The Effect of Different Rhizobial Symbionts on the Composition and Diversity of Rhizosphere Microorganisms of Chickpea in Different Soils

Background: Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium mul...

Full description

Saved in:
Bibliographic Details
Published inPlants (Basel) Vol. 12; no. 19; p. 3421
Main Authors Zhang, Junjie, Wang, Nan, Li, Shuo, Wang, Jingqi, Feng, Yufeng, Wang, Entao, Li, Youguo, Yang, Tao, Chen, Wenfeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 28.09.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri, while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions. Results: Chickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there. Conclusions: Different chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas.
AbstractList Background: Chickpea ( Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri , while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense . It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions. Results: Chickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there. Conclusions: Different chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas.
Background: Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri, while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions. Results: Chickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there. Conclusions: Different chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas.
Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri, while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions.BACKGROUNDChickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri, while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions.Chickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there.RESULTSChickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there.Different chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas.CONCLUSIONSDifferent chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas.
Audience Academic
Author Feng, Yufeng
Zhang, Junjie
Wang, Nan
Yang, Tao
Li, Shuo
Wang, Entao
Chen, Wenfeng
Wang, Jingqi
Li, Youguo
AuthorAffiliation 3 Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico C.P. 11340, Mexico
5 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
1 College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
2 Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, China
4 State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
6 College of Biological Sciences, Rhizobium Research Center, China Agricultural University, Beijing 100193, China
AuthorAffiliation_xml – name: 5 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– name: 3 Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico C.P. 11340, Mexico
– name: 1 College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
– name: 6 College of Biological Sciences, Rhizobium Research Center, China Agricultural University, Beijing 100193, China
– name: 4 State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
– name: 2 Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, China
Author_xml – sequence: 1
  givenname: Junjie
  surname: Zhang
  fullname: Zhang, Junjie
– sequence: 2
  givenname: Nan
  surname: Wang
  fullname: Wang, Nan
– sequence: 3
  givenname: Shuo
  surname: Li
  fullname: Li, Shuo
– sequence: 4
  givenname: Jingqi
  surname: Wang
  fullname: Wang, Jingqi
– sequence: 5
  givenname: Yufeng
  surname: Feng
  fullname: Feng, Yufeng
– sequence: 6
  givenname: Entao
  orcidid: 0000-0001-6606-6916
  surname: Wang
  fullname: Wang, Entao
– sequence: 7
  givenname: Youguo
  orcidid: 0000-0002-6386-7360
  surname: Li
  fullname: Li, Youguo
– sequence: 8
  givenname: Tao
  surname: Yang
  fullname: Yang, Tao
– sequence: 9
  givenname: Wenfeng
  surname: Chen
  fullname: Chen, Wenfeng
BookMark eNqFUk1v1DAQjVARLaVXzpG4wGGLHTu2c0LVUmClIqRuOVuOP3a9JHaIvRXLP-BfM-kW6CIh4kixx2_ezLy8p8VRiMEWxXOMzglp0OuhUyEnXOGG0Ao_Kk6qqiIzzik_erA_Ls5S2iB4BLyYPSmOCReEYYZPih83a1teOmd1LqMr33rYjjbk8nrtv8fWq65c7vrWRyhUxlBmgM9jP8TkMwRLFQwk3doRzruJ4S4vDWtgKT96PcY4rlTwqU_T7Xzt9ZfBqtKHB7WW0XfpWfHYqS7Zs_vvafH53eXN_MPs6tP7xfziaqZrJvKsIm2DhSNUuaplCjFm27oWRiHsOGoIDMwJxxV1jtXOaGpaak1jDDLUclDqtFjseU1UGzmMvlfjTkbl5V0A2pVqzF53VlKnqBGmFcJpSplTxDFeI9U6jplhGrje7LmGbdtbo2GYUXUHpIc3wa_lKt5KjGpeY4KA4eU9wxi_bm3KsvdJ2w7-rI3bJAmiiJKacvpfaCVgclEjIgD64i_oJm7HALJOKEY5q-pJifM9aqVgWB9chB41LGN7r8FqzkP8gnMwmGiaqYNXBwmAyfZbXqltSnKxvD7E0j0WLJDSaJ3UPqvJM1DEd6CAnDwsDz38p6ffab_E_EfCT1mw9iE
CitedBy_id crossref_primary_10_1007_s00374_025_01890_9
crossref_primary_10_3390_plants13030429
crossref_primary_10_1016_j_jenvman_2024_122939
Cites_doi 10.1007/s00248-005-0085-3
10.1038/s41477-018-0231-9
10.3389/fmicb.2018.02055
10.1111/jph.12568
10.1007/s11104-011-1014-5
10.3389/fmicb.2021.709012
10.1007/BF03175044
10.1016/j.rhisph.2021.100361
10.1038/nrmicro.2017.171
10.1016/j.tplants.2010.01.001
10.1515/biolog-2015-0048
10.1186/gb-2011-12-6-r60
10.1186/s40168-017-0241-2
10.1099/ijs.0.038265-0
10.2478/s11756-019-00292-1
10.1007/s13205-018-1145-y
10.1111/nph.17988
10.1007/s13199-016-0472-1
10.1016/j.biocontrol.2016.06.012
10.1099/ijsem.0.002770
10.1007/s42729-021-00537-6
10.1038/nrmicro.2017.87
10.1016/j.soilbio.2009.03.005
10.1128/AEM.00833-08
10.1128/AEM.01055-16
10.1094/MPMI.1999.12.4.293
10.1016/j.syapm.2014.07.004
10.1371/journal.pone.0100709
10.1007/s13205-014-0263-4
10.1007/s11104-013-1586-3
10.1016/j.syapm.2014.08.005
10.1016/j.heliyon.2018.e00921
10.33866/phytopathol.033.02.0719
10.1111/j.1462-5822.2011.01736.x
10.30848/PJB2019-3(44)
10.7845/kjm.2015.5052
10.1016/j.femsec.2004.10.013
10.1007/s13205-019-1809-2
10.1023/A:1020663909890
10.1128/AEM.01541-09
10.1046/j.1462-2920.1999.00040.x
10.1016/j.eja.2020.126187
10.1007/s12298-010-0041-7
10.1099/00207713-47-3-895
10.1074/jbc.271.37.22563
10.1186/s40168-016-0220-z
10.1590/S1517-83822013000200043
10.1139/m92-081
10.1371/journal.pone.0249884
10.1093/bioinformatics/btr507
10.1038/s41396-020-0648-9
10.1007/s11104-018-3830-3
10.1111/j.1574-6941.1997.tb00398.x
10.1007/s00203-021-02695-8
10.1016/j.femsec.2003.12.015
10.1016/j.ejsobi.2013.05.001
10.1111/mec.14027
10.1038/ismej.2014.17
10.1111/lam.13785
10.1016/j.chom.2018.06.006
10.31018/jans.v13i3.2782
10.1007/BF00007964
10.1016/j.apsoil.2019.103490
10.1017/CBO9780511615146
10.1007/BF00364680
10.1016/j.syapm.2016.12.003
10.1099/00207713-45-4-640
10.1139/cjm-2016-0776
10.1111/jam.13897
10.9734/BMRJ/2015/14496
10.1002/ece3.5735
10.1016/j.tplants.2017.05.004
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
ISR
3V.
7SN
7SS
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/plants12193421
DatabaseName CrossRef
Gale in Context: Science
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Agricultural Science Database
MEDLINE - Academic

CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2223-7747
ExternalDocumentID oai_doaj_org_article_4fa4d8db88fc446fa3f6750abf716d6c
PMC10575130
A772198994
10_3390_plants12193421
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Nature Science Foundation of China
  grantid: 31970006
– fundername: Henan University Science and Technology Innovation Talent Support Program
  grantid: 22HASTIT035
GroupedDBID 53G
5VS
7X2
7XC
8FE
8FH
AADQD
AAHBH
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
HYE
IAG
IAO
IGH
ISR
ITC
KQ8
LK8
M0K
M48
M7P
MODMG
M~E
OK1
OZF
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RPM
PMFND
3V.
7SN
7SS
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c568t-23b918f34af2b6a066eb558da01f7093747737124ff65fdc4db4ed9dd0d4e7193
IEDL.DBID M48
ISSN 2223-7747
IngestDate Wed Aug 27 01:31:59 EDT 2025
Thu Aug 21 18:35:34 EDT 2025
Thu Jul 10 23:31:14 EDT 2025
Fri Jul 11 12:07:18 EDT 2025
Fri Jul 25 12:09:21 EDT 2025
Tue Jun 10 21:04:09 EDT 2025
Fri Jun 27 06:07:43 EDT 2025
Tue Jul 01 02:33:33 EDT 2025
Thu Apr 24 23:05:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-23b918f34af2b6a066eb558da01f7093747737124ff65fdc4db4ed9dd0d4e7193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6386-7360
0000-0001-6606-6916
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/plants12193421
PMID 37836161
PQID 2876476259
PQPubID 2032347
ParticipantIDs doaj_primary_oai_doaj_org_article_4fa4d8db88fc446fa3f6750abf716d6c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10575130
proquest_miscellaneous_3040435474
proquest_miscellaneous_2877385038
proquest_journals_2876476259
gale_infotracacademiconefile_A772198994
gale_incontextgauss_ISR_A772198994
crossref_citationtrail_10_3390_plants12193421
crossref_primary_10_3390_plants12193421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230928
PublicationDateYYYYMMDD 2023-09-28
PublicationDate_xml – month: 9
  year: 2023
  text: 20230928
  day: 28
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Plants (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Dai (ref_48) 2019; 39
Ikeda (ref_33) 2008; 74
Egamberdieva (ref_71) 2013; 369
Schumpp (ref_12) 2010; 15
ref_14
Poole (ref_32) 2018; 16
ref_57
Tena (ref_30) 2017; 63
Shcherbakova (ref_3) 2017; 73
Zhang (ref_26) 2012; 162
Mus (ref_8) 2016; 82
Frey (ref_18) 1994; 163
Beckers (ref_23) 2017; 5
Berggren (ref_69) 2005; 52
Zhang (ref_19) 2014; 37
Aslam (ref_5) 2021; 33
Wang (ref_13) 2012; 14
Thies (ref_38) 1992; 38
Spaink (ref_15) 1996; 271
Ruben (ref_36) 2018; 24
Shen (ref_46) 2018; 29
Zhang (ref_41) 2022; 75
Taylor (ref_10) 2018; 4
Coskun (ref_11) 2017; 22
Mason (ref_21) 2018; 4
Ji (ref_20) 2017; 40
Lee (ref_45) 2015; 51
Alexandre (ref_29) 2006; 51
Mago (ref_75) 2011; 27
Zhang (ref_42) 2014; 37
Gopalakrishnan (ref_55) 2015; 5
Pueppke (ref_16) 1999; 12
Xiao (ref_35) 2017; 26
Wang (ref_50) 2019; 9
Pandey (ref_58) 2019; 9
Mendes (ref_37) 2014; 8
Marschner (ref_62) 2002; 246
Yang (ref_22) 2018; 125
Sousa (ref_53) 2020; 150
Zhang (ref_40) 2012; 353
Zhang (ref_73) 2018; 433
Crosbie (ref_66) 2022; 234
Chen (ref_6) 2017; 165
ref_79
ref_34
ref_78
ref_77
Zhao (ref_68) 2013; 44
ref_74
Noreen (ref_65) 2019; 51
Suyal (ref_52) 2019; 74
Kaschuk (ref_9) 2009; 41
Alemneh (ref_60) 2021; 18
Zhu (ref_47) 2013; 58
Batool (ref_59) 2021; 21
Barquero (ref_67) 2021; 122
Samavat (ref_70) 2011; 13
Amjad (ref_61) 2015; 6
Schloss (ref_76) 2009; 75
Jarvis (ref_24) 1997; 47
Monika (ref_54) 2021; 13
Han (ref_7) 2020; 14
Nour (ref_25) 1995; 45
Singh (ref_4) 2018; 38
ref_44
Laranjo (ref_28) 2004; 48
ref_43
Toro (ref_17) 1996; 12
Suyal (ref_51) 2015; 70
ref_1
Malik (ref_72) 2011; 17
ref_2
Nautiyal (ref_56) 1997; 23
ref_49
Khan (ref_64) 2016; 101
Rainey (ref_63) 1999; 1
Fierer (ref_31) 2017; 15
Zhang (ref_27) 2018; 68
Romdhane (ref_39) 2007; 57
References_xml – volume: 51
  start-page: 128
  year: 2006
  ident: ref_29
  article-title: Natural populations of chickpea rhizobia evaluated by antibiotic resistance profiles and molecular methods
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-005-0085-3
– ident: ref_78
– volume: 4
  start-page: 655
  year: 2018
  ident: ref_10
  article-title: Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen
  publication-title: Nat. Plants
  doi: 10.1038/s41477-018-0231-9
– ident: ref_14
  doi: 10.3389/fmicb.2018.02055
– volume: 165
  start-page: 355
  year: 2017
  ident: ref_6
  article-title: Characterization and Identification of an epidemic strain of Ascochyta rabieion chickpeas in Northwest China
  publication-title: J. Phytopathol.
  doi: 10.1111/jph.12568
– volume: 353
  start-page: 123
  year: 2012
  ident: ref_40
  article-title: Distinctive Mesorhizobium populations associated with Cicer arietinum L. in alkaline soils of Xinjiang, China
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-1014-5
– ident: ref_43
  doi: 10.3389/fmicb.2021.709012
– volume: 57
  start-page: 15
  year: 2007
  ident: ref_39
  article-title: Inefficient nodulation of chickpea (Cicer arietinum L.) in the arid and Saharan climates in Tunisia by Sinorhizobium meliloti biovar medicaginis
  publication-title: Ann. Microbiol.
  doi: 10.1007/BF03175044
– volume: 18
  start-page: 100361
  year: 2021
  ident: ref_60
  article-title: Large-scale screening of rhizobacteria to enhance the chickpea-Mesorhizobium symbiosis using a plant-based strategy
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2021.100361
– volume: 16
  start-page: 291
  year: 2018
  ident: ref_32
  article-title: Rhizobia: From saprophytes to endosymbionts
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2017.171
– volume: 15
  start-page: 189
  year: 2010
  ident: ref_12
  article-title: How inefficient rhizobia prolong their existence within nodules
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2010.01.001
– volume: 70
  start-page: 305
  year: 2015
  ident: ref_51
  article-title: Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences
  publication-title: Biologia
  doi: 10.1515/biolog-2015-0048
– ident: ref_77
  doi: 10.1186/gb-2011-12-6-r60
– volume: 5
  start-page: 25
  year: 2017
  ident: ref_23
  article-title: Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0241-2
– volume: 162
  start-page: 2737
  year: 2012
  ident: ref_26
  article-title: Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. in Xinjiang, China
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.038265-0
– volume: 74
  start-page: 1405
  year: 2019
  ident: ref_52
  article-title: Comparative overview of red kidney bean (Phaseolus valgaris) rhizospheric bacterial diversity in perspective of altitudinal variations
  publication-title: Biologia
  doi: 10.2478/s11756-019-00292-1
– ident: ref_1
– ident: ref_57
  doi: 10.1007/s13205-018-1145-y
– volume: 234
  start-page: 242
  year: 2022
  ident: ref_66
  article-title: Microbiome profiling reveals that Pseudomonas antagonises parasitic nodule colonisation of cheater rhizobia in Lotus
  publication-title: New Phytol.
  doi: 10.1111/nph.17988
– volume: 73
  start-page: 57
  year: 2017
  ident: ref_3
  article-title: Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants
  publication-title: Symbiosis
  doi: 10.1007/s13199-016-0472-1
– volume: 101
  start-page: 159
  year: 2016
  ident: ref_64
  article-title: Native Pseudomonas spp. suppressed the root-knot nematode in in vitro and in vivo, and promoted the nodulation and grain yield in the field grown mungbean
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2016.06.012
– volume: 13
  start-page: 965
  year: 2011
  ident: ref_70
  article-title: Interactions of rhizobia cultural filtrates with Pseudomonas fluorescens on bean damping-off control
  publication-title: J. Agric. Sci. Technol.
– volume: 68
  start-page: 1930
  year: 2018
  ident: ref_27
  article-title: Mesorhizobium wenxiniae sp. nov., isolated from chickpea (Cicer arietinum L.) in China
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijsem.0.002770
– volume: 21
  start-page: 2456
  year: 2021
  ident: ref_59
  article-title: Zinc-solubilizing bacteria-mediated enzymatic and physiological regulations confer zinc biofortification in chickpea (Cicer arietinum L.)
  publication-title: J. Soil Sci. Plant Nut.
  doi: 10.1007/s42729-021-00537-6
– volume: 15
  start-page: 579
  year: 2017
  ident: ref_31
  article-title: Embracing the unknown: Disentangling the complexities of the soil microbiome
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2017.87
– volume: 39
  start-page: 7169
  year: 2019
  ident: ref_48
  article-title: Comparison of the microbial community in the rhizosphere of peanuts between saline-alkali and non-saline soil at different soil depths and intercropping cultivation in the Yellow River Delta
  publication-title: Acta Ecol. Sin.
– volume: 41
  start-page: 1233
  year: 2009
  ident: ref_9
  article-title: Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.03.005
– volume: 74
  start-page: 5704
  year: 2008
  ident: ref_33
  article-title: Microbial community analysis of field-grown soybeans with different nodulation phenotypes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00833-08
– volume: 82
  start-page: 3698
  year: 2016
  ident: ref_8
  article-title: Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01055-16
– volume: 12
  start-page: 293
  year: 1999
  ident: ref_16
  article-title: Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges
  publication-title: Mol. Plant-Microbe Interact. MPMI
  doi: 10.1094/MPMI.1999.12.4.293
– volume: 37
  start-page: 520
  year: 2014
  ident: ref_42
  article-title: Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils
  publication-title: Syst. Appl. Microbiol.
  doi: 10.1016/j.syapm.2014.07.004
– ident: ref_34
  doi: 10.1371/journal.pone.0100709
– volume: 5
  start-page: 653
  year: 2015
  ident: ref_55
  article-title: Plant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodules
  publication-title: 3 Biotech
  doi: 10.1007/s13205-014-0263-4
– volume: 369
  start-page: 453
  year: 2013
  ident: ref_71
  article-title: Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1586-3
– volume: 29
  start-page: 2988
  year: 2018
  ident: ref_46
  article-title: Effects of glyphosate-resistant transgenic soybean on soil rhizospheric bacteria and rhizobia
  publication-title: J. Appl. Ecol.
– volume: 37
  start-page: 605
  year: 2014
  ident: ref_19
  article-title: Microsymbionts of Phaseolus vulgaris in acid and alkaline soils of Mexico
  publication-title: Syst. Appl. Microbiol.
  doi: 10.1016/j.syapm.2014.08.005
– volume: 4
  start-page: e00921
  year: 2018
  ident: ref_21
  article-title: Influence of flooding and soil properties on the genetic diversity and distribution of indigenous soybean-nodulating bradyrhizobia in the Philippines
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00921
– volume: 33
  start-page: 369
  year: 2021
  ident: ref_5
  article-title: Chickpea advanced lines screening for sources of resistance against two major diseases of chickpea “wilt and blight”
  publication-title: Pak. J. Phytopathol.
  doi: 10.33866/phytopathol.033.02.0719
– volume: 14
  start-page: 334
  year: 2012
  ident: ref_13
  article-title: Symbiosis specificity in the legume—Rhizobial mutualism
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2011.01736.x
– volume: 51
  start-page: 1161
  year: 2019
  ident: ref_65
  article-title: Role of fluorescent Pseudomonas associated with root nodules of Mungbean in the induction of nodulation by the rhizobia in Mungbean
  publication-title: Pak. J. Bot.
  doi: 10.30848/PJB2019-3(44)
– volume: 51
  start-page: 347
  year: 2015
  ident: ref_45
  article-title: Bacterial core community in soybean rhizosphere
  publication-title: Korean J. Microbiol.
  doi: 10.7845/kjm.2015.5052
– volume: 52
  start-page: 71
  year: 2005
  ident: ref_69
  article-title: Rhizoplane colonisation of peas by Rhizobium leguminosarum bv. viceae and a deleterious Pseudomonas putida
  publication-title: Fems Microbiol. Ecol.
  doi: 10.1016/j.femsec.2004.10.013
– volume: 9
  start-page: 277
  year: 2019
  ident: ref_58
  article-title: Unravelling the potential of microbes isolated from rhizospheric soil of chickpea (Cicer arietinum) as plant growth promoter
  publication-title: 3 Biotech
  doi: 10.1007/s13205-019-1809-2
– volume: 246
  start-page: 167
  year: 2002
  ident: ref_62
  article-title: Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.)
  publication-title: Plant Soil
  doi: 10.1023/A:1020663909890
– volume: 75
  start-page: 7537
  year: 2009
  ident: ref_76
  article-title: Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01541-09
– volume: 1
  start-page: 243
  year: 1999
  ident: ref_63
  article-title: Adaptation of Pseudomonas fluorescens to the plant rhizosphere
  publication-title: Environ. Microbiol.
  doi: 10.1046/j.1462-2920.1999.00040.x
– volume: 122
  start-page: 126187
  year: 2021
  ident: ref_67
  article-title: Yield response of common bean to co-inoculation with Rhizobium and Pseudomonas endophytes and microscopic evidence of different colonised spaces inside the nodule
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2020.126187
– volume: 17
  start-page: 25
  year: 2011
  ident: ref_72
  article-title: Production of indole acetic acid by Pseudomonas sp.: Effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum)
  publication-title: Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol.
  doi: 10.1007/s12298-010-0041-7
– volume: 47
  start-page: 895
  year: 1997
  ident: ref_24
  article-title: Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov
  publication-title: Int. J. Syst. Bacteriol.
  doi: 10.1099/00207713-47-3-895
– volume: 271
  start-page: 22563
  year: 1996
  ident: ref_15
  article-title: Rhizobium leguminosarum bv. trifolii produces lipo-chitin oligosaccharides with nodE-dependent highly unsaturated fatty acyl moieties. An electrospray ionization and collision-induced dissociation tandem mass spectrometric study
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.37.22563
– ident: ref_44
  doi: 10.1186/s40168-016-0220-z
– volume: 44
  start-page: 629
  year: 2013
  ident: ref_68
  article-title: Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules
  publication-title: Braz. J. Microbiol.
  doi: 10.1590/S1517-83822013000200043
– volume: 38
  start-page: 493
  year: 1992
  ident: ref_38
  article-title: Environmental effects on competition for nodule occupancy between introduced and indigenous rhizobia and among introduced strains
  publication-title: Can. J. Microbiol.
  doi: 10.1139/m92-081
– ident: ref_74
  doi: 10.1371/journal.pone.0249884
– volume: 27
  start-page: 2957
  year: 2011
  ident: ref_75
  article-title: FLASH: Fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr507
– volume: 14
  start-page: 1915
  year: 2020
  ident: ref_7
  article-title: Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean
  publication-title: ISME J.
  doi: 10.1038/s41396-020-0648-9
– volume: 433
  start-page: 201
  year: 2018
  ident: ref_73
  article-title: Mesorhizobium jarvisii sv. astragali as predominant microsymbiont for Astragalus sinicus L. in acidic soils, Xinyang, China
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3830-3
– volume: 23
  start-page: 145
  year: 1997
  ident: ref_56
  article-title: Rhizosphere competence of Pseudomonas sp. NBRI9926 and Rhizobium sp. NBRI9513 involved in the suppression of chickpea (Cicer arietinum L.) pathogenic fungi
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.1997.tb00398.x
– ident: ref_49
  doi: 10.1007/s00203-021-02695-8
– volume: 48
  start-page: 101
  year: 2004
  ident: ref_28
  article-title: High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1016/j.femsec.2003.12.015
– volume: 58
  start-page: 32
  year: 2013
  ident: ref_47
  article-title: Rhizosphere bacterial communities associated with healthy and Heterodera glycines-infected soybean roots
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2013.05.001
– volume: 26
  start-page: 1641
  year: 2017
  ident: ref_35
  article-title: Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.14027
– volume: 8
  start-page: 1577
  year: 2014
  ident: ref_37
  article-title: Taxonomical and functional microbial community selection in soybean rhizosphere
  publication-title: ISME J.
  doi: 10.1038/ismej.2014.17
– volume: 75
  start-page: 1171
  year: 2022
  ident: ref_41
  article-title: The introduced strain Mesorhizobium ciceri USDA3378 is more competitive than an indigenous strain in nodulation of chickpea in newly introduced areas of China
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/lam.13785
– volume: 24
  start-page: 155
  year: 2018
  ident: ref_36
  article-title: Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.06.006
– volume: 38
  start-page: 31
  year: 2018
  ident: ref_4
  article-title: Role of Rhizobium in chickpea (Cicer arietinum) production—A review
  publication-title: Agr. Rev.
– volume: 13
  start-page: 1003
  year: 2021
  ident: ref_54
  article-title: Characterization of multi-trait plant growth promoting Pseudomonas aeruginosa from chickpea (Cicer arietinum) rhizosphere
  publication-title: J. Appl. Nat. Sci.
  doi: 10.31018/jans.v13i3.2782
– volume: 163
  start-page: 157
  year: 1994
  ident: ref_18
  article-title: Effect of pH on competition for nodule occupancy by type I and type II strains of Rhizobium leguminosarum bv. phaseoli
  publication-title: Plant Soil
  doi: 10.1007/BF00007964
– volume: 150
  start-page: 103490
  year: 2020
  ident: ref_53
  article-title: Diversity and structure of bacterial community in rhizosphere of lima bean
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2019.103490
– ident: ref_2
– ident: ref_79
  doi: 10.1017/CBO9780511615146
– volume: 12
  start-page: 157
  year: 1996
  ident: ref_17
  article-title: Nodulation competitiveness in the Rhizobium-legume symbiosis
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/BF00364680
– volume: 40
  start-page: 114
  year: 2017
  ident: ref_20
  article-title: Competition between rhizobia under different environmental conditions affects the nodulation of a legume
  publication-title: Syst. Appl. Microbiol.
  doi: 10.1016/j.syapm.2016.12.003
– volume: 45
  start-page: 640
  year: 1995
  ident: ref_25
  article-title: Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov
  publication-title: Int. J. Syst. Bacteriol.
  doi: 10.1099/00207713-45-4-640
– volume: 63
  start-page: 690
  year: 2017
  ident: ref_30
  article-title: Genetic and phenotypic diversity of rhizobia nodulating chickpea (Cicer arietinum L.) in soils from southern and central Ethiopia
  publication-title: Can. J. Microbiol.
  doi: 10.1139/cjm-2016-0776
– volume: 125
  start-page: 853
  year: 2018
  ident: ref_22
  article-title: Rhizobial biogeography and inoculation application to soybean in four regions across China
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.13897
– volume: 6
  start-page: 32
  year: 2015
  ident: ref_61
  article-title: Characterization of plant growth promoting rhizobacteria isolated from chickpea (Cicer arietinum)
  publication-title: Br. Microbiol. Res. J.
  doi: 10.9734/BMRJ/2015/14496
– volume: 9
  start-page: 12676
  year: 2019
  ident: ref_50
  article-title: Effects of rhizoma peanut cultivars (Arachis glabrata Benth.) on the soil bacterial diversity and predicted function in nitrogen fixation
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.5735
– volume: 22
  start-page: 661
  year: 2017
  ident: ref_11
  article-title: How plant root exudates shape the nitrogen cycle
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.05.004
SSID ssj0000800816
Score 2.2611294
Snippet Background: Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic...
Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils...
Background: Chickpea ( Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3421
SubjectTerms Actinobacteria
Analysis
Bacteria
Beans
Chickpea
Chickpeas
China
Cicer arietinum
Comparative analysis
Competition
competitive ability
Composition
Cultivation
Environmental aspects
Fixation
Growth
Inoculation
Legumes
Mesorhizobium ciceri
Mesorhizobium muleiense
Microbiota
Microorganisms
Mimosaceae
Next-generation sequencing
Nitrogen
Nitrogen fixation
Nitrogen-fixing microorganisms
Nitrogenation
Nodulation
Nodules
Physiological aspects
Pseudomonas
Rhizosphere
Rhizosphere microorganisms
Root nodules
Soils
Statistical analysis
Symbionts
Symbiosis
Testing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxYELggJioVQGIXGKmsSO7RxbaNVWgkOXSr1Z_oSFbbIi2UN_Av-amcRdbagqLlzjSWLN2J43yssbQt6bwuYuupjZEkW1AeFmNvI6U4YH7iC_-DgQZL-I00t-flVdbbX6Qk7YKA88Ou6AR8O98lap6KB0iYZFwLi5sRGQvhcOT1_IeVvF1I-Eg1QhRpVGBnX9wWqJvJICNijjZTHJQoNY_90j-W-a5FbeOXlCHifASA_HiT4lD0KzSx4etQDqbp6R3xBmOioQ0zbST6ndSU8vkEuHf4PQ-c21Bef3HW0bCnCP4hGQqFrUNB5uStQMfMJwX4daA4F-RrLe2Papu-5wFIkbP1fB0EWz9a55u1h2z8nlyfHXj6dZ6q6QuUqoPiuZrQsVGTextMIA9Ai2qpQ3eRFlDqiFS8kkpP8YRRW9497y4Gvvc8-DBDe-IDtN24SXhEJF62rPZAjCcJUzE6yvGMTZFIVwUs5Idutt7ZL0OHbAWGooQTA6ehqdGfmwsV-Nohv3Wh5h8DZWKJY9XADn6LSE9L-W0Iy8w9BrlMNokG_zzay7Tp_NL_QhFB_IKqs5zCkZxRbm7kz6fQE8gApaE8u92yWk04HQaShMBZdYbM7I280wbGX8PmOa0K4HG9QWypm634blKIdUcQmvUZPlOfHBdKRZfB-Ew7GncwWg5dX_8Npr8qgEwIfcmVLtkZ3-1zq8AYDW2_1hL_4Bl_8_Bg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVgy4EL4lMsFGQQEqeoSezEzgl1oVVBokK7VOrN8mdZsU0Wkj30J_CvmUm8SwMq13iSWB57_MZ5eUPIG52Z1AYbEpOjqDYg3MQEXiVSc88t7C8u9ATZ0_LkjH86L87jgVsbaZXbmNgHatdYPCM_AGRfcoFo_d36R4JVo_DraiyhcZvsQQiWckL2ZkenX-a7UxbEQzIrB7VGBvn9wXqF_JIMFirjeTbajXrR_n9D8990yWv7z_F9ci8CR3o4ePoBueXrh-TOrAFwd_WI_AJ300GJmDaBfohlTzo6R04d_hVCF1eXBpzQtbSpKcA-iqEgUraorh3cFCka-IT-vhY1Bzz9jKS9ofxTe9liKxI4vq-9psv62rsWzXLVPiZnx0df358kscpCYotSdknOTJXJwLgOuSk1QBBvikI6nWZBpIBeuBBMAAwIoSyCs9wZ7l3lXOq4FzCMT8ikbmr_lFDIbG3lmPC-1FymTHvjCgb-1llWWiGmJNmOtrJRghwrYawUpCLoHTX2zpS83dmvB_GNGy1n6LydFYpm9xdgcFRcg4oHzZ10RspgIQsOmgVIl1JtAiSNrrRT8hpdr1AWo0bezYXetK36uJirQ0hCkF1WcehTNAoN9N3q-BsDjAAqaY0s97dTSMXA0Ko_03hKXu2aYUnjdxpd-2bT26DGUMrkzTYsRVmkggt4jRxNz9EYjFvq5bdeQBxrOxcAXp79v4fPyd0cIB2yY3K5Tybdz41_ARCsMy_jOvsN8Xk2uA
  priority: 102
  providerName: ProQuest
Title The Effect of Different Rhizobial Symbionts on the Composition and Diversity of Rhizosphere Microorganisms of Chickpea in Different Soils
URI https://www.proquest.com/docview/2876476259
https://www.proquest.com/docview/2877385038
https://www.proquest.com/docview/3040435474
https://pubmed.ncbi.nlm.nih.gov/PMC10575130
https://doaj.org/article/4fa4d8db88fc446fa3f6750abf716d6c
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEF2hlgMXVL5EoEQLQuJksLNr7_qAUAOtClIrlBCpN2s_IZDaae1I5Cfwr5mxN6GGVuKaHX9oZtf7nvP8hpCXKtGx8cZHeoSm2oBwI-15HknFHTewv1jfCmRPs-MZ_3SWnv3RP4UE1tdSO-wnNbtcvP55sX4HC_4tMk6g7G-WC5SMJLD2GMdvyndhVxLYzeAkQP3vARnJthMq7ogAKrnoPByvOUVvj2qt_P99YP8toryyKx3tkbsBTtKDrv73yC1X3ie3xxVAvvUD8gsmAe38iWnl6YfQDKWhE1Ta4bcidLo-11CapqZVSQEMUnxABCEXVaWFg4JwA8_QHlejE4GjJyjl65pC1ec1jqKs48fSKTovr1xrWs0X9UMyOzr88v44Cr0XIpNmsolGTOeJ9IwrP9KZAmDidJpKq-LEixgwDReCCQAH3mept4ZbzZ3NrY0tdwLS-IjslFXpHhMKfNfklgnnMsVlzJTTNmUwC1SSZEaIAYk22S5MMCbH_hiLAggKVqfoV2dAXm3jl50lx42RYyzeNgqttNsfIDlFWJkF94pbabWU3gA39op5IFGx0h6opM3MgLzA0hdollGiGuerWtV18XE6KQ6AmqDmLOdwTyHIV3DvRoWPGyAD6K_Vi9zfTKFiM9sLoK0ZF0hFB-T5dhgWOv57o0pXrdoYdB6Kmbw5hsVolpRyAZeRvenZy0F_pJx_a23FseNzCpDmyX_n9ym5MwLMh_KZkdwnO83lyj0DjNboIdkdH55-ngzbdxzDdin-BpXCQL0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VKRJcEE8RKLAgECertndtrw8INbRVQtsIJa3Um9knRKR2wIlQfgJ_ht_IjB-hBpVbr96xvdqZnYf97TeEvJKB8rXTzlMhkmpDhuspx1NPSG65hvhiXAWQHcfDM_7hPDrfIr_aszAIq2x9YuWoTaHxG_kuZPYxTzBbf7f45mHXKPy72rbQqM3iyK5_QMlWvh3tg35fh-Hhwen7odd0FfB0FIulFzKVBsIxLl2oYgkh16ooEkb6gUugvof8OmEJhD3n4sgZzY3i1qTG-IbbJEDyJXD525zFftgj24OD8cfJ5qsO5l8iiGt2SMZSf3cxRzxLAI6B8TDoRL-qScC_oeBveOaleHd4h9xuElW6V1vWXbJl83vkxqCAZHJ9n_wE86I18zEtHN1v2qws6QQxfHgKhU7XFwqUvixpkVNIMym6ngYiRmVu4KYGEoJPqO4rkePA0hMECdbtpsqLEkcRMPJ1YSWd5ZfeNS1m8_IBObuW9X9IenmR20eEQiWtU8MSa2PJhc-kVSZiYF8yCGKdJH3itaud6YbyHDtvzDMofVA7WVc7ffJmI7-oyT6ulByg8jZSSNJdXYDFyZo9n3EnuRFGCeE0VN1OMgflmS-VgyLVxLpPXqLqM6ThyBHn81muyjIbTSfZHhQ9iGZLOcypEXIFzF3L5tgErAAyd3Ukd1oTyhpHVGZ_tk2fvNgMgwvB_0Iyt8WqkkFOI5-Jq2WYjzRMEU_gNaJjnp016I7ksy8VYTn2ko4gWXr8_xk-JzeHpyfH2fFofPSE3AohnURkTih2SG_5fWWfQvq3VM-aPUfJp-ve5r8Bttxzfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1VLUJcEJ8iUGBBIE5WbO_aXh8QakijhkJUJVTqzewnRKR2wIlQfgJ_iV_HjL0JDajces2OY2t3duaN_fYNIS9kpELttAtUjKLagHAD5XgeCMkt15BfjGsIsqP06JS_O0vOdsiv9VkYpFWuY2ITqE2l8R15F5B9yjNE613naREn_cGb-bcAO0jhl9Z1O43WRY7t6geUb_XrYR_W-mUcDw4_vj0KfIeBQCepWAQxU3kkHOPSxSqVkH6tShJhZBi5DGp9wNoZyyAFOpcmzmhuFLcmNyY03GYRCjFB-N_LsCraJXu9w9HJePOGB7GYiNJWKZKxPOzOZ8htiSBIMB5HW5mwaRjwb1r4m6p5IfcNbpGbHrTSg9bLbpMdW94h13oVAMvVXfITXI22Ksi0crTvW64s6Bj5fHgihU5W5wocYFHTqqQAOSmGIU8Xo7I0cJGnh-A_NNfVqHdg6QckDLatp-rzGkeRPPJ1biWdlhfuNamms_oeOb2S-b9PdsuqtA8Ihapa54Zl1qaSi5BJq0zCwNdkFKU6yzokWM92ob38OXbhmBVQBuHqFNur0yGvNvbzVvjjUsseLt7GCgW7mx9gcgq__wvuJDfCKCGchgrcSeagVAulclCwmlR3yHNc-gIlOUp07s9yWdfFcDIuDqAAQmZbzuGZvJGr4Nm19EcoYAZQxWvLcn_tQoUPSnXxZwt1yLPNMIQT_EYkS1stGxvUNwqZuNyGhSjJlPAMbiO23HNrDrZHyumXRrwc-0onAJwe_v8Jn5LrsL2L98PR8SNyIwZkiSSdWOyT3cX3pX0MSHChnvgtR8mnq97lvwHKGHe0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effect+of+Different+Rhizobial+Symbionts+on+the+Composition+and+Diversity+of+Rhizosphere+Microorganisms+of+Chickpea+in+Different+Soils&rft.jtitle=Plants+%28Basel%29&rft.au=Zhang%2C+Junjie&rft.au=Wang%2C+Nan&rft.au=Li%2C+Shuo&rft.au=Wang%2C+Jingqi&rft.date=2023-09-28&rft.issn=2223-7747&rft.eissn=2223-7747&rft.volume=12&rft.issue=19&rft.spage=3421&rft_id=info:doi/10.3390%2Fplants12193421&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_plants12193421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon