Evidence for the utility of quantum computing before fault tolerance
Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-to...
Saved in:
Published in | Nature (London) Vol. 618; no. 7965; pp. 500 - 505 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.06.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors. Here we report experiments on a noisy 127-qubit processor and demonstrate the measurement of accurate expectation values for circuit volumes at a scale beyond brute-force classical computation. We argue that this represents evidence for the utility of quantum computing in a pre-fault-tolerant era. These experimental results are enabled by advances in the coherence and calibration of a superconducting processor at this scale and the ability to characterize
1
and controllably manipulate noise across such a large device. We establish the accuracy of the measured expectation values by comparing them with the output of exactly verifiable circuits. In the regime of strong entanglement, the quantum computer provides correct results for which leading classical approximations such as pure-state-based 1D (matrix product states, MPS) and 2D (isometric tensor network states, isoTNS) tensor network methods
2
,
3
break down. These experiments demonstrate a foundational tool for the realization of near-term quantum applications
4
,
5
.
Experiments on a noisy 127-qubit superconducting quantum processor report the accurate measurement of expectation values beyond the reach of current brute-force classical computation, demonstrating evidence for the utility of quantum computing before fault tolerance. |
---|---|
AbstractList | Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors. Here we report experiments on a noisy 127-qubit processor and demonstrate the measurement of accurate expectation values for circuit volumes at a scale beyond brute-force classical computation. We argue that this represents evidence for the utility of quantum computing in a pre-fault-tolerant era. These experimental results are enabled by advances in the coherence and calibration of a superconducting processor at this scale and the ability to characterize
1
and controllably manipulate noise across such a large device. We establish the accuracy of the measured expectation values by comparing them with the output of exactly verifiable circuits. In the regime of strong entanglement, the quantum computer provides correct results for which leading classical approximations such as pure-state-based 1D (matrix product states, MPS) and 2D (isometric tensor network states, isoTNS) tensor network methods
2,3
break down. These experiments demonstrate a foundational tool for the realization of near-term quantum applications
4,5
. Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors. Here we report experiments on a noisy 127-qubit processor and demonstrate the measurement of accurate expectation values for circuit volumes at a scale beyond brute-force classical computation. We argue that this represents evidence for the utility of quantum computing in a pre-fault-tolerant era. These experimental results are enabled by advances in the coherence and calibration of a superconducting processor at this scale and the ability to characterize 1 and controllably manipulate noise across such a large device. We establish the accuracy of the measured expectation values by comparing them with the output of exactly verifiable circuits. In the regime of strong entanglement, the quantum computer provides correct results for which leading classical approximations such as pure-state-based 1D (matrix product states, MPS) and 2D (isometric tensor network states, isoTNS) tensor network methods 2 , 3 break down. These experiments demonstrate a foundational tool for the realization of near-term quantum applications 4 , 5 . Experiments on a noisy 127-qubit superconducting quantum processor report the accurate measurement of expectation values beyond the reach of current brute-force classical computation, demonstrating evidence for the utility of quantum computing before fault tolerance. Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors. Here we report experiments on a noisy 127-qubit processor and demonstrate the measurement of accurate expectation values for circuit volumes at a scale beyond brute-force classical computation. We argue that this represents evidence for the utility of quantum computing in a pre-fault-tolerant era. These experimental results are enabled by advances in the coherence and calibration of a superconducting processor at this scale and the ability to characterize and controllably manipulate noise across such a large device. We establish the accuracy of the measured expectation values by comparing them with the output of exactly verifiable circuits. In the regime of strong entanglement, the quantum computer provides correct results for which leading classical approximations such as pure-state-based 1D (matrix product states, MPS) and 2D (isometric tensor network states, isoTNS) tensor network methods break down. These experiments demonstrate a foundational tool for the realization of near-term quantum applications. Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors. Here we report experiments on a noisy 127-qubit processor and demonstrate the measurement of accurate expectation values for circuit volumes at a scale beyond brute-force classical computation. We argue that this represents evidence for the utility of quantum computing in a pre-fault-tolerant era. These experimental results are enabled by advances in the coherence and calibration of a superconducting processor at this scale and the ability to characterize1 and controllably manipulate noise across such a large device. We establish the accuracy of the measured expectation values by comparing them with the output of exactly verifiable circuits. In the regime of strong entanglement, the quantum computer provides correct results for which leading classical approximations such as pure-state-based 1D (matrix product states, MPS) and 2D (isometric tensor network states, isoTNS) tensor network methods2,3 break down. These experiments demonstrate a foundational tool for the realization of near-term quantum applications4,5.Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors. Here we report experiments on a noisy 127-qubit processor and demonstrate the measurement of accurate expectation values for circuit volumes at a scale beyond brute-force classical computation. We argue that this represents evidence for the utility of quantum computing in a pre-fault-tolerant era. These experimental results are enabled by advances in the coherence and calibration of a superconducting processor at this scale and the ability to characterize1 and controllably manipulate noise across such a large device. We establish the accuracy of the measured expectation values by comparing them with the output of exactly verifiable circuits. In the regime of strong entanglement, the quantum computer provides correct results for which leading classical approximations such as pure-state-based 1D (matrix product states, MPS) and 2D (isometric tensor network states, isoTNS) tensor network methods2,3 break down. These experiments demonstrate a foundational tool for the realization of near-term quantum applications4,5. Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors. Here we report experiments on a noisy 127-qubit processor and demonstrate the measurement of accurate expectation values for circuit volumes at a scale beyond brute-force classical computation. We argue that this represents evidence for the utility of quantum computing in a pre-fault-tolerant era. These experimental results are enabled by advances in the coherence and calibration of a superconducting processor at this scale and the ability to characterize and controllably manipulate noise across such a large device. We establish the accuracy of the measured expectation values by comparing them with the output of exactly verifiable circuits. In the regime of strong entanglement, the quantum computer provides correct results for which leading classical approximations such as pure-state-based 1D (matrix product states, MPS) and 2D (isometric tensor network states, isoTNS) tensor network methods break down. These experiments demonstrate a foundational tool for the realization of near-term quantum applications . Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors. Here we report experiments on a noisy 127-qubit processor and demonstrate the measurement of accurate expectation values for circuit volumes at a scale beyond brute-force classical computation. We argue that this represents evidence for the utility of quantum computing in a pre-fault-tolerant era. These experimental results are enabled by advances in the coherence and calibration of a superconducting processor at this scale and the ability to characterize1 and controllably manipulate noise across such a large device. We establish the accuracy of the measured expectation values by comparing them with the output of exactly verifiable circuits. In the regime of strong entanglement, the quantum computer provides correct results for which leading classical approximations such as pure-state-based 1D (matrix product states, MPS) and 2D (isometric tensor network states, isoTNS) tensor network methods2,3 break down. These experiments demonstrate a foundational tool for the realization of near-term quantum applications4,5. |
Author | Wei, Ken Xuan Nayfeh, Hasan van den Berg, Ewout Rosenblatt, Sami Zaletel, Michael Kim, Youngseok Anand, Sajant Eddins, Andrew Wu, Yantao Temme, Kristan Kandala, Abhinav |
Author_xml | – sequence: 1 givenname: Youngseok orcidid: 0000-0002-8486-9162 surname: Kim fullname: Kim, Youngseok email: youngseok.kim1@ibm.com organization: IBM Quantum, IBM Thomas J. Watson Research Center – sequence: 2 givenname: Andrew orcidid: 0000-0001-5088-4711 surname: Eddins fullname: Eddins, Andrew email: aeddins@ibm.com organization: IBM Quantum, IBM Research - Cambridge – sequence: 3 givenname: Sajant orcidid: 0000-0001-6372-0513 surname: Anand fullname: Anand, Sajant organization: Department of Physics, University of California, Berkeley – sequence: 4 givenname: Ken Xuan surname: Wei fullname: Wei, Ken Xuan organization: IBM Quantum, IBM Thomas J. Watson Research Center – sequence: 5 givenname: Ewout orcidid: 0000-0002-0991-3397 surname: van den Berg fullname: van den Berg, Ewout organization: IBM Quantum, IBM Thomas J. Watson Research Center – sequence: 6 givenname: Sami surname: Rosenblatt fullname: Rosenblatt, Sami organization: IBM Quantum, IBM Thomas J. Watson Research Center – sequence: 7 givenname: Hasan surname: Nayfeh fullname: Nayfeh, Hasan organization: IBM Quantum, IBM Thomas J. Watson Research Center – sequence: 8 givenname: Yantao surname: Wu fullname: Wu, Yantao organization: Department of Physics, University of California, Berkeley, RIKEN iTHEMS – sequence: 9 givenname: Michael surname: Zaletel fullname: Zaletel, Michael organization: Department of Physics, University of California, Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory – sequence: 10 givenname: Kristan orcidid: 0000-0002-4195-0569 surname: Temme fullname: Temme, Kristan organization: IBM Quantum, IBM Thomas J. Watson Research Center – sequence: 11 givenname: Abhinav orcidid: 0000-0002-2566-1388 surname: Kandala fullname: Kandala, Abhinav email: akandala@us.ibm.com organization: IBM Quantum, IBM Thomas J. Watson Research Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37316724$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/2229295$$D View this record in Osti.gov |
BookMark | eNp9kUtv1DAUhS1URKeFP8ACRbBhE_D7sUKolBapEhtYW45zM-MqsaexU6n_Hg9peXTRlaXr75x77HOCjmKKgNBrgj8QzPTHzInQssWUtVhiI1v2DG0IV7LlUqsjtMGY6hZrJo_RSc7XGGNBFH-BjpliRCrKN-jL-W3oIXpohjQ3ZQfNUsIYyl2ThuZmcbEsU-PTtK_juG06qFhl3TKWpqQRZle1L9HzwY0ZXt2fp-jn1_MfZ5ft1feLb2efr1ovpC4t9cLoTlA_MOiNoMBx1w-ul0pq6hl0jAshwDjXEWckpo4xSXQnKTegFGen6NPqu1-6CXoPscxutPs5TG6-s8kF-_9NDDu7TbeWYCqlUbg6vF0dUi7BZh8K-J1PMYIvllJqqBEVen-_Zk43C-Rip5A9jKOLkJZsqaaSEs0Vrei7R-h1WuZYP-FA1cxcGFKpN__m_hP4oYYK6BXwc8p5hsHWZK6EdHhGGGt-e2jcro3b2rj93bhlVUofSR_cnxSxVZQrHLcw_439hOoXlJq8-A |
CitedBy_id | crossref_primary_10_1038_s42005_024_01845_w crossref_primary_10_1103_PhysRevA_109_052425 crossref_primary_10_1103_PhysRevB_109_174409 crossref_primary_10_1103_PhysRevB_110_085149 crossref_primary_10_1103_PhysRevLett_133_230601 crossref_primary_10_1103_PhysRevLett_132_130602 crossref_primary_10_1038_s41586_024_08178_2 crossref_primary_10_1109_TQE_2023_3347106 crossref_primary_10_1103_PhysRevA_108_022612 crossref_primary_10_1103_PRXQuantum_5_040352 crossref_primary_10_1103_PRXQuantum_5_040351 crossref_primary_10_1103_PhysRevLett_132_130604 crossref_primary_10_1063_5_0203046 crossref_primary_10_1088_2058_9565_ad9ed5 crossref_primary_10_1021_acs_jctc_4c00915 crossref_primary_10_1103_PhysRevResearch_7_L012074 crossref_primary_10_1088_1572_9494_ad5664 crossref_primary_10_1073_pnas_2313269120 crossref_primary_10_1088_1361_6633_adac8b crossref_primary_10_1103_PhysRevA_110_012404 crossref_primary_10_1103_PhysRevResearch_6_033246 crossref_primary_10_1103_PRXQuantum_5_040346 crossref_primary_10_1103_PRXQuantum_5_040348 crossref_primary_10_2139_ssrn_4501788 crossref_primary_10_22331_q_2024_02_13_1252 crossref_primary_10_1103_PhysRevA_109_052440 crossref_primary_10_1103_PhysRevLett_134_010602 crossref_primary_10_1145_3718349 crossref_primary_10_1088_2058_9565_ad9cb9 crossref_primary_10_1103_PhysRevResearch_6_043143 crossref_primary_10_1186_s40580_024_00418_5 crossref_primary_10_1287_ijoc_2024_0551 crossref_primary_10_1103_PhysRevResearch_5_033182 crossref_primary_10_1103_PhysRevB_111_064503 crossref_primary_10_1103_PhysRevResearch_6_033215 crossref_primary_10_1038_s41534_025_00969_3 crossref_primary_10_1103_PhysRevResearch_5_033055 crossref_primary_10_1007_s10773_024_05653_4 crossref_primary_10_1038_s42005_025_02050_z crossref_primary_10_1103_PhysRevResearch_6_033217 crossref_primary_10_1126_sciadv_adk4321 crossref_primary_10_1038_s41567_024_02741_4 crossref_primary_10_1103_PhysRevResearch_6_043254 crossref_primary_10_1016_j_cplett_2023_140975 crossref_primary_10_1021_acsnano_4c04240 crossref_primary_10_1038_s41598_024_67897_8 crossref_primary_10_1016_j_xcrp_2024_102105 crossref_primary_10_1103_PhysRevResearch_6_033223 crossref_primary_10_1103_PhysRevA_109_042413 crossref_primary_10_3390_e26070592 crossref_primary_10_1103_PRXQuantum_5_040320 crossref_primary_10_1049_ell2_70162 crossref_primary_10_1016_j_future_2024_06_012 crossref_primary_10_1103_PhysRevApplied_22_034068 crossref_primary_10_1109_TQE_2023_3347476 crossref_primary_10_1103_PhysRevResearch_6_033107 crossref_primary_10_1007_s11128_024_04296_y crossref_primary_10_1103_PhysRevResearch_6_023118 crossref_primary_10_1063_5_0183022 crossref_primary_10_1103_PhysRevA_109_052223 crossref_primary_10_1088_2058_9565_ad80c0 crossref_primary_10_22331_q_2024_03_21_1296 crossref_primary_10_1103_PhysRevA_109_052224 crossref_primary_10_1088_1361_6633_adb072 crossref_primary_10_1038_s41467_024_50333_w crossref_primary_10_1140_epjqt_s40507_024_00262_w crossref_primary_10_1016_j_cma_2024_117380 crossref_primary_10_1016_j_compstruct_2024_118625 crossref_primary_10_1134_S1063739723600656 crossref_primary_10_1103_PhysRevA_111_012619 crossref_primary_10_1103_PhysRevA_109_042428 crossref_primary_10_1103_PhysRevLett_132_220601 crossref_primary_10_1103_PhysRevD_109_014505 crossref_primary_10_1038_s42005_024_01790_8 crossref_primary_10_1038_s43588_023_00578_0 crossref_primary_10_1145_3663672 crossref_primary_10_1109_TQE_2024_3430215 crossref_primary_10_1109_TCAD_2024_3471905 crossref_primary_10_1038_s41534_025_00977_3 crossref_primary_10_1103_PhysRevA_111_012626 crossref_primary_10_1038_s41467_024_45232_z crossref_primary_10_1038_s42254_024_00770_9 crossref_primary_10_1103_PhysRevApplied_20_054033 crossref_primary_10_1103_PhysRevResearch_6_023130 crossref_primary_10_1103_PhysRevResearch_6_033285 crossref_primary_10_1016_j_compchemeng_2024_108704 crossref_primary_10_1007_s11128_024_04428_4 crossref_primary_10_1103_PRXQuantum_5_040307 crossref_primary_10_5802_crphys_229 crossref_primary_10_1016_j_matt_2024_05_035 crossref_primary_10_3390_app14114524 crossref_primary_10_1038_s41534_024_00849_2 crossref_primary_10_1103_PhysRevResearch_7_L012017 crossref_primary_10_1016_j_compfluid_2024_106507 crossref_primary_10_1038_s41534_025_00967_5 crossref_primary_10_1109_ACCESS_2025_3528443 crossref_primary_10_1063_5_0236028 crossref_primary_10_1103_PhysRevApplied_22_044074 crossref_primary_10_22331_q_2023_07_13_1059 crossref_primary_10_3390_quantum7010010 crossref_primary_10_1103_PhysRevResearch_6_013326 crossref_primary_10_1038_s41534_024_00901_1 crossref_primary_10_1093_jamia_ocae149 crossref_primary_10_3390_quantum7010011 crossref_primary_10_1038_s42005_024_01813_4 crossref_primary_10_1021_acsnano_4c05251 crossref_primary_10_22331_q_2024_12_10_1556 crossref_primary_10_1063_5_0225375 crossref_primary_10_3390_qubs7030026 crossref_primary_10_1039_D4NR05369A crossref_primary_10_1088_1361_6633_ad847e crossref_primary_10_1103_PhysRevResearch_6_033142 crossref_primary_10_1016_j_future_2024_06_058 crossref_primary_10_1103_PRXQuantum_5_037001 crossref_primary_10_1038_s41534_024_00863_4 crossref_primary_10_1103_PhysRevResearch_6_043329 crossref_primary_10_1002_apxr_202300124 crossref_primary_10_3390_a18020070 crossref_primary_10_1140_epjp_s13360_024_05311_y crossref_primary_10_1088_2632_2153_ad020d crossref_primary_10_1103_PhysRevLett_131_073602 crossref_primary_10_1002_wcms_1701 crossref_primary_10_1063_5_0213120 crossref_primary_10_1063_5_0186205 crossref_primary_10_1002_qute_202300400 crossref_primary_10_1109_TQE_2024_3521442 crossref_primary_10_22331_q_2024_02_05_1242 crossref_primary_10_1103_PhysRevResearch_7_013085 crossref_primary_10_1103_PhysRevResearch_6_043318 crossref_primary_10_1109_ACCESS_2024_3382150 crossref_primary_10_1103_PhysRevA_110_032201 crossref_primary_10_1103_PhysRevD_110_056012 crossref_primary_10_1103_PhysRevLett_133_160801 crossref_primary_10_1016_j_rinp_2023_106944 crossref_primary_10_1063_5_0206845 crossref_primary_10_1103_PhysRevLett_133_010603 crossref_primary_10_1016_j_future_2025_107721 crossref_primary_10_1021_jacs_3c12725 crossref_primary_10_1038_s41567_024_02529_6 crossref_primary_10_1109_MCS_2024_3466448 crossref_primary_10_1103_PhysRevX_14_041050 crossref_primary_10_1103_PhysRevA_110_032411 crossref_primary_10_1360_SSPMA_2024_0531 crossref_primary_10_1103_PhysRevLett_132_023602 crossref_primary_10_1016_j_jksuci_2023_101847 crossref_primary_10_1103_RevModPhys_95_045005 crossref_primary_10_1088_1674_1056_acf496 crossref_primary_10_1103_PhysRevApplied_21_034036 crossref_primary_10_3389_frqst_2024_1422257 crossref_primary_10_1007_s11128_024_04458_y crossref_primary_10_1039_D4CP00436A crossref_primary_10_1103_PhysRevResearch_6_L032004 crossref_primary_10_1103_PhysRevLett_133_180402 crossref_primary_10_1038_s41534_024_00918_6 crossref_primary_10_1103_PhysRevLett_133_080601 crossref_primary_10_1038_s41467_025_57623_x crossref_primary_10_1103_PhysRevB_111_094310 crossref_primary_10_1103_PhysRevA_110_032416 crossref_primary_10_1021_acs_jctc_4c00067 crossref_primary_10_1103_PhysRevX_14_031030 crossref_primary_10_1063_5_0173591 crossref_primary_10_1103_PhysRevB_110_205402 crossref_primary_10_1021_acs_jctc_4c00069 crossref_primary_10_1142_S0217732324300064 crossref_primary_10_1038_s41534_023_00785_7 crossref_primary_10_1103_PhysRevA_110_022622 crossref_primary_10_1088_1367_2630_ada84f crossref_primary_10_3390_quantum6040039 crossref_primary_10_1103_PhysRevApplied_22_064068 crossref_primary_10_1088_1742_6596_2883_1_012004 crossref_primary_10_1002_cae_70004 crossref_primary_10_1103_PhysRevResearch_6_043249 crossref_primary_10_1016_j_eml_2023_102117 crossref_primary_10_1038_s41567_024_02738_z crossref_primary_10_1103_PRXQuantum_6_010352 crossref_primary_10_1038_s41598_023_38558_z crossref_primary_10_1038_d41586_023_01965_3 crossref_primary_10_1103_PhysRevA_110_046401 crossref_primary_10_22331_q_2024_12_03_1545 crossref_primary_10_1103_PRXQuantum_6_010333 crossref_primary_10_1109_JSSC_2024_3364968 crossref_primary_10_1103_PhysRevResearch_5_043139 crossref_primary_10_1103_PhysRevA_111_032612 crossref_primary_10_1063_5_0211159 crossref_primary_10_1088_2058_9565_ad5a36 crossref_primary_10_1088_0256_307X_41_1_014203 crossref_primary_10_1007_s10270_024_01259_w crossref_primary_10_1038_s42256_024_00927_2 crossref_primary_10_1103_Physics_17_13 crossref_primary_10_1038_s41534_024_00860_7 crossref_primary_10_1038_s41534_024_00906_w crossref_primary_10_1038_s41598_024_52759_0 crossref_primary_10_1103_PhysRevB_109_205134 crossref_primary_10_1038_s43588_024_00709_1 crossref_primary_10_1038_s41534_024_00808_x crossref_primary_10_1038_s41598_024_80188_6 crossref_primary_10_1103_PhysRevA_111_L030402 crossref_primary_10_1140_epjqt_s40507_025_00334_5 crossref_primary_10_1021_jacs_3c09353 crossref_primary_10_1103_PhysRevD_111_034513 crossref_primary_10_1364_OE_538480 crossref_primary_10_1103_PhysRevA_109_012431 crossref_primary_10_1103_PRXQuantum_6_010354 crossref_primary_10_1145_3680290 crossref_primary_10_1038_s41467_024_47857_6 crossref_primary_10_21468_SciPostPhys_15_6_222 crossref_primary_10_3390_quantum5030039 crossref_primary_10_1631_jzus_A2400397 crossref_primary_10_1016_j_future_2024_04_060 crossref_primary_10_1109_ACCESS_2024_3433383 crossref_primary_10_1007_s00894_024_06072_2 crossref_primary_10_22331_q_2025_03_20_1665 crossref_primary_10_1063_5_0161057 crossref_primary_10_1103_PhysRevApplied_23_014045 crossref_primary_10_1016_j_ijinfomgt_2024_102776 crossref_primary_10_1103_PRXQuantum_6_010308 crossref_primary_10_1021_acs_jpclett_3c03499 crossref_primary_10_3934_math_20241493 crossref_primary_10_1016_j_giq_2023_101884 crossref_primary_10_1038_d41586_024_03288_3 crossref_primary_10_1126_sciadv_adt4713 crossref_primary_10_22331_q_2024_11_07_1516 crossref_primary_10_1103_PhysRevA_110_042625 crossref_primary_10_1016_j_eng_2024_12_014 crossref_primary_10_1103_PhysRevApplied_21_067001 crossref_primary_10_1103_PhysRevB_109_L201117 crossref_primary_10_1103_PhysRevResearch_5_043216 crossref_primary_10_1038_s41467_024_47561_5 crossref_primary_10_22331_q_2024_07_15_1409 crossref_primary_10_1007_s42484_024_00201_z crossref_primary_10_1063_5_0234579 crossref_primary_10_1088_1367_2630_ad1536 crossref_primary_10_1103_PhysRevB_109_085128 crossref_primary_10_1103_PhysRevApplied_23_024074 crossref_primary_10_1103_PhysRevX_14_041007 crossref_primary_10_1007_s11128_024_04560_1 crossref_primary_10_1109_ACCESS_2024_3519676 crossref_primary_10_1103_PRXQuantum_6_010320 crossref_primary_10_1103_PhysRevA_110_052418 crossref_primary_10_1038_s41567_024_02661_3 crossref_primary_10_1038_s41534_024_00889_8 crossref_primary_10_1109_JSSC_2024_3459392 crossref_primary_10_1038_s44172_024_00293_2 crossref_primary_10_1038_s41467_023_43479_6 crossref_primary_10_1088_2632_2153_ad1007 crossref_primary_10_1021_acs_jpca_3c07429 crossref_primary_10_1038_s41534_024_00854_5 crossref_primary_10_1103_PhysRevB_109_235119 crossref_primary_10_1016_j_future_2024_04_027 crossref_primary_10_1103_PhysRevLett_133_120603 crossref_primary_10_2221_jcsj_59_71 crossref_primary_10_1007_s13222_024_00467_4 crossref_primary_10_1063_5_0236968 crossref_primary_10_1140_epjqt_s40507_024_00256_8 crossref_primary_10_1126_science_ado6285 crossref_primary_10_1038_s41598_024_64496_5 crossref_primary_10_1103_PhysRevA_110_042616 crossref_primary_10_53829_ntr202311fa5 crossref_primary_10_1002_qute_202300262 crossref_primary_10_53829_ntr202311fa4 crossref_primary_10_1038_s41586_024_07459_0 crossref_primary_10_1103_PhysRevX_14_041030 crossref_primary_10_1103_PhysRevB_109_134309 crossref_primary_10_1103_PhysRevB_111_054443 crossref_primary_10_1145_3691350 crossref_primary_10_1103_PhysRevB_110_184414 crossref_primary_10_22331_q_2024_05_14_1346 crossref_primary_10_1088_2058_9565_ad6eb2 crossref_primary_10_15388_24_INFOR582 crossref_primary_10_1016_j_asoc_2024_112096 crossref_primary_10_1039_D4CP03454F crossref_primary_10_1007_s11128_024_04369_y crossref_primary_10_1103_PhysRevLett_133_210401 crossref_primary_10_1103_PhysRevA_108_052613 crossref_primary_10_1063_5_0235741 crossref_primary_10_1038_s41567_024_02462_8 crossref_primary_10_1088_1367_2630_ad51e5 crossref_primary_10_1007_s42979_024_02761_0 crossref_primary_10_1103_PhysRevD_108_094518 crossref_primary_10_1103_PhysRevA_109_062604 crossref_primary_10_1103_PRXQuantum_5_010324 crossref_primary_10_1103_PhysRevA_109_062602 crossref_primary_10_1103_PhysRevApplied_23_014063 crossref_primary_10_1063_5_0243116 crossref_primary_10_22331_q_2025_02_18_1635 crossref_primary_10_38159_ehass_202451111 crossref_primary_10_1103_PhysRevC_110_054604 crossref_primary_10_1063_5_0155213 crossref_primary_10_3788_LOP240830 crossref_primary_10_1007_s11128_024_04603_7 crossref_primary_10_22331_q_2025_02_19_1638 crossref_primary_10_1038_s41534_025_00960_y crossref_primary_10_1103_PhysRevA_110_042405 crossref_primary_10_1007_s11128_024_04627_z crossref_primary_10_1103_PhysRevLett_132_180201 crossref_primary_10_1103_PhysRevX_14_041017 crossref_primary_10_1103_PhysRevA_109_062617 crossref_primary_10_1103_PhysRevB_111_L100304 crossref_primary_10_1103_PhysRevMaterials_9_034401 crossref_primary_10_1103_PhysRevX_14_041022 crossref_primary_10_1002_qute_202400150 crossref_primary_10_1103_PhysRevLett_132_017002 crossref_primary_10_1103_PhysRevMaterials_8_046202 crossref_primary_10_1103_PhysRevA_111_L010401 crossref_primary_10_1038_s41467_025_56298_8 crossref_primary_10_1109_TIT_2025_3529773 crossref_primary_10_1103_PhysRevA_109_062607 crossref_primary_10_1038_s41467_024_46402_9 crossref_primary_10_1103_PhysRevApplied_23_034052 crossref_primary_10_1088_2632_2153_adb4bc crossref_primary_10_1103_PRXQuantum_5_010308 crossref_primary_10_1103_PhysRevA_111_012424 crossref_primary_10_1021_acs_jctc_4c00874 crossref_primary_10_1088_1361_6404_ad06be crossref_primary_10_1103_PhysRevLett_133_130601 crossref_primary_10_1103_PRXQuantum_5_020101 crossref_primary_10_1103_PhysRevLett_131_230201 crossref_primary_10_1103_PhysRevResearch_6_013223 crossref_primary_10_1038_s41567_024_02411_5 crossref_primary_10_1063_5_0182642 crossref_primary_10_1093_gji_ggae160 crossref_primary_10_1007_s42484_024_00168_x crossref_primary_10_1140_epjs_s11734_024_01384_z crossref_primary_10_1103_PhysRevResearch_6_033092 crossref_primary_10_1109_TCAD_2024_3471949 crossref_primary_10_3390_e26050410 crossref_primary_10_1038_s42254_024_00796_z crossref_primary_10_1103_PhysRevC_109_044322 crossref_primary_10_1103_PhysRevLett_132_240402 crossref_primary_10_1038_d41586_023_01884_3 crossref_primary_10_1038_s41467_024_51932_3 crossref_primary_10_1021_acs_jctc_4c00528 crossref_primary_10_1063_5_0217294 crossref_primary_10_1021_acs_jpclett_4c01782 crossref_primary_10_1103_PhysRevA_109_052602 crossref_primary_10_1103_PhysRevLett_132_180805 crossref_primary_10_1088_1674_1056_ad7c2c crossref_primary_10_1103_PhysRevResearch_6_033297 crossref_primary_10_1380_vss_68_129 crossref_primary_10_1103_PhysRevResearch_6_023262 crossref_primary_10_1103_PhysRevResearch_6_013003 crossref_primary_10_1038_d41586_025_00765_1 crossref_primary_10_1103_PRXQuantum_5_020326 crossref_primary_10_1088_1367_2630_ad985b crossref_primary_10_1103_PhysRevA_110_062614 crossref_primary_10_1103_PhysRevA_109_062415 crossref_primary_10_1360_SSC_2024_0222 crossref_primary_10_1038_s41567_024_02400_8 crossref_primary_10_1007_s11128_024_04586_5 crossref_primary_10_1103_PhysRevResearch_6_013235 crossref_primary_10_1016_j_cma_2024_117428 crossref_primary_10_1103_PRXQuantum_5_020338 crossref_primary_10_1103_PRXQuantum_5_030353 crossref_primary_10_1103_PRXQuantum_5_030350 crossref_primary_10_1103_PhysRevB_110_245109 crossref_primary_10_1016_j_tips_2024_08_005 crossref_primary_10_1109_TQE_2024_3435757 crossref_primary_10_1038_s41586_023_06927_3 crossref_primary_10_1103_PhysRevD_109_114510 crossref_primary_10_1109_MCAS_2024_3349668 crossref_primary_10_1140_epjqt_s40507_024_00242_0 crossref_primary_10_22331_q_2025_02_06_1623 crossref_primary_10_1088_1751_8121_ad0348 crossref_primary_10_1109_TQE_2023_3302371 crossref_primary_10_1007_s13272_024_00774_2 crossref_primary_10_1088_1674_1056_ad8a49 crossref_primary_10_1103_PhysRevA_109_062437 crossref_primary_10_1016_j_teler_2024_100116 crossref_primary_10_1038_s41586_024_07941_9 crossref_primary_10_1088_1751_8121_ad85b2 crossref_primary_10_1103_PhysRevA_109_032606 crossref_primary_10_1103_PRXQuantum_5_030347 crossref_primary_10_3390_app14010387 crossref_primary_10_1038_s41467_025_57818_2 crossref_primary_10_1103_PhysRevA_109_032605 crossref_primary_10_1016_j_comnet_2024_110672 crossref_primary_10_1016_j_ascom_2024_100803 crossref_primary_10_1103_PhysRevResearch_6_023098 crossref_primary_10_1088_1361_6633_ad85f0 crossref_primary_10_1016_j_future_2023_12_002 crossref_primary_10_1109_ACCESS_2023_3322568 crossref_primary_10_1088_1402_4896_ada58d crossref_primary_10_1103_PRXQuantum_5_020315 crossref_primary_10_1103_PRXQuantum_5_020317 crossref_primary_10_1021_acs_jpclett_4c01100 crossref_primary_10_1038_s41598_024_57248_y crossref_primary_10_3390_e26110954 crossref_primary_10_1038_s41598_024_76967_w crossref_primary_10_1103_PhysRevApplied_22_024062 crossref_primary_10_1137_23M1609543 crossref_primary_10_1103_PhysRevB_109_014315 crossref_primary_10_1103_PhysRevA_110_062414 crossref_primary_10_1103_PhysRevResearch_6_013282 crossref_primary_10_1088_2058_9565_adb2bd crossref_primary_10_1103_PRXQuantum_5_030322 crossref_primary_10_1021_acs_jpclett_4c00264 crossref_primary_10_1103_PhysRevResearch_6_023068 crossref_primary_10_1088_1361_6633_ad1f81 crossref_primary_10_1038_s41598_025_87015_6 crossref_primary_10_1103_PhysRevApplied_23_034046 crossref_primary_10_1103_PhysRevA_110_062403 crossref_primary_10_1103_PhysRevResearch_7_013213 crossref_primary_10_1103_PhysRevResearch_6_013038 |
Cites_doi | 10.1103/PhysRevLett.129.060501 10.1038/s41586-019-1040-7 10.1038/s41534-022-00643-y 10.1126/sciadv.abi6690 10.22331/q-2018-08-06-79 10.1103/PhysRevA.102.012426 10.1109/QCS56647.2022.00015 10.21468/SciPostPhysLectNotes.5 10.1088/1742-5468/2005/04/P04010 10.1038/s41586-021-04257-w 10.1016/j.aop.2019.167998 10.1126/sciadv.abm7652 10.1038/s41534-021-00404-3 10.1038/s41586-019-1666-5 10.1126/science.abq5769 10.1103/PhysRevLett.119.180509 10.1103/PhysRevLett.107.080502 10.1103/PhysRevResearch.4.043027 10.1103/PhysRevA.70.052328 10.22331/q-2019-09-02-181 10.1103/PhysRevA.104.052607 10.1103/PhysRevB.97.035127 10.1103/PhysRevLett.76.722 10.1038/s41567-023-02042-2 10.1103/PhysRevA.76.042319 10.1103/PRXQuantum.4.020304 10.1038/s41567-022-01914-3 10.1103/RevModPhys.93.045003 10.1103/PhysRevLett.120.210501 10.1109/QCE49297.2020.00045 10.1103/PhysRevLett.123.190501 10.1103/PhysRevB.105.075131 10.1103/PhysRevLett.127.080505 10.1016/j.aop.2010.09.012 10.1103/PhysRevLett.124.037201 10.1103/RevModPhys.94.015004 10.1103/PhysRevB.97.045125 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). Copyright Nature Publishing Group Jun 15, 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: Copyright Nature Publishing Group Jun 15, 2023 |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – sequence: 0 name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | C6C AAYXX CITATION NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 OIOZB OTOTI 5PM |
DOI | 10.1038/s41586-023-06096-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database (Proquest) eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Agricultural Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 505 |
ExternalDocumentID | PMC10266970 2229295 37316724 10_1038_s41586_023_06096_3 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 I-F ITC J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NPM NXXTH ODYON OHT P-O PEA PJZUB PM3 PPXIY PQGLB PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UBY UHB USG VOH X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK AFKWF C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 SOI 7X8 AGEZK B-7 OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c568t-2c598b52cf3ed952e40bdfad67682c3eb34555e9aab1a9602a33618b6249e7743 |
IEDL.DBID | C6C |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:37:50 EDT 2025 Thu Dec 05 06:31:46 EST 2024 Fri Jul 11 05:00:17 EDT 2025 Sat Aug 23 12:54:35 EDT 2025 Mon Jul 21 05:51:23 EDT 2025 Tue Jul 01 02:58:41 EDT 2025 Thu Apr 24 23:11:33 EDT 2025 Fri Feb 21 02:39:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7965 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c568t-2c598b52cf3ed952e40bdfad67682c3eb34555e9aab1a9602a33618b6249e7743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF) AC02-05CH11231; SC0022716; BES-ERCAP0024710; 2138259; 2138286; 2138307; 2137603; 2138296 National Science Foundation (NSF) |
ORCID | 0000-0002-8486-9162 0000-0002-4195-0569 0000-0001-6372-0513 0000-0002-2566-1388 0000-0001-5088-4711 0000-0002-0991-3397 0000000284869162 0000000163720513 0000000150884711 0000000241950569 0000000225661388 0000000209913397 |
OpenAccessLink | https://www.nature.com/articles/s41586-023-06096-3 |
PMID | 37316724 |
PQID | 2827744591 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10266970 osti_scitechconnect_2229295 proquest_miscellaneous_2826218472 proquest_journals_2827744591 pubmed_primary_37316724 crossref_citationtrail_10_1038_s41586_023_06096_3 crossref_primary_10_1038_s41586_023_06096_3 springer_journals_10_1038_s41586_023_06096_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-15 |
PublicationDateYYYYMMDD | 2023-06-15 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – sequence: 0 name: Nature Publishing Group – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Kitaev, A. Y. Quantum measurements and the Abelian Stabilizer Problem. Preprint at https://arxiv.org/abs/quant-ph/9511026 (1995). DumitrescuEFCloud quantum computing of an atomic nucleusPhys. Rev. Lett.20181202105012018PhRvL.120u0501D1:CAS:528:DC%2BC1MXltVygtrs%3D10.1103/PhysRevLett.120.21050129883142 LiYBenjaminSCEfficient variational quantum simulator incorporating active error minimizationPhys. Rev. X20177021050 StehlikJTunable coupling architecture for fixed-frequency transmon superconducting qubitsPhys. Rev. Lett.20211270805052021PhRvL.127h0505S1:CAS:528:DC%2BB3MXhvFGhsr7L10.1103/PhysRevLett.127.08050534477428 SchöllwockUThe density-matrix renormalization group in the age of matrix product statesAnn. Phys.2011326961922011AnPhy.326...96S276967010.1016/j.aop.2010.09.0121213.81178 Ferracin, S. et al. Efficiently improving the performance of noisy quantum computers. Preprint at https://arxiv.org/abs/2201.10672 (2022). PreskilljQuantum computing in the NISQ era and beyondQuantum201827910.22331/q-2018-08-06-79 Giurgica-Tiron, T., Hindy, Y., Larose, R., Mari, A. & Zeng, W. J. digital zero noise extrapolation for quantum error mitigation. in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) 306–316 (IEEE, 2020). Shor, P. W. in Proc. 35th Annual Symposium on Foundations of Computer Science 124–134 (IEEE, 1994). BravyiSSimulation of quantum circuits by low-rank stabilizer decompositionsQuantum2019318110.22331/q-2019-09-02-181 HeANachmanBde JongWABauerCWZero-noise extrapolation for quantum-gate error mitigation with identity insertionsPhys. Rev. A20201020124262020PhRvA.102a2426H41316961:CAS:528:DC%2BB3cXhs1emsbfI10.1103/PhysRevA.102.012426 TemmeKBravyiSGambettaJMError mitigation for short-depth quantum circuitsPhys. Rev. Lett.20171191805092017PhRvL.119r0509T373072410.1103/PhysRevLett.119.18050929219599 CiracJIPérez-GarcíaDSchuchNVerstraeteFMatrix product states and projected entangled pair states: concepts, symmetries, theoremsRev. Mod. Phys.2021930450032021RvMP...93d5003C43699101:CAS:528:DC%2BB38Xhsl2jsbo%3D10.1103/RevModPhys.93.045003 ZhangEJHigh-performance superconducting quantum processors via laser annealing of transmon qubitsSci. Adv.20228eabi66901:CAS:528:DC%2BB38XhsV2rurnL10.1126/sciadv.abi6690355596839106287 RakovszkyTvon KeyserlingkCWPollmannFDissipation-assisted operator evolution method for capturing hydrodynamic transportPhys. Rev. B20221050751312022PhRvB.105g5131R1:CAS:528:DC%2BB38Xmsleht78%3D10.1103/PhysRevB.105.075131 KandalaAError mitigation extends the computational reach of a noisy quantum processorNature20195674914952019Natur.567..491K1:CAS:528:DC%2BC1MXosVSjur0%3D10.1038/s41586-019-1040-730918370 McDonough, B. et al. Automated quantum error mitigation based on probabilistic error reduction. In IEEE/ACM Third International Workshop on Quantum Computing Software(QCS) 83–93 (IEEE/ACM, 2022). BennettCHPurification of noisy entanglement and faithful teleportation via noisy channelsPhys. Rev. Lett.1996767227251996PhRvL..76..722B1:CAS:528:DyaK28XntVCktA%3D%3D10.1103/PhysRevLett.76.72210061534 CaiZMulti-exponential error extrapolation and combining error mitigation techniques for NISQ applicationsnpj Quantum Inf.20217802021npjQI...7...80C10.1038/s41534-021-00404-3 FreyPRachelSRealization of a discrete time crystal on 57 qubits of a quantum computerSci. Adv.20228eabm765210.1126/sciadv.abm7652352353478890700 WhiteCDZaletelMMongRSKRefaelGQuantum dynamics of thermalizing systemsPhys. Rev. B2018970351272018PhRvB..97c5127W1:CAS:528:DC%2BC1MXlt1ersL0%3D10.1103/PhysRevB.97.035127 KochJCharge-insensitive qubit design derived from the Cooper pair boxPhys. Rev. A2007760423192007PhRvA..76d2319K10.1103/PhysRevA.76.042319 CarrollMRosenblattSJurcevicPIauerIKandalaADynamics of superconducting qubit relaxation timesnpj Quantum Inf.202292022npjQI...8..132C10.1038/s41534-022-00643-y BhartiKNoisy intermediate-scale quantum algorithmsRev. Mod. Phys.2022940150042022RvMP...94a5004B44220441:CAS:528:DC%2BB38XhtVOnsLrE10.1103/RevModPhys.94.015004 Tran, M. C., Sharma, K. & Temme, K. Locality and error mitigation of quantum circuits. Preprint at https://arxiv.org/abs/2303.06496 (2023). van den Berg, E., Minev, Z.K., Kandala, A. et al. Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors. Nat. Phys.https://doi.org/10.1038/s41567-023-02042-2 (2023). AaronsonSGottesmanDImproved simulation of stabilizer circuitsPhys. Rev. A2004700523282004PhRvA..70e2328A10.1103/PhysRevA.70.052328 WeiKXHamiltonian engineering with multicolor drives for fast entangling gates and quantum crosstalk cancellationPhys. Rev. Lett.20221290605012022PhRvL.129f0501W1:CAS:528:DC%2BB38Xit1antb7M10.1103/PhysRevLett.129.06050136018659 ChowJMSimple all-microwave entangling gate for fixed-frequency superconducting qubitsPhys. Rev. Lett.20111070805022011PhRvL.107h0502C10.1103/PhysRevLett.107.08050221929152 Hauschild, J. & Pollmann, F. Efficient numerical simulations with tensor networks: Tensor Network Python (TeNPy). SciPost Phys. Lect. Noteshttps://doi.org/10.21468/SciPostPhysLectNotes.5 (2018). ZhouYStoudenmireEMWaintalXWhat limits the simulation of quantum computers?Phys. Rev. X2020100410381:CAS:528:DC%2BB3MXjtFSktLo%3D Kim, Y. et al. Scalable error mitigation for noisy quantum circuits produces competitive expectation values. Nat. Phys.https://doi.org/10.1038/s41567-022-01914-3 (2023). ChenI-CBurdickBYaoYOrthPPIadecolaTError-mitigated simulation of quantum many-body scars on quantum computers with pulse-level controlPhys. Rev. Res.202240430271:CAS:528:DC%2BB3sXhsVGgtLc%3D10.1103/PhysRevResearch.4.043027 MariAShammahNZengWJExtending quantum probabilistic error cancellation by noise scalingPhys. Rev. A20211040526072021PhRvA.104e2607M43524811:CAS:528:DC%2BB3MXislagtr%2FM10.1103/PhysRevA.104.052607 PaeckelSTime-evolution methods for matrix-product statesAnn. Phys.201941116799840313741:CAS:528:DC%2BC1MXitFOjt73N10.1016/j.aop.2019.1679981433.81170 MiXTime-crystalline eigenstate order on a quantum processorNature20226015315362022Natur.601..531M1:CAS:528:DC%2BB38XhslCns7Y%3D10.1038/s41586-021-04257-w34847568 EndoSBenjaminSCLiYPractical quantum error mitigation for near-future applicationsPhys. Rev. X201880310271:CAS:528:DC%2BC1MXltFSnsLw%3D GuoCGeneral-purpose quantum circuit simulator with projected entangled-pair states and the quantum supremacy frontierPhys. Rev. Lett.20191231905012019PhRvL.123s0501G1:CAS:528:DC%2BB3cXhvFyksbY%3D10.1103/PhysRevLett.123.19050131765197 CalabresePCardyJEvolution of entanglement entropy in one-dimensional systemsJ. Stat. Mech. Theory Exp.20052005P04010214103310.1088/1742-5468/2005/04/P040101456.82578 HubigCHaegemanJSchollwöckUError estimates for extrapolations with matrix-product statesPhys. Rev. B2018970451252018PhRvB..97d5125H10.1103/PhysRevB.97.045125 ZaletelMPPollmannFIsometric tensor network states in two dimensionsPhys. Rev. Lett.20201240372012020PhRvL.124c7201Z40565941:CAS:528:DC%2BB3cXmslygsr0%3D10.1103/PhysRevLett.124.03720132031848 AruteFQuantum supremacy using a programmable superconducting processorNature20195745055102019Natur.574..505A1:CAS:528:DC%2BC1MXitVagsb3I10.1038/s41586-019-1666-531645734 MiXNoise-resilient edge modes on a chain of superconducting qubitsScience20223787857902022Sci...378..785M1:CAS:528:DC%2BB38XivFensbvF10.1126/science.abq576936395220 Knill, E. Fault-tolerant postselected quantum computation: threshold analysis. Preprint at https://arxiv.org/abs/quant-ph/0404104 (2004). AyralTDensity-matrix renormalization group algorithm for simulating quantum circuits with a finite fidelityPRX Quantum202340203042023PRXQ....4b0304A10.1103/PRXQuantum.4.020304 S Aaronson (6096_CR29) 2004; 70 EF Dumitrescu (6096_CR20) 2018; 120 KX Wei (6096_CR44) 2022; 129 JI Cirac (6096_CR45) 2021; 93 J Koch (6096_CR15) 2007; 76 A Kandala (6096_CR18) 2019; 567 J Stehlik (6096_CR42) 2021; 127 6096_CR7 JM Chow (6096_CR16) 2011; 107 6096_CR17 6096_CR33 X Mi (6096_CR14) 2022; 378 Y Zhou (6096_CR34) 2020; 10 K Temme (6096_CR9) 2017; 119 6096_CR30 EJ Zhang (6096_CR43) 2022; 8 F Arute (6096_CR8) 2019; 574 M Carroll (6096_CR28) 2022; 9 CH Bennett (6096_CR23) 1996; 76 S Bravyi (6096_CR38) 2019; 3 C Guo (6096_CR35) 2019; 123 CD White (6096_CR41) 2018; 97 A He (6096_CR21) 2020; 102 6096_CR1 C Hubig (6096_CR39) 2018; 97 U Schöllwock (6096_CR32) 2011; 326 T Ayral (6096_CR36) 2023; 4 Z Cai (6096_CR31) 2021; 7 T Rakovszky (6096_CR40) 2022; 105 6096_CR6 P Frey (6096_CR12) 2022; 8 X Mi (6096_CR11) 2022; 601 S Endo (6096_CR19) 2018; 8 Y Li (6096_CR10) 2017; 7 6096_CR26 MP Zaletel (6096_CR3) 2020; 124 6096_CR24 P Calabrese (6096_CR37) 2005; 2005 6096_CR27 A Mari (6096_CR25) 2021; 104 j Preskill (6096_CR4) 2018; 2 6096_CR22 K Bharti (6096_CR5) 2022; 94 S Paeckel (6096_CR2) 2019; 411 I-C Chen (6096_CR13) 2022; 4 |
References_xml | – reference: Kitaev, A. Y. Quantum measurements and the Abelian Stabilizer Problem. Preprint at https://arxiv.org/abs/quant-ph/9511026 (1995). – reference: AruteFQuantum supremacy using a programmable superconducting processorNature20195745055102019Natur.574..505A1:CAS:528:DC%2BC1MXitVagsb3I10.1038/s41586-019-1666-531645734 – reference: ChowJMSimple all-microwave entangling gate for fixed-frequency superconducting qubitsPhys. Rev. Lett.20111070805022011PhRvL.107h0502C10.1103/PhysRevLett.107.08050221929152 – reference: KandalaAError mitigation extends the computational reach of a noisy quantum processorNature20195674914952019Natur.567..491K1:CAS:528:DC%2BC1MXosVSjur0%3D10.1038/s41586-019-1040-730918370 – reference: ZaletelMPPollmannFIsometric tensor network states in two dimensionsPhys. Rev. Lett.20201240372012020PhRvL.124c7201Z40565941:CAS:528:DC%2BB3cXmslygsr0%3D10.1103/PhysRevLett.124.03720132031848 – reference: CarrollMRosenblattSJurcevicPIauerIKandalaADynamics of superconducting qubit relaxation timesnpj Quantum Inf.202292022npjQI...8..132C10.1038/s41534-022-00643-y – reference: StehlikJTunable coupling architecture for fixed-frequency transmon superconducting qubitsPhys. Rev. Lett.20211270805052021PhRvL.127h0505S1:CAS:528:DC%2BB3MXhvFGhsr7L10.1103/PhysRevLett.127.08050534477428 – reference: TemmeKBravyiSGambettaJMError mitigation for short-depth quantum circuitsPhys. Rev. Lett.20171191805092017PhRvL.119r0509T373072410.1103/PhysRevLett.119.18050929219599 – reference: DumitrescuEFCloud quantum computing of an atomic nucleusPhys. Rev. Lett.20181202105012018PhRvL.120u0501D1:CAS:528:DC%2BC1MXltVygtrs%3D10.1103/PhysRevLett.120.21050129883142 – reference: CalabresePCardyJEvolution of entanglement entropy in one-dimensional systemsJ. Stat. Mech. Theory Exp.20052005P04010214103310.1088/1742-5468/2005/04/P040101456.82578 – reference: BennettCHPurification of noisy entanglement and faithful teleportation via noisy channelsPhys. Rev. Lett.1996767227251996PhRvL..76..722B1:CAS:528:DyaK28XntVCktA%3D%3D10.1103/PhysRevLett.76.72210061534 – reference: CiracJIPérez-GarcíaDSchuchNVerstraeteFMatrix product states and projected entangled pair states: concepts, symmetries, theoremsRev. Mod. Phys.2021930450032021RvMP...93d5003C43699101:CAS:528:DC%2BB38Xhsl2jsbo%3D10.1103/RevModPhys.93.045003 – reference: McDonough, B. et al. Automated quantum error mitigation based on probabilistic error reduction. In IEEE/ACM Third International Workshop on Quantum Computing Software(QCS) 83–93 (IEEE/ACM, 2022). – reference: van den Berg, E., Minev, Z.K., Kandala, A. et al. Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors. Nat. Phys.https://doi.org/10.1038/s41567-023-02042-2 (2023). – reference: EndoSBenjaminSCLiYPractical quantum error mitigation for near-future applicationsPhys. Rev. X201880310271:CAS:528:DC%2BC1MXltFSnsLw%3D – reference: RakovszkyTvon KeyserlingkCWPollmannFDissipation-assisted operator evolution method for capturing hydrodynamic transportPhys. Rev. B20221050751312022PhRvB.105g5131R1:CAS:528:DC%2BB38Xmsleht78%3D10.1103/PhysRevB.105.075131 – reference: Knill, E. Fault-tolerant postselected quantum computation: threshold analysis. Preprint at https://arxiv.org/abs/quant-ph/0404104 (2004). – reference: PaeckelSTime-evolution methods for matrix-product statesAnn. Phys.201941116799840313741:CAS:528:DC%2BC1MXitFOjt73N10.1016/j.aop.2019.1679981433.81170 – reference: BravyiSSimulation of quantum circuits by low-rank stabilizer decompositionsQuantum2019318110.22331/q-2019-09-02-181 – reference: Giurgica-Tiron, T., Hindy, Y., Larose, R., Mari, A. & Zeng, W. J. digital zero noise extrapolation for quantum error mitigation. in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) 306–316 (IEEE, 2020). – reference: AaronsonSGottesmanDImproved simulation of stabilizer circuitsPhys. Rev. A2004700523282004PhRvA..70e2328A10.1103/PhysRevA.70.052328 – reference: WhiteCDZaletelMMongRSKRefaelGQuantum dynamics of thermalizing systemsPhys. Rev. B2018970351272018PhRvB..97c5127W1:CAS:528:DC%2BC1MXlt1ersL0%3D10.1103/PhysRevB.97.035127 – reference: MariAShammahNZengWJExtending quantum probabilistic error cancellation by noise scalingPhys. Rev. A20211040526072021PhRvA.104e2607M43524811:CAS:528:DC%2BB3MXislagtr%2FM10.1103/PhysRevA.104.052607 – reference: CaiZMulti-exponential error extrapolation and combining error mitigation techniques for NISQ applicationsnpj Quantum Inf.20217802021npjQI...7...80C10.1038/s41534-021-00404-3 – reference: HubigCHaegemanJSchollwöckUError estimates for extrapolations with matrix-product statesPhys. Rev. B2018970451252018PhRvB..97d5125H10.1103/PhysRevB.97.045125 – reference: LiYBenjaminSCEfficient variational quantum simulator incorporating active error minimizationPhys. Rev. X20177021050 – reference: WeiKXHamiltonian engineering with multicolor drives for fast entangling gates and quantum crosstalk cancellationPhys. Rev. Lett.20221290605012022PhRvL.129f0501W1:CAS:528:DC%2BB38Xit1antb7M10.1103/PhysRevLett.129.06050136018659 – reference: Tran, M. C., Sharma, K. & Temme, K. Locality and error mitigation of quantum circuits. Preprint at https://arxiv.org/abs/2303.06496 (2023). – reference: FreyPRachelSRealization of a discrete time crystal on 57 qubits of a quantum computerSci. Adv.20228eabm765210.1126/sciadv.abm7652352353478890700 – reference: MiXNoise-resilient edge modes on a chain of superconducting qubitsScience20223787857902022Sci...378..785M1:CAS:528:DC%2BB38XivFensbvF10.1126/science.abq576936395220 – reference: ChenI-CBurdickBYaoYOrthPPIadecolaTError-mitigated simulation of quantum many-body scars on quantum computers with pulse-level controlPhys. Rev. Res.202240430271:CAS:528:DC%2BB3sXhsVGgtLc%3D10.1103/PhysRevResearch.4.043027 – reference: ZhangEJHigh-performance superconducting quantum processors via laser annealing of transmon qubitsSci. Adv.20228eabi66901:CAS:528:DC%2BB38XhsV2rurnL10.1126/sciadv.abi6690355596839106287 – reference: BhartiKNoisy intermediate-scale quantum algorithmsRev. Mod. Phys.2022940150042022RvMP...94a5004B44220441:CAS:528:DC%2BB38XhtVOnsLrE10.1103/RevModPhys.94.015004 – reference: KochJCharge-insensitive qubit design derived from the Cooper pair boxPhys. Rev. A2007760423192007PhRvA..76d2319K10.1103/PhysRevA.76.042319 – reference: Ferracin, S. et al. Efficiently improving the performance of noisy quantum computers. Preprint at https://arxiv.org/abs/2201.10672 (2022). – reference: GuoCGeneral-purpose quantum circuit simulator with projected entangled-pair states and the quantum supremacy frontierPhys. Rev. Lett.20191231905012019PhRvL.123s0501G1:CAS:528:DC%2BB3cXhvFyksbY%3D10.1103/PhysRevLett.123.19050131765197 – reference: Kim, Y. et al. Scalable error mitigation for noisy quantum circuits produces competitive expectation values. Nat. Phys.https://doi.org/10.1038/s41567-022-01914-3 (2023). – reference: HeANachmanBde JongWABauerCWZero-noise extrapolation for quantum-gate error mitigation with identity insertionsPhys. Rev. A20201020124262020PhRvA.102a2426H41316961:CAS:528:DC%2BB3cXhs1emsbfI10.1103/PhysRevA.102.012426 – reference: PreskilljQuantum computing in the NISQ era and beyondQuantum201827910.22331/q-2018-08-06-79 – reference: MiXTime-crystalline eigenstate order on a quantum processorNature20226015315362022Natur.601..531M1:CAS:528:DC%2BB38XhslCns7Y%3D10.1038/s41586-021-04257-w34847568 – reference: ZhouYStoudenmireEMWaintalXWhat limits the simulation of quantum computers?Phys. Rev. X2020100410381:CAS:528:DC%2BB3MXjtFSktLo%3D – reference: Shor, P. W. in Proc. 35th Annual Symposium on Foundations of Computer Science 124–134 (IEEE, 1994). – reference: AyralTDensity-matrix renormalization group algorithm for simulating quantum circuits with a finite fidelityPRX Quantum202340203042023PRXQ....4b0304A10.1103/PRXQuantum.4.020304 – reference: SchöllwockUThe density-matrix renormalization group in the age of matrix product statesAnn. Phys.2011326961922011AnPhy.326...96S276967010.1016/j.aop.2010.09.0121213.81178 – reference: Hauschild, J. & Pollmann, F. Efficient numerical simulations with tensor networks: Tensor Network Python (TeNPy). SciPost Phys. Lect. Noteshttps://doi.org/10.21468/SciPostPhysLectNotes.5 (2018). – volume: 129 start-page: 060501 year: 2022 ident: 6096_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.060501 – volume: 567 start-page: 491 year: 2019 ident: 6096_CR18 publication-title: Nature doi: 10.1038/s41586-019-1040-7 – ident: 6096_CR7 – volume: 9 year: 2022 ident: 6096_CR28 publication-title: npj Quantum Inf. doi: 10.1038/s41534-022-00643-y – volume: 8 start-page: eabi6690 year: 2022 ident: 6096_CR43 publication-title: Sci. Adv. doi: 10.1126/sciadv.abi6690 – volume: 2 start-page: 79 year: 2018 ident: 6096_CR4 publication-title: Quantum doi: 10.22331/q-2018-08-06-79 – volume: 102 start-page: 012426 year: 2020 ident: 6096_CR21 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.012426 – ident: 6096_CR30 – ident: 6096_CR27 doi: 10.1109/QCS56647.2022.00015 – ident: 6096_CR33 doi: 10.21468/SciPostPhysLectNotes.5 – volume: 2005 start-page: P04010 year: 2005 ident: 6096_CR37 publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2005/04/P04010 – volume: 601 start-page: 531 year: 2022 ident: 6096_CR11 publication-title: Nature doi: 10.1038/s41586-021-04257-w – volume: 10 start-page: 041038 year: 2020 ident: 6096_CR34 publication-title: Phys. Rev. X – volume: 411 start-page: 167998 year: 2019 ident: 6096_CR2 publication-title: Ann. Phys. doi: 10.1016/j.aop.2019.167998 – volume: 8 start-page: eabm7652 year: 2022 ident: 6096_CR12 publication-title: Sci. Adv. doi: 10.1126/sciadv.abm7652 – volume: 7 start-page: 80 year: 2021 ident: 6096_CR31 publication-title: npj Quantum Inf. doi: 10.1038/s41534-021-00404-3 – volume: 574 start-page: 505 year: 2019 ident: 6096_CR8 publication-title: Nature doi: 10.1038/s41586-019-1666-5 – volume: 378 start-page: 785 year: 2022 ident: 6096_CR14 publication-title: Science doi: 10.1126/science.abq5769 – volume: 119 start-page: 180509 year: 2017 ident: 6096_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.180509 – volume: 7 start-page: 021050 year: 2017 ident: 6096_CR10 publication-title: Phys. Rev. X – volume: 107 start-page: 080502 year: 2011 ident: 6096_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.080502 – volume: 4 start-page: 043027 year: 2022 ident: 6096_CR13 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.4.043027 – ident: 6096_CR6 – volume: 8 start-page: 031027 year: 2018 ident: 6096_CR19 publication-title: Phys. Rev. X – volume: 70 start-page: 052328 year: 2004 ident: 6096_CR29 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.70.052328 – volume: 3 start-page: 181 year: 2019 ident: 6096_CR38 publication-title: Quantum doi: 10.22331/q-2019-09-02-181 – volume: 104 start-page: 052607 year: 2021 ident: 6096_CR25 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.104.052607 – volume: 97 start-page: 035127 year: 2018 ident: 6096_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.035127 – volume: 76 start-page: 722 year: 1996 ident: 6096_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.722 – ident: 6096_CR1 doi: 10.1038/s41567-023-02042-2 – volume: 76 start-page: 042319 year: 2007 ident: 6096_CR15 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.76.042319 – volume: 4 start-page: 020304 year: 2023 ident: 6096_CR36 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.4.020304 – ident: 6096_CR17 doi: 10.1038/s41567-022-01914-3 – volume: 93 start-page: 045003 year: 2021 ident: 6096_CR45 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.93.045003 – volume: 120 start-page: 210501 year: 2018 ident: 6096_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.210501 – ident: 6096_CR22 doi: 10.1109/QCE49297.2020.00045 – volume: 123 start-page: 190501 year: 2019 ident: 6096_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.190501 – volume: 105 start-page: 075131 year: 2022 ident: 6096_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.075131 – volume: 127 start-page: 080505 year: 2021 ident: 6096_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.080505 – ident: 6096_CR26 – ident: 6096_CR24 – volume: 326 start-page: 96 year: 2011 ident: 6096_CR32 publication-title: Ann. Phys. doi: 10.1016/j.aop.2010.09.012 – volume: 124 start-page: 037201 year: 2020 ident: 6096_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.037201 – volume: 94 start-page: 015004 year: 2022 ident: 6096_CR5 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.94.015004 – volume: 97 start-page: 045125 year: 2018 ident: 6096_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.045125 |
SSID | ssj0005174 |
Score | 2.7592137 |
Snippet | Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing... |
SourceID | pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 500 |
SubjectTerms | 639/705/258 639/766/483/3926 639/766/483/481 Approximation Circuits Estimates Fault tolerance Humanities and Social Sciences Information technology Isometric Mathematical analysis MATHEMATICS AND COMPUTING Microprocessors multidisciplinary Quantum computers Quantum computing Quantum entanglement Quantum information Quantum simulation Qubits (quantum computing) Science Science (multidisciplinary) Tensors |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3BIiQuiJavtAUZiQMIrCZ27NgnhICl4sCJSr1ZtuMIpCVpSfL_O3aSXW2BnjNxkvGM5409mQfwumkwrirHaK7qQEvZ5FQjjKfa16HyAX2zTt0-v8uz8_LbhbiYN9z6uaxyWRPTQl13Pu6Rn2JqgEilFLr4cHlFI2tUPF2dKTTuwr0CI00s6VLrr7sSjxtdmOefZnKuTnsMXCqW30ZuA4TxlO8FplWHDvYv0Pl37eSNA9QUl9aP4OEMKMnHyQIO4E5oD-F-Kuz0_SEczM7bkzdzh-m3j-HzwiVKELIShIAEzS_icdI15GpEZY-_iU98D_hM4gKKoawdNwMZuk2IZBzhCZyvv_z4dEZnOgXqhVQDZV5o5QTzDQ-1FiyUuasbW0vMOJjnmFWXQoigrXWFxcSGWc5loZzEDC2g7vlTWLVdG54D0drhQK5UtsFRlHWy1GlyAsf0yFYZFIsujZ97jUfKi41JZ95cmUn_BvVvkv4Nz-Dd9p7LqdPGrdLHcYoM4oTY7NbHqiA_mMhOzrTI4GSZOTP7ZG92FpTBq-1l9KZ4RGLb0I1JRsakt2IZPJsmevsyPJJ8VazMQO2ZwFYgdurev9L--pk6diOKk1JXeQbvF2vZvdf_P_Lo9s84hgdsMmBaiBNYDX_G8AIh0uBeJj-4BkEyCn4 priority: 102 providerName: ProQuest |
Title | Evidence for the utility of quantum computing before fault tolerance |
URI | https://link.springer.com/article/10.1038/s41586-023-06096-3 https://www.ncbi.nlm.nih.gov/pubmed/37316724 https://www.proquest.com/docview/2827744591 https://www.proquest.com/docview/2826218472 https://www.osti.gov/servlets/purl/2229295 https://pubmed.ncbi.nlm.nih.gov/PMC10266970 |
Volume | 618 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21WyFxqWj5Ci0rI3EAQURix459hKVLxaFCiEp7s2zHUZGWhLLJ_2fsJFttKUhccvHEccae-D158gbgZV3jviotTTNZ-bQQdZYqhPGpcpUvncfYrKLa54U4vyw-r_hqD-j0L0xM2o-SlvEzPWWHvdvgRiNDumyoRYCwO2X7cBCk2wPhWojFTVrHLeXl8UeZjMk7-tjZjGYtBtVdQPPPfMlbh6ZxL1o-gMMRRJL3w7CPYM83x3AvJnO6zTEcjQG7Ia9GVenXD-HjVD-UIEwlCPsILrmAwUlbk-seHdz_IC7WeMBnEuvRDG1Nv-5I1659KMDhH8Hl8uzb4jwdSyikjgvZpdRxJS2nrma-Upz6IrNVbSqBLIM6hky64Jx7ZYzNDZIZahgTubQCWZlHZMgew6xpG_8UiFIWO7KFNDX2Io0VBXKRgivPkBKZMoF88qV2o754KHOx1vGcm0k9-F-j_3X0v2YJvNne83NQ1_in9UmYIo3YIAjcupAJ5DodKpJTxRM4nWZOj3G40UgoyzjIPIEX22aMoHAsYhrf9tFGBKJb0gSeDBO9HQwLhb1KWiQgd5bA1iCoc--2NN-voko3IjchVJkl8HZaLTfj-vtLPvs_8xO4T4cFneb8FGbdr94_R5jU2Tnsl6sSr3KRh-vy0xwOPpxdfPk6jxHzG2xuDHI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRYheEC2v0AJGAgkEVhM7TuwDQoiybGnpqZV6cxPHEZWWpCWJEH-K38jYSXa1BXrrObNeZx72N_F4PoAXZYn7qswZDWVhaZyUIVUI46kyhU2NxdgsfLfPw2R2HH85ESdr8Hu8C-PKKsc10S_URW3cN_IdTA0QqcRCRe_PL6hjjXKnqyOFRu8W-_bXT0zZmnd7u2jfl4xNPx19nNGBVYAakciWMiOUzAUzJbeFEszGYV6UWZEg8GaGY3IZCyGsyrI8yhDfs4zzJJJ5gomKxSlwHPcG3Iw57uTuZvr087Kk5FLX5-GSTsjlToMbpXTlvo5LAdMGylc2wkmNAf0vkPt3realA1u_D07vwp0BwJIPvcdtwJqtNuGWLyQ1zSZsDItFQ14NHa1f34PdkbuUIEQmCDkJurvD_6QuyUWHxu2-E-P5JfA_SW5RDGWzbt6Stp5bR_5h78PxtSj6AUyqurKPgCiV40B5LLMSR5FZnsTKO4PlmI5laQDRqEttht7mjmJjrv0ZO5e6179G_Wuvf80DeLP4zXnf2eNK6S1nIo24xDXXNa4KybTasaEzJQLYHi2nhzWg0UuPDeD54jFGrzuSySpbd14mcUl2ygJ42Bt6MRnuSMVSFgcgV1xgIeA6g68-qc6--Q7hiBqTRKVhAG9Hb1nO6_8v-fjq13gGt2dHXw_0wd7h_hass96ZaSS2YdL-6OwThGdt_tTHBIHT6w7CPwczRuY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRSAuiJZXaAEjgQQCa7N27NgHhFCXVUtRxYFKvZnEcQTSkrQkEeKv8esYO8mWLdBbz5k4zjzsb-LJfABPyxL3VZUzGqvC0USWMdUI46m2hUutw9gsQrfPQ7l3lLw_Fscb8Gv8F8aXVY5rYlioi9r6b-RTTA0QqSRCz6blUBbxcb54c3JKPYOUP2kd6TR6FzlwP39g-ta83p-jrZ8xtnj3aXePDgwD1AqpWsqs0CoXzJbcFVowl8R5UWaFRBDOLMdEMxFCOJ1l-SxDrM8yzuVM5RKTFofT4TjuFbia8lT5GFO7f5SXnOsAPfywE3M1bXDTVL701_MqYApB-dqmOKkxuP8FeP-u2zx3eBv2xMUtuDmAWfK2975N2HDVFlwLRaW22YLNYeFoyPOhu_WL2zAfeUwJwmWC8JOg6_tcgNQlOe3Q0N03YgPXBD6T5A7FUDbrli1p66XzRCDuDhxdiqLvwqSqK3cfiNY5DpQnKitxFJXlMtHBMRzH1CxLI5iNujR26HPu6TaWJpy3c2V6_RvUvwn6NzyCl6t7TvouHxdKb3sTGcQovtGu9RVJtjWeGZ1pEcHOaDkzrAeNOfPeCJ6sLmMk--OZrHJ1F2SkT7hTFsG93tCryXBPMJayJAK15gIrAd8lfP1K9fVL6BaOCFJKncYRvBq95Wxe_3_JBxe_xmO4juFnPuwfHmzDDdb7Mp2JHZi03zv3EJFamz8KIUHg82XH4G8bD0rn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+the+utility+of+quantum+computing+before+fault+tolerance&rft.jtitle=Nature+%28London%29&rft.au=Kim%2C+Youngseok&rft.au=Eddins%2C+Andrew&rft.au=Anand%2C+Sajant&rft.au=Wei%2C+Ken+Xuan&rft.date=2023-06-15&rft.eissn=1476-4687&rft.volume=618&rft.issue=7965&rft.spage=500&rft_id=info:doi/10.1038%2Fs41586-023-06096-3&rft_id=info%3Apmid%2F37316724&rft.externalDocID=37316724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |