The Effect of Different Rhizobial Symbionts on the Composition and Diversity of Rhizosphere Microorganisms of Chickpea in Different Soils
Background: Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium mul...
Saved in:
Published in | Plants (Basel) Vol. 12; no. 19; p. 3421 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
28.09.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background: Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri, while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions. Results: Chickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there. Conclusions: Different chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas. |
---|---|
AbstractList | Background: Chickpea (
Cicer arietinum
L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation.
Mesorhizobium ciceri
is a prevalent species in the world, except China, where
Mesorhizobium muleiense
is the main species associated with chickpea. There were significant differences in the competitive ability between
M. ciceri
and
M. muleiense
in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils,
M. muleiense
was more competitive than
M. ciceri
, while in sterilized soils, the opposite was the case. In addition, the competitive ability of
M. ciceri
in soils of new areas of chickpea cultivation was significantly higher than that of
M. muleiense
. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions. Results: Chickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils.
Pseudomonas
appeared significantly enriched after inoculation with
M. muleiense
in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that
Pseudomonas
might be the key biological factor affecting the competitive colonization of
M. muleiense
and
M. ciceri
there. Conclusions: Different chickpea rhizobial inoculations of
M. muleiense
and
M. ciceri
affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that
Pseudomonas
might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas. Background: Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri, while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions. Results: Chickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there. Conclusions: Different chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas. Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri, while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions.BACKGROUNDChickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri, while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions.Chickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there.RESULTSChickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there.Different chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas.CONCLUSIONSDifferent chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas. |
Audience | Academic |
Author | Feng, Yufeng Zhang, Junjie Wang, Nan Yang, Tao Li, Shuo Wang, Entao Chen, Wenfeng Wang, Jingqi Li, Youguo |
AuthorAffiliation | 3 Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico C.P. 11340, Mexico 5 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China 1 College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China 2 Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, China 4 State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China 6 College of Biological Sciences, Rhizobium Research Center, China Agricultural University, Beijing 100193, China |
AuthorAffiliation_xml | – name: 5 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China – name: 3 Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico C.P. 11340, Mexico – name: 1 College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China – name: 6 College of Biological Sciences, Rhizobium Research Center, China Agricultural University, Beijing 100193, China – name: 4 State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China – name: 2 Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, China |
Author_xml | – sequence: 1 givenname: Junjie surname: Zhang fullname: Zhang, Junjie – sequence: 2 givenname: Nan surname: Wang fullname: Wang, Nan – sequence: 3 givenname: Shuo surname: Li fullname: Li, Shuo – sequence: 4 givenname: Jingqi surname: Wang fullname: Wang, Jingqi – sequence: 5 givenname: Yufeng surname: Feng fullname: Feng, Yufeng – sequence: 6 givenname: Entao orcidid: 0000-0001-6606-6916 surname: Wang fullname: Wang, Entao – sequence: 7 givenname: Youguo orcidid: 0000-0002-6386-7360 surname: Li fullname: Li, Youguo – sequence: 8 givenname: Tao surname: Yang fullname: Yang, Tao – sequence: 9 givenname: Wenfeng surname: Chen fullname: Chen, Wenfeng |
BookMark | eNqFUk1v1DAQjVARLaVXzpG4wGGLHTu2c0LVUmClIqRuOVuOP3a9JHaIvRXLP-BfM-kW6CIh4kixx2_ezLy8p8VRiMEWxXOMzglp0OuhUyEnXOGG0Ao_Kk6qqiIzzik_erA_Ls5S2iB4BLyYPSmOCReEYYZPih83a1teOmd1LqMr33rYjjbk8nrtv8fWq65c7vrWRyhUxlBmgM9jP8TkMwRLFQwk3doRzruJ4S4vDWtgKT96PcY4rlTwqU_T7Xzt9ZfBqtKHB7WW0XfpWfHYqS7Zs_vvafH53eXN_MPs6tP7xfziaqZrJvKsIm2DhSNUuaplCjFm27oWRiHsOGoIDMwJxxV1jtXOaGpaak1jDDLUclDqtFjseU1UGzmMvlfjTkbl5V0A2pVqzF53VlKnqBGmFcJpSplTxDFeI9U6jplhGrje7LmGbdtbo2GYUXUHpIc3wa_lKt5KjGpeY4KA4eU9wxi_bm3KsvdJ2w7-rI3bJAmiiJKacvpfaCVgclEjIgD64i_oJm7HALJOKEY5q-pJifM9aqVgWB9chB41LGN7r8FqzkP8gnMwmGiaqYNXBwmAyfZbXqltSnKxvD7E0j0WLJDSaJ3UPqvJM1DEd6CAnDwsDz38p6ffab_E_EfCT1mw9iE |
CitedBy_id | crossref_primary_10_1007_s00374_025_01890_9 crossref_primary_10_3390_plants13030429 crossref_primary_10_1016_j_jenvman_2024_122939 |
Cites_doi | 10.1007/s00248-005-0085-3 10.1038/s41477-018-0231-9 10.3389/fmicb.2018.02055 10.1111/jph.12568 10.1007/s11104-011-1014-5 10.3389/fmicb.2021.709012 10.1007/BF03175044 10.1016/j.rhisph.2021.100361 10.1038/nrmicro.2017.171 10.1016/j.tplants.2010.01.001 10.1515/biolog-2015-0048 10.1186/gb-2011-12-6-r60 10.1186/s40168-017-0241-2 10.1099/ijs.0.038265-0 10.2478/s11756-019-00292-1 10.1007/s13205-018-1145-y 10.1111/nph.17988 10.1007/s13199-016-0472-1 10.1016/j.biocontrol.2016.06.012 10.1099/ijsem.0.002770 10.1007/s42729-021-00537-6 10.1038/nrmicro.2017.87 10.1016/j.soilbio.2009.03.005 10.1128/AEM.00833-08 10.1128/AEM.01055-16 10.1094/MPMI.1999.12.4.293 10.1016/j.syapm.2014.07.004 10.1371/journal.pone.0100709 10.1007/s13205-014-0263-4 10.1007/s11104-013-1586-3 10.1016/j.syapm.2014.08.005 10.1016/j.heliyon.2018.e00921 10.33866/phytopathol.033.02.0719 10.1111/j.1462-5822.2011.01736.x 10.30848/PJB2019-3(44) 10.7845/kjm.2015.5052 10.1016/j.femsec.2004.10.013 10.1007/s13205-019-1809-2 10.1023/A:1020663909890 10.1128/AEM.01541-09 10.1046/j.1462-2920.1999.00040.x 10.1016/j.eja.2020.126187 10.1007/s12298-010-0041-7 10.1099/00207713-47-3-895 10.1074/jbc.271.37.22563 10.1186/s40168-016-0220-z 10.1590/S1517-83822013000200043 10.1139/m92-081 10.1371/journal.pone.0249884 10.1093/bioinformatics/btr507 10.1038/s41396-020-0648-9 10.1007/s11104-018-3830-3 10.1111/j.1574-6941.1997.tb00398.x 10.1007/s00203-021-02695-8 10.1016/j.femsec.2003.12.015 10.1016/j.ejsobi.2013.05.001 10.1111/mec.14027 10.1038/ismej.2014.17 10.1111/lam.13785 10.1016/j.chom.2018.06.006 10.31018/jans.v13i3.2782 10.1007/BF00007964 10.1016/j.apsoil.2019.103490 10.1017/CBO9780511615146 10.1007/BF00364680 10.1016/j.syapm.2016.12.003 10.1099/00207713-45-4-640 10.1139/cjm-2016-0776 10.1111/jam.13897 10.9734/BMRJ/2015/14496 10.1002/ece3.5735 10.1016/j.tplants.2017.05.004 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION ISR 3V. 7SN 7SS 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/plants12193421 |
DatabaseName | CrossRef Gale in Context: Science ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2223-7747 |
ExternalDocumentID | oai_doaj_org_article_4fa4d8db88fc446fa3f6750abf716d6c PMC10575130 A772198994 10_3390_plants12193421 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Nature Science Foundation of China grantid: 31970006 – fundername: Henan University Science and Technology Innovation Talent Support Program grantid: 22HASTIT035 |
GroupedDBID | 53G 5VS 7X2 7XC 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ HYE IAG IAO IGH ISR ITC KQ8 LK8 M0K M48 M7P MODMG M~E OK1 OZF PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RPM PMFND 3V. 7SN 7SS 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c568t-23b918f34af2b6a066eb558da01f7093747737124ff65fdc4db4ed9dd0d4e7193 |
IEDL.DBID | M48 |
ISSN | 2223-7747 |
IngestDate | Wed Aug 27 01:31:59 EDT 2025 Thu Aug 21 18:35:34 EDT 2025 Thu Jul 10 23:31:14 EDT 2025 Fri Jul 11 12:07:18 EDT 2025 Fri Jul 25 12:09:21 EDT 2025 Tue Jun 10 21:04:09 EDT 2025 Fri Jun 27 06:07:43 EDT 2025 Tue Jul 01 02:33:33 EDT 2025 Thu Apr 24 23:05:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c568t-23b918f34af2b6a066eb558da01f7093747737124ff65fdc4db4ed9dd0d4e7193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6386-7360 0000-0001-6606-6916 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/plants12193421 |
PMID | 37836161 |
PQID | 2876476259 |
PQPubID | 2032347 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4fa4d8db88fc446fa3f6750abf716d6c pubmedcentral_primary_oai_pubmedcentral_nih_gov_10575130 proquest_miscellaneous_3040435474 proquest_miscellaneous_2877385038 proquest_journals_2876476259 gale_infotracacademiconefile_A772198994 gale_incontextgauss_ISR_A772198994 crossref_citationtrail_10_3390_plants12193421 crossref_primary_10_3390_plants12193421 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230928 |
PublicationDateYYYYMMDD | 2023-09-28 |
PublicationDate_xml | – month: 9 year: 2023 text: 20230928 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Plants (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Dai (ref_48) 2019; 39 Ikeda (ref_33) 2008; 74 Egamberdieva (ref_71) 2013; 369 Schumpp (ref_12) 2010; 15 ref_14 Poole (ref_32) 2018; 16 ref_57 Tena (ref_30) 2017; 63 Shcherbakova (ref_3) 2017; 73 Zhang (ref_26) 2012; 162 Mus (ref_8) 2016; 82 Frey (ref_18) 1994; 163 Beckers (ref_23) 2017; 5 Berggren (ref_69) 2005; 52 Zhang (ref_19) 2014; 37 Aslam (ref_5) 2021; 33 Wang (ref_13) 2012; 14 Thies (ref_38) 1992; 38 Spaink (ref_15) 1996; 271 Ruben (ref_36) 2018; 24 Shen (ref_46) 2018; 29 Zhang (ref_41) 2022; 75 Taylor (ref_10) 2018; 4 Coskun (ref_11) 2017; 22 Mason (ref_21) 2018; 4 Ji (ref_20) 2017; 40 Lee (ref_45) 2015; 51 Alexandre (ref_29) 2006; 51 Mago (ref_75) 2011; 27 Zhang (ref_42) 2014; 37 Gopalakrishnan (ref_55) 2015; 5 Pueppke (ref_16) 1999; 12 Xiao (ref_35) 2017; 26 Wang (ref_50) 2019; 9 Pandey (ref_58) 2019; 9 Mendes (ref_37) 2014; 8 Marschner (ref_62) 2002; 246 Yang (ref_22) 2018; 125 Sousa (ref_53) 2020; 150 Zhang (ref_40) 2012; 353 Zhang (ref_73) 2018; 433 Crosbie (ref_66) 2022; 234 Chen (ref_6) 2017; 165 ref_79 ref_34 ref_78 ref_77 Zhao (ref_68) 2013; 44 ref_74 Noreen (ref_65) 2019; 51 Suyal (ref_52) 2019; 74 Kaschuk (ref_9) 2009; 41 Alemneh (ref_60) 2021; 18 Zhu (ref_47) 2013; 58 Batool (ref_59) 2021; 21 Barquero (ref_67) 2021; 122 Samavat (ref_70) 2011; 13 Amjad (ref_61) 2015; 6 Schloss (ref_76) 2009; 75 Jarvis (ref_24) 1997; 47 Monika (ref_54) 2021; 13 Han (ref_7) 2020; 14 Nour (ref_25) 1995; 45 Singh (ref_4) 2018; 38 ref_44 Laranjo (ref_28) 2004; 48 ref_43 Toro (ref_17) 1996; 12 Suyal (ref_51) 2015; 70 ref_1 Malik (ref_72) 2011; 17 ref_2 Nautiyal (ref_56) 1997; 23 ref_49 Khan (ref_64) 2016; 101 Rainey (ref_63) 1999; 1 Fierer (ref_31) 2017; 15 Zhang (ref_27) 2018; 68 Romdhane (ref_39) 2007; 57 |
References_xml | – volume: 51 start-page: 128 year: 2006 ident: ref_29 article-title: Natural populations of chickpea rhizobia evaluated by antibiotic resistance profiles and molecular methods publication-title: Microb. Ecol. doi: 10.1007/s00248-005-0085-3 – ident: ref_78 – volume: 4 start-page: 655 year: 2018 ident: ref_10 article-title: Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen publication-title: Nat. Plants doi: 10.1038/s41477-018-0231-9 – ident: ref_14 doi: 10.3389/fmicb.2018.02055 – volume: 165 start-page: 355 year: 2017 ident: ref_6 article-title: Characterization and Identification of an epidemic strain of Ascochyta rabieion chickpeas in Northwest China publication-title: J. Phytopathol. doi: 10.1111/jph.12568 – volume: 353 start-page: 123 year: 2012 ident: ref_40 article-title: Distinctive Mesorhizobium populations associated with Cicer arietinum L. in alkaline soils of Xinjiang, China publication-title: Plant Soil doi: 10.1007/s11104-011-1014-5 – ident: ref_43 doi: 10.3389/fmicb.2021.709012 – volume: 57 start-page: 15 year: 2007 ident: ref_39 article-title: Inefficient nodulation of chickpea (Cicer arietinum L.) in the arid and Saharan climates in Tunisia by Sinorhizobium meliloti biovar medicaginis publication-title: Ann. Microbiol. doi: 10.1007/BF03175044 – volume: 18 start-page: 100361 year: 2021 ident: ref_60 article-title: Large-scale screening of rhizobacteria to enhance the chickpea-Mesorhizobium symbiosis using a plant-based strategy publication-title: Rhizosphere doi: 10.1016/j.rhisph.2021.100361 – volume: 16 start-page: 291 year: 2018 ident: ref_32 article-title: Rhizobia: From saprophytes to endosymbionts publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2017.171 – volume: 15 start-page: 189 year: 2010 ident: ref_12 article-title: How inefficient rhizobia prolong their existence within nodules publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2010.01.001 – volume: 70 start-page: 305 year: 2015 ident: ref_51 article-title: Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences publication-title: Biologia doi: 10.1515/biolog-2015-0048 – ident: ref_77 doi: 10.1186/gb-2011-12-6-r60 – volume: 5 start-page: 25 year: 2017 ident: ref_23 article-title: Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees publication-title: Microbiome doi: 10.1186/s40168-017-0241-2 – volume: 162 start-page: 2737 year: 2012 ident: ref_26 article-title: Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. in Xinjiang, China publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.038265-0 – volume: 74 start-page: 1405 year: 2019 ident: ref_52 article-title: Comparative overview of red kidney bean (Phaseolus valgaris) rhizospheric bacterial diversity in perspective of altitudinal variations publication-title: Biologia doi: 10.2478/s11756-019-00292-1 – ident: ref_1 – ident: ref_57 doi: 10.1007/s13205-018-1145-y – volume: 234 start-page: 242 year: 2022 ident: ref_66 article-title: Microbiome profiling reveals that Pseudomonas antagonises parasitic nodule colonisation of cheater rhizobia in Lotus publication-title: New Phytol. doi: 10.1111/nph.17988 – volume: 73 start-page: 57 year: 2017 ident: ref_3 article-title: Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants publication-title: Symbiosis doi: 10.1007/s13199-016-0472-1 – volume: 101 start-page: 159 year: 2016 ident: ref_64 article-title: Native Pseudomonas spp. suppressed the root-knot nematode in in vitro and in vivo, and promoted the nodulation and grain yield in the field grown mungbean publication-title: Biol. Control doi: 10.1016/j.biocontrol.2016.06.012 – volume: 13 start-page: 965 year: 2011 ident: ref_70 article-title: Interactions of rhizobia cultural filtrates with Pseudomonas fluorescens on bean damping-off control publication-title: J. Agric. Sci. Technol. – volume: 68 start-page: 1930 year: 2018 ident: ref_27 article-title: Mesorhizobium wenxiniae sp. nov., isolated from chickpea (Cicer arietinum L.) in China publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijsem.0.002770 – volume: 21 start-page: 2456 year: 2021 ident: ref_59 article-title: Zinc-solubilizing bacteria-mediated enzymatic and physiological regulations confer zinc biofortification in chickpea (Cicer arietinum L.) publication-title: J. Soil Sci. Plant Nut. doi: 10.1007/s42729-021-00537-6 – volume: 15 start-page: 579 year: 2017 ident: ref_31 article-title: Embracing the unknown: Disentangling the complexities of the soil microbiome publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2017.87 – volume: 39 start-page: 7169 year: 2019 ident: ref_48 article-title: Comparison of the microbial community in the rhizosphere of peanuts between saline-alkali and non-saline soil at different soil depths and intercropping cultivation in the Yellow River Delta publication-title: Acta Ecol. Sin. – volume: 41 start-page: 1233 year: 2009 ident: ref_9 article-title: Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.03.005 – volume: 74 start-page: 5704 year: 2008 ident: ref_33 article-title: Microbial community analysis of field-grown soybeans with different nodulation phenotypes publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00833-08 – volume: 82 start-page: 3698 year: 2016 ident: ref_8 article-title: Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01055-16 – volume: 12 start-page: 293 year: 1999 ident: ref_16 article-title: Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges publication-title: Mol. Plant-Microbe Interact. MPMI doi: 10.1094/MPMI.1999.12.4.293 – volume: 37 start-page: 520 year: 2014 ident: ref_42 article-title: Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils publication-title: Syst. Appl. Microbiol. doi: 10.1016/j.syapm.2014.07.004 – ident: ref_34 doi: 10.1371/journal.pone.0100709 – volume: 5 start-page: 653 year: 2015 ident: ref_55 article-title: Plant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodules publication-title: 3 Biotech doi: 10.1007/s13205-014-0263-4 – volume: 369 start-page: 453 year: 2013 ident: ref_71 article-title: Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas publication-title: Plant Soil doi: 10.1007/s11104-013-1586-3 – volume: 29 start-page: 2988 year: 2018 ident: ref_46 article-title: Effects of glyphosate-resistant transgenic soybean on soil rhizospheric bacteria and rhizobia publication-title: J. Appl. Ecol. – volume: 37 start-page: 605 year: 2014 ident: ref_19 article-title: Microsymbionts of Phaseolus vulgaris in acid and alkaline soils of Mexico publication-title: Syst. Appl. Microbiol. doi: 10.1016/j.syapm.2014.08.005 – volume: 4 start-page: e00921 year: 2018 ident: ref_21 article-title: Influence of flooding and soil properties on the genetic diversity and distribution of indigenous soybean-nodulating bradyrhizobia in the Philippines publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00921 – volume: 33 start-page: 369 year: 2021 ident: ref_5 article-title: Chickpea advanced lines screening for sources of resistance against two major diseases of chickpea “wilt and blight” publication-title: Pak. J. Phytopathol. doi: 10.33866/phytopathol.033.02.0719 – volume: 14 start-page: 334 year: 2012 ident: ref_13 article-title: Symbiosis specificity in the legume—Rhizobial mutualism publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2011.01736.x – volume: 51 start-page: 1161 year: 2019 ident: ref_65 article-title: Role of fluorescent Pseudomonas associated with root nodules of Mungbean in the induction of nodulation by the rhizobia in Mungbean publication-title: Pak. J. Bot. doi: 10.30848/PJB2019-3(44) – volume: 51 start-page: 347 year: 2015 ident: ref_45 article-title: Bacterial core community in soybean rhizosphere publication-title: Korean J. Microbiol. doi: 10.7845/kjm.2015.5052 – volume: 52 start-page: 71 year: 2005 ident: ref_69 article-title: Rhizoplane colonisation of peas by Rhizobium leguminosarum bv. viceae and a deleterious Pseudomonas putida publication-title: Fems Microbiol. Ecol. doi: 10.1016/j.femsec.2004.10.013 – volume: 9 start-page: 277 year: 2019 ident: ref_58 article-title: Unravelling the potential of microbes isolated from rhizospheric soil of chickpea (Cicer arietinum) as plant growth promoter publication-title: 3 Biotech doi: 10.1007/s13205-019-1809-2 – volume: 246 start-page: 167 year: 2002 ident: ref_62 article-title: Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.) publication-title: Plant Soil doi: 10.1023/A:1020663909890 – volume: 75 start-page: 7537 year: 2009 ident: ref_76 article-title: Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01541-09 – volume: 1 start-page: 243 year: 1999 ident: ref_63 article-title: Adaptation of Pseudomonas fluorescens to the plant rhizosphere publication-title: Environ. Microbiol. doi: 10.1046/j.1462-2920.1999.00040.x – volume: 122 start-page: 126187 year: 2021 ident: ref_67 article-title: Yield response of common bean to co-inoculation with Rhizobium and Pseudomonas endophytes and microscopic evidence of different colonised spaces inside the nodule publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2020.126187 – volume: 17 start-page: 25 year: 2011 ident: ref_72 article-title: Production of indole acetic acid by Pseudomonas sp.: Effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum) publication-title: Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. doi: 10.1007/s12298-010-0041-7 – volume: 47 start-page: 895 year: 1997 ident: ref_24 article-title: Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov publication-title: Int. J. Syst. Bacteriol. doi: 10.1099/00207713-47-3-895 – volume: 271 start-page: 22563 year: 1996 ident: ref_15 article-title: Rhizobium leguminosarum bv. trifolii produces lipo-chitin oligosaccharides with nodE-dependent highly unsaturated fatty acyl moieties. An electrospray ionization and collision-induced dissociation tandem mass spectrometric study publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.37.22563 – ident: ref_44 doi: 10.1186/s40168-016-0220-z – volume: 44 start-page: 629 year: 2013 ident: ref_68 article-title: Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules publication-title: Braz. J. Microbiol. doi: 10.1590/S1517-83822013000200043 – volume: 38 start-page: 493 year: 1992 ident: ref_38 article-title: Environmental effects on competition for nodule occupancy between introduced and indigenous rhizobia and among introduced strains publication-title: Can. J. Microbiol. doi: 10.1139/m92-081 – ident: ref_74 doi: 10.1371/journal.pone.0249884 – volume: 27 start-page: 2957 year: 2011 ident: ref_75 article-title: FLASH: Fast length adjustment of short reads to improve genome assemblies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr507 – volume: 14 start-page: 1915 year: 2020 ident: ref_7 article-title: Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean publication-title: ISME J. doi: 10.1038/s41396-020-0648-9 – volume: 433 start-page: 201 year: 2018 ident: ref_73 article-title: Mesorhizobium jarvisii sv. astragali as predominant microsymbiont for Astragalus sinicus L. in acidic soils, Xinyang, China publication-title: Plant Soil doi: 10.1007/s11104-018-3830-3 – volume: 23 start-page: 145 year: 1997 ident: ref_56 article-title: Rhizosphere competence of Pseudomonas sp. NBRI9926 and Rhizobium sp. NBRI9513 involved in the suppression of chickpea (Cicer arietinum L.) pathogenic fungi publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.1997.tb00398.x – ident: ref_49 doi: 10.1007/s00203-021-02695-8 – volume: 48 start-page: 101 year: 2004 ident: ref_28 article-title: High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region publication-title: FEMS Microbiol. Ecol. doi: 10.1016/j.femsec.2003.12.015 – volume: 58 start-page: 32 year: 2013 ident: ref_47 article-title: Rhizosphere bacterial communities associated with healthy and Heterodera glycines-infected soybean roots publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2013.05.001 – volume: 26 start-page: 1641 year: 2017 ident: ref_35 article-title: Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments publication-title: Mol. Ecol. doi: 10.1111/mec.14027 – volume: 8 start-page: 1577 year: 2014 ident: ref_37 article-title: Taxonomical and functional microbial community selection in soybean rhizosphere publication-title: ISME J. doi: 10.1038/ismej.2014.17 – volume: 75 start-page: 1171 year: 2022 ident: ref_41 article-title: The introduced strain Mesorhizobium ciceri USDA3378 is more competitive than an indigenous strain in nodulation of chickpea in newly introduced areas of China publication-title: Lett. Appl. Microbiol. doi: 10.1111/lam.13785 – volume: 24 start-page: 155 year: 2018 ident: ref_36 article-title: Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.06.006 – volume: 38 start-page: 31 year: 2018 ident: ref_4 article-title: Role of Rhizobium in chickpea (Cicer arietinum) production—A review publication-title: Agr. Rev. – volume: 13 start-page: 1003 year: 2021 ident: ref_54 article-title: Characterization of multi-trait plant growth promoting Pseudomonas aeruginosa from chickpea (Cicer arietinum) rhizosphere publication-title: J. Appl. Nat. Sci. doi: 10.31018/jans.v13i3.2782 – volume: 163 start-page: 157 year: 1994 ident: ref_18 article-title: Effect of pH on competition for nodule occupancy by type I and type II strains of Rhizobium leguminosarum bv. phaseoli publication-title: Plant Soil doi: 10.1007/BF00007964 – volume: 150 start-page: 103490 year: 2020 ident: ref_53 article-title: Diversity and structure of bacterial community in rhizosphere of lima bean publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2019.103490 – ident: ref_2 – ident: ref_79 doi: 10.1017/CBO9780511615146 – volume: 12 start-page: 157 year: 1996 ident: ref_17 article-title: Nodulation competitiveness in the Rhizobium-legume symbiosis publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/BF00364680 – volume: 40 start-page: 114 year: 2017 ident: ref_20 article-title: Competition between rhizobia under different environmental conditions affects the nodulation of a legume publication-title: Syst. Appl. Microbiol. doi: 10.1016/j.syapm.2016.12.003 – volume: 45 start-page: 640 year: 1995 ident: ref_25 article-title: Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov publication-title: Int. J. Syst. Bacteriol. doi: 10.1099/00207713-45-4-640 – volume: 63 start-page: 690 year: 2017 ident: ref_30 article-title: Genetic and phenotypic diversity of rhizobia nodulating chickpea (Cicer arietinum L.) in soils from southern and central Ethiopia publication-title: Can. J. Microbiol. doi: 10.1139/cjm-2016-0776 – volume: 125 start-page: 853 year: 2018 ident: ref_22 article-title: Rhizobial biogeography and inoculation application to soybean in four regions across China publication-title: J. Appl. Microbiol. doi: 10.1111/jam.13897 – volume: 6 start-page: 32 year: 2015 ident: ref_61 article-title: Characterization of plant growth promoting rhizobacteria isolated from chickpea (Cicer arietinum) publication-title: Br. Microbiol. Res. J. doi: 10.9734/BMRJ/2015/14496 – volume: 9 start-page: 12676 year: 2019 ident: ref_50 article-title: Effects of rhizoma peanut cultivars (Arachis glabrata Benth.) on the soil bacterial diversity and predicted function in nitrogen fixation publication-title: Ecol. Evol. doi: 10.1002/ece3.5735 – volume: 22 start-page: 661 year: 2017 ident: ref_11 article-title: How plant root exudates shape the nitrogen cycle publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.05.004 |
SSID | ssj0000800816 |
Score | 2.2611294 |
Snippet | Background: Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic... Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils... Background: Chickpea ( Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 3421 |
SubjectTerms | Actinobacteria Analysis Bacteria Beans Chickpea Chickpeas China Cicer arietinum Comparative analysis Competition competitive ability Composition Cultivation Environmental aspects Fixation Growth Inoculation Legumes Mesorhizobium ciceri Mesorhizobium muleiense Microbiota Microorganisms Mimosaceae Next-generation sequencing Nitrogen Nitrogen fixation Nitrogen-fixing microorganisms Nitrogenation Nodulation Nodules Physiological aspects Pseudomonas Rhizosphere Rhizosphere microorganisms Root nodules Soils Statistical analysis Symbionts Symbiosis Testing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxYELggJioVQGIXGKmsSO7RxbaNVWgkOXSr1Z_oSFbbIi2UN_Av-amcRdbagqLlzjSWLN2J43yssbQt6bwuYuupjZEkW1AeFmNvI6U4YH7iC_-DgQZL-I00t-flVdbbX6Qk7YKA88Ou6AR8O98lap6KB0iYZFwLi5sRGQvhcOT1_IeVvF1I-Eg1QhRpVGBnX9wWqJvJICNijjZTHJQoNY_90j-W-a5FbeOXlCHifASA_HiT4lD0KzSx4etQDqbp6R3xBmOioQ0zbST6ndSU8vkEuHf4PQ-c21Bef3HW0bCnCP4hGQqFrUNB5uStQMfMJwX4daA4F-RrLe2Papu-5wFIkbP1fB0EWz9a55u1h2z8nlyfHXj6dZ6q6QuUqoPiuZrQsVGTextMIA9Ai2qpQ3eRFlDqiFS8kkpP8YRRW9497y4Gvvc8-DBDe-IDtN24SXhEJF62rPZAjCcJUzE6yvGMTZFIVwUs5Idutt7ZL0OHbAWGooQTA6ehqdGfmwsV-Nohv3Wh5h8DZWKJY9XADn6LSE9L-W0Iy8w9BrlMNokG_zzay7Tp_NL_QhFB_IKqs5zCkZxRbm7kz6fQE8gApaE8u92yWk04HQaShMBZdYbM7I280wbGX8PmOa0K4HG9QWypm634blKIdUcQmvUZPlOfHBdKRZfB-Ew7GncwWg5dX_8Npr8qgEwIfcmVLtkZ3-1zq8AYDW2_1hL_4Bl_8_Bg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVgy4EL4lMsFGQQEqeoSezEzgl1oVVBokK7VOrN8mdZsU0Wkj30J_CvmUm8SwMq13iSWB57_MZ5eUPIG52Z1AYbEpOjqDYg3MQEXiVSc88t7C8u9ATZ0_LkjH86L87jgVsbaZXbmNgHatdYPCM_AGRfcoFo_d36R4JVo_DraiyhcZvsQQiWckL2ZkenX-a7UxbEQzIrB7VGBvn9wXqF_JIMFirjeTbajXrR_n9D8990yWv7z_F9ci8CR3o4ePoBueXrh-TOrAFwd_WI_AJ300GJmDaBfohlTzo6R04d_hVCF1eXBpzQtbSpKcA-iqEgUraorh3cFCka-IT-vhY1Bzz9jKS9ofxTe9liKxI4vq-9psv62rsWzXLVPiZnx0df358kscpCYotSdknOTJXJwLgOuSk1QBBvikI6nWZBpIBeuBBMAAwIoSyCs9wZ7l3lXOq4FzCMT8ikbmr_lFDIbG3lmPC-1FymTHvjCgb-1llWWiGmJNmOtrJRghwrYawUpCLoHTX2zpS83dmvB_GNGy1n6LydFYpm9xdgcFRcg4oHzZ10RspgIQsOmgVIl1JtAiSNrrRT8hpdr1AWo0bezYXetK36uJirQ0hCkF1WcehTNAoN9N3q-BsDjAAqaY0s97dTSMXA0Ko_03hKXu2aYUnjdxpd-2bT26DGUMrkzTYsRVmkggt4jRxNz9EYjFvq5bdeQBxrOxcAXp79v4fPyd0cIB2yY3K5Tybdz41_ARCsMy_jOvsN8Xk2uA priority: 102 providerName: ProQuest |
Title | The Effect of Different Rhizobial Symbionts on the Composition and Diversity of Rhizosphere Microorganisms of Chickpea in Different Soils |
URI | https://www.proquest.com/docview/2876476259 https://www.proquest.com/docview/2877385038 https://www.proquest.com/docview/3040435474 https://pubmed.ncbi.nlm.nih.gov/PMC10575130 https://doaj.org/article/4fa4d8db88fc446fa3f6750abf716d6c |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEF2hlgMXVL5EoEQLQuJksLNr7_qAUAOtClIrlBCpN2s_IZDaae1I5Cfwr5mxN6GGVuKaHX9oZtf7nvP8hpCXKtGx8cZHeoSm2oBwI-15HknFHTewv1jfCmRPs-MZ_3SWnv3RP4UE1tdSO-wnNbtcvP55sX4HC_4tMk6g7G-WC5SMJLD2GMdvyndhVxLYzeAkQP3vARnJthMq7ogAKrnoPByvOUVvj2qt_P99YP8toryyKx3tkbsBTtKDrv73yC1X3ie3xxVAvvUD8gsmAe38iWnl6YfQDKWhE1Ta4bcidLo-11CapqZVSQEMUnxABCEXVaWFg4JwA8_QHlejE4GjJyjl65pC1ec1jqKs48fSKTovr1xrWs0X9UMyOzr88v44Cr0XIpNmsolGTOeJ9IwrP9KZAmDidJpKq-LEixgwDReCCQAH3mept4ZbzZ3NrY0tdwLS-IjslFXpHhMKfNfklgnnMsVlzJTTNmUwC1SSZEaIAYk22S5MMCbH_hiLAggKVqfoV2dAXm3jl50lx42RYyzeNgqttNsfIDlFWJkF94pbabWU3gA39op5IFGx0h6opM3MgLzA0hdollGiGuerWtV18XE6KQ6AmqDmLOdwTyHIV3DvRoWPGyAD6K_Vi9zfTKFiM9sLoK0ZF0hFB-T5dhgWOv57o0pXrdoYdB6Kmbw5hsVolpRyAZeRvenZy0F_pJx_a23FseNzCpDmyX_n9ym5MwLMh_KZkdwnO83lyj0DjNboIdkdH55-ngzbdxzDdin-BpXCQL0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VKRJcEE8RKLAgECertndtrw8INbRVQtsIJa3Um9knRKR2wIlQfgJ_ht_IjB-hBpVbr96xvdqZnYf97TeEvJKB8rXTzlMhkmpDhuspx1NPSG65hvhiXAWQHcfDM_7hPDrfIr_aszAIq2x9YuWoTaHxG_kuZPYxTzBbf7f45mHXKPy72rbQqM3iyK5_QMlWvh3tg35fh-Hhwen7odd0FfB0FIulFzKVBsIxLl2oYgkh16ooEkb6gUugvof8OmEJhD3n4sgZzY3i1qTG-IbbJEDyJXD525zFftgj24OD8cfJ5qsO5l8iiGt2SMZSf3cxRzxLAI6B8TDoRL-qScC_oeBveOaleHd4h9xuElW6V1vWXbJl83vkxqCAZHJ9n_wE86I18zEtHN1v2qws6QQxfHgKhU7XFwqUvixpkVNIMym6ngYiRmVu4KYGEoJPqO4rkePA0hMECdbtpsqLEkcRMPJ1YSWd5ZfeNS1m8_IBObuW9X9IenmR20eEQiWtU8MSa2PJhc-kVSZiYF8yCGKdJH3itaud6YbyHDtvzDMofVA7WVc7ffJmI7-oyT6ulByg8jZSSNJdXYDFyZo9n3EnuRFGCeE0VN1OMgflmS-VgyLVxLpPXqLqM6ThyBHn81muyjIbTSfZHhQ9iGZLOcypEXIFzF3L5tgErAAyd3Ukd1oTyhpHVGZ_tk2fvNgMgwvB_0Iyt8WqkkFOI5-Jq2WYjzRMEU_gNaJjnp016I7ksy8VYTn2ko4gWXr8_xk-JzeHpyfH2fFofPSE3AohnURkTih2SG_5fWWfQvq3VM-aPUfJp-ve5r8Bttxzfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1VLUJcEJ8iUGBBIE5WbO_aXh8QakijhkJUJVTqzewnRKR2wIlQfgJ_iV_HjL0JDajces2OY2t3duaN_fYNIS9kpELttAtUjKLagHAD5XgeCMkt15BfjGsIsqP06JS_O0vOdsiv9VkYpFWuY2ITqE2l8R15F5B9yjNE613naREn_cGb-bcAO0jhl9Z1O43WRY7t6geUb_XrYR_W-mUcDw4_vj0KfIeBQCepWAQxU3kkHOPSxSqVkH6tShJhZBi5DGp9wNoZyyAFOpcmzmhuFLcmNyY03GYRCjFB-N_LsCraJXu9w9HJePOGB7GYiNJWKZKxPOzOZ8htiSBIMB5HW5mwaRjwb1r4m6p5IfcNbpGbHrTSg9bLbpMdW94h13oVAMvVXfITXI22Ksi0crTvW64s6Bj5fHgihU5W5wocYFHTqqQAOSmGIU8Xo7I0cJGnh-A_NNfVqHdg6QckDLatp-rzGkeRPPJ1biWdlhfuNamms_oeOb2S-b9PdsuqtA8Ihapa54Zl1qaSi5BJq0zCwNdkFKU6yzokWM92ob38OXbhmBVQBuHqFNur0yGvNvbzVvjjUsseLt7GCgW7mx9gcgq__wvuJDfCKCGchgrcSeagVAulclCwmlR3yHNc-gIlOUp07s9yWdfFcDIuDqAAQmZbzuGZvJGr4Nm19EcoYAZQxWvLcn_tQoUPSnXxZwt1yLPNMIQT_EYkS1stGxvUNwqZuNyGhSjJlPAMbiO23HNrDrZHyumXRrwc-0onAJwe_v8Jn5LrsL2L98PR8SNyIwZkiSSdWOyT3cX3pX0MSHChnvgtR8mnq97lvwHKGHe0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effect+of+Different+Rhizobial+Symbionts+on+the+Composition+and+Diversity+of+Rhizosphere+Microorganisms+of+Chickpea+in+Different+Soils&rft.jtitle=Plants+%28Basel%29&rft.au=Zhang%2C+Junjie&rft.au=Wang%2C+Nan&rft.au=Li%2C+Shuo&rft.au=Wang%2C+Jingqi&rft.date=2023-09-28&rft.issn=2223-7747&rft.eissn=2223-7747&rft.volume=12&rft.issue=19&rft.spage=3421&rft_id=info:doi/10.3390%2Fplants12193421&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_plants12193421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon |