High-sensitivity nanophotonic sensors with passive trapping of analyte molecules in hot spots

Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for surface-enhanced infrared absorption spectroscopy in various molecular sensing applications. The enhanced signal is mainly contributed by molecules in p...

Full description

Saved in:
Bibliographic Details
Published inLight, science & applications Vol. 10; no. 1; pp. 5 - 11
Main Authors Miao, Xianglong, Yan, Lingyue, Wu, Yun, Liu, Peter Q.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.01.2021
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for surface-enhanced infrared absorption spectroscopy in various molecular sensing applications. The enhanced signal is mainly contributed by molecules in photonic hot spots, which are regions of a nanophotonic structure with high-field intensity. Therefore, delivery of the majority of, if not all, analyte molecules to hot spots is crucial for fully utilizing the sensing capability of an optical sensor. However, for most optical sensors, simple and straightforward methods of introducing an aqueous analyte to the device, such as applying droplets or spin-coating, cannot achieve targeted delivery of analyte molecules to hot spots. Instead, analyte molecules are usually distributed across the entire device surface, so the majority of the molecules do not experience enhanced field intensity. Here, we present a nanophotonic sensor design with passive molecule trapping functionality. When an analyte solution droplet is introduced to the sensor surface and gradually evaporates, the device structure can effectively trap most precipitated analyte molecules in its hot spots, significantly enhancing the sensor spectral response and sensitivity performance. Specifically, our sensors produce a reflection change of a few percentage points in response to trace amounts of the amino-acid proline or glucose precipitate with a picogram-level mass, which is significantly less than the mass of a molecular monolayer covering the same measurement area. The demonstrated strategy for designing optical sensor structures may also be applied to sensing nano-particles such as exosomes, viruses, and quantum dots. Photonic sensors: trapping analytes by digging into nano-trenches An innovative sensor can make it easier to use infrared light for label-free, picogram-scale detection of amino acids and other molecules. Photonic sensors avoid the need for large quantities of analytes by using nanoscale gap structures to trap targets and subject them to ultrahigh optical fields. Peter Liu and colleagues at the State University of New York at Buffalo in the United States have developed a microchip that naturally drives molecules into nanoscale gap regions. The team fabricated arrays where aluminum ribbons overhang narrower strips of insulating crystals. When a drop of test solution is placed onto the chip and left to evaporate, surface tension creates concave profiles that concentrate molecules under the aluminum layers. The resonant frequencies within this device’s “nano-trenches” can be tuned to specific molecular targets by tweaking the array’s geometric parameters.
AbstractList Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for surface-enhanced infrared absorption spectroscopy in various molecular sensing applications. The enhanced signal is mainly contributed by molecules in photonic hot spots, which are regions of a nanophotonic structure with high-field intensity. Therefore, delivery of the majority of, if not all, analyte molecules to hot spots is crucial for fully utilizing the sensing capability of an optical sensor. However, for most optical sensors, simple and straightforward methods of introducing an aqueous analyte to the device, such as applying droplets or spin-coating, cannot achieve targeted delivery of analyte molecules to hot spots. Instead, analyte molecules are usually distributed across the entire device surface, so the majority of the molecules do not experience enhanced field intensity. Here, we present a nanophotonic sensor design with passive molecule trapping functionality. When an analyte solution droplet is introduced to the sensor surface and gradually evaporates, the device structure can effectively trap most precipitated analyte molecules in its hot spots, significantly enhancing the sensor spectral response and sensitivity performance. Specifically, our sensors produce a reflection change of a few percentage points in response to trace amounts of the amino-acid proline or glucose precipitate with a picogram-level mass, which is significantly less than the mass of a molecular monolayer covering the same measurement area. The demonstrated strategy for designing optical sensor structures may also be applied to sensing nano-particles such as exosomes, viruses, and quantum dots. Photonic sensors: trapping analytes by digging into nano-trenches An innovative sensor can make it easier to use infrared light for label-free, picogram-scale detection of amino acids and other molecules. Photonic sensors avoid the need for large quantities of analytes by using nanoscale gap structures to trap targets and subject them to ultrahigh optical fields. Peter Liu and colleagues at the State University of New York at Buffalo in the United States have developed a microchip that naturally drives molecules into nanoscale gap regions. The team fabricated arrays where aluminum ribbons overhang narrower strips of insulating crystals. When a drop of test solution is placed onto the chip and left to evaporate, surface tension creates concave profiles that concentrate molecules under the aluminum layers. The resonant frequencies within this device’s “nano-trenches” can be tuned to specific molecular targets by tweaking the array’s geometric parameters.
Photonic sensors: trapping analytes by digging into nano-trenches An innovative sensor can make it easier to use infrared light for label-free, picogram-scale detection of amino acids and other molecules. Photonic sensors avoid the need for large quantities of analytes by using nanoscale gap structures to trap targets and subject them to ultrahigh optical fields. Peter Liu and colleagues at the State University of New York at Buffalo in the United States have developed a microchip that naturally drives molecules into nanoscale gap regions. The team fabricated arrays where aluminum ribbons overhang narrower strips of insulating crystals. When a drop of test solution is placed onto the chip and left to evaporate, surface tension creates concave profiles that concentrate molecules under the aluminum layers. The resonant frequencies within this device’s “nano-trenches” can be tuned to specific molecular targets by tweaking the array’s geometric parameters.
Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for surface-enhanced infrared absorption spectroscopy in various molecular sensing applications. The enhanced signal is mainly contributed by molecules in photonic hot spots, which are regions of a nanophotonic structure with high-field intensity. Therefore, delivery of the majority of, if not all, analyte molecules to hot spots is crucial for fully utilizing the sensing capability of an optical sensor. However, for most optical sensors, simple and straightforward methods of introducing an aqueous analyte to the device, such as applying droplets or spin-coating, cannot achieve targeted delivery of analyte molecules to hot spots. Instead, analyte molecules are usually distributed across the entire device surface, so the majority of the molecules do not experience enhanced field intensity. Here, we present a nanophotonic sensor design with passive molecule trapping functionality. When an analyte solution droplet is introduced to the sensor surface and gradually evaporates, the device structure can effectively trap most precipitated analyte molecules in its hot spots, significantly enhancing the sensor spectral response and sensitivity performance. Specifically, our sensors produce a reflection change of a few percentage points in response to trace amounts of the amino-acid proline or glucose precipitate with a picogram-level mass, which is significantly less than the mass of a molecular monolayer covering the same measurement area. The demonstrated strategy for designing optical sensor structures may also be applied to sensing nano-particles such as exosomes, viruses, and quantum dots. An innovative sensor can make it easier to use infrared light for label-free, picogram-scale detection of amino acids and other molecules. Photonic sensors avoid the need for large quantities of analytes by using nanoscale gap structures to trap targets and subject them to ultrahigh optical fields. Peter Liu and colleagues at the State University of New York at Buffalo in the United States have developed a microchip that naturally drives molecules into nanoscale gap regions. The team fabricated arrays where aluminum ribbons overhang narrower strips of insulating crystals. When a drop of test solution is placed onto the chip and left to evaporate, surface tension creates concave profiles that concentrate molecules under the aluminum layers. The resonant frequencies within this device’s “nano-trenches” can be tuned to specific molecular targets by tweaking the array’s geometric parameters.
Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for surface-enhanced infrared absorption spectroscopy in various molecular sensing applications. The enhanced signal is mainly contributed by molecules in photonic hot spots, which are regions of a nanophotonic structure with high-field intensity. Therefore, delivery of the majority of, if not all, analyte molecules to hot spots is crucial for fully utilizing the sensing capability of an optical sensor. However, for most optical sensors, simple and straightforward methods of introducing an aqueous analyte to the device, such as applying droplets or spin-coating, cannot achieve targeted delivery of analyte molecules to hot spots. Instead, analyte molecules are usually distributed across the entire device surface, so the majority of the molecules do not experience enhanced field intensity. Here, we present a nanophotonic sensor design with passive molecule trapping functionality. When an analyte solution droplet is introduced to the sensor surface and gradually evaporates, the device structure can effectively trap most precipitated analyte molecules in its hot spots, significantly enhancing the sensor spectral response and sensitivity performance. Specifically, our sensors produce a reflection change of a few percentage points in response to trace amounts of the amino-acid proline or glucose precipitate with a picogram-level mass, which is significantly less than the mass of a molecular monolayer covering the same measurement area. The demonstrated strategy for designing optical sensor structures may also be applied to sensing nano-particles such as exosomes, viruses, and quantum dots.Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for surface-enhanced infrared absorption spectroscopy in various molecular sensing applications. The enhanced signal is mainly contributed by molecules in photonic hot spots, which are regions of a nanophotonic structure with high-field intensity. Therefore, delivery of the majority of, if not all, analyte molecules to hot spots is crucial for fully utilizing the sensing capability of an optical sensor. However, for most optical sensors, simple and straightforward methods of introducing an aqueous analyte to the device, such as applying droplets or spin-coating, cannot achieve targeted delivery of analyte molecules to hot spots. Instead, analyte molecules are usually distributed across the entire device surface, so the majority of the molecules do not experience enhanced field intensity. Here, we present a nanophotonic sensor design with passive molecule trapping functionality. When an analyte solution droplet is introduced to the sensor surface and gradually evaporates, the device structure can effectively trap most precipitated analyte molecules in its hot spots, significantly enhancing the sensor spectral response and sensitivity performance. Specifically, our sensors produce a reflection change of a few percentage points in response to trace amounts of the amino-acid proline or glucose precipitate with a picogram-level mass, which is significantly less than the mass of a molecular monolayer covering the same measurement area. The demonstrated strategy for designing optical sensor structures may also be applied to sensing nano-particles such as exosomes, viruses, and quantum dots.
Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for surface-enhanced infrared absorption spectroscopy in various molecular sensing applications. The enhanced signal is mainly contributed by molecules in photonic hot spots, which are regions of a nanophotonic structure with high-field intensity. Therefore, delivery of the majority of, if not all, analyte molecules to hot spots is crucial for fully utilizing the sensing capability of an optical sensor. However, for most optical sensors, simple and straightforward methods of introducing an aqueous analyte to the device, such as applying droplets or spin-coating, cannot achieve targeted delivery of analyte molecules to hot spots. Instead, analyte molecules are usually distributed across the entire device surface, so the majority of the molecules do not experience enhanced field intensity. Here, we present a nanophotonic sensor design with passive molecule trapping functionality. When an analyte solution droplet is introduced to the sensor surface and gradually evaporates, the device structure can effectively trap most precipitated analyte molecules in its hot spots, significantly enhancing the sensor spectral response and sensitivity performance. Specifically, our sensors produce a reflection change of a few percentage points in response to trace amounts of the amino-acid proline or glucose precipitate with a picogram-level mass, which is significantly less than the mass of a molecular monolayer covering the same measurement area. The demonstrated strategy for designing optical sensor structures may also be applied to sensing nano-particles such as exosomes, viruses, and quantum dots.
Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for surface-enhanced infrared absorption spectroscopy in various molecular sensing applications. The enhanced signal is mainly contributed by molecules in photonic hot spots, which are regions of a nanophotonic structure with high-field intensity. Therefore, delivery of the majority of, if not all, analyte molecules to hot spots is crucial for fully utilizing the sensing capability of an optical sensor. However, for most optical sensors, simple and straightforward methods of introducing an aqueous analyte to the device, such as applying droplets or spin-coating, cannot achieve targeted delivery of analyte molecules to hot spots. Instead, analyte molecules are usually distributed across the entire device surface, so the majority of the molecules do not experience enhanced field intensity. Here, we present a nanophotonic sensor design with passive molecule trapping functionality. When an analyte solution droplet is introduced to the sensor surface and gradually evaporates, the device structure can effectively trap most precipitated analyte molecules in its hot spots, significantly enhancing the sensor spectral response and sensitivity performance. Specifically, our sensors produce a reflection change of a few percentage points in response to trace amounts of the amino-acid proline or glucose precipitate with a picogram-level mass, which is significantly less than the mass of a molecular monolayer covering the same measurement area. The demonstrated strategy for designing optical sensor structures may also be applied to sensing nano-particles such as exosomes, viruses, and quantum dots.Photonic sensors: trapping analytes by digging into nano-trenchesAn innovative sensor can make it easier to use infrared light for label-free, picogram-scale detection of amino acids and other molecules. Photonic sensors avoid the need for large quantities of analytes by using nanoscale gap structures to trap targets and subject them to ultrahigh optical fields. Peter Liu and colleagues at the State University of New York at Buffalo in the United States have developed a microchip that naturally drives molecules into nanoscale gap regions. The team fabricated arrays where aluminum ribbons overhang narrower strips of insulating crystals. When a drop of test solution is placed onto the chip and left to evaporate, surface tension creates concave profiles that concentrate molecules under the aluminum layers. The resonant frequencies within this device’s “nano-trenches” can be tuned to specific molecular targets by tweaking the array’s geometric parameters.
ArticleNumber 5
Author Wu, Yun
Liu, Peter Q.
Miao, Xianglong
Yan, Lingyue
Author_xml – sequence: 1
  givenname: Xianglong
  surname: Miao
  fullname: Miao, Xianglong
  organization: Department of Electrical Engineering, University at Buffalo, The State University of New York
– sequence: 2
  givenname: Lingyue
  surname: Yan
  fullname: Yan, Lingyue
  organization: Department of Biomedical Engineering, University at Buffalo, The State University of New York
– sequence: 3
  givenname: Yun
  surname: Wu
  fullname: Wu, Yun
  organization: Department of Biomedical Engineering, University at Buffalo, The State University of New York
– sequence: 4
  givenname: Peter Q.
  surname: Liu
  fullname: Liu, Peter Q.
  email: pqliu@buffalo.edu
  organization: Department of Electrical Engineering, University at Buffalo, The State University of New York
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33402668$$D View this record in MEDLINE/PubMed
BookMark eNqFks9vFCEUx4mpsbX2H_BgSLx4GeXnABcT06ht0sSLHg1hGGaWzSyMwK7Z_152p9W2h8qFF973--E9eC_BSYjBAfAao_cYUfkhM0yFaBBBDUKMqUY8A2cEMdEITuXJvfgUXOS8RnUphpEUL8AppQyRtpVn4OeVH1dNdiH74ne-7GEwIc6rWGLwFh4SMWX425cVnE3OfudgSWaefRhhHKAJZtoXBzdxcnY7uQx9gNUN8xxLfgWeD2bK7uJ2Pwc_vnz-fnnV3Hz7en356aaxvJWloQPqe0YYazlX1NIO9VbZDrc1wr0zvO-wEbzjGFmCKMWCWOe4arHoqOg7eg6uF24fzVrPyW9M2utovD4exDRqk4q3k9OKdkO9SqlWMWYsktIRzCuk5wgZySvr48Kat93G9daF2u_0APowE_xKj3GnhZBcsLYC3t0CUvy1dbnojc_WTZMJLm6zJkxwTgTBpErfPpKu4zbVJz2qWsKxJPg_Ko6VqriqenO_7r8F3_11FchFYFPMOblBW19M8fHQhp80RvowWXqZLF0nSx8nSx_Y5JH1jv6kiS6mXMVhdOlf2U-4_gD5mt_G
CitedBy_id crossref_primary_10_1002_lpor_202400871
crossref_primary_10_1016_j_bios_2024_116126
crossref_primary_10_1038_s41467_022_31520_z
crossref_primary_10_1016_j_teac_2024_e00226
crossref_primary_10_1021_acsami_1c02801
crossref_primary_10_1063_5_0093332
crossref_primary_10_1002_adom_202102366
crossref_primary_10_1021_acs_chemrev_2c00048
crossref_primary_10_1103_PhysRevA_110_023522
crossref_primary_10_3390_mi12080896
crossref_primary_10_1016_j_optlastec_2023_109305
crossref_primary_10_1021_acsomega_4c01872
crossref_primary_10_1039_D2NH00276K
crossref_primary_10_1088_1361_6463_ac6779
crossref_primary_10_1016_j_optlastec_2024_111685
crossref_primary_10_1021_acsomega_3c08792
crossref_primary_10_1002_smtd_202400119
crossref_primary_10_1088_1361_6463_ac49b3
crossref_primary_10_1007_s11468_022_01633_8
crossref_primary_10_1515_nanoph_2024_0589
crossref_primary_10_1021_acs_nanolett_3c05139
crossref_primary_10_1002_jrs_6351
crossref_primary_10_34133_2022_9874607
crossref_primary_10_1021_acsnano_2c03310
crossref_primary_10_1021_acsphotonics_3c01319
crossref_primary_10_1080_05704928_2022_2156527
crossref_primary_10_1364_JOSAB_514255
crossref_primary_10_1021_acsnano_4c14751
crossref_primary_10_1002_smll_202204234
crossref_primary_10_3390_nano11092194
crossref_primary_10_3390_nano13162377
crossref_primary_10_1039_D4NR04239E
crossref_primary_10_1088_2040_8986_ac5537
crossref_primary_10_1515_nanoph_2024_0536
crossref_primary_10_1364_OL_464443
crossref_primary_10_1039_D2CP04474A
crossref_primary_10_1007_s00604_024_06682_w
crossref_primary_10_1002_adma_202419161
crossref_primary_10_1515_nanoph_2021_0711
crossref_primary_10_1016_j_snb_2024_135651
crossref_primary_10_1002_adma_202107950
crossref_primary_10_1016_j_bios_2023_115667
crossref_primary_10_1016_j_optlastec_2023_110113
crossref_primary_10_1016_j_photonics_2023_101108
crossref_primary_10_1021_acs_est_3c01269
crossref_primary_10_1002_adom_202300401
crossref_primary_10_1364_OE_498114
crossref_primary_10_1088_2051_672X_ad2544
crossref_primary_10_1038_s41377_023_01186_3
Cites_doi 10.1021/acs.nanolett.7b02736
10.1038/nphoton.2014.228
10.1038/nphys1422
10.1021/acs.nanolett.7b00404
10.1021/acsnano.7b02687
10.1002/smtd.201800465
10.1021/acs.nanolett.7b05295
10.1039/C4CP05023A
10.1002/adom.201800436
10.1038/s41467-018-04594-x
10.1021/nl9041033
10.1080/05704920500385494
10.1021/nl302627c
10.1016/j.snb.2016.03.044
10.1109/JMEMS.2007.904327
10.1021/acsnano.7b07893
10.1088/1361-6463/ab2ea1
10.1038/nphoton.2011.222
10.1021/acs.jpcc.5b08344
10.1038/s41565-018-0315-8
10.1126/science.aab2051
10.1063/1.3194154
10.1063/1.2201880
10.1038/s41563-019-0290-y
10.1002/adma.201704896
10.1021/acsphotonics.5b00399
10.1103/PhysRevLett.101.157403
10.1021/acsphotonics.8b00398
10.1038/s41377-018-0066-1
10.1021/nl504455s
10.1021/acs.chemrev.6b00743
10.1021/ac900221y
10.1038/s41467-017-01635-9
10.1021/nl201207n
10.1366/000370203321165179
10.1038/ncomms3237
10.1021/acs.langmuir.6b01742
10.1073/pnas.0907459106
10.1002/adom.201700223
10.1021/acs.langmuir.5b01846
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41377-020-00449-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
PubMed
CrossRef
Publicly Available Content Database
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2047-7538
EndPage 11
ExternalDocumentID oai_doaj_org_article_93bf424996944ac088e2157dbd500a85
PMC7785746
33402668
10_1038_s41377_020_00449_7
Genre Journal Article
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: 5R33CA191245; 5R21CA235305; 5R33CA191245; 5R21CA235305
  funderid: https://doi.org/10.13039/100000054
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
– fundername: National Science Foundation (NSF)
  grantid: ECCS-1748518; ECCS-1847203
  funderid: https://doi.org/10.13039/100000001
– fundername: National Science Foundation (NSF)
  grantid: ECCS-1847203
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: 5R21CA235305
– fundername: NCI NIH HHS
  grantid: R33 CA191245
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: 5R33CA191245
– fundername: National Science Foundation (NSF)
  grantid: ECCS-1748518
– fundername: NCI NIH HHS
  grantid: R21 CA235305
– fundername: ;
– fundername: ;
  grantid: ECCS-1748518; ECCS-1847203
– fundername: ;
  grantid: 5R33CA191245; 5R21CA235305; 5R33CA191245; 5R21CA235305
GroupedDBID 0R~
3V.
5VS
7X7
88A
88I
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DWQXO
EBLON
EBS
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M0L
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c568t-3f0dd424465593c3b0dc9cb163b01dea5db1a75b510c2033172cee59617b37db3
IEDL.DBID DOA
ISSN 2047-7538
2095-5545
IngestDate Wed Aug 27 01:27:27 EDT 2025
Thu Aug 21 14:30:54 EDT 2025
Fri Jul 11 10:53:07 EDT 2025
Wed Aug 13 05:16:44 EDT 2025
Wed Aug 13 07:36:26 EDT 2025
Thu Jan 02 22:58:46 EST 2025
Thu Apr 24 22:58:55 EDT 2025
Tue Jul 01 03:45:15 EDT 2025
Fri Feb 21 02:38:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-3f0dd424465593c3b0dc9cb163b01dea5db1a75b510c2033172cee59617b37db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/93bf424996944ac088e2157dbd500a85
PMID 33402668
PQID 2475199527
PQPubID 2041947
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_93bf424996944ac088e2157dbd500a85
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7785746
proquest_miscellaneous_2475527212
proquest_journals_2476251821
proquest_journals_2475199527
pubmed_primary_33402668
crossref_citationtrail_10_1038_s41377_020_00449_7
crossref_primary_10_1038_s41377_020_00449_7
springer_journals_10_1038_s41377_020_00449_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-05
PublicationDateYYYYMMDD 2021-01-05
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Light, science & applications
PublicationTitleAbbrev Light Sci Appl
PublicationTitleAlternate Light Sci Appl
PublicationYear 2021
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References De Angelis (CR35) 2011; 5
Saleh, Dionne (CR32) 2012; 12
Chen (CR18) 2017; 11
Liu (CR16) 2010; 10
Adato (CR24) 2009; 106
Enders, Pucci (CR23) 2006; 88
De Ninno (CR36) 2015; 17
Neuman (CR8) 2015; 119
Maß, Taubner (CR10) 2015; 2
Baumberg (CR15) 2019; 18
Chen, Chieng, Tseng (CR39) 2007; 16
Yoo (CR20) 2018; 18
Eftekhari (CR26) 2009; 81
Fallah (CR3) 2016; 32
Neubrech (CR9) 2008; 101
Yang (CR2) 2018; 30
Verschueren, Shi, Dekker (CR33) 2019; 3
Ji (CR22) 2017; 5
Cubukcu (CR11) 2009; 95
Brown (CR17) 2015; 15
Bacsik (CR6) 2006; 41
Le (CR27) 2018; 5
Dregely (CR7) 2013; 4
Rodrigo (CR25) 2015; 349
Li (CR13) 2018; 6
Zhu (CR21) 2018; 7
Agrawal (CR12) 2017; 17
Pack (CR38) 2015; 31
Shih (CR28) 2019; 52
Akselrod (CR14) 2014; 8
Neubrech (CR1) 2017; 117
Tantussi (CR34) 2018; 12
Barik (CR29) 2017; 8
Juan (CR31) 2009; 5
Rodrigo (CR4) 2018; 9
Hassan (CR5) 2016; 231
Dong (CR19) 2017; 17
Giannini (CR37) 2011; 11
Nadappuram (CR30) 2019; 14
Jensen, Bak, Andersson-Engels (CR41) 2003; 57
Long, Winefordner (CR40) 1983; 55
Z Bacsik (449_CR6) 2006; 41
PS Jensen (449_CR41) 2003; 57
D Rodrigo (449_CR25) 2015; 349
A Barik (449_CR29) 2017; 8
GL Long (449_CR40) 1983; 55
F Eftekhari (449_CR26) 2009; 81
THH Le (449_CR27) 2018; 5
F Neubrech (449_CR1) 2017; 117
D Enders (449_CR23) 2006; 88
YB Zhu (449_CR21) 2018; 7
D Yoo (449_CR20) 2018; 18
M Hassan (449_CR5) 2016; 231
XH Chen (449_CR18) 2017; 11
AA Saleh (449_CR32) 2012; 12
XX Yang (449_CR2) 2018; 30
E Cubukcu (449_CR11) 2009; 95
LL Dong (449_CR19) 2017; 17
ML Juan (449_CR31) 2009; 5
R Adato (449_CR24) 2009; 106
JJ Baumberg (449_CR15) 2019; 18
NN Li (449_CR13) 2018; 6
D Dregely (449_CR7) 2013; 4
MA Fallah (449_CR3) 2016; 32
D Rodrigo (449_CR4) 2018; 9
A Agrawal (449_CR12) 2017; 17
LV Brown (449_CR17) 2015; 15
K Shih (449_CR28) 2019; 52
M Pack (449_CR38) 2015; 31
DX Ji (449_CR22) 2017; 5
A De Ninno (449_CR36) 2015; 17
BP Nadappuram (449_CR30) 2019; 14
F De Angelis (449_CR35) 2011; 5
CT Chen (449_CR39) 2007; 16
T Neuman (449_CR8) 2015; 119
F Tantussi (449_CR34) 2018; 12
D Verschueren (449_CR33) 2019; 3
F Neubrech (449_CR9) 2008; 101
TWW Maß (449_CR10) 2015; 2
GM Akselrod (449_CR14) 2014; 8
V Giannini (449_CR37) 2011; 11
N Liu (449_CR16) 2010; 10
References_xml – volume: 32
  start-page: 7356
  year: 2016
  end-page: 7364
  ident: CR3
  article-title: Devising self-assembled-monolayers for surface-enhanced infrared spectroscopy of pH-driven poly-L-lysine conformational changes
  publication-title: Langmuir
– volume: 6
  start-page: 1800436
  year: 2018
  ident: CR13
  article-title: Infrared-responsive colloidal silver nanorods for surface-enhanced infrared absorption
  publication-title: Adv. Opt. Mater.
– volume: 17
  start-page: 2611
  year: 2017
  end-page: 2620
  ident: CR12
  article-title: Resonant coupling between molecular vibrations and localized surface plasmon resonance of faceted metal oxide nanocrystals
  publication-title: Nano Lett.
– volume: 52
  start-page: 394001
  year: 2019
  ident: CR28
  article-title: Mir plasmonic liquid sensing in nano-metric space driven by capillary force
  publication-title: J. Phys. D: Appl. Phys.
– volume: 88
  start-page: 184104
  year: 2006
  ident: CR23
  article-title: Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared au nanoparticle films
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 915
  year: 2009
  end-page: 919
  ident: CR31
  article-title: Self-induced back-action optical trapping of dielectric nanoparticles
  publication-title: Nat. Phys.
– volume: 5
  start-page: 682
  year: 2011
  end-page: 687
  ident: CR35
  article-title: Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing sers structures
  publication-title: Nat. Photonics
– volume: 9
  year: 2018
  ident: CR4
  article-title: Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces
  publication-title: Nat. Commun.
– volume: 31
  start-page: 7953
  year: 2015
  end-page: 7961
  ident: CR38
  article-title: Colloidal drop deposition on porous substrates: competition among particle motion, evaporation, and infiltration
  publication-title: Langmuir
– volume: 106
  start-page: 19227
  year: 2009
  end-page: 19232
  ident: CR24
  article-title: Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 17
  start-page: 21337
  year: 2015
  end-page: 21342
  ident: CR36
  article-title: An integrated superhydrophobic-plasmonic biosensor for mid-infrared protein detection at the femtomole level
  publication-title: Phys. Chem. Chem. Phys.
– volume: 231
  start-page: 646
  year: 2016
  end-page: 654
  ident: CR5
  article-title: Detecting bacteria contamination on medical device surfaces using an integrated fiber-optic mid-infrared spectroscopy sensing method
  publication-title: Sens. Acutat. Chem.
– volume: 18
  start-page: 1930
  year: 2018
  end-page: 1936
  ident: CR20
  article-title: High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps
  publication-title: Nano Lett.
– volume: 349
  start-page: 165
  year: 2015
  end-page: 168
  ident: CR25
  article-title: Mid-infrared plasmonic biosensing with graphene
  publication-title: Science
– volume: 4
  year: 2013
  ident: CR7
  article-title: Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures
  publication-title: Nat. Commun.
– volume: 10
  start-page: 2342
  year: 2010
  end-page: 2348
  ident: CR16
  article-title: Infrared perfect absorber and its application as plasmonic sensor
  publication-title: Nano Lett.
– volume: 16
  start-page: 1209
  year: 2007
  end-page: 1218
  ident: CR39
  article-title: Uniform solute deposition of evaporable droplet in nanoliter wells
  publication-title: J. Microelectromech. Syst.
– volume: 18
  start-page: 668
  year: 2019
  end-page: 678
  ident: CR15
  article-title: Extreme nanophotonics from ultrathin metallic gaps
  publication-title: Nat. Mater.
– volume: 81
  start-page: 4308
  year: 2009
  end-page: 4311
  ident: CR26
  article-title: Nanoholes as nanochannels: flow-through plasmonic sensing
  publication-title: Anal. Chem.
– volume: 15
  start-page: 1272
  year: 2015
  end-page: 1280
  ident: CR17
  article-title: Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA)
  publication-title: Nano Lett.
– volume: 14
  start-page: 80
  year: 2019
  end-page: 88
  ident: CR30
  article-title: Nanoscale tweezers for single-cell biopsies
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 67
  year: 2018
  ident: CR21
  article-title: Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface
  publication-title: Light Sci. Appl.
– volume: 11
  start-page: 2835
  year: 2011
  end-page: 2840
  ident: CR37
  article-title: Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach
  publication-title: Nano Lett.
– volume: 30
  start-page: 1704896
  year: 2018
  ident: CR2
  article-title: Nanomaterial-based plasmon-enhanced infrared spectroscopy
  publication-title: Adv. Mater.
– volume: 17
  start-page: 5768
  year: 2017
  end-page: 5774
  ident: CR19
  article-title: Nanogapped au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy
  publication-title: Nano Lett.
– volume: 95
  start-page: 043113
  year: 2009
  ident: CR11
  article-title: Split ring resonator sensors for infrared detection of single molecular monolayers
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 4116
  year: 2018
  end-page: 4122
  ident: CR34
  article-title: Long-range capture and delivery of water-dispersed nano-objects by microbubbles generated on 3D plasmonic surfaces
  publication-title: ACS Nano
– volume: 8
  start-page: 835
  year: 2014
  end-page: 840
  ident: CR14
  article-title: Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas
  publication-title: Nat. Photonics
– volume: 11
  start-page: 8034
  year: 2017
  end-page: 8046
  ident: CR18
  article-title: Plasmonic vertically coupled complementary antennas for dual-mode infrared molecule sensing
  publication-title: ACS Nano
– volume: 3
  start-page: 1800465
  year: 2019
  ident: CR33
  article-title: Nano-optical tweezing of single proteins in plasmonic nanopores
  publication-title: Small Methods
– volume: 55
  start-page: 712A
  year: 1983
  end-page: 724A
  ident: CR40
  article-title: Limit of detection A closer look at the IUPAC definition
  publication-title: Anal. Chem.
– volume: 41
  start-page: 77
  year: 2006
  end-page: 97
  ident: CR6
  article-title: Comparison of open path and extractive long‐path ftir techniques in detection of air pollutants
  publication-title: Appl. Spectrosc. Rev.
– volume: 117
  start-page: 5110
  year: 2017
  end-page: 5145
  ident: CR1
  article-title: Surface-enhanced infrared spectroscopy using resonant nanoantennas
  publication-title: Chem. Rev.
– volume: 5
  start-page: 1700223
  year: 2017
  ident: CR22
  article-title: Efficient mid-infrared light confinement within sub-5-nm gaps for extreme field enhancement
  publication-title: Adv. Opt. Mater.
– volume: 57
  start-page: 28
  year: 2003
  end-page: 36
  ident: CR41
  article-title: Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures
  publication-title: Appl. Spectrosc.
– volume: 2
  start-page: 1498
  year: 2015
  end-page: 1504
  ident: CR10
  article-title: Incident angle-tuning of infrared antenna array resonances for molecular sensing
  publication-title: ACS Photonics
– volume: 8
  year: 2017
  ident: CR29
  article-title: Graphene-edge dielectrophoretic tweezers for trapping of biomolecules
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3179
  year: 2018
  end-page: 3188
  ident: CR27
  article-title: Metamaterials-enhanced infrared spectroscopic study of nanoconfined molecules by plasmonics–nanofluidics hydrid device
  publication-title: ACS Photonics
– volume: 12
  start-page: 5581
  year: 2012
  end-page: 5586
  ident: CR32
  article-title: Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures
  publication-title: Nano Lett.
– volume: 119
  start-page: 26652
  year: 2015
  end-page: 26662
  ident: CR8
  article-title: Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in seira with linear metallic antennas
  publication-title: J. Phys. Chem. C.
– volume: 101
  start-page: 157403
  year: 2008
  ident: CR9
  article-title: Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 5768
  year: 2017
  ident: 449_CR19
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02736
– volume: 8
  start-page: 835
  year: 2014
  ident: 449_CR14
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.228
– volume: 5
  start-page: 915
  year: 2009
  ident: 449_CR31
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1422
– volume: 17
  start-page: 2611
  year: 2017
  ident: 449_CR12
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00404
– volume: 11
  start-page: 8034
  year: 2017
  ident: 449_CR18
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02687
– volume: 3
  start-page: 1800465
  year: 2019
  ident: 449_CR33
  publication-title: Small Methods
  doi: 10.1002/smtd.201800465
– volume: 18
  start-page: 1930
  year: 2018
  ident: 449_CR20
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05295
– volume: 17
  start-page: 21337
  year: 2015
  ident: 449_CR36
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05023A
– volume: 6
  start-page: 1800436
  year: 2018
  ident: 449_CR13
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800436
– volume: 9
  year: 2018
  ident: 449_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04594-x
– volume: 10
  start-page: 2342
  year: 2010
  ident: 449_CR16
  publication-title: Nano Lett.
  doi: 10.1021/nl9041033
– volume: 41
  start-page: 77
  year: 2006
  ident: 449_CR6
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704920500385494
– volume: 12
  start-page: 5581
  year: 2012
  ident: 449_CR32
  publication-title: Nano Lett.
  doi: 10.1021/nl302627c
– volume: 231
  start-page: 646
  year: 2016
  ident: 449_CR5
  publication-title: Sens. Acutat. Chem.
  doi: 10.1016/j.snb.2016.03.044
– volume: 16
  start-page: 1209
  year: 2007
  ident: 449_CR39
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2007.904327
– volume: 12
  start-page: 4116
  year: 2018
  ident: 449_CR34
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07893
– volume: 52
  start-page: 394001
  year: 2019
  ident: 449_CR28
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/ab2ea1
– volume: 5
  start-page: 682
  year: 2011
  ident: 449_CR35
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2011.222
– volume: 55
  start-page: 712A
  year: 1983
  ident: 449_CR40
  publication-title: Anal. Chem.
– volume: 119
  start-page: 26652
  year: 2015
  ident: 449_CR8
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.5b08344
– volume: 14
  start-page: 80
  year: 2019
  ident: 449_CR30
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0315-8
– volume: 349
  start-page: 165
  year: 2015
  ident: 449_CR25
  publication-title: Science
  doi: 10.1126/science.aab2051
– volume: 95
  start-page: 043113
  year: 2009
  ident: 449_CR11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3194154
– volume: 88
  start-page: 184104
  year: 2006
  ident: 449_CR23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2201880
– volume: 18
  start-page: 668
  year: 2019
  ident: 449_CR15
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0290-y
– volume: 30
  start-page: 1704896
  year: 2018
  ident: 449_CR2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704896
– volume: 2
  start-page: 1498
  year: 2015
  ident: 449_CR10
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.5b00399
– volume: 101
  start-page: 157403
  year: 2008
  ident: 449_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.157403
– volume: 5
  start-page: 3179
  year: 2018
  ident: 449_CR27
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.8b00398
– volume: 7
  start-page: 67
  year: 2018
  ident: 449_CR21
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-018-0066-1
– volume: 15
  start-page: 1272
  year: 2015
  ident: 449_CR17
  publication-title: Nano Lett.
  doi: 10.1021/nl504455s
– volume: 117
  start-page: 5110
  year: 2017
  ident: 449_CR1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00743
– volume: 81
  start-page: 4308
  year: 2009
  ident: 449_CR26
  publication-title: Anal. Chem.
  doi: 10.1021/ac900221y
– volume: 8
  year: 2017
  ident: 449_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01635-9
– volume: 11
  start-page: 2835
  year: 2011
  ident: 449_CR37
  publication-title: Nano Lett.
  doi: 10.1021/nl201207n
– volume: 57
  start-page: 28
  year: 2003
  ident: 449_CR41
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370203321165179
– volume: 4
  year: 2013
  ident: 449_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3237
– volume: 32
  start-page: 7356
  year: 2016
  ident: 449_CR3
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b01742
– volume: 106
  start-page: 19227
  year: 2009
  ident: 449_CR24
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0907459106
– volume: 5
  start-page: 1700223
  year: 2017
  ident: 449_CR22
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201700223
– volume: 31
  start-page: 7953
  year: 2015
  ident: 449_CR38
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b01846
SSID ssj0000941087
ssib052855617
ssib038074990
ssib054953849
Score 2.4602869
Snippet Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for...
Photonic sensors: trapping analytes by digging into nano-trenches An innovative sensor can make it easier to use infrared light for label-free, picogram-scale...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5
SubjectTerms 142/126
639/624/1075/1083
639/624/1107/510
Absorption spectroscopy
Aluminum
Applied and Technical Physics
Atomic
Classical and Continuum Physics
Crystals
Exosomes
Hot spots
Lasers
Molecular
Nanoparticles
Optical and Plasma Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Proline
Quantum dots
Sensors
Trapping
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXRHmmtMhI3CCqE9txcqoKoqqQ4ESlvSDLr20rlWTZpP-_M0421QLtdR1n7YzH_r6Z8QzAh1BrG6SXeR0jEhSNhNV5J3PfODqfuFPp-tj3H9Xpmfy2UIvJ4NZPYZWbPTFt1KHzZCM_LKVWdJ241EerPzlVjSLv6lRC4yE8otRlFNKlF3q2sSB1KXitp7syXNSHvaQMezlxJnJlNrneOo9S2v7_Yc1_Qyb_8pum4-jkGTydcCQ7HgW_Cw9i-xwep3hO37-AXxS_kfcUnT6Wh2CtbbvVRTdQKlxGDd26Z2SFZSvEz7jnMfxHStZwzrols5SrZIjs91g9N_bssmXYmyELHvqXcHby9eeX03yqpJB7VdVDLpY8BLrSViGBEF44HnzjHWIxx4sQrQqusFo5VFBfcoGYosTDUzUIb5zQwYlXsNN2bXwDDAFdETxKEXGjXDbCoRJrGcpKaIuC5RkUm-9p_JRmnKpdXJnk7ha1GWVgUAYmycDoDD7OfVZjko17n_5MYpqfpATZ6YdufW4mfTM4sCVOGNlcI6X1uJdGBDc4laA4t7XKYH8jZDNpbW9u19hdzcgWkZAVGbyfm1Edycdi29hdj6_A_ggIMng9Lpl5oEIgWa-qOgO9tZi2ZrLd0l5epJTfWtdKyyqDT5tldzusu7_U3v2TfAtPSorQIYOS2oedYX0dDxBiDe5d0qMbr7ciYw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuVXkHCjISN4hwYjt2jmVFVSHBiUq9ICt-bFsJktUm_f-dcR5ooUXiGtuJnZmxv7FnPgO8C0Y3QXqZmxjRQdHosDrvZO5rR-sTdyqlj339Vp2eyS_n6nwPyjkXJgXtJ0rLNE3P0WEfe0nUeDk5O3QGWef6Htwn6nbS6lW1WvZV0F0puNFTfgwX5pamO2tQouq_DV_-HSb5x1lpWoJODuFgwo7seOztI9iL7WN4kGI4ff8EflDMRt5TRPp4JQRrm7bbXHYD0d8yKui2PaOdV7ZBzIzzHMMvEkHDBevWrCF-kiGyX-ONubFnVy3D1gw936F_Cmcnn7-vTvPp9oTcq8oMuVjzECiNrUKnQXjhePC1d4i_HC9CbFRwRaOVQ6P0JReII0pcMFWNkMYJHZx4Bvtt18YXwBDEFcGj5BArynUtHBqulqGshG5QmDyDYv6f1k_U4nTDxU-bjriFsaMMLMrAJhlYncH7pc1mJNb4Z-1PJKalJpFipwfd9sJOSmKxY2scMHpwtZSNx_kzIqDBoQTFeWNUBkezkO1kqb0tpVaUpl7qu4rRQ0QnrMjg7VKMJkjnKk0bu-vxFdgeQUAGz0eVWToqBDroVWUy0DvKtDOS3ZL26jLRfGttlJZVBh9mtfvdrbv_1Mv_q_4KHpYUpUObSuoI9oftdXyNMGtwb5Jd3QCRpCAR
  priority: 102
  providerName: Springer Nature
Title High-sensitivity nanophotonic sensors with passive trapping of analyte molecules in hot spots
URI https://link.springer.com/article/10.1038/s41377-020-00449-7
https://www.ncbi.nlm.nih.gov/pubmed/33402668
https://www.proquest.com/docview/2475199527
https://www.proquest.com/docview/2476251821
https://www.proquest.com/docview/2475527212
https://pubmed.ncbi.nlm.nih.gov/PMC7785746
https://doaj.org/article/93bf424996944ac088e2157dbd500a85
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEBIvE98ERmUk3iBaEttx8thVm6ZKTAiY1BdkxR9lm1hSLdn_z52dlhUYvPBUKY5b5z56v4vPvwN46yrVOGFFWnmPCYrChNVYI1JbG4pPmZHh-NiHk_L4VMwXcnGj1RfVhEV64Ci4_ZqbpcAcoS5rIRqLTuExSilnnMyypgrspRjzbiRTF7FeLs8qNZ6SyXi13wvi1kspW6JNzDpVW5EoEPb_CWX-Xiz5y45pCERHD2F3RJBsGlf-CO749jHcD5Wctn8CX6lyI-2pLj02hmBt03ars24gElxGA91Vz-j9K1shcsZ_O4a_SDQN31i3ZA2xlAyeXca-ub5n5y3D2Qzz36F_CqdHh19mx-nYQyG1sqyGlC8z5-gwW4mpA7fcZM7W1iAKM1nufCOdyRslDbqmLTKOaKLAsClrBDaGo5T5M9hpu9a_AIZQLncW9YeIUSxRL-i-Srii5KpBlWYJ5Gt5ajsSjFOfi-86bHTzSkcdaNSBDjrQKoF3mzmrSK_x17sPSE2bO4kaO1xAg9Gjweh_GUwCe2sl69Ffe10IJemweqFuG8Y8EVOxPIE3m2F0RNpdaVrfXcevwPkIBRJ4Hk1ms1DOMU0vyyoBtWVMW0-yPdKenwWyb6UqqUSZwPu12f1c1u2Sevk_JPUKHhRUwUMvnOQe7AxX1_41QrDBTOCuWqgJ3JtO55_n-HlwePLxE16dlbNJ8MQfuwIuxA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4iaxHacHBCi0GpL2xVCrdQLcuPHtpUgWTapEH-K38hMHlst0N56jePE9oxn5vOMZwBeukwVTlgRZt4jQFEIWI01IrS5If0UGdleH9ubpOMD8elQHq7A7-EuDIVVDjKxFdSusnRGvp4IJek6caLezX6EVDWKvKtDCY2OLXb8r58I2eq32x-Rvq-SZGtz_8M47KsKhFamWRPyaeQcXe9K0ZjmlpvI2dwatEtMFDtfSGfiQkmDzGqTiKN-TVCRyBxVveHKGY7fvQargiOUGcHqxubk85fFqQ6CpTjKVH87J-LZei0op19IKI2cp3moljRgWyjgf9btv0Gaf3lqWwW4dRtu9ZYre9-x2h1Y8eVduN5GkNr6HnyliJGwpnj4riAFK4uymp1UDSXfZdRQzWtG575shhY7SlmGf6T0EMesmrKCsqM0nn3v6vX6mp2WDHszxN1NfR8OrmSVH8CorEr_CBiakLGzyDdoqYppzg2KDSVcknJVICtFAcTDemrbJzan-hrfdOtg55nuaKCRBrqlgVYBvF70mXVpPS59e4PItHiTUnK3D6r5se53uMaBTXHCiB9zIQqL0tujOYVTcTKKikwGsDYQWfdyotbnXH1RM-JThIBxAC8WzSgAyKtTlL466z6B_dEECeBhxzKLgXIuEGOnWQBqiZmWZrLcUp6etEnGlcqkEmkAbwa2Ox_WxSv1-PJJPocb4_29Xb27Pdl5AjcTig-i4yy5BqNmfuafooHXmGf9rmJwdNUb-Q9z0mAs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9UwDLfGEIgL4pvCgCDBCaq1TdK0B4SA8bQxmDgw6V1Q1nx0mwTt47UT4l_jr8Pu1_SA7bZr07RJ7Nj-xY4N8MxlqnDCijDzHgGKQsBqrBGhzQ3pp8jI7vrYp710e198mMv5Gvwe78JQWOUoEztB7WpLZ-SbiVCSrhMjVC-HsIjPW7PXix8hVZAiT-tYTqNnkV3_6yfCt-bVzhbS-nmSzN5_ebcdDhUGQivTrA15GTlHV71SNKy55SZyNrcGbRQTxc4X0pm4UNIg49ok4qhrE1QqMke1b7hyhuN3L8FlxWVMe0zN1XS-g7ApjjI13NOJeLbZCMruFxJeIzdqHqoVXdiVDPifnftvuOZfPttOFc5uwPXBhmVveqa7CWu-ugVXulhS29yGrxQ7EjYUGd-XpmBVUdWLo7qlNLyMGuplw-gEmC3Qdkd5y_CPlCjikNUlKyhPSuvZ975yr2_YccWwN0ME3jZ3YP9C1vgurFd15e8DQ2MydhY5CG1WUebcoABRwiUpVwUyVRRAPK6ntkOKc6q08U13rnae6Z4GGmmgOxpoFcCLqc-iT_Bx7ttviUzTm5Scu3tQLw_1sNc1DqzECSOSzIUoLMpxj4YVTsXJKCoyGcDGSGQ9SIxGn_L3Wc2IVBEMxgE8nZpRFJB_p6h8fdJ_AvujMRLAvZ5lpoFyLhBtp1kAaoWZVmay2lIdH3XpxpXKpBJpAC9Htjsd1tkr9eD8ST6Bq7h99cedvd2HcC2hQCE615IbsN4uT_wjtPRa87jbUgwOLnoP_wEJaWL8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-sensitivity+nanophotonic+sensors+with+passive+trapping+of+analyte+molecules+in+hot+spots&rft.jtitle=Light%2C+science+%26+applications&rft.au=Xianglong+Miao&rft.au=Lingyue+Yan&rft.au=Yun+Wu&rft.au=Peter+Q.+Liu&rft.date=2021-01-05&rft.pub=Nature+Publishing+Group&rft.eissn=2047-7538&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41377-020-00449-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_93bf424996944ac088e2157dbd500a85
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon