leonardo G. surname: Cohen fullname: Cohen, Leonardo G. organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany – sequence: 4 givenname: Christoph surname: Braun fullname: Braun, Christoph organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany – sequence: 5 givenname: Michael A. surname: Dimyan fullname: Dimyan, Michael A. organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany – sequence: 6 givenname: Tyler surname: Ard fullname: Ard, Tyler organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany – sequence: 7 givenname: Jurgen surname: Mellinger fullname: Mellinger, Jurgen organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany – sequence: 8 givenname: Andrea surname: Caria fullname: Caria, Andrea organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany – sequence: 9 givenname: Surjo surname: Soekadar fullname: Soekadar, Surjo organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany – sequence: 10 givenname: Alissa surname: Fourkas fullname: Fourkas, Alissa organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany – sequence: 11 givenname: Niels surname: Birbaumer fullname: Birbaumer, Niels organization: From the Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic (E.B., C.W., L.G.C., M.A.D., T.A., A.F.), NINDS, NIH, Bethesda, Md; Department of Experimental Psychology (E.B.), University of Oxford, UK; Institute of Medical Psychology and Behavioral Neurobiology (C.W., C.B., J.M., A.C., S.S., A.F., N.B.), MEG-Center, University of Tübingen, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20161845$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18258825$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhS1URNPCP0DIGxAsJvg1nnEXldJRoRGFSiSIpeXM2I3pjB1sT6X-exwlhMcCJD9k-ztHV9fnBBw57zQAzzGaYszx28Xy882Hy9nVbIpRNS1RSTF9BCa4JKxgnNRHYIIQFQVhQhyDkxi_IYQIrcsn4BjXpKzznICvy7V1dzB5-NHf6zOo4Cc9Bj-oW6eTbeFFUNYVjR82Y9IBzl1ejWo1fH3RzN_AxUNMeoDGB9isg3dZsUjB3-mn4LFRfdTP9vsp-PLuctlcFdc37-fN7LpoS16nglNTdbSkXb1aUUN1q7BCAgnGy05URCPWIaM1YZSLGgshuKEGUY3zybAS0VNwvvPdjKtBd612KaheboIdVHiQXln554uza3nr72XJBBOcZ4NXe4Pgv486JjnY2Oq-V077McoKUZYH-S9IEOeMEprBF7-XdKjlZ9Mz8HIPqNiq3gTlWhsPHEH5e2u25diOa4OPMWjzywrJbQbkIQP5ppK7DGTZ2V-y1iaVrN82wPb_Fv8AKEO2Ig |
CODEN | SJCCA7 |
CitedBy_id | crossref_primary_10_3389_fneng_2014_00018 crossref_primary_10_1088_1741_2560_11_5_056009 crossref_primary_10_3389_fneng_2014_00019 crossref_primary_10_3390_biom11091316 crossref_primary_10_1088_1741_2552_aa70d2 crossref_primary_10_3390_diagnostics12112607 crossref_primary_10_1109_TRO_2009_2020347 crossref_primary_10_3389_fnins_2020_00553 crossref_primary_10_5302_J_ICROS_2013_13_1866 crossref_primary_10_1038_nrneurol_2012_219 crossref_primary_10_3390_brainsci11070853 crossref_primary_10_3389_fnins_2021_699428 crossref_primary_10_3389_fnhum_2017_00469 crossref_primary_10_3390_automation2030012 crossref_primary_10_1007_s00521_013_1523_7 crossref_primary_10_3389_fnhum_2014_00620 crossref_primary_10_1299_transjsme_16_00195 crossref_primary_10_1016_j_neures_2017_10_002 crossref_primary_10_3389_fneng_2014_00025 crossref_primary_10_1088_1757_899X_402_1_012017 crossref_primary_10_3389_fneng_2014_00026 crossref_primary_10_1007_s42600_023_00329_0 crossref_primary_10_1016_j_clinph_2019_06_008 crossref_primary_10_1134_S0362119716010102 crossref_primary_10_1038_s41598_018_28295_z crossref_primary_10_1088_1741_2560_12_3_036007 crossref_primary_10_1016_j_neucli_2018_10_068 crossref_primary_10_1038_ncomms13209 crossref_primary_10_1152_physrev_00034_2020 crossref_primary_10_3389_fneng_2014_00030 crossref_primary_10_1371_journal_pone_0168766 crossref_primary_10_1007_s13311_019_00816_2 crossref_primary_10_1016_j_neuropsychologia_2021_107866 crossref_primary_10_1109_RBME_2024_3449790 crossref_primary_10_1097_NPT_0b013e3181c1fc0b crossref_primary_10_1109_TNSRE_2020_2998778 crossref_primary_10_1109_TNSRE_2023_3339612 crossref_primary_10_1016_j_neuroimage_2013_10_028 crossref_primary_10_1371_journal_pone_0072085 crossref_primary_10_1142_S0219635213500192 crossref_primary_10_1088_1741_2552_abecc3 crossref_primary_10_1177_1073858418775355 crossref_primary_10_1016_j_bspc_2012_12_005 crossref_primary_10_3389_fnins_2016_00122 crossref_primary_10_1177_15459683221138751 crossref_primary_10_3390_electronics12030604 crossref_primary_10_1016_j_nbd_2009_05_027 crossref_primary_10_1016_j_eswa_2023_119736 crossref_primary_10_1002_hbm_22611 crossref_primary_10_1007_s10548_014_0382_6 crossref_primary_10_1088_1741_2560_13_2_026002 crossref_primary_10_1117_1_NPh_5_1_011008 crossref_primary_10_1515_bmt_2021_0422 crossref_primary_10_1002_acn3_544 crossref_primary_10_2490_jjrmc_53_465 crossref_primary_10_1038_srep24663 crossref_primary_10_1088_1741_2552_aadeed crossref_primary_10_1109_JPROC_2015_2415800 crossref_primary_10_1088_1741_2560_10_3_036015 crossref_primary_10_1080_2326263X_2020_1763060 crossref_primary_10_1177_1550059417717398 crossref_primary_10_1088_2057_1976_ab872c crossref_primary_10_1186_1743_0003_11_153 crossref_primary_10_1109_TAFFC_2020_3025004 crossref_primary_10_1109_TNSRE_2014_2371391 crossref_primary_10_31857_S013116462270014X crossref_primary_10_1097_WCO_0b013e32831cbb85 crossref_primary_10_1016_j_neuroimage_2015_05_009 crossref_primary_10_1088_1741_2560_8_6_066009 crossref_primary_10_1134_S0362119716010126 crossref_primary_10_1371_journal_pone_0188293 crossref_primary_10_1109_TNSRE_2023_3272372 crossref_primary_10_1002_hbm_26767 crossref_primary_10_1016_j_neuroimage_2013_10_003 crossref_primary_10_3389_fneur_2021_772199 crossref_primary_10_1016_j_neuroimage_2013_04_097 crossref_primary_10_3389_fnins_2014_00320 crossref_primary_10_1109_TBME_2013_2294203 crossref_primary_10_1155_2020_8882764 crossref_primary_10_3389_fnhum_2015_00003 crossref_primary_10_3390_machines11070747 crossref_primary_10_3389_fnint_2015_00040 crossref_primary_10_3389_fnins_2020_00918 crossref_primary_10_7554_eLife_76411 crossref_primary_10_1109_ACCESS_2019_2941491 crossref_primary_10_1155_2014_797128 crossref_primary_10_1088_1741_2560_9_4_046003 crossref_primary_10_1109_ACCESS_2023_3321067 crossref_primary_10_3389_fnins_2016_00584 crossref_primary_10_1007_s10484_017_9383_z crossref_primary_10_1007_s11055_018_0668_3 crossref_primary_10_1002_hbm_26284 crossref_primary_10_1177_15500594211009065 crossref_primary_10_1093_brain_awz181 crossref_primary_10_1109_TBME_2014_2313867 crossref_primary_10_1016_j_neuron_2018_01_040 crossref_primary_10_1088_1741_2560_12_6_066021 crossref_primary_10_1186_s12984_018_0383_x crossref_primary_10_1177_1550059414522229 crossref_primary_10_3390_app14104147 crossref_primary_10_1152_jn_00239_2010 crossref_primary_10_1088_1741_2560_8_2_025004 crossref_primary_10_1093_brain_awr331 crossref_primary_10_1088_1741_2560_8_2_025001 crossref_primary_10_1016_j_jneumeth_2018_11_010 crossref_primary_10_1080_2326263X_2015_1008956 crossref_primary_10_3389_fnbeh_2014_00429 crossref_primary_10_1039_D1TB01795K crossref_primary_10_1016_j_neuroimage_2016_03_016 crossref_primary_10_1109_RBME_2009_2035356 crossref_primary_10_3389_fnins_2020_575081 crossref_primary_10_3389_fnrgo_2022_837307 crossref_primary_10_1146_annurev_med_60_042707_104248 crossref_primary_10_1016_j_jneumeth_2013_11_009 crossref_primary_10_1109_JBHI_2018_2863212 crossref_primary_10_17537_2018_13_84 crossref_primary_10_1186_1743_0003_11_168 crossref_primary_10_1177_1545968312445910 crossref_primary_10_1016_j_jneumeth_2022_109658 crossref_primary_10_1109_JSYST_2020_3021485 crossref_primary_10_1162_imag_a_00178 crossref_primary_10_1038_srep21781 crossref_primary_10_1371_journal_pone_0131547 crossref_primary_10_3389_fnins_2017_00575 crossref_primary_10_1007_s40141_014_0051_4 crossref_primary_10_1007_s11465_011_0207_1 crossref_primary_10_1152_jn_00070_2017 crossref_primary_10_12677_AP_2019_93060 crossref_primary_10_5692_clinicalneurol_52_1178 crossref_primary_10_1016_j_jneumeth_2014_06_016 crossref_primary_10_1088_1741_2552_aaf12e crossref_primary_10_1109_JSEN_2021_3119074 crossref_primary_10_38025_2078_1962_2023_22_3_49_58 crossref_primary_10_3389_fnhum_2020_597864 crossref_primary_10_1111_j_1469_8986_2010_01117_x crossref_primary_10_1371_journal_pone_0121896 crossref_primary_10_1038_s41598_024_53261_3 crossref_primary_10_3390_brainsci14060590 crossref_primary_10_1109_TNSRE_2015_2466079 crossref_primary_10_1523_ENEURO_0144_19_2019 crossref_primary_10_3389_fnins_2023_1243151 crossref_primary_10_1016_j_pmr_2009_07_003 crossref_primary_10_1134_S0362119713020035 crossref_primary_10_3389_fnhum_2023_1070404 crossref_primary_10_31363_2313_7053_2019_1_82_92 crossref_primary_10_1109_TBME_2013_2280143 crossref_primary_10_1016_j_clinph_2019_04_004 crossref_primary_10_1088_1741_2552_ab7cfb crossref_primary_10_1007_s00221_011_2573_7 crossref_primary_10_1080_2326263X_2018_1493073 crossref_primary_10_3389_fncel_2016_00092 crossref_primary_10_1109_THMS_2020_2968411 crossref_primary_10_3390_app14146347 crossref_primary_10_1007_s40815_016_0259_9 crossref_primary_10_3389_fnhum_2015_00716 crossref_primary_10_1152_physrev_00027_2016 crossref_primary_10_1134_S0362119719040042 crossref_primary_10_7554_eLife_40843 crossref_primary_10_1371_journal_pone_0088443 crossref_primary_10_3389_fnbeh_2014_00093 crossref_primary_10_1109_ACCESS_2024_3430838 crossref_primary_10_1134_S0362119717050097 crossref_primary_10_1016_j_nbd_2014_11_025 crossref_primary_10_3390_jimaging4050070 crossref_primary_10_1016_j_pmrj_2017_04_016 crossref_primary_10_3389_fnhum_2023_1121481 crossref_primary_10_1186_s12938_018_0534_0 crossref_primary_10_1038_s41467_018_04673_z crossref_primary_10_1088_1741_2552_aaa8c0 crossref_primary_10_1016_j_bspc_2017_11_012 crossref_primary_10_1016_j_neuroimage_2014_06_066 crossref_primary_10_3233_NRE_172394 crossref_primary_10_1098_rsos_170660 crossref_primary_10_1109_TNSRE_2012_2205707 crossref_primary_10_3182_20130902_3_CN_3020_00048 crossref_primary_10_3389_fnhum_2015_00564 crossref_primary_10_1016_j_neuroimage_2015_01_058 crossref_primary_10_1186_s12984_015_0087_4 crossref_primary_10_3389_fnins_2014_00123 crossref_primary_10_1007_s42600_021_00196_7 crossref_primary_10_1080_1357650X_2014_998679 crossref_primary_10_1016_j_neurobiolaging_2016_10_011 crossref_primary_10_3390_electronics13030565 crossref_primary_10_1016_j_brainres_2012_05_053 crossref_primary_10_1186_s12984_020_00686_2 crossref_primary_10_3233_JID_220001 crossref_primary_10_1523_JNEUROSCI_2471_09_2009 crossref_primary_10_3109_17483107_2014_961569 crossref_primary_10_3390_s20082362 crossref_primary_10_1109_TNSRE_2021_3123969 crossref_primary_10_1002_acn3_122 crossref_primary_10_1016_j_neuroimage_2015_04_020 crossref_primary_10_1177_0967033518787331 crossref_primary_10_1155_2011_327953 crossref_primary_10_1097_NPT_0b013e31825064cc crossref_primary_10_1017_S0317167100012622 crossref_primary_10_1016_j_clinph_2014_11_023 crossref_primary_10_1038_nrneurol_2010_200 crossref_primary_10_1088_1741_2552_aba162 crossref_primary_10_1186_s12984_015_0076_7 crossref_primary_10_1016_j_ijpsycho_2013_10_008 crossref_primary_10_1134_S0362119722700116 crossref_primary_10_1523_ENEURO_0246_18_2018 crossref_primary_10_1038_s41598_017_13482_1 crossref_primary_10_3390_app9183845 crossref_primary_10_1002_ana_24390 crossref_primary_10_1007_s11569_021_00392_w crossref_primary_10_1016_j_heliyon_2024_e26521 crossref_primary_10_1186_s12984_016_0120_2 crossref_primary_10_1136_svn_2022_001506 crossref_primary_10_1155_2012_187965 crossref_primary_10_3109_21678421_2014_969275 crossref_primary_10_1109_TNSRE_2018_2817924 crossref_primary_10_1038_s41598_018_21717_y crossref_primary_10_1016_j_neuroimage_2020_117298 crossref_primary_10_2302_kjm_2022_0002_OA crossref_primary_10_1080_17434440_2016_1174572 crossref_primary_10_1080_07388551_2021_1993126 crossref_primary_10_1098_rstb_2023_0081 crossref_primary_10_1097_WCO_0b013e328315ee2d crossref_primary_10_1080_27706710_2023_2183096 crossref_primary_10_1007_s11055_018_0667_4 crossref_primary_10_1007_s11055_021_01176_1 crossref_primary_10_5391_JKIIS_2012_22_4_429 crossref_primary_10_1007_s40846_016_0102_7 crossref_primary_10_1016_j_cmpb_2018_05_026 crossref_primary_10_1586_17434440_2014_882766 crossref_primary_10_3389_fnhum_2014_00817 crossref_primary_10_5626_JCSE_2013_7_2_139 crossref_primary_10_1088_1741_2552_ab08c8 crossref_primary_10_1109_TBME_2014_2312397 crossref_primary_10_1007_s10270_020_00797_3 crossref_primary_10_1145_3335815 crossref_primary_10_1002_hbm_24876 crossref_primary_10_1093_braincomms_fcac264 crossref_primary_10_3109_00207454_2013_850082 crossref_primary_10_1007_s00221_012_3166_9 crossref_primary_10_3390_s120201211 crossref_primary_10_1093_pnasnexus_pgae240 crossref_primary_10_1177_1545968315597069 crossref_primary_10_1016_j_pmrj_2018_05_028 crossref_primary_10_1152_jn_00918_2015 crossref_primary_10_1109_TNSRE_2016_2528167 crossref_primary_10_1586_17434440_2014_941811 crossref_primary_10_1016_j_neuroimage_2009_12_055 crossref_primary_10_1016_j_neuroimage_2011_01_021 crossref_primary_10_1088_1741_2552_aad724 crossref_primary_10_1177_1545968314543308 crossref_primary_10_1016_j_neuroimage_2015_09_074 crossref_primary_10_1109_TBME_2016_2541084 crossref_primary_10_2217_14796708_4_2_133 crossref_primary_10_31857_S0044467723010069 crossref_primary_10_3109_02699052_2012_698362 crossref_primary_10_1186_1743_0003_7_60 crossref_primary_10_1177_0271678X221105677 crossref_primary_10_1002_ana_23879 crossref_primary_10_1177_1545968310368683 crossref_primary_10_1016_j_irbm_2010_12_004 crossref_primary_10_3389_fneur_2018_00212 crossref_primary_10_1038_nrn_2016_164 crossref_primary_10_1113_JP281314 crossref_primary_10_1186_s12984_021_00838_y crossref_primary_10_1016_j_neulet_2019_134727 crossref_primary_10_1007_s10676_018_9453_9 crossref_primary_10_1016_j_compbiomed_2020_103843 crossref_primary_10_1523_ENEURO_0145_22_2022 crossref_primary_10_1109_TBME_2018_2865941 crossref_primary_10_1088_1741_2560_11_6_066008 crossref_primary_10_1159_000371714 crossref_primary_10_3389_fncel_2021_653487 crossref_primary_10_1007_s11055_023_01478_6 crossref_primary_10_1016_j_asmr_2022_11_015 crossref_primary_10_1038_s41598_018_29091_5 crossref_primary_10_1088_1741_2552_abbd21 crossref_primary_10_1186_1743_0003_10_4 crossref_primary_10_1371_journal_pone_0074433 crossref_primary_10_1007_s10439_014_1066_9 crossref_primary_10_1093_braincomms_fcad055 crossref_primary_10_1080_10790268_2017_1305036 crossref_primary_10_1016_S1474_4422_08_70223_0 crossref_primary_10_3389_fnins_2020_00528 crossref_primary_10_4103_1673_5374_290884 crossref_primary_10_1109_JSYST_2020_3021751 crossref_primary_10_1371_journal_pone_0270366 crossref_primary_10_1016_j_rehab_2014_11_002 crossref_primary_10_1002_adsr_202200055 crossref_primary_10_2217_iim_11_77 crossref_primary_10_1177_155005941104200410 crossref_primary_10_1177_155005941104200411 crossref_primary_10_1007_s10548_017_0586_7 crossref_primary_10_1016_j_neuron_2022_06_024 crossref_primary_10_1109_ACCESS_2020_2993620 crossref_primary_10_1002_pri_1764 crossref_primary_10_3171_2009_4_FOCUS0979 crossref_primary_10_1113_JP278167 crossref_primary_10_3389_fnsys_2022_840922 crossref_primary_10_1093_cercor_bhu043 crossref_primary_10_1038_ncpneuro0779 crossref_primary_10_1134_S0362119716010035 crossref_primary_10_1016_j_cobme_2021_100354 crossref_primary_10_1016_j_hkpj_2012_05_001 crossref_primary_10_17116_jnevro202212212267 crossref_primary_10_1016_j_measurement_2016_12_001 crossref_primary_10_3389_fnhum_2019_00069 crossref_primary_10_1088_1741_2560_13_4_046015 crossref_primary_10_26599_JNR_2020_9040001 crossref_primary_10_1080_13554794_2015_1130232 crossref_primary_10_1007_s12152_013_9188_6 crossref_primary_10_1186_s12984_017_0307_1 crossref_primary_10_1109_TNSRE_2011_2168542 crossref_primary_10_1109_TNSRE_2019_2908125 crossref_primary_10_1111_1744_1633_70002 crossref_primary_10_1155_2014_176857 crossref_primary_10_1016_j_pmrj_2014_01_006 crossref_primary_10_3389_fnins_2021_661569 crossref_primary_10_3389_fneur_2016_00035 crossref_primary_10_1016_j_clinph_2014_07_007 crossref_primary_10_7759_cureus_45873 crossref_primary_10_1016_j_neulet_2017_03_013 crossref_primary_10_1310_tsr1604_254 crossref_primary_10_3390_s18061779 crossref_primary_10_1109_TNSRE_2011_2166809 crossref_primary_10_1088_1741_2552_aa7fc4 crossref_primary_10_1155_2013_369425 crossref_primary_10_3389_fnins_2020_629572 crossref_primary_10_1016_j_heliyon_2023_e18308 crossref_primary_10_1016_j_cortex_2015_10_024 crossref_primary_10_1177_1545968313520410 crossref_primary_10_1016_j_rehab_2014_09_016 |
Cites_doi | 10.1016/S1388-2457(02)00057-3 10.1113/jphysiol.2006.125633 10.1161/01.str.0000226902.43357.fc 10.1093/ptj/67.2.206 10.1016/j.neulet.2004.12.034 10.1016/0013-4694(94)90135-X 10.1016/S0304-3940(00)01471-3 10.1126/science.1070291 10.1523/JNEUROSCI.2214-04.2004 10.1161/str.31.10.2390 10.1016/j.neuroimage.2007.02.058 10.1310/KYD7-HN2K-VGYG-8C98 10.1161/01.str.0000019289.15440.f2 10.1016/j.neuroimage.2007.03.019 10.1038/nature04970 10.1016/S1388-2457(99)00141-8 10.1109/TBME.2004.827072 10.1016/S1053-8119(03)00145-9 10.1001/jama.296.17.2095 10.1161/str.25.6.8202977 10.1038/18581 10.1109/TNSRE.2006.875536 10.1007/BF03327406 10.1023/A:1023437823106 10.1016/0022-3956(75)90026-6 10.1212/01.WNL.0000158616.43002.6D 10.1016/S0006-3495(90)82635-7 10.1038/35053191 10.1113/jphysiol.2006.125948 10.1016/j.neuroimage.2006.11.005 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1161/STROKEAHA.107.505313 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4628 |
EndPage | 917 |
ExternalDocumentID | PMC5494966 18258825 20161845 10_1161_STROKEAHA_107_505313 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z99 NS999999 |
GroupedDBID | --- .3C .55 .GJ .XZ .Z2 01R 0R~ 123 1J1 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5RE 5VS 6PF 71W 77Y 7O~ A9M AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AAQQT AARTV AASCR AASOK AAUEB AAXQO AAYEP AAYJJ AAYXX ABASU ABBUW ABDIG ABJNI ABPXF ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACCJW ACDDN ACDOF ACEWG ACGFS ACGOD ACILI ACLDA ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADGHP ADHPY ADNKB AE3 AE6 AEBDS AEETU AENEX AFBFQ AFDTB AFEXH AFFNX AFMBP AFNMH AFSOK AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC AYCSE BAWUL BCGUY BOYCO BQLVK BS7 C45 CITATION CS3 DIK DIWNM DU5 DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K8S KD2 KMI KQ8 L-C L7B M18 N4W N9A N~7 N~B N~M O9- OAG OAH OB3 OCUKA ODA ODMTH OGROG OHYEH OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ R58 RAH RIG RLZ S4R S4S T8P TEORI TSPGW V2I VVN W3M W8F WH7 WOQ WOW X3V X3W X7M XXN XYM YFH YHZ YQJ YYP ZB8 ZGI ZZMQN IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c568t-63f7d353d8bb3f3eca1a0909465d972e04d0fee24369819996f3f03e1981f4503 |
ISSN | 0039-2499 1524-4628 |
IngestDate | Thu Aug 21 18:42:53 EDT 2025 Fri Jul 11 05:33:52 EDT 2025 Fri Jul 11 16:17:20 EDT 2025 Fri May 30 11:01:15 EDT 2025 Mon Jul 21 09:14:51 EDT 2025 Tue Jul 01 03:03:42 EDT 2025 Thu Apr 24 22:58:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | motor Stroke Nervous system diseases brain-computer interface Cardiovascular disease MEG Cerebral disorder Encephalon Vascular disease Chronic Central nervous system disease Plasticity Cerebrovascular disease |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c568t-63f7d353d8bb3f3eca1a0909465d972e04d0fee24369819996f3f03e1981f4503 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 These authors contributed equally to this work. |
OpenAccessLink | http://doi.org/10.1161/STROKEAHA.107.505313 |
PMID | 18258825 |
PQID | 20664323 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5494966 proquest_miscellaneous_70340342 proquest_miscellaneous_20664323 pubmed_primary_18258825 pascalfrancis_primary_20161845 crossref_primary_10_1161_STROKEAHA_107_505313 crossref_citationtrail_10_1161_STROKEAHA_107_505313 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-03-01 |
PublicationDateYYYYMMDD | 2008-03-01 |
PublicationDate_xml | – month: 03 year: 2008 text: 2008-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Stroke (1970) |
PublicationTitleAlternate | Stroke |
PublicationYear | 2008 |
Publisher | Lippincott Williams & Wilkins |
Publisher_xml | – name: Lippincott Williams & Wilkins |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_10_2 doi: 10.1016/S1388-2457(02)00057-3 – ident: e_1_3_3_6_2 doi: 10.1113/jphysiol.2006.125633 – ident: e_1_3_3_31_2 doi: 10.1161/01.str.0000226902.43357.fc – ident: e_1_3_3_15_2 doi: 10.1093/ptj/67.2.206 – ident: e_1_3_3_23_2 doi: 10.1016/j.neulet.2004.12.034 – ident: e_1_3_3_24_2 doi: 10.1016/0013-4694(94)90135-X – ident: e_1_3_3_30_2 doi: 10.1016/S0304-3940(00)01471-3 – ident: e_1_3_3_14_2 doi: 10.1126/science.1070291 – ident: e_1_3_3_27_2 doi: 10.1523/JNEUROSCI.2214-04.2004 – ident: e_1_3_3_5_2 doi: 10.1161/str.31.10.2390 – ident: e_1_3_3_17_2 doi: 10.1016/j.neuroimage.2007.02.058 – ident: e_1_3_3_3_2 doi: 10.1310/KYD7-HN2K-VGYG-8C98 – ident: e_1_3_3_1_2 doi: 10.1161/01.str.0000019289.15440.f2 – ident: e_1_3_3_11_2 doi: 10.1016/j.neuroimage.2007.03.019 – ident: e_1_3_3_8_2 doi: 10.1038/nature04970 – ident: e_1_3_3_20_2 doi: 10.1016/S1388-2457(99)00141-8 – ident: e_1_3_3_19_2 doi: 10.1109/TBME.2004.827072 – ident: e_1_3_3_12_2 doi: 10.1016/S1053-8119(03)00145-9 – ident: e_1_3_3_4_2 doi: 10.1001/jama.296.17.2095 – ident: e_1_3_3_2_2 doi: 10.1161/str.25.6.8202977 – ident: e_1_3_3_25_2 – ident: e_1_3_3_29_2 doi: 10.1038/18581 – ident: e_1_3_3_9_2 doi: 10.1109/TNSRE.2006.875536 – ident: e_1_3_3_26_2 doi: 10.1007/BF03327406 – ident: e_1_3_3_21_2 doi: 10.1023/A:1023437823106 – ident: e_1_3_3_16_2 doi: 10.1016/0022-3956(75)90026-6 – ident: e_1_3_3_22_2 doi: 10.1212/01.WNL.0000158616.43002.6D – ident: e_1_3_3_18_2 doi: 10.1016/S0006-3495(90)82635-7 – ident: e_1_3_3_7_2 doi: 10.1038/35053191 – ident: e_1_3_3_28_2 doi: 10.1113/jphysiol.2006.125948 – ident: e_1_3_3_13_2 doi: 10.1016/j.neuroimage.2006.11.005 |
SSID | ssj0002385 |
Score | 2.4691029 |
Snippet | Background and Purpose—
Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in... Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in improving the most... BACKGROUND: and Purpose- Stroke is a leading cause of long-term motor disability among adults. Present rehabilitative interventions are largely unsuccessful in... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 910 |
SubjectTerms | Adolescent Adult Aged Biological and medical sciences Brain - physiopathology Chronic Disease Hand - physiopathology Hand Strength Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy Humans Magnetic Resonance Imaging Magnetoencephalography Medical sciences Middle Aged Nervous system (semeiology, syndromes) Neurology Orthotic Devices Paralysis - etiology Stroke - complications Stroke - diagnosis Stroke - physiopathology Stroke Rehabilitation User-Computer Interface Vascular diseases and vascular malformations of the nervous system Volition |
Title | Think to Move: a Neuromagnetic Brain-Computer Interface (BCI) System for Chronic Stroke |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18258825 https://www.proquest.com/docview/20664323 https://www.proquest.com/docview/70340342 https://pubmed.ncbi.nlm.nih.gov/PMC5494966 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6FIiEkhLgJR9kHHkDIYeM9HPOWRoFACWeq9s3ysQsVrR2lNg_8An42s4cvFAT0xUo2duL4-zye2Z35BqHHhGZcu7HemGXEY3EsvERkvpco7WwTP2U22-KdWBywN0f8aDD42claqspklP7YWldyHlRhDHDVVbL_gWzzpTAArwFf2ALCsP1HjCGS1N7jsvgubdmyEds4jb_kujgRkIPA36s7N9jpPxWnxq_cm73WUwJWstxkGzqhXL1SXXzrpQjZESPqFAakM3uwV9lWUnM9A99Z5XHlhcUmlyfHbTJQXQvyVkIAsMmKZ69GnUX9Ku_JHfQmJCZtRlZtZKletLF9j0bS2VWfeboMtmt4rYqRIxjtWNHQZbpK9y7YbuuFtvWfV5_e78-ni-kIAtkR1zaFdneHi78-NfhDJMUhnuDtk6_JR_ywnHEt0yPEBXTRDwKz4L__sdWdB8fG9sJwf80VYcIpPN92AlqK1v1az9-5so7P4NZTtmfKtqDm99zcjrOzuoauuigFTy3lrqOBzG-gS0uXh3ETHRrm4bLAmnkvcIx7vMN93uGGd_gJsO4ptpzDwDnsOIctw26hg5fz1WzhuRYdXsrFpPQEVUFGOc0mSUIVlWk8jklIQiZ4Fga-JGABlJQ-oyKcaMULoagiVI7hnWKc0NtoJy9yeRdhCGyzgPKYBRKiiJSEiZKCsERlKZ34KhwiWl_IKHX69bqNyklk4lgxjhokYCSILBJD5DVHra1-y1_23-1h1Bzkm9YSjA_Roxq0CCyxXl6Lc1lUZ5FujMCoT_-8BzxdmZbcHKI7FuT2lBxbhijowd_soFXg-5_kx1-NGrwj7r1zH3kfXW5v4wdop9xU8iF42mWya26CX0kEzHs |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Think+to+Move%3A+a+Neuromagnetic+Brain-Computer+Interface+%28BCI%29+System+for+Chronic+Stroke&rft.jtitle=Stroke+%281970%29&rft.au=Buch%2C+Ethan&rft.au=Weber%2C+Cornelia&rft.au=Cohen%2C+Leonardo+G.&rft.au=Braun%2C+Christoph&rft.date=2008-03-01&rft.issn=0039-2499&rft.eissn=1524-4628&rft.volume=39&rft.issue=3&rft.spage=910&rft.epage=917&rft_id=info:doi/10.1161%2FSTROKEAHA.107.505313&rft_id=info%3Apmid%2F18258825&rft.externalDocID=PMC5494966 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-2499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-2499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-2499&client=summon |