WDR33 alternative polyadenylation is dependent on stochastic poly(a) site usage and splicing efficiencies

Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two n...

Full description

Saved in:
Bibliographic Details
Published inRNA biology Vol. 21; no. 1; pp. 970 - 980
Main Authors Liu, Lizhi, Seimiya, Takahiro, Manley, James L.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 31.12.2024
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of WDR33 APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3's strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3' splice site within the intron. Overall, our findings demonstrate that usage of WDR33 alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA.
AbstractList Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of WDR33 APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3’s strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3’ splice site within the intron. Overall, our findings demonstrate that usage of WDR33 alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA.
Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of WDR33 APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3's strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3' splice site within the intron. Overall, our findings demonstrate that usage of WDR33 alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA.Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of WDR33 APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3's strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3' splice site within the intron. Overall, our findings demonstrate that usage of WDR33 alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA.
Transcripts from the human gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3's strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3' splice site within the intron. Overall, our findings demonstrate that usage of alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA.
Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of WDR33 APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3's strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3' splice site within the intron. Overall, our findings demonstrate that usage of WDR33 alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA.
Author Liu, Lizhi
Seimiya, Takahiro
Manley, James L.
Author_xml – sequence: 1
  givenname: Lizhi
  surname: Liu
  fullname: Liu, Lizhi
  organization: Columbia University
– sequence: 2
  givenname: Takahiro
  surname: Seimiya
  fullname: Seimiya, Takahiro
  organization: Columbia University
– sequence: 3
  givenname: James L.
  surname: Manley
  fullname: Manley, James L.
  email: jlm2@columbia.edu
  organization: Columbia University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39327832$$D View this record in MEDLINE/PubMed
BookMark eNqNUstuFDEQHKEg8oBPAM0xHGbxc8YWB0AhgUiRkBCIo-W12xtHXnuxZ4P27_HsAxEOwMFyd7u6XHbXaXMUU4SmeY7RDCOBXmHOhp6IfkYQYTPCkBiQeNScYM55J7hgR1PMhm4CHTenpdwhRHsh-ZPmmEpKBkHJSeO_vf9MaavDCDnq0d9Du0phoy3ETah5iq0vrYUVxFoa25qXMZlbXUZvttBz_bItfoR2XfQCWh1tW1bBGx8XLThXA4h1lafNY6dDgWf7_az5enX55eJjd_Ppw_XFu5vO8F6MHZE9OCaN4XOE3dBjZDjvCdbcDo6wed9TQHKgWnMsma1gMHMsB4YtlURSetZc73ht0ndqlf1S541K2qttIeWF0rmKD6CktRaYZFJSxzQTAhyFWiActEMCKtebHddqPV-CNfUHsg4PSB-eRH-rFuleYcwYl2RSc75nyOn7Gsqolr4YCEFHSOuiaJ0R4WRg_wPFiCFMOavQF7_r-iXoMNcKeL0DmJxKyeCU8eN2nFWmDwojNblIHVykJhepvYtqN_-j-3DBv_re7vp8dCkv9Y-Ug1Wj3oSUXdbVBtMr_krxE-X-3pY
CitedBy_id crossref_primary_10_1016_j_xpro_2025_103709
crossref_primary_10_1016_j_diagmicrobio_2024_116587
Cites_doi 10.4161/rna.22570
10.1080/21541264.2020.1777047
10.1038/nmeth.2019
10.1038/nrm.2016.116
10.1016/S0021-9258(18)42423-4
10.1101/gad.250993.114
10.1016/j.molcel.2017.11.031
10.1146/annurev-biochem-040320-101629
10.1038/s41594-017-0020-6
10.1016/S1097-2765(03)00453-2
10.1128/msystems.01466-21
10.1073/pnas.1211101109
10.1038/nature13261
10.1080/15476286.2022.2071025
10.1016/j.molcel.2008.12.028
10.1093/nar/gkl794
10.1101/gr.5532707
10.1038/nature09479
10.1101/gr.132563.111
10.1111/imr.13018
10.3389/fmolb.2019.00005
10.1038/nmeth.2288
10.1016/j.cell.2017.11.023
10.1080/15476286.2017.1306171
10.1038/s41587-020-0456-9
10.3389/fgene.2021.818668
10.1016/S0092-8674(00)82000-0
10.1038/s41598-021-86644-x
10.1002/embj.201386537
10.1073/pnas.1718723115
10.1126/science.1229963
10.1038/s41580-022-00507-5
10.1016/j.celrep.2024.113886
10.1016/j.immuni.2020.05.013
10.1038/ncomms6274
10.1093/nar/gki158
10.1016/j.cell.2018.02.033
10.1016/j.sbi.2019.08.001
10.1016/S1097-2765(00)80291-9
10.1016/S0021-9258(18)42005-4
10.1038/nprot.2006.481
10.1016/j.celrep.2018.09.084
10.1101/gad.250985.114
10.1038/ni.3132
10.1042/BST20221128
10.1016/j.celrep.2012.05.003
ContentType Journal Article
Copyright 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024
2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024
– notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 The Author(s)
DBID 0YH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1080/15476286.2024.2408708
DatabaseName Taylor & Francis Free Journals (Free resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 0YH
  name: Taylor & Francis Free Journals (Free resource, activated by CARLI)
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate L. LIU ET AL
EISSN 1555-8584
EndPage 980
ExternalDocumentID oai_doaj_org_article_9ddde494993f4a488ef3ee4925eaf08e
PMC11445923
39327832
10_1080_15476286_2024_2408708
2408708
Genre Research Article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: DGE-2036197
– fundername: National Institutes of Health
  grantid: R35 GM118136
– fundername: NIGMS NIH HHS
  grantid: R35 GM118136
GroupedDBID ---
0YH
123
30N
4.4
53G
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFO
ACGFS
ACTIO
ADBBV
ADCVX
AEISY
AENEX
AEYOC
AHDZW
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AVBZW
BAWUL
BLEHA
C1A
CCCUG
DGEBU
DKSSO
E3Z
EBS
EMOBN
F5P
FRP
GROUPED_DOAJ
GTTXZ
GX1
KYCEM
LJTGL
M4Z
O9-
OK1
P2P
RIG
RPM
SNACF
TDBHL
TEI
TFL
TFT
TFW
TR2
TTHFI
AAYXX
AIYEW
CITATION
H13
0VX
ACZPZ
ADOPC
AURDB
BFWEY
BOHLJ
CGR
CUY
CVF
CWRZV
DIK
ECM
EIF
EJD
HYE
IPNFZ
NPM
OVD
PCLFJ
TEORI
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c568t-296ef49cc5b01f7610c55621a5d7f24b663e0973aa5194d6efecb19741d392933
IEDL.DBID 0YH
ISSN 1547-6286
1555-8584
IngestDate Wed Aug 27 01:29:52 EDT 2025
Thu Aug 21 18:31:00 EDT 2025
Mon May 05 23:01:19 EDT 2025
Fri Jul 11 11:27:38 EDT 2025
Thu Apr 03 06:50:19 EDT 2025
Tue Jul 01 03:09:40 EDT 2025
Thu Apr 24 23:01:54 EDT 2025
Thu Feb 06 04:54:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords alternative splicing
minigene
CFIm25
CRISPR/Cas13
polyadenylation site
innate immune responses
WDR33
alternative polyadenylation
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-296ef49cc5b01f7610c55621a5d7f24b663e0973aa5194d6efecb19741d392933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: RNA Division, New England Biolabs, Inc, Beverly, MA 01915, USA.
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/15476286.2024.2408708
PMID 39327832
PQID 3110401354
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11445923
pubmed_primary_39327832
informaworld_taylorfrancis_310_1080_15476286_2024_2408708
crossref_citationtrail_10_1080_15476286_2024_2408708
proquest_miscellaneous_3154252743
proquest_miscellaneous_3110401354
doaj_primary_oai_doaj_org_article_9ddde494993f4a488ef3ee4925eaf08e
crossref_primary_10_1080_15476286_2024_2408708
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-31
PublicationDateYYYYMMDD 2024-12-31
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle RNA biology
PublicationTitleAlternate RNA Biol
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References e_1_3_5_29_1
e_1_3_5_28_1
e_1_3_5_27_1
e_1_3_5_26_1
e_1_3_5_25_1
e_1_3_5_24_1
e_1_3_5_23_1
e_1_3_5_22_1
e_1_3_5_44_1
e_1_3_5_45_1
e_1_3_5_46_1
e_1_3_5_47_1
e_1_3_5_3_1
e_1_3_5_2_1
e_1_3_5_40_1
e_1_3_5_41_1
e_1_3_5_42_1
e_1_3_5_43_1
e_1_3_5_9_1
e_1_3_5_21_1
e_1_3_5_8_1
e_1_3_5_20_1
e_1_3_5_5_1
e_1_3_5_4_1
e_1_3_5_7_1
e_1_3_5_6_1
e_1_3_5_18_1
e_1_3_5_17_1
e_1_3_5_39_1
e_1_3_5_16_1
e_1_3_5_38_1
e_1_3_5_15_1
e_1_3_5_37_1
e_1_3_5_13_1
e_1_3_5_14_1
e_1_3_5_36_1
e_1_3_5_35_1
e_1_3_5_11_1
e_1_3_5_34_1
e_1_3_5_12_1
e_1_3_5_33_1
e_1_3_5_19_1
e_1_3_5_32_1
e_1_3_5_10_1
e_1_3_5_31_1
e_1_3_5_30_1
References_xml – ident: e_1_3_5_34_1
  doi: 10.4161/rna.22570
– ident: e_1_3_5_5_1
  doi: 10.1080/21541264.2020.1777047
– ident: e_1_3_5_47_1
  doi: 10.1038/nmeth.2019
– ident: e_1_3_5_3_1
  doi: 10.1038/nrm.2016.116
– ident: e_1_3_5_44_1
  doi: 10.1016/S0021-9258(18)42423-4
– ident: e_1_3_5_6_1
  doi: 10.1101/gad.250993.114
– ident: e_1_3_5_22_1
  doi: 10.1016/j.molcel.2017.11.031
– ident: e_1_3_5_18_1
  doi: 10.1146/annurev-biochem-040320-101629
– ident: e_1_3_5_7_1
  doi: 10.1038/s41594-017-0020-6
– ident: e_1_3_5_21_1
  doi: 10.1016/S1097-2765(03)00453-2
– ident: e_1_3_5_25_1
  doi: 10.1128/msystems.01466-21
– ident: e_1_3_5_26_1
  doi: 10.1073/pnas.1211101109
– ident: e_1_3_5_37_1
  doi: 10.1038/nature13261
– ident: e_1_3_5_38_1
  doi: 10.1080/15476286.2022.2071025
– ident: e_1_3_5_2_1
  doi: 10.1016/j.molcel.2008.12.028
– ident: e_1_3_5_35_1
  doi: 10.1093/nar/gkl794
– ident: e_1_3_5_40_1
  doi: 10.1101/gr.5532707
– ident: e_1_3_5_39_1
  doi: 10.1038/nature09479
– ident: e_1_3_5_10_1
  doi: 10.1101/gr.132563.111
– ident: e_1_3_5_42_1
  doi: 10.1111/imr.13018
– ident: e_1_3_5_43_1
  doi: 10.3389/fmolb.2019.00005
– ident: e_1_3_5_11_1
  doi: 10.1038/nmeth.2288
– ident: e_1_3_5_13_1
  doi: 10.1016/j.cell.2017.11.023
– ident: e_1_3_5_32_1
  doi: 10.1080/15476286.2017.1306171
– ident: e_1_3_5_45_1
  doi: 10.1038/s41587-020-0456-9
– ident: e_1_3_5_41_1
  doi: 10.3389/fgene.2021.818668
– ident: e_1_3_5_15_1
  doi: 10.1016/S0092-8674(00)82000-0
– ident: e_1_3_5_24_1
  doi: 10.1038/s41598-021-86644-x
– ident: e_1_3_5_14_1
  doi: 10.1002/embj.201386537
– ident: e_1_3_5_9_1
  doi: 10.1073/pnas.1718723115
– ident: e_1_3_5_23_1
  doi: 10.1126/science.1229963
– ident: e_1_3_5_12_1
  doi: 10.1038/s41580-022-00507-5
– ident: e_1_3_5_17_1
  doi: 10.1016/j.celrep.2024.113886
– ident: e_1_3_5_19_1
  doi: 10.1016/j.immuni.2020.05.013
– ident: e_1_3_5_20_1
  doi: 10.1038/ncomms6274
– ident: e_1_3_5_31_1
  doi: 10.1093/nar/gki158
– ident: e_1_3_5_30_1
  doi: 10.1016/j.cell.2018.02.033
– ident: e_1_3_5_4_1
  doi: 10.1016/j.sbi.2019.08.001
– ident: e_1_3_5_16_1
  doi: 10.1016/S1097-2765(00)80291-9
– ident: e_1_3_5_27_1
  doi: 10.1016/S0021-9258(18)42005-4
– ident: e_1_3_5_46_1
  doi: 10.1038/nprot.2006.481
– ident: e_1_3_5_28_1
  doi: 10.1016/j.celrep.2018.09.084
– ident: e_1_3_5_8_1
  doi: 10.1101/gad.250985.114
– ident: e_1_3_5_29_1
  doi: 10.1038/ni.3132
– ident: e_1_3_5_33_1
  doi: 10.1042/BST20221128
– ident: e_1_3_5_36_1
  doi: 10.1016/j.celrep.2012.05.003
SSID ssj0036895
Score 2.4018
Snippet Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation...
Transcripts from the human gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA)...
Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 970
SubjectTerms alternative polyadenylation
Alternative Splicing
CFIm25
CRISPR/Cas13
Exons
Humans
innate immune responses
innate immunity
Introns
minigene
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Poly A - genetics
Poly A - metabolism
Polyadenylation
polyadenylation site
protein isoforms
Protein Isoforms - genetics
Protein Isoforms - metabolism
Research Paper
RNA
RNA Splicing
RNA, Messenger - genetics
RNA, Messenger - metabolism
WDR33
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB4BWhkJITik3cR2Yh_Lo6o4cEBU9GY59lhdqWSrbvaw_54ZO1ntVoi9cEscW4o945lv4sk3jL0DE7p65lTZkQmUXWjwyslSBGm08dohRqJsi-_NxaX8dqWutkp9UU5YpgfOC3dqAm7ARKEionSobhAFAFHqgYszDWR90edNwVS2waLRqd4K4oO2pJ8vp3939OyU2qgJY8NanhDDV0u1Jbe8UiLvv0dd-jcAej-PcssxnT9mj0ZEyc_yTJ6wB9A_ZYdnPUbTv9f8PU85nunj-SGb__ryQwiejsj7RPnNbxc3a4fGZ52T4vh8yafCuAPHewSH_toRm3Pq-sF95HTgzFeUkcZdH_iSjsDRA3JIdBRA5X6Xz9jl-defny_KsdhC6VWjh7I2DURpvFcotdgiqvIKsVHlVGhjLTtEJkDUPs4h5pMBO4PvKoxGqkAQS4jn7KBf9PCS8diatoro5jQ4CaYyHUjhQYfgcOn9rGByWmzrRyZyKohxY6uRsHSSkSUZ2VFGBTvZDLvNVBz7BnwiSW46E5N2akD9sqN-2X36VTCzrQd2SB9SYq56YsWeF3g7KY3FXUtHMa6HxYrGYRiM6FvJf_VRaFBrhHgFe5EVbTMVgbC7RWNcML2jgjtz3X3Sz68TezgGwFIhrH_1P1bnNXtIE87Ml2_YwXC3giNEaUN3nDbkH7S5Ng4
  priority: 102
  providerName: Directory of Open Access Journals
Title WDR33 alternative polyadenylation is dependent on stochastic poly(a) site usage and splicing efficiencies
URI https://www.tandfonline.com/doi/abs/10.1080/15476286.2024.2408708
https://www.ncbi.nlm.nih.gov/pubmed/39327832
https://www.proquest.com/docview/3110401354
https://www.proquest.com/docview/3154252743
https://pubmed.ncbi.nlm.nih.gov/PMC11445923
https://doaj.org/article/9ddde494993f4a488ef3ee4925eaf08e
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe-GCgPIIj5UrIQSHlE1sJ_Fxoa1WPXBAVAUulmOP6Upttmqyh_33zDjJqlsBPfS22fWsYs94_I09_oaxd6B9nU-tSmtygbL2BX6yMhVe6kq7yiJGomyLr8X8VJ78UGM2YTukVVIMHXqiiOiraXLbuh0z4j7hql_SjUqM7nJ5QBxdJV333c3JWtGkpz_nozMWRRULr5BISjLjJZ5__c3W8hRZ_G9xmP4Nid5OqLyxQh0_Zo8GaMlnvS08YQ-gecr2Zg2G1Zdr_p7HZM-4i77HFmeH34Tg8ay8idzf_Gp5sbbohdZ9dhxftHyskNtxfEaU6M4t0TrHph_sR04nz3xFqWkcB5O3dBaOSyGHyEsBVPe3fcZOj4--f5mnQ9WF1Kmi6tJcFxCkdk6h-kKJ8MopBEmZVb4MuawRogBx_FiL4E96bAyuzjAsyTxhLSGes51m2cBLxkOpyyzgeleBlaAzXYMUDirvLQ69myZMjoNt3EBJTpUxLkw2MJeOOjKkIzPoKGEHG7GrnpPjLoHPpMlNY6LUjl8sr3-bYYYa7dHTR64eEaRFvwZBABB3I9iAPUiYvmkHpos7KqEvf2LEHS-wPxqNwelLZzK2geWK5DAeRhiu5P_aKPSsOWK9hL3oDW3TFYH4u0SvnLBqywS3-rr9S7M4jzTiGAlLhfj-1T069po9pMee-fIN2-muV_AWUVpXT-I8nLDd2fzw19kk7nX8AYpLNGo
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-h8QAvfI2PwAAjIQQP6ZrYTuLHbTAVGH1Am9ib5Tg2qxjptKYP5a_fnZNUbQXsYW9t46tyzuXud_b5dwBvnarKdGhkXJILFGWV4ScjYl4JVShbGMRIVG0xzkYn4supPF05C0NllZRD-5YoIvhqerlpMbovidvFsJ_TkUpM71IxIJKunM773pYqy6mLAR-Oe2_MsyJ0XiGRmGT6Uzz_-pu1-BRo_DdITP8GRTcrKldC1OF9sL1ybWXKr8G8KQf2zwbv4820fwD3OgTL9lqTewi3XP0ItvdqzN5_L9g7FmpKw2L9Nkx-fPzOOQtb8nWgGGcX0_OFQWe3aIvw2GTG-ka8DcPvCEbtmSH26DD0vfnAaIObzakCjuFdsxltuWPEZS7QXzhqLzx7DCeHn44PRnHX3CG2MiuaOFWZ80JZK9FKfI4ozkrEYomRVe5TUSISckQlZAxiTFHhYGfLBLOfpCJIx_kT2KqntXsGzOcqTzyG1cIZ4VSiSie4dUVVGZwpO4xA9I9U2475nBpwnOukI0jtp1TTlOpuSiMYLMUuWuqP6wT2yV6Wg4m5O_wwvfypO0egVYUBJVACcS8Muk_nuXNEEemMRw0iUKvWppuwcOPbLiuaX3MDb3rT1OglaOvH1G46JzlMuxHtS_G_MRIdeIqQMoKnrTkvVeEI83N0_hEUa4a-puv6lXpyFtjKMeEWEtOI5zdQ7DXcGR1_O9JHn8dfX8BdutSSbe7AVnM5dy8RGDblq_DmXwEr9VVY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hVkJceJWHS4FFQggOTmPvru09FkpUHooQooLbap80onWixjmkv74zaztqIqCH3uJ4x_KsxzPfeGe_IeS1l87kQy1Sgy6QG1fAL81T5rispK00YCSsthgXR8f88y_RVxPOu7JKzKFDSxQRfTW-3DMX-oq4fYj6Je6ohOwu5wPk6Cpxu-92geThuItjOO6dMSuq2HgFRVKU6Tfx_Osya-EpsvhvcJj-DYluFlReiVCje8T0urWFKX8Gi8YM7MUG7eONlL9P7nb4lR60BveA3PL1Q7JzUEPufrakb2isKI2f6nfI5Ofhd8ZoXJCvI8E4nU1Plxpc3bItwaOTOe3b8DYUjgGK2hON3NFx6Fv9juLyNl1g_RuFm6ZzXHCHeEt9JL_w2Fx4_ogcjz7--HCUdq0dUiuKqklzWfjApbUCbCSUgOGsACSWaeHKkHMDOMgjkZDWgDC5g8Hemgxyn8whoGPsMdmqp7V_SmgoZZkFCKqV19zLTBrPmfWVcxpmyg4TwvsnqmzHe47tN05V1tGj9lOqcEpVN6UJGazEZi3xx3UC79FcVoORtzv-MT3_rTo3oKSDcBIJgVjgGpynD8x7JIj0OoAGCZFXjU018bNNaHusKHbNDbzqLVOBj8CFH1376QLlIOkGrC_4_8YIcN85AMqEPGmteaUKA5BfgutPSLVm52u6rp-pJyeRqxzSbS4gidi9gWIvye1vhyP19dP4yzNyB8-0TJt7ZKs5X_jngAob8yK-95etz1P8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WDR33+alternative+polyadenylation+is+dependent+on+stochastic+poly%28a%29+site+usage+and+splicing+efficiencies&rft.jtitle=RNA+biology&rft.au=Liu%2C+Lizhi&rft.au=Seimiya%2C+Takahiro&rft.au=Manley%2C+James+L.&rft.date=2024-12-31&rft.pub=Taylor+%26+Francis&rft.issn=1547-6286&rft.eissn=1555-8584&rft.volume=21&rft.issue=1&rft.spage=25&rft.epage=35&rft_id=info:doi/10.1080%2F15476286.2024.2408708&rft_id=info%3Apmid%2F39327832&rft.externalDocID=PMC11445923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-6286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-6286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-6286&client=summon