WDR33 alternative polyadenylation is dependent on stochastic poly(a) site usage and splicing efficiencies
Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two n...
Saved in:
Published in | RNA biology Vol. 21; no. 1; pp. 970 - 980 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
31.12.2024
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of WDR33 APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3's strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3' splice site within the intron. Overall, our findings demonstrate that usage of WDR33 alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA. |
---|---|
AbstractList | Transcripts from the human
WDR33
gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of
WDR33
APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3’s strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3’ splice site within the intron. Overall, our findings demonstrate that usage of
WDR33
alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA. Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of WDR33 APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3's strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3' splice site within the intron. Overall, our findings demonstrate that usage of WDR33 alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA.Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of WDR33 APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3's strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3' splice site within the intron. Overall, our findings demonstrate that usage of WDR33 alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA. Transcripts from the human gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3's strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3' splice site within the intron. Overall, our findings demonstrate that usage of alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA. Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of WDR33 APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3's strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3' splice site within the intron. Overall, our findings demonstrate that usage of WDR33 alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA. |
Author | Liu, Lizhi Seimiya, Takahiro Manley, James L. |
Author_xml | – sequence: 1 givenname: Lizhi surname: Liu fullname: Liu, Lizhi organization: Columbia University – sequence: 2 givenname: Takahiro surname: Seimiya fullname: Seimiya, Takahiro organization: Columbia University – sequence: 3 givenname: James L. surname: Manley fullname: Manley, James L. email: jlm2@columbia.edu organization: Columbia University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39327832$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUstuFDEQHKEg8oBPAM0xHGbxc8YWB0AhgUiRkBCIo-W12xtHXnuxZ4P27_HsAxEOwMFyd7u6XHbXaXMUU4SmeY7RDCOBXmHOhp6IfkYQYTPCkBiQeNScYM55J7hgR1PMhm4CHTenpdwhRHsh-ZPmmEpKBkHJSeO_vf9MaavDCDnq0d9Du0phoy3ETah5iq0vrYUVxFoa25qXMZlbXUZvttBz_bItfoR2XfQCWh1tW1bBGx8XLThXA4h1lafNY6dDgWf7_az5enX55eJjd_Ppw_XFu5vO8F6MHZE9OCaN4XOE3dBjZDjvCdbcDo6wed9TQHKgWnMsma1gMHMsB4YtlURSetZc73ht0ndqlf1S541K2qttIeWF0rmKD6CktRaYZFJSxzQTAhyFWiActEMCKtebHddqPV-CNfUHsg4PSB-eRH-rFuleYcwYl2RSc75nyOn7Gsqolr4YCEFHSOuiaJ0R4WRg_wPFiCFMOavQF7_r-iXoMNcKeL0DmJxKyeCU8eN2nFWmDwojNblIHVykJhepvYtqN_-j-3DBv_re7vp8dCkv9Y-Ug1Wj3oSUXdbVBtMr_krxE-X-3pY |
CitedBy_id | crossref_primary_10_1016_j_xpro_2025_103709 crossref_primary_10_1016_j_diagmicrobio_2024_116587 |
Cites_doi | 10.4161/rna.22570 10.1080/21541264.2020.1777047 10.1038/nmeth.2019 10.1038/nrm.2016.116 10.1016/S0021-9258(18)42423-4 10.1101/gad.250993.114 10.1016/j.molcel.2017.11.031 10.1146/annurev-biochem-040320-101629 10.1038/s41594-017-0020-6 10.1016/S1097-2765(03)00453-2 10.1128/msystems.01466-21 10.1073/pnas.1211101109 10.1038/nature13261 10.1080/15476286.2022.2071025 10.1016/j.molcel.2008.12.028 10.1093/nar/gkl794 10.1101/gr.5532707 10.1038/nature09479 10.1101/gr.132563.111 10.1111/imr.13018 10.3389/fmolb.2019.00005 10.1038/nmeth.2288 10.1016/j.cell.2017.11.023 10.1080/15476286.2017.1306171 10.1038/s41587-020-0456-9 10.3389/fgene.2021.818668 10.1016/S0092-8674(00)82000-0 10.1038/s41598-021-86644-x 10.1002/embj.201386537 10.1073/pnas.1718723115 10.1126/science.1229963 10.1038/s41580-022-00507-5 10.1016/j.celrep.2024.113886 10.1016/j.immuni.2020.05.013 10.1038/ncomms6274 10.1093/nar/gki158 10.1016/j.cell.2018.02.033 10.1016/j.sbi.2019.08.001 10.1016/S1097-2765(00)80291-9 10.1016/S0021-9258(18)42005-4 10.1038/nprot.2006.481 10.1016/j.celrep.2018.09.084 10.1101/gad.250985.114 10.1038/ni.3132 10.1042/BST20221128 10.1016/j.celrep.2012.05.003 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 The Author(s) |
DBID | 0YH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1080/15476286.2024.2408708 |
DatabaseName | Taylor & Francis Free Journals (Free resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 0YH name: Taylor & Francis Free Journals (Free resource, activated by CARLI) url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | L. LIU ET AL |
EISSN | 1555-8584 |
EndPage | 980 |
ExternalDocumentID | oai_doaj_org_article_9ddde494993f4a488ef3ee4925eaf08e PMC11445923 39327832 10_1080_15476286_2024_2408708 2408708 |
Genre | Research Article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: DGE-2036197 – fundername: National Institutes of Health grantid: R35 GM118136 – fundername: NIGMS NIH HHS grantid: R35 GM118136 |
GroupedDBID | --- 0YH 123 30N 4.4 53G AAHBH AAJMT ABCCY ABFIM ABPEM ABTAI ACGFO ACGFS ACTIO ADBBV ADCVX AEISY AENEX AEYOC AHDZW AIJEM ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AVBZW BAWUL BLEHA C1A CCCUG DGEBU DKSSO E3Z EBS EMOBN F5P FRP GROUPED_DOAJ GTTXZ GX1 KYCEM LJTGL M4Z O9- OK1 P2P RIG RPM SNACF TDBHL TEI TFL TFT TFW TR2 TTHFI AAYXX AIYEW CITATION H13 0VX ACZPZ ADOPC AURDB BFWEY BOHLJ CGR CUY CVF CWRZV DIK ECM EIF EJD HYE IPNFZ NPM OVD PCLFJ TEORI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c568t-296ef49cc5b01f7610c55621a5d7f24b663e0973aa5194d6efecb19741d392933 |
IEDL.DBID | 0YH |
ISSN | 1547-6286 1555-8584 |
IngestDate | Wed Aug 27 01:29:52 EDT 2025 Thu Aug 21 18:31:00 EDT 2025 Mon May 05 23:01:19 EDT 2025 Fri Jul 11 11:27:38 EDT 2025 Thu Apr 03 06:50:19 EDT 2025 Tue Jul 01 03:09:40 EDT 2025 Thu Apr 24 23:01:54 EDT 2025 Thu Feb 06 04:54:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | alternative splicing minigene CFIm25 CRISPR/Cas13 polyadenylation site innate immune responses WDR33 alternative polyadenylation |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c568t-296ef49cc5b01f7610c55621a5d7f24b663e0973aa5194d6efecb19741d392933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: RNA Division, New England Biolabs, Inc, Beverly, MA 01915, USA. |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/15476286.2024.2408708 |
PMID | 39327832 |
PQID | 3110401354 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11445923 pubmed_primary_39327832 informaworld_taylorfrancis_310_1080_15476286_2024_2408708 crossref_citationtrail_10_1080_15476286_2024_2408708 proquest_miscellaneous_3154252743 proquest_miscellaneous_3110401354 doaj_primary_oai_doaj_org_article_9ddde494993f4a488ef3ee4925eaf08e crossref_primary_10_1080_15476286_2024_2408708 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-31 |
PublicationDateYYYYMMDD | 2024-12-31 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | RNA biology |
PublicationTitleAlternate | RNA Biol |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | e_1_3_5_29_1 e_1_3_5_28_1 e_1_3_5_27_1 e_1_3_5_26_1 e_1_3_5_25_1 e_1_3_5_24_1 e_1_3_5_23_1 e_1_3_5_22_1 e_1_3_5_44_1 e_1_3_5_45_1 e_1_3_5_46_1 e_1_3_5_47_1 e_1_3_5_3_1 e_1_3_5_2_1 e_1_3_5_40_1 e_1_3_5_41_1 e_1_3_5_42_1 e_1_3_5_43_1 e_1_3_5_9_1 e_1_3_5_21_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_5_1 e_1_3_5_4_1 e_1_3_5_7_1 e_1_3_5_6_1 e_1_3_5_18_1 e_1_3_5_17_1 e_1_3_5_39_1 e_1_3_5_16_1 e_1_3_5_38_1 e_1_3_5_15_1 e_1_3_5_37_1 e_1_3_5_13_1 e_1_3_5_14_1 e_1_3_5_36_1 e_1_3_5_35_1 e_1_3_5_11_1 e_1_3_5_34_1 e_1_3_5_12_1 e_1_3_5_33_1 e_1_3_5_19_1 e_1_3_5_32_1 e_1_3_5_10_1 e_1_3_5_31_1 e_1_3_5_30_1 |
References_xml | – ident: e_1_3_5_34_1 doi: 10.4161/rna.22570 – ident: e_1_3_5_5_1 doi: 10.1080/21541264.2020.1777047 – ident: e_1_3_5_47_1 doi: 10.1038/nmeth.2019 – ident: e_1_3_5_3_1 doi: 10.1038/nrm.2016.116 – ident: e_1_3_5_44_1 doi: 10.1016/S0021-9258(18)42423-4 – ident: e_1_3_5_6_1 doi: 10.1101/gad.250993.114 – ident: e_1_3_5_22_1 doi: 10.1016/j.molcel.2017.11.031 – ident: e_1_3_5_18_1 doi: 10.1146/annurev-biochem-040320-101629 – ident: e_1_3_5_7_1 doi: 10.1038/s41594-017-0020-6 – ident: e_1_3_5_21_1 doi: 10.1016/S1097-2765(03)00453-2 – ident: e_1_3_5_25_1 doi: 10.1128/msystems.01466-21 – ident: e_1_3_5_26_1 doi: 10.1073/pnas.1211101109 – ident: e_1_3_5_37_1 doi: 10.1038/nature13261 – ident: e_1_3_5_38_1 doi: 10.1080/15476286.2022.2071025 – ident: e_1_3_5_2_1 doi: 10.1016/j.molcel.2008.12.028 – ident: e_1_3_5_35_1 doi: 10.1093/nar/gkl794 – ident: e_1_3_5_40_1 doi: 10.1101/gr.5532707 – ident: e_1_3_5_39_1 doi: 10.1038/nature09479 – ident: e_1_3_5_10_1 doi: 10.1101/gr.132563.111 – ident: e_1_3_5_42_1 doi: 10.1111/imr.13018 – ident: e_1_3_5_43_1 doi: 10.3389/fmolb.2019.00005 – ident: e_1_3_5_11_1 doi: 10.1038/nmeth.2288 – ident: e_1_3_5_13_1 doi: 10.1016/j.cell.2017.11.023 – ident: e_1_3_5_32_1 doi: 10.1080/15476286.2017.1306171 – ident: e_1_3_5_45_1 doi: 10.1038/s41587-020-0456-9 – ident: e_1_3_5_41_1 doi: 10.3389/fgene.2021.818668 – ident: e_1_3_5_15_1 doi: 10.1016/S0092-8674(00)82000-0 – ident: e_1_3_5_24_1 doi: 10.1038/s41598-021-86644-x – ident: e_1_3_5_14_1 doi: 10.1002/embj.201386537 – ident: e_1_3_5_9_1 doi: 10.1073/pnas.1718723115 – ident: e_1_3_5_23_1 doi: 10.1126/science.1229963 – ident: e_1_3_5_12_1 doi: 10.1038/s41580-022-00507-5 – ident: e_1_3_5_17_1 doi: 10.1016/j.celrep.2024.113886 – ident: e_1_3_5_19_1 doi: 10.1016/j.immuni.2020.05.013 – ident: e_1_3_5_20_1 doi: 10.1038/ncomms6274 – ident: e_1_3_5_31_1 doi: 10.1093/nar/gki158 – ident: e_1_3_5_30_1 doi: 10.1016/j.cell.2018.02.033 – ident: e_1_3_5_4_1 doi: 10.1016/j.sbi.2019.08.001 – ident: e_1_3_5_16_1 doi: 10.1016/S1097-2765(00)80291-9 – ident: e_1_3_5_27_1 doi: 10.1016/S0021-9258(18)42005-4 – ident: e_1_3_5_46_1 doi: 10.1038/nprot.2006.481 – ident: e_1_3_5_28_1 doi: 10.1016/j.celrep.2018.09.084 – ident: e_1_3_5_8_1 doi: 10.1101/gad.250985.114 – ident: e_1_3_5_29_1 doi: 10.1038/ni.3132 – ident: e_1_3_5_33_1 doi: 10.1042/BST20221128 – ident: e_1_3_5_36_1 doi: 10.1016/j.celrep.2012.05.003 |
SSID | ssj0036895 |
Score | 2.4018 |
Snippet | Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation... Transcripts from the human gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA)... Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation... |
SourceID | doaj pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 970 |
SubjectTerms | alternative polyadenylation Alternative Splicing CFIm25 CRISPR/Cas13 Exons Humans innate immune responses innate immunity Introns minigene Nuclear Proteins - genetics Nuclear Proteins - metabolism Poly A - genetics Poly A - metabolism Polyadenylation polyadenylation site protein isoforms Protein Isoforms - genetics Protein Isoforms - metabolism Research Paper RNA RNA Splicing RNA, Messenger - genetics RNA, Messenger - metabolism WDR33 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB4BWhkJITik3cR2Yh_Lo6o4cEBU9GY59lhdqWSrbvaw_54ZO1ntVoi9cEscW4o945lv4sk3jL0DE7p65lTZkQmUXWjwyslSBGm08dohRqJsi-_NxaX8dqWutkp9UU5YpgfOC3dqAm7ARKEionSobhAFAFHqgYszDWR90edNwVS2waLRqd4K4oO2pJ8vp3939OyU2qgJY8NanhDDV0u1Jbe8UiLvv0dd-jcAej-PcssxnT9mj0ZEyc_yTJ6wB9A_ZYdnPUbTv9f8PU85nunj-SGb__ryQwiejsj7RPnNbxc3a4fGZ52T4vh8yafCuAPHewSH_toRm3Pq-sF95HTgzFeUkcZdH_iSjsDRA3JIdBRA5X6Xz9jl-defny_KsdhC6VWjh7I2DURpvFcotdgiqvIKsVHlVGhjLTtEJkDUPs4h5pMBO4PvKoxGqkAQS4jn7KBf9PCS8diatoro5jQ4CaYyHUjhQYfgcOn9rGByWmzrRyZyKohxY6uRsHSSkSUZ2VFGBTvZDLvNVBz7BnwiSW46E5N2akD9sqN-2X36VTCzrQd2SB9SYq56YsWeF3g7KY3FXUtHMa6HxYrGYRiM6FvJf_VRaFBrhHgFe5EVbTMVgbC7RWNcML2jgjtz3X3Sz68TezgGwFIhrH_1P1bnNXtIE87Ml2_YwXC3giNEaUN3nDbkH7S5Ng4 priority: 102 providerName: Directory of Open Access Journals |
Title | WDR33 alternative polyadenylation is dependent on stochastic poly(a) site usage and splicing efficiencies |
URI | https://www.tandfonline.com/doi/abs/10.1080/15476286.2024.2408708 https://www.ncbi.nlm.nih.gov/pubmed/39327832 https://www.proquest.com/docview/3110401354 https://www.proquest.com/docview/3154252743 https://pubmed.ncbi.nlm.nih.gov/PMC11445923 https://doaj.org/article/9ddde494993f4a488ef3ee4925eaf08e |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe-GCgPIIj5UrIQSHlE1sJ_Fxoa1WPXBAVAUulmOP6Upttmqyh_33zDjJqlsBPfS22fWsYs94_I09_oaxd6B9nU-tSmtygbL2BX6yMhVe6kq7yiJGomyLr8X8VJ78UGM2YTukVVIMHXqiiOiraXLbuh0z4j7hql_SjUqM7nJ5QBxdJV333c3JWtGkpz_nozMWRRULr5BISjLjJZ5__c3W8hRZ_G9xmP4Nid5OqLyxQh0_Zo8GaMlnvS08YQ-gecr2Zg2G1Zdr_p7HZM-4i77HFmeH34Tg8ay8idzf_Gp5sbbohdZ9dhxftHyskNtxfEaU6M4t0TrHph_sR04nz3xFqWkcB5O3dBaOSyGHyEsBVPe3fcZOj4--f5mnQ9WF1Kmi6tJcFxCkdk6h-kKJ8MopBEmZVb4MuawRogBx_FiL4E96bAyuzjAsyTxhLSGes51m2cBLxkOpyyzgeleBlaAzXYMUDirvLQ69myZMjoNt3EBJTpUxLkw2MJeOOjKkIzPoKGEHG7GrnpPjLoHPpMlNY6LUjl8sr3-bYYYa7dHTR64eEaRFvwZBABB3I9iAPUiYvmkHpos7KqEvf2LEHS-wPxqNwelLZzK2geWK5DAeRhiu5P_aKPSsOWK9hL3oDW3TFYH4u0SvnLBqywS3-rr9S7M4jzTiGAlLhfj-1T069po9pMee-fIN2-muV_AWUVpXT-I8nLDd2fzw19kk7nX8AYpLNGo |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-h8QAvfI2PwAAjIQQP6ZrYTuLHbTAVGH1Am9ib5Tg2qxjptKYP5a_fnZNUbQXsYW9t46tyzuXud_b5dwBvnarKdGhkXJILFGWV4ScjYl4JVShbGMRIVG0xzkYn4supPF05C0NllZRD-5YoIvhqerlpMbovidvFsJ_TkUpM71IxIJKunM773pYqy6mLAR-Oe2_MsyJ0XiGRmGT6Uzz_-pu1-BRo_DdITP8GRTcrKldC1OF9sL1ybWXKr8G8KQf2zwbv4820fwD3OgTL9lqTewi3XP0ItvdqzN5_L9g7FmpKw2L9Nkx-fPzOOQtb8nWgGGcX0_OFQWe3aIvw2GTG-ka8DcPvCEbtmSH26DD0vfnAaIObzakCjuFdsxltuWPEZS7QXzhqLzx7DCeHn44PRnHX3CG2MiuaOFWZ80JZK9FKfI4ozkrEYomRVe5TUSISckQlZAxiTFHhYGfLBLOfpCJIx_kT2KqntXsGzOcqTzyG1cIZ4VSiSie4dUVVGZwpO4xA9I9U2475nBpwnOukI0jtp1TTlOpuSiMYLMUuWuqP6wT2yV6Wg4m5O_wwvfypO0egVYUBJVACcS8Muk_nuXNEEemMRw0iUKvWppuwcOPbLiuaX3MDb3rT1OglaOvH1G46JzlMuxHtS_G_MRIdeIqQMoKnrTkvVeEI83N0_hEUa4a-puv6lXpyFtjKMeEWEtOI5zdQ7DXcGR1_O9JHn8dfX8BdutSSbe7AVnM5dy8RGDblq_DmXwEr9VVY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hVkJceJWHS4FFQggOTmPvru09FkpUHooQooLbap80onWixjmkv74zaztqIqCH3uJ4x_KsxzPfeGe_IeS1l87kQy1Sgy6QG1fAL81T5rispK00YCSsthgXR8f88y_RVxPOu7JKzKFDSxQRfTW-3DMX-oq4fYj6Je6ohOwu5wPk6Cpxu-92geThuItjOO6dMSuq2HgFRVKU6Tfx_Osya-EpsvhvcJj-DYluFlReiVCje8T0urWFKX8Gi8YM7MUG7eONlL9P7nb4lR60BveA3PL1Q7JzUEPufrakb2isKI2f6nfI5Ofhd8ZoXJCvI8E4nU1Plxpc3bItwaOTOe3b8DYUjgGK2hON3NFx6Fv9juLyNl1g_RuFm6ZzXHCHeEt9JL_w2Fx4_ogcjz7--HCUdq0dUiuKqklzWfjApbUCbCSUgOGsACSWaeHKkHMDOMgjkZDWgDC5g8Hemgxyn8whoGPsMdmqp7V_SmgoZZkFCKqV19zLTBrPmfWVcxpmyg4TwvsnqmzHe47tN05V1tGj9lOqcEpVN6UJGazEZi3xx3UC79FcVoORtzv-MT3_rTo3oKSDcBIJgVjgGpynD8x7JIj0OoAGCZFXjU018bNNaHusKHbNDbzqLVOBj8CFH1376QLlIOkGrC_4_8YIcN85AMqEPGmteaUKA5BfgutPSLVm52u6rp-pJyeRqxzSbS4gidi9gWIvye1vhyP19dP4yzNyB8-0TJt7ZKs5X_jngAob8yK-95etz1P8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WDR33+alternative+polyadenylation+is+dependent+on+stochastic+poly%28a%29+site+usage+and+splicing+efficiencies&rft.jtitle=RNA+biology&rft.au=Liu%2C+Lizhi&rft.au=Seimiya%2C+Takahiro&rft.au=Manley%2C+James+L.&rft.date=2024-12-31&rft.pub=Taylor+%26+Francis&rft.issn=1547-6286&rft.eissn=1555-8584&rft.volume=21&rft.issue=1&rft.spage=25&rft.epage=35&rft_id=info:doi/10.1080%2F15476286.2024.2408708&rft_id=info%3Apmid%2F39327832&rft.externalDocID=PMC11445923 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-6286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-6286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-6286&client=summon |