Specificity models in MAPK cascade signaling

The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However, diverse signaling pathways share similar or identical intermediate components. A well‐conserved intermediate, the Mitogen‐Activated Protein Kinase...

Full description

Saved in:
Bibliographic Details
Published inFEBS open bio Vol. 13; no. 7; pp. 1177 - 1192
Main Authors Ma, Yan, Nicolet, Jade
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.07.2023
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However, diverse signaling pathways share similar or identical intermediate components. A well‐conserved intermediate, the Mitogen‐Activated Protein Kinase (MAPK) cascade, participates in a myriad of signaling pathways, regulating signal transduction from input to output. This typifies the “hourglass conundrum”, where a multitude of inputs and outputs all operate through a limited number of common intermediates. Therefore, understanding how MAPK cascades regulate a variety of outputs with specificity is a fundamental question in biology. This review highlights four major insulating mechanisms that improve signaling specificity: selective activation, compartmentalization, combinatorial signaling, and cross‐pathway inhibition. We focus on plant pathways that share MAPK cascade components and compare mechanisms with those of animals and yeast. We hope this conceptual overview will aid future studies to better understand plant signaling specificity. Diverse signaling pathways share similar or identical intermediate components. The MAPK cascade is a well‐conserved intermediate, participating in myriad signaling pathways. The precise execution of various cellular functions relies on signaling specificity from input detection to cellular outputs. Comparing plant and animal pathways, this review highlights four major insulating mechanisms that improve signaling specificity.
AbstractList The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However, diverse signaling pathways share similar or identical intermediate components. A well-conserved intermediate, the Mitogen-Activated Protein Kinase (MAPK) cascade, participates in a myriad of signaling pathways, regulating signal transduction from input to output. This typifies the "hourglass conundrum", where a multitude of inputs and outputs all operate through a limited number of common intermediates. Therefore, understanding how MAPK cascades regulate a variety of outputs with specificity is a fundamental question in biology. This review highlights four major insulating mechanisms that improve signaling specificity: selective activation, compartmentalization, combinatorial signaling, and cross-pathway inhibition. We focus on plant pathways that share MAPK cascade components and compare mechanisms with those of animals and yeast. We hope this conceptual overview will aid future studies to better understand plant signaling specificity.
The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However, diverse signaling pathways share similar or identical intermediate components. A well‐conserved intermediate, the Mitogen‐Activated Protein Kinase (MAPK) cascade, participates in a myriad of signaling pathways, regulating signal transduction from input to output. This typifies the “hourglass conundrum”, where a multitude of inputs and outputs all operate through a limited number of common intermediates. Therefore, understanding how MAPK cascades regulate a variety of outputs with specificity is a fundamental question in biology. This review highlights four major insulating mechanisms that improve signaling specificity: selective activation, compartmentalization, combinatorial signaling, and cross‐pathway inhibition. We focus on plant pathways that share MAPK cascade components and compare mechanisms with those of animals and yeast. We hope this conceptual overview will aid future studies to better understand plant signaling specificity. Diverse signaling pathways share similar or identical intermediate components. The MAPK cascade is a well‐conserved intermediate, participating in myriad signaling pathways. The precise execution of various cellular functions relies on signaling specificity from input detection to cellular outputs. Comparing plant and animal pathways, this review highlights four major insulating mechanisms that improve signaling specificity.
The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However, diverse signaling pathways share similar or identical intermediate components. A well-conserved intermediate, the Mitogen-Activated Protein Kinase (MAPK) cascade, participates in a myriad of signaling pathways, regulating signal transduction from input to output. This typifies the "hourglass conundrum", where a multitude of inputs and outputs all operate through a limited number of common intermediates. Therefore, understanding how MAPK cascades regulate a variety of outputs with specificity is a fundamental question in biology. This review highlights four major insulating mechanisms that improve signaling specificity: selective activation, compartmentalization, combinatorial signaling, and cross-pathway inhibition. We focus on plant pathways that share MAPK cascade components and compare mechanisms with those of animals and yeast. We hope this conceptual overview will aid future studies to better understand plant signaling specificity.The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However, diverse signaling pathways share similar or identical intermediate components. A well-conserved intermediate, the Mitogen-Activated Protein Kinase (MAPK) cascade, participates in a myriad of signaling pathways, regulating signal transduction from input to output. This typifies the "hourglass conundrum", where a multitude of inputs and outputs all operate through a limited number of common intermediates. Therefore, understanding how MAPK cascades regulate a variety of outputs with specificity is a fundamental question in biology. This review highlights four major insulating mechanisms that improve signaling specificity: selective activation, compartmentalization, combinatorial signaling, and cross-pathway inhibition. We focus on plant pathways that share MAPK cascade components and compare mechanisms with those of animals and yeast. We hope this conceptual overview will aid future studies to better understand plant signaling specificity.
Author Nicolet, Jade
Ma, Yan
AuthorAffiliation 1 Department of Plant Molecular Biology, Biophore, UNIL‐Sorge University of Lausanne Switzerland
AuthorAffiliation_xml – name: 1 Department of Plant Molecular Biology, Biophore, UNIL‐Sorge University of Lausanne Switzerland
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0003-3663-9060
  surname: Ma
  fullname: Ma, Yan
  email: yan.ma@unil.ch
  organization: University of Lausanne
– sequence: 2
  givenname: Jade
  orcidid: 0000-0002-9007-7719
  surname: Nicolet
  fullname: Nicolet, Jade
  organization: University of Lausanne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37157227$$D View this record in MEDLINE/PubMed
BookMark eNqNks9PFDEUxxuDkZ9nb2YSLx5Y6O9OTwYJKAEjiXpuOp03azfd6dLOava_t8MAARKivbR5_Xy_fX3v7aKtPvaA0FuCjwjG9JhSQmaCS3ZEmCT6Fdp5iGw9Om-jg5wXuCyJicT4DdpmighFqdpBh99X4HznnR821TK2EHLl--rryfVl5Wx2toUq-3lvg-_n--h1Z0OGg7t9D_08P_tx-mV29e3zxenJ1cwJWetZp3XTasw61TYNBauFqDmXhNais0x2DXZALFaMaY6l0FIpWRIVuJWu1bpje-hi8m2jXZhV8kubNiZab24DMc2NTYN3AYyVoF1Ly0s14UrLmjKrNAfKa2wbB8Xr4-S1WjdLaB30Q7LhienTm97_MvP42xDMSpEULw4f7hxSvFlDHszSZwch2B7iOhtac11rTKX8D5SQUqLSroK-f4Yu4jqVOo8Uo0RLrkSh3j3O_iHt-wYWQEyASzHnBJ0pnbSDj-NnfCi_MOOsmHEazDgN5nZWiu74me7e-mWFnBR_fIDNv3BzfvaJT8K_3ufKXg
CitedBy_id crossref_primary_10_1093_jxb_erae104
crossref_primary_10_1007_s10753_024_01989_5
crossref_primary_10_3390_biomedicines12020353
crossref_primary_10_1016_j_prp_2024_155294
crossref_primary_10_1016_j_bbadis_2025_167770
crossref_primary_10_1016_j_cub_2024_05_057
crossref_primary_10_1126_sciadv_ads3718
crossref_primary_10_1016_j_ijbiomac_2024_130173
crossref_primary_10_1007_s12275_024_00114_3
crossref_primary_10_1007_s10753_024_02080_9
crossref_primary_10_1016_j_funbio_2024_11_002
crossref_primary_10_1007_s12355_024_01435_8
crossref_primary_10_1016_j_ijbiomac_2025_141858
crossref_primary_10_1007_s11011_024_01429_1
crossref_primary_10_1007_s13659_024_00482_8
crossref_primary_10_1007_s00300_025_03352_2
crossref_primary_10_1007_s11627_024_10430_3
crossref_primary_10_1016_j_ejmech_2025_117431
crossref_primary_10_48130_tihort_0024_0023
crossref_primary_10_1038_s41477_024_01768_y
crossref_primary_10_3390_ijms242316885
crossref_primary_10_1016_j_heliyon_2024_e33213
crossref_primary_10_3389_fphar_2024_1446707
Cites_doi 10.1016/j.tplants.2010.02.006
10.1529/biophysj.106.090084
10.1016/j.cellsig.2005.04.001
10.1146/annurev.cellbio.19.111401.091942
10.1038/s41598-019-42731-8
10.3389/fpls.2018.01674
10.1371/journal.pgen.1007880
10.1093/jxb/erv346
10.1093/plphys/kiac019
10.1105/tpc.022319
10.1016/S1369-5266(02)00285-6
10.1371/journal.pone.0057547
10.1186/s12864-018-4793-8
10.3389/fpls.2018.01387
10.1105/tpc.106.048140
10.1105/tpc.113.112102
10.1038/nri.2016.77
10.1104/pp.108.134353
10.3389/fpls.2022.984909
10.1007/s00018-019-03270-7
10.1016/S0092-8674(00)81999-6
10.1038/nature05467
10.1038/nature14243
10.1105/tpc.109.070110
10.1023/A:1006070413843
10.1098/rstb.2012.0003
10.1016/j.celrep.2021.110181
10.1126/science.1076979
10.1371/journal.pgen.1005933
10.1038/ng1543
10.1083/jcb.153.2.273
10.1016/j.devcel.2011.01.009
10.1371/journal.pgen.1003422
10.1016/j.cell.2020.01.013
10.1038/415977a
10.1093/pcp/pcy243
10.1038/sj.onc.1210392
10.1074/jbc.M900080200
10.1371/journal.pone.0003873
10.1111/nph.15007
10.1111/j.1469-8137.2008.02552.x
10.1016/j.molp.2018.05.007
10.1016/j.molp.2020.08.015
10.1126/science.aad9964
10.1126/science.1120941
10.15252/embr.201745324
10.1007/978-1-4939-6854-1_13
10.1074/mcp.M500007-MCP200
10.1126/science.aae0109
10.1016/S1360-1385(02)02302-6
10.1093/mp/ssn079
10.1016/j.cell.2004.11.053
10.1111/nph.14924
10.3389/fpls.2018.00469
10.1038/nri3495
10.1111/j.1365-313X.2009.04046.x
10.1038/35000065
10.1101/gad.1740009
10.1016/S0065-230X(08)60765-4
10.1038/s41467-020-18600-8
10.3390/ijms23052744
10.1105/tpc.112.104695
10.1105/tpc.19.00917
10.1186/s12864-018-5367-5
10.1038/s41477-019-0440-x
10.1126/sciadv.1500989
10.1093/jxb/erq204
10.4161/psb.3.12.6848
10.1038/nrm2203
10.1111/j.1469-8137.2010.03565.x
10.1111/j.1365-313X.2006.02806.x
10.1016/j.molcel.2011.02.029
10.1111/tpj.14763
10.1016/j.cell.2004.11.052
10.1038/s41467-022-30254-2
10.1080/15592324.2022.2046412
10.1016/S0959-437X(01)00260-X
10.1186/s12870-018-1274-9
10.1038/s41597-020-0352-7
10.1371/journal.pcbi.1000908
10.3390/ijms20051194
10.1016/j.devcel.2015.02.022
10.1038/nature06543
10.4161/psb.27700
10.1111/jipb.13215
10.1126/science.1096014
10.1110/ps.035121.108
10.1042/BJ20080625
10.1105/tpc.112.097253
10.1371/journal.pgen.1004384
10.1105/tpc.111.084996
10.1105/tpc.113.109355
10.1007/s11103-021-01234-9
10.1105/tpc.10.12.2103
10.1105/tpc.17.00981
10.1016/j.cell.2009.01.049
10.1016/0092-8674(95)90401-8
10.1101/gad.292409.116
10.1074/mcp.M112.020560
10.1038/cr.2008.300
10.1038/s41598-017-08230-4
10.1038/s41467-021-23667-y
10.1016/S0968-0004(00)01627-3
10.1093/pcp/pcq135
10.1105/tpc.114.127415
10.1073/pnas.0438070100
10.1105/tpc.106.046581
10.1016/j.tplants.2009.12.001
10.1016/j.bbamcr.2010.12.012
10.1016/j.cub.2021.08.033
10.2183/pjab.94.006
10.1016/j.semcdb.2016.06.005
10.3390/ijms21155350
10.1016/S1097-2765(01)00322-7
10.1042/BST0340837
10.1146/annurev-arplant-050312-120122
10.1126/scisignal.2003004
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
2023 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
– notice: 2023 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
7S9
L.6
5PM
DOA
DOI 10.1002/2211-5463.13619
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Publicly Available Content Database
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Specificity models in MAPK cascade signaling
EISSN 2211-5463
EndPage 1192
ExternalDocumentID oai_doaj_org_article_a6e9cd27db814796823a794e2480abce
PMC10315774
37157227
10_1002_2211_5463_13619
FEB413619
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: HORIZON EUROPE Marie Sklodowska‐Curie Actions
  funderid: 846050
– fundername: HORIZON EUROPE Marie Sklodowska‐Curie Actions
  grantid: 846050
GroupedDBID ---
--K
0R~
0SF
1OC
24P
4.4
53G
5VS
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAHHS
AAIKJ
AALRI
AAXUO
AAZKR
ABMAC
ACCFJ
ACCMX
ACXQS
ADBBV
ADEZE
ADKYN
ADPDF
ADRAZ
ADVLN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEXQZ
AFKRA
AGHFR
AITUG
AIWBW
AJBDE
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
AOIJS
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
DIK
EBS
EJD
EMOBN
FDB
GROUPED_DOAJ
HCIFZ
HYE
HZ~
IAO
IGS
IHR
INH
IPNFZ
ITC
IXB
KQ8
LK8
M41
M48
M7P
M~E
NCXOZ
O-L
O9-
OK1
OVD
OVEED
PIMPY
PROAC
R9-
RIG
ROL
RPM
SSZ
TEORI
WIN
XH2
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPKN
AFPUW
AIGII
AKBMS
AKYEP
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c5689-f99bd903f7dbb2ea95584461285fa36fb0ce1a0733940659677654650d6cd99f3
IEDL.DBID M48
ISSN 2211-5463
IngestDate Wed Aug 27 01:30:09 EDT 2025
Thu Aug 21 18:37:31 EDT 2025
Fri Jul 11 18:32:59 EDT 2025
Fri Jul 11 13:58:12 EDT 2025
Wed Aug 13 09:10:15 EDT 2025
Mon Jul 21 06:00:53 EDT 2025
Tue Jul 01 01:14:14 EDT 2025
Thu Apr 24 23:06:44 EDT 2025
Wed Jan 22 16:19:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords signaling specificity
MAPK cascade
RLK receptors
plant signaling
Language English
License Attribution
2023 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5689-f99bd903f7dbb2ea95584461285fa36fb0ce1a0733940659677654650d6cd99f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3663-9060
0000-0002-9007-7719
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/2211-5463.13619
PMID 37157227
PQID 2832196475
PQPubID 4368360
PageCount 1192
ParticipantIDs doaj_primary_oai_doaj_org_article_a6e9cd27db814796823a794e2480abce
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10315774
proquest_miscellaneous_2849890266
proquest_miscellaneous_2811568136
proquest_journals_2832196475
pubmed_primary_37157227
crossref_citationtrail_10_1002_2211_5463_13619
crossref_primary_10_1002_2211_5463_13619
wiley_primary_10_1002_2211_5463_13619_FEB413619
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Amsterdam
– name: Hoboken
PublicationTitle FEBS open bio
PublicationTitleAlternate FEBS Open Bio
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2010; 15
2006; 34
2002; 12
2022; 23
2014; 26
2020; 13
2020; 11
2012; 367
2013; 8
2013; 9
2018; 9
2019; 20
2018; 218
2018; 217
2007; 8
2018; 30
2012; 24
1998; 10
2010; 6
2014; 10
2007; 445
2007; 19
2019; 9
2019; 5
2015; 521
2002; 5
2002; 7
2002; 415
2007; 92
2020; 32
2016; 16
2004; 304
2003; 299
2016; 12
2018; 19
1990; 2
2022; 189
2018; 18
2001; 153
2016; 2
2015; 66
2006; 47
2005; 4
2022; 13
2011; 1813
2008; 413
2018; 94
2022; 11
2020; 21
1998; 74
2022; 108
2018; 11
1996; 87
2003; 100
2010; 51
2022; 17
2018; 14
2017; 7
2013; 25
2015; 33
2009; 150
2000; 2
2022; 64
2008; 3
2003; 19
2014; 65
2010; 61
2020; 7
2017; 31
2021; 37
2021; 31
2013; 13
2013; 12
2011; 20
2016; 352
2011; 23
2009; 284
2014; 9
2005; 37
2007; 26
2009; 23
2009; 21
2000; 25
2008; 18
2020; 180
2008; 17
2006; 18
2020; 77
2020; 103
2018; 60
2009; 136
2016; 56
2006; 311
1998; 38
1995; 80
2021; 12
2004; 16
2017; 1573
2001; 8
2011; 41
2008; 179
2009; 2
2004; 119
2008; 451
2012; 5
2011; 189
e_1_2_13_120_1
e_1_2_13_24_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_66_1
e_1_2_13_101_1
e_1_2_13_43_1
e_1_2_13_85_1
e_1_2_13_8_1
e_1_2_13_62_1
e_1_2_13_81_1
e_1_2_13_92_1
e_1_2_13_96_1
e_1_2_13_117_1
e_1_2_13_17_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_78_1
e_1_2_13_112_1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_70_1
e_1_2_13_4_1
e_1_2_13_105_1
e_1_2_13_88_1
e_1_2_13_29_1
e_1_2_13_109_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_100_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_104_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_82_1
e_1_2_13_91_1
e_1_2_13_95_1
e_1_2_13_116_1
e_1_2_13_99_1
e_1_2_13_18_1
e_1_2_13_14_1
e_1_2_13_111_1
e_1_2_13_37_1
e_1_2_13_79_1
e_1_2_13_10_1
e_1_2_13_56_1
e_1_2_13_115_1
e_1_2_13_33_1
e_1_2_13_75_1
e_1_2_13_52_1
e_1_2_13_71_1
e_1_2_13_5_1
e_1_2_13_108_1
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_68_1
e_1_2_13_45_1
e_1_2_13_87_1
e_1_2_13_22_1
e_1_2_13_64_1
e_1_2_13_103_1
e_1_2_13_41_1
e_1_2_13_60_1
e_1_2_13_83_1
e_1_2_13_6_1
e_1_2_13_90_1
e_1_2_13_94_1
e_1_2_13_98_1
Guzmán P (e_1_2_13_86_1) 1990; 2
e_1_2_13_119_1
e_1_2_13_19_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_110_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_76_1
e_1_2_13_114_1
e_1_2_13_30_1
e_1_2_13_72_1
e_1_2_13_2_1
e_1_2_13_107_1
Soltabayeva A (e_1_2_13_9_1) 2022; 11
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_102_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_84_1
e_1_2_13_7_1
e_1_2_13_61_1
e_1_2_13_80_1
e_1_2_13_93_1
e_1_2_13_97_1
e_1_2_13_118_1
e_1_2_13_39_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_58_1
e_1_2_13_113_1
e_1_2_13_31_1
e_1_2_13_77_1
e_1_2_13_12_1
e_1_2_13_54_1
e_1_2_13_73_1
e_1_2_13_50_1
e_1_2_13_3_1
e_1_2_13_106_1
e_1_2_13_89_1
e_1_2_13_28_1
References_xml – volume: 11
  start-page: 1053
  year: 2018
  end-page: 1066
  article-title: Antagonism of transcription factor MYC2 by EDS1/PAD4 complexes bolsters salicylic acid defense in effector‐triggered immunity
  publication-title: Mol Plant
– volume: 37
  start-page: 501
  year: 2005
  end-page: 506
  article-title: A gene expression map of development
  publication-title: Nat Genet
– volume: 2
  start-page: 110
  year: 2000
  end-page: 116
  article-title: A conserved docking motif in MAP kinases common to substrates, activators and regulators
  publication-title: Nat Cell Biol
– volume: 451
  start-page: 789
  year: 2008
  end-page: 795
  article-title: Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling
  publication-title: Nature
– volume: 217
  start-page: 1598
  year: 2018
  end-page: 1609
  article-title: Predicting plant immunity gene expression by identifying the decoding mechanism of calcium signatures
  publication-title: New Phytol
– volume: 32
  start-page: 1988
  year: 2020
  end-page: 2003
  article-title: Wounding and insect feeding trigger two independent MAPK pathways with distinct regulation and kinetics
  publication-title: Plant Cell
– volume: 25
  start-page: 820
  year: 2013
  end-page: 833
  article-title: Interlocking feedback loops govern the dynamic behavior of the floral transition in
  publication-title: Plant Cell
– volume: 415
  start-page: 977
  year: 2002
  end-page: 983
  article-title: MAP kinase signalling cascade in innate immunity
  publication-title: Nature
– volume: 367
  start-page: 2619
  year: 2012
  end-page: 2639
  article-title: Diversity, classification and function of the plant protein kinase superfamily
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 119
  start-page: 981
  year: 2004
  end-page: 990
  article-title: Fus3‐regulated Tec1 degradation through SCFCdc4 determines MAPK signaling specificity during mating in yeast
  publication-title: Cell
– volume: 3
  year: 2008
  article-title: The N‐terminal domain of ERK1 accounts for the functional differences with ERK2
  publication-title: PLoS One
– volume: 10
  year: 2014
  article-title: Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in
  publication-title: PLoS Genet
– volume: 12
  start-page: 369
  year: 2013
  end-page: 380
  article-title: Identification of novel in vivo MAP kinase substrates in through use of tandem metal oxide affinity chromatography
  publication-title: Mol Cell Proteomics
– volume: 56
  start-page: 174
  year: 2016
  end-page: 189
  article-title: No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens
  publication-title: Semin Cell Dev Biol
– volume: 8
  start-page: 530
  year: 2007
  end-page: 541
  article-title: Mechanisms of specificity in protein phosphorylation
  publication-title: Nat Rev Mol Cell Bio
– volume: 445
  start-page: 501
  year: 2007
  article-title: Termination of asymmetric cell division and differentiation of stomata
  publication-title: Nature
– volume: 19
  start-page: 407
  year: 2018
  article-title: Comparative analysis of plant MKK gene family reveals novel expansion mechanism of the members and sheds new light on functional conservation
  publication-title: BMC Genomics
– volume: 61
  start-page: 3901
  year: 2010
  end-page: 3914
  article-title: Male gametophyte‐specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in
  publication-title: J Exp Bot
– volume: 521
  start-page: 213
  year: 2015
  end-page: 216
  article-title: Pathogen‐secreted proteases activate a novel plant immune pathway
  publication-title: Nature
– volume: 180
  start-page: 440
  year: 2020
  end-page: 453.e18
  article-title: Co‐incidence of damage and microbial patterns controls localized immune responses in roots
  publication-title: Cell
– volume: 77
  start-page: 275
  year: 2020
  end-page: 287
  article-title: Organization and dynamics of functional plant membrane microdomains
  publication-title: Cell Mol Life Sci
– volume: 16
  start-page: 1938
  year: 2004
  end-page: 1950
  article-title: JASMONATE‐INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different Jasmonate‐regulated defense responses in [W]
  publication-title: Plant Cell
– volume: 17
  year: 2022
  article-title: Simultaneous mutations in SMN1 and SUMM2 fully suppress the dwarf and autoimmune phenotypes of mpk4 mutant
  publication-title: Plant Signal Behav
– volume: 14
  year: 2018
  article-title: Regulation of pollen lipid body biogenesis by MAP kinases and downstream WRKY transcription factors in
  publication-title: PLoS Genet
– volume: 7
  start-page: 8732
  year: 2017
  article-title: The integration of Gβ and MAPK signaling cascade in zygote development
  publication-title: Sci Rep
– volume: 9
  start-page: 469
  year: 2018
  article-title: Nuclear signaling of plant MAPKs
  publication-title: Front Plant Sci
– volume: 15
  start-page: 106
  year: 2010
  end-page: 113
  article-title: Convergence and specificity in the MAPK nexus
  publication-title: Trends Plant Sci
– volume: 9
  start-page: 1387
  year: 2018
  article-title: Mitogen‐activated protein kinase cascades in plant hormone signaling
  publication-title: Front Plant Sci
– volume: 19
  start-page: 966
  year: 2018
  article-title: Plant stress RNA‐seq nexus: a stress‐specific transcriptome database in plant cells
  publication-title: BMC Genomics
– volume: 31
  start-page: 617
  year: 2017
  end-page: 627
  article-title: Transcriptional integration of paternal and maternal factors in the zygote
  publication-title: Genes Dev
– volume: 47
  start-page: 532
  year: 2006
  end-page: 546
  article-title: Arabidopsis MAP kinase 4 regulates salicylic acid‐ and jasmonic acid/ethylene‐dependent responses via EDS1 and PAD4
  publication-title: Plant J
– volume: 119
  start-page: 991
  year: 2004
  end-page: 1000
  article-title: Pheromone‐dependent destruction of the Tec1 transcription factor is required for MAP kinase signaling specificity in yeast
  publication-title: Cell
– volume: 19
  start-page: 805
  year: 2007
  end-page: 818
  article-title: The mitogen‐activated protein kinase cascade MKK3–MPK6 is an important part of the Jasmonate signal transduction pathway in
  publication-title: Plant Cell
– volume: 3
  start-page: 1037
  year: 2008
  end-page: 1041
  article-title: Comprehensive analysis of protein‐protein interactions between MAPKs and MAPK kinases helps define potential MAPK signalling modules
  publication-title: Plant Signal Behav
– volume: 5
  start-page: 742
  year: 2019
  end-page: 754
  article-title: Bipartite anchoring of SCREAM enforces stomatal initiation by coupling MAP kinases to SPEECHLESS
  publication-title: Nat Plants
– volume: 100
  start-page: 2992
  year: 2003
  end-page: 2997
  article-title: Five components of the ethylene‐response pathway identified in a screen for weak ethylene‐insensitive mutants in
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 80
  year: 2009
  end-page: 92
  article-title: MAPK target networks in revealed using functional protein microarrays
  publication-title: Gene Dev
– volume: 61
  start-page: 234
  year: 2010
  end-page: 248
  article-title: MPK6 is involved in cell division plane control during early root development, and localizes to the pre‐prophase band, phragmoplast, trans‐Golgi network and plasma membrane
  publication-title: Plant J
– volume: 179
  start-page: 643
  year: 2008
  end-page: 662
  article-title: Comprehensive gene expression atlas for the MAP kinase signalling pathways
  publication-title: New Phytol
– volume: 26
  start-page: 3358
  year: 2014
  end-page: 3371
  article-title: Manipulation of mitogen‐activated protein kinase kinase signaling in the stomatal lineage reveals motifs that contribute to protein localization and signaling specificity
  publication-title: Plant Cell
– volume: 25
  start-page: 1895
  year: 2013
  end-page: 1910
  article-title: Deletion of a tandem gene family in : increased MEKK2 abundance triggers autoimmunity when the MEKK1‐MKK1/2‐MPK4 signaling Cascade is disrupted
  publication-title: Plant Cell
– volume: 21
  start-page: 3506
  year: 2009
  end-page: 3517
  article-title: Novel and expanded roles for MAPK signaling in stomatal cell fate revealed by cell type–specific manipulations
  publication-title: Plant Cell
– volume: 21
  start-page: 5350
  year: 2020
  article-title: Expanding the toolkit of fluorescent biosensors for studying mitogen activated protein kinases in plants
  publication-title: Int J Mol Sci
– volume: 153
  start-page: 273
  year: 2001
  end-page: 282
  article-title: Integrin‐mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk‐1
  publication-title: J Cell Biol
– volume: 218
  start-page: 661
  year: 2018
  end-page: 680
  article-title: YODA MAP3K kinase regulates plant immune responses conferring broad‐spectrum disease resistance
  publication-title: New Phytol
– volume: 13
  year: 2022
  article-title: Calcium/calmodulin‐mediated microbial symbiotic interactions in plants
  publication-title: Front Plant Sci
– volume: 136
  start-page: 1085
  year: 2009
  end-page: 1097
  article-title: The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation
  publication-title: Cell
– volume: 51
  start-page: 1766
  year: 2010
  end-page: 1776
  article-title: HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in
  publication-title: Plant Cell Physiol
– volume: 5
  start-page: ra74
  year: 2012
  article-title: Specificity of linear motifs that bind to a common mitogen‐activated protein kinase docking groove
  publication-title: Sci Signal
– volume: 20
  start-page: 264
  year: 2011
  end-page: 270
  article-title: Transcriptional activation of Axis patterning genes WOX8/9 links zygote polarity to embryo development
  publication-title: Dev Cell
– volume: 284
  start-page: 13165
  year: 2009
  end-page: 13173
  article-title: Selectivity of docking sites in MAPK kinases
  publication-title: J Biol Chem
– volume: 1813
  start-page: 1619
  year: 2011
  end-page: 1633
  article-title: The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation
  publication-title: Biochim Biophys Acta Mol Cell Res
– volume: 37
  year: 2021
  article-title: Substratum stiffness regulates Erk signaling dynamics through receptor‐level control
  publication-title: Cell Rep
– volume: 5
  start-page: 415
  year: 2002
  end-page: 424
  article-title: Complexity, cross talk and integration of plant MAP kinase signalling
  publication-title: Curr Opin Plant Biol
– volume: 18
  start-page: 60
  year: 2018
  article-title: Dissection of MAPK signaling specificity through protein engineering in a developmental context
  publication-title: BMC Plant Biol
– volume: 1573
  start-page: 163
  year: 2017
  end-page: 209
  article-title: Ethylene signaling, methods and protocols
  publication-title: Methods Mol Biol
– volume: 103
  start-page: 705
  year: 2020
  end-page: 714
  article-title: MEKK2 inhibits activation of MAP kinases in
  publication-title: Plant J
– volume: 19
  start-page: 91
  year: 2003
  end-page: 118
  article-title: Regulation of MAP kinase signaling modules by scaffold proteins in mammals
  publication-title: Annu Rev Cell Dev Biol
– volume: 352
  start-page: 1102
  year: 2016
  end-page: 1105
  article-title: Nuclear‐localized cyclic nucleotide–gated channels mediate symbiotic calcium oscillations
  publication-title: Science
– volume: 2
  year: 2016
  article-title: An epidermis‐driven mechanism positions and scales stem cell niches in plants
  publication-title: Sci Adv
– volume: 17
  start-page: 1771
  year: 2008
  end-page: 1780
  article-title: Structure of a signal transduction regulator, RACK1, from
  publication-title: Protein Sci
– volume: 304
  start-page: 1494
  year: 2004
  end-page: 1497
  article-title: Stomatal development and pattern controlled by a MAPKK kinase
  publication-title: Science
– volume: 9
  start-page: 1674
  year: 2018
  article-title: Cellular complexity in MAPK signaling in plants: questions and emerging tools to answer them
  publication-title: Front Plant Sci
– volume: 9
  start-page: 6273
  year: 2019
  article-title: Abiotic and biotic stresses induce a core transcriptome response in rice
  publication-title: Sci Rep
– volume: 352
  start-page: 595
  year: 2016
  end-page: 599
  article-title: Phase separation of signaling molecules promotes T cell receptor signal transduction
  publication-title: Science
– volume: 299
  start-page: 1061
  year: 2003
  end-page: 1064
  article-title: Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms
  publication-title: Science
– volume: 18
  start-page: 1190
  year: 2008
  end-page: 1198
  article-title: MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen‐activated protein kinase cascade to regulate innate immunity in plants
  publication-title: Cell Res
– volume: 2
  start-page: 120
  year: 2009
  end-page: 137
  article-title: A major role of the MEKK1–MKK1/2–MPK4 pathway in ROS signalling
  publication-title: Mol Plant
– volume: 2
  start-page: 513
  year: 1990
  end-page: 523
  article-title: Exploiting the triple response of to identify ethylene‐related mutants
  publication-title: Plant Cell
– volume: 7
  start-page: 301
  year: 2002
  end-page: 308
  article-title: Mitogen‐activated protein kinase cascades in plants: a new nomenclature
  publication-title: Trends Plant Sci
– volume: 7
  start-page: 17
  year: 2020
  article-title: Transcriptome profiling of abiotic responses to heat, cold, salt, and osmotic stress of L
  publication-title: Sci Data
– volume: 12
  year: 2016
  article-title: The receptor kinase ZAR1 is required for zygote asymmetric division and its daughter cell fate
  publication-title: PLoS Genet
– volume: 311
  start-page: 822
  year: 2006
  end-page: 826
  article-title: The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway
  publication-title: Science
– volume: 20
  start-page: 1194
  year: 2019
  article-title: Nuclear ERK: mechanism of translocation, substrates, and role in cancer
  publication-title: Int J Mol Sci
– volume: 24
  start-page: 4948
  year: 2012
  end-page: 4960
  article-title: A MAPK cascade downstream of ERECTA receptor‐like protein kinase regulates inflorescence architecture by promoting localized cell proliferation
  publication-title: Plant Cell
– volume: 87
  start-page: 929
  year: 1996
  end-page: 939
  article-title: c‐Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions
  publication-title: Cell
– volume: 13
  start-page: 2438
  year: 2022
  article-title: Dichotomy of the BSL phosphatase signaling spatially regulates MAPK components in stomatal fate determination
  publication-title: Nat Commun
– volume: 4
  start-page: 1558
  year: 2005
  end-page: 1568
  article-title: High throughput identification of potential mitogen‐activated protein kinases substrates
  publication-title: Mol Cell Proteomics
– volume: 80
  start-page: 179
  year: 1995
  end-page: 185
  article-title: Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal‐regulated kinase activation
  publication-title: Cell
– volume: 24
  start-page: 2225
  year: 2012
  end-page: 2236
  article-title: The MEKK1‐MKK1/MKK2‐MPK4 kinase cascade negatively regulates immunity mediated by a mitogen‐activated protein kinase kinase kinase in
  publication-title: Plant Cell
– volume: 25
  start-page: 448
  year: 2000
  end-page: 453
  article-title: Docking domains and substrate‐specificity determination for MAP kinases
  publication-title: Trends Biochem Sci
– volume: 9
  year: 2013
  article-title: Phosphorylation‐coupled proteolysis of the transcription factor MYC2 is important for Jasmonate‐signaled plant immunity
  publication-title: PLoS Genet
– volume: 189
  start-page: 1069
  year: 2011
  end-page: 1083
  article-title: Mitogen‐activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in
  publication-title: New Phytol
– volume: 23
  start-page: 1639
  year: 2011
  end-page: 1653
  article-title: Phosphorylation of a WRKY transcription factor by two pathogen‐responsive MAPKs drives phytoalexin biosynthesis in
  publication-title: Plant Cell
– volume: 30
  start-page: 1543
  year: 2018
  end-page: 1561
  article-title: Receptor‐like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen‐activated protein kinase cascades in
  publication-title: Plant Cell
– volume: 26
  start-page: 3100
  year: 2007
  end-page: 3112
  article-title: Differential regulation and properties of MAPKs
  publication-title: Oncogene
– volume: 18
  start-page: 123
  year: 2006
  end-page: 134
  article-title: Mitogen‐activated protein kinase (MAPK)‐docking sites in MAPK kinases function as tethers that are crucial for MAPK regulation in vivo
  publication-title: Cell Signal
– volume: 8
  year: 2013
  article-title: Tight interconnection and multi‐level control of MYB44 in MAPK cascade signalling
  publication-title: Plos One
– volume: 64
  start-page: 301
  year: 2022
  end-page: 341
  article-title: Mitogen‐activated protein kinase cascades in plant signaling
  publication-title: J Integr Plant Biol
– volume: 11
  start-page: 2660
  year: 2022
  article-title: Receptor‐like kinases (LRR‐RLKs) in response of plants to biotic and abiotic stresses
  publication-title: Plan Theory
– volume: 11
  start-page: 4859
  year: 2020
  article-title: A trimeric CrRLK1L‐LLG1 complex genetically modulates SUMM2‐mediated autoimmunity
  publication-title: Nat Commun
– volume: 150
  start-page: 12
  year: 2009
  end-page: 26
  article-title: Evolutionary history and stress regulation of plant receptor‐like kinase/Pelle genes
  publication-title: Plant Physiol
– volume: 38
  start-page: 1071
  year: 1998
  end-page: 1080
  article-title: The promoter of the plant defensin gene PDF1.2 from is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid
  publication-title: Plant Mol Biol
– volume: 9
  year: 2014
  article-title: WRKY transcription factors
  publication-title: Plant Signal Behav
– volume: 74
  start-page: 49
  year: 1998
  end-page: 139
  article-title: Signal transduction through MAP kinase cascades
  publication-title: Adv Cancer Res
– volume: 189
  start-page: 557
  year: 2022
  end-page: 566
  article-title: Analysis of exocyst function in endodermis reveals its widespread contribution and specificity of action
  publication-title: Plant Physiol
– volume: 34
  start-page: 837
  year: 2006
  end-page: 841
  article-title: Mechanisms of MAPK signalling specificity
  publication-title: Biochem Soc Trans
– volume: 8
  start-page: 683
  year: 2001
  end-page: 691
  article-title: Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation
  publication-title: Mol Cell
– volume: 94
  start-page: 59
  year: 2018
  end-page: 74
  article-title: Exploring peptide hormones in plants: identification of four peptide hormone‐receptor pairs and two post‐translational modification enzymes
  publication-title: Proc Jpn Acad Ser B Phys Biol Sci
– volume: 23
  start-page: 2744
  year: 2022
  article-title: Mitogen‐activated protein kinase and substrate identification in plant growth and development
  publication-title: Int J Mol Sci
– volume: 6
  year: 2010
  article-title: Computational prediction and experimental verification of new MAP kinase docking sites and substrates including Gli transcription factors
  publication-title: PLoS Comput Biol
– volume: 19
  start-page: 509
  year: 2007
  end-page: 523
  article-title: The EIN3 binding F‐box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling
  publication-title: Plant Cell
– volume: 33
  start-page: 136
  year: 2015
  end-page: 149
  article-title: The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division
  publication-title: Dev Cell
– volume: 65
  start-page: 385
  year: 2014
  end-page: 413
  article-title: Posttranslationally modified small‐peptide signals in plants
  publication-title: Annu Rev Plant Biol
– volume: 41
  start-page: 649
  year: 2011
  end-page: 660
  article-title: Calmodulin‐dependent activation of MAP kinase for ROS homeostasis in
  publication-title: Mol Cell
– volume: 31
  start-page: 4810
  year: 2021
  end-page: 4816
  article-title: Independent parental contributions initiate zygote polarization in
  publication-title: Curr Biol
– volume: 16
  start-page: 537
  year: 2016
  end-page: 552
  article-title: Regulation of pattern recognition receptor signalling in plants
  publication-title: Nat Rev Immunol
– volume: 66
  start-page: 5257
  year: 2015
  end-page: 5269
  article-title: Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays
  publication-title: J Exp Bot
– volume: 19
  year: 2018
  article-title: Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling
  publication-title: EMBO Rep
– volume: 413
  start-page: 217
  year: 2008
  end-page: 226
  article-title: Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes
  publication-title: Biochem J
– volume: 92
  start-page: 3425
  year: 2007
  end-page: 3441
  article-title: Mathematical models of specificity in cell signaling
  publication-title: Biophys J
– volume: 13
  start-page: 679
  year: 2013
  end-page: 692
  article-title: Mitogen‐activated protein kinases in innate immunity
  publication-title: Nat Rev Immunol
– volume: 60
  start-page: 778
  year: 2018
  end-page: 787
  article-title: Disruption of the MAMP‐induced MEKK1‐MKK1/MKK2‐MPK4 pathway activates the TNL immune receptor SMN1/RPS6
  publication-title: Plant Cell Physiol
– volume: 10
  start-page: 2103
  year: 1998
  end-page: 2113
  article-title: Concomitant activation of Jasmonate and ethylene response pathways is required for induction of a plant defensin gene in
  publication-title: Plant Cell
– volume: 108
  start-page: 225
  year: 2022
  end-page: 239
  article-title: Root‐specific CLE3 expression is required for WRKY33 activation in shoots
  publication-title: Plant Mol Biol
– volume: 12
  start-page: 3341
  year: 2021
  article-title: Quantitative single‐cell proteomics as a tool to characterize cellular hierarchies
  publication-title: Nat Commun
– volume: 15
  start-page: 247
  year: 2010
  end-page: 258
  article-title: WRKY transcription factors
  publication-title: Trends Plant Sci
– volume: 13
  start-page: 1582
  year: 2020
  end-page: 1593
  article-title: Stigma receptivity is controlled by functionally redundant MAPK pathway components in
  publication-title: Mol Plant
– volume: 12
  start-page: 30
  year: 2002
  end-page: 35
  article-title: Anchorage‐dependent ERK signaling – mechanisms and consequences
  publication-title: Curr Opin Genet Dev
– ident: e_1_2_13_57_1
  doi: 10.1016/j.tplants.2010.02.006
– ident: e_1_2_13_27_1
  doi: 10.1529/biophysj.106.090084
– ident: e_1_2_13_35_1
  doi: 10.1016/j.cellsig.2005.04.001
– ident: e_1_2_13_40_1
  doi: 10.1146/annurev.cellbio.19.111401.091942
– ident: e_1_2_13_107_1
  doi: 10.1038/s41598-019-42731-8
– ident: e_1_2_13_55_1
  doi: 10.3389/fpls.2018.01674
– ident: e_1_2_13_61_1
  doi: 10.1371/journal.pgen.1007880
– ident: e_1_2_13_12_1
  doi: 10.1093/jxb/erv346
– ident: e_1_2_13_111_1
  doi: 10.1093/plphys/kiac019
– ident: e_1_2_13_93_1
  doi: 10.1105/tpc.022319
– ident: e_1_2_13_15_1
  doi: 10.1016/S1369-5266(02)00285-6
– ident: e_1_2_13_50_1
  doi: 10.1371/journal.pone.0057547
– ident: e_1_2_13_13_1
  doi: 10.1186/s12864-018-4793-8
– ident: e_1_2_13_81_1
  doi: 10.3389/fpls.2018.01387
– ident: e_1_2_13_88_1
  doi: 10.1105/tpc.106.048140
– ident: e_1_2_13_97_1
  doi: 10.1105/tpc.113.112102
– ident: e_1_2_13_8_1
  doi: 10.1038/nri.2016.77
– ident: e_1_2_13_7_1
  doi: 10.1104/pp.108.134353
– ident: e_1_2_13_116_1
  doi: 10.3389/fpls.2022.984909
– ident: e_1_2_13_74_1
  doi: 10.1007/s00018-019-03270-7
– ident: e_1_2_13_30_1
  doi: 10.1016/S0092-8674(00)81999-6
– ident: e_1_2_13_120_1
  doi: 10.1038/nature05467
– ident: e_1_2_13_42_1
  doi: 10.1038/nature14243
– ident: e_1_2_13_110_1
  doi: 10.1105/tpc.109.070110
– ident: e_1_2_13_82_1
  doi: 10.1023/A:1006070413843
– ident: e_1_2_13_6_1
  doi: 10.1098/rstb.2012.0003
– ident: e_1_2_13_100_1
  doi: 10.1016/j.celrep.2021.110181
– ident: e_1_2_13_37_1
  doi: 10.1126/science.1076979
– ident: e_1_2_13_48_1
  doi: 10.1371/journal.pgen.1005933
– ident: e_1_2_13_67_1
  doi: 10.1038/ng1543
– ident: e_1_2_13_77_1
  doi: 10.1083/jcb.153.2.273
– ident: e_1_2_13_63_1
  doi: 10.1016/j.devcel.2011.01.009
– ident: e_1_2_13_94_1
  doi: 10.1371/journal.pgen.1003422
– ident: e_1_2_13_99_1
  doi: 10.1016/j.cell.2020.01.013
– ident: e_1_2_13_20_1
  doi: 10.1038/415977a
– ident: e_1_2_13_108_1
  doi: 10.1093/pcp/pcy243
– ident: e_1_2_13_18_1
  doi: 10.1038/sj.onc.1210392
– ident: e_1_2_13_31_1
  doi: 10.1074/jbc.M900080200
– ident: e_1_2_13_53_1
  doi: 10.1371/journal.pone.0003873
– ident: e_1_2_13_47_1
  doi: 10.1111/nph.15007
– ident: e_1_2_13_66_1
  doi: 10.1111/j.1469-8137.2008.02552.x
– ident: e_1_2_13_103_1
  doi: 10.1016/j.molp.2018.05.007
– ident: e_1_2_13_112_1
  doi: 10.1016/j.molp.2020.08.015
– ident: e_1_2_13_75_1
  doi: 10.1126/science.aad9964
– ident: e_1_2_13_102_1
  doi: 10.1126/science.1120941
– ident: e_1_2_13_46_1
  doi: 10.15252/embr.201745324
– ident: e_1_2_13_87_1
  doi: 10.1007/978-1-4939-6854-1_13
– ident: e_1_2_13_25_1
  doi: 10.1074/mcp.M500007-MCP200
– ident: e_1_2_13_115_1
  doi: 10.1126/science.aae0109
– ident: e_1_2_13_14_1
  doi: 10.1016/S1360-1385(02)02302-6
– ident: e_1_2_13_51_1
  doi: 10.1093/mp/ssn079
– ident: e_1_2_13_92_1
  doi: 10.1016/j.cell.2004.11.053
– ident: e_1_2_13_119_1
  doi: 10.1111/nph.14924
– ident: e_1_2_13_41_1
  doi: 10.3389/fpls.2018.00469
– ident: e_1_2_13_4_1
  doi: 10.1038/nri3495
– ident: e_1_2_13_69_1
  doi: 10.1111/j.1365-313X.2009.04046.x
– ident: e_1_2_13_28_1
  doi: 10.1038/35000065
– ident: e_1_2_13_24_1
  doi: 10.1101/gad.1740009
– ident: e_1_2_13_2_1
  doi: 10.1016/S0065-230X(08)60765-4
– ident: e_1_2_13_98_1
  doi: 10.1038/s41467-020-18600-8
– ident: e_1_2_13_16_1
  doi: 10.3390/ijms23052744
– ident: e_1_2_13_22_1
  doi: 10.1105/tpc.112.104695
– ident: e_1_2_13_85_1
  doi: 10.1105/tpc.19.00917
– ident: e_1_2_13_105_1
  doi: 10.1186/s12864-018-5367-5
– ident: e_1_2_13_36_1
  doi: 10.1038/s41477-019-0440-x
– ident: e_1_2_13_118_1
  doi: 10.1126/sciadv.1500989
– ident: e_1_2_13_60_1
  doi: 10.1093/jxb/erq204
– ident: e_1_2_13_23_1
  doi: 10.4161/psb.3.12.6848
– ident: e_1_2_13_38_1
  doi: 10.1038/nrm2203
– ident: e_1_2_13_70_1
  doi: 10.1111/j.1469-8137.2010.03565.x
– ident: e_1_2_13_84_1
  doi: 10.1111/j.1365-313X.2006.02806.x
– ident: e_1_2_13_34_1
  doi: 10.1016/j.molcel.2011.02.029
– ident: e_1_2_13_96_1
  doi: 10.1111/tpj.14763
– ident: e_1_2_13_91_1
  doi: 10.1016/j.cell.2004.11.052
– ident: e_1_2_13_73_1
  doi: 10.1038/s41467-022-30254-2
– ident: e_1_2_13_109_1
  doi: 10.1080/15592324.2022.2046412
– ident: e_1_2_13_76_1
  doi: 10.1016/S0959-437X(01)00260-X
– ident: e_1_2_13_72_1
  doi: 10.1186/s12870-018-1274-9
– ident: e_1_2_13_106_1
  doi: 10.1038/s41597-020-0352-7
– ident: e_1_2_13_32_1
  doi: 10.1371/journal.pcbi.1000908
– ident: e_1_2_13_54_1
  doi: 10.3390/ijms20051194
– ident: e_1_2_13_49_1
  doi: 10.1016/j.devcel.2015.02.022
– ident: e_1_2_13_83_1
  doi: 10.1038/nature06543
– ident: e_1_2_13_56_1
  doi: 10.4161/psb.27700
– ident: e_1_2_13_5_1
  doi: 10.1111/jipb.13215
– ident: e_1_2_13_21_1
  doi: 10.1126/science.1096014
– ident: e_1_2_13_44_1
  doi: 10.1110/ps.035121.108
– volume: 2
  start-page: 513
  year: 1990
  ident: e_1_2_13_86_1
  article-title: Exploiting the triple response of Arabidopsis to identify ethylene‐related mutants
  publication-title: Plant Cell
– ident: e_1_2_13_3_1
  doi: 10.1042/BJ20080625
– ident: e_1_2_13_95_1
  doi: 10.1105/tpc.112.097253
– ident: e_1_2_13_58_1
  doi: 10.1371/journal.pgen.1004384
– ident: e_1_2_13_59_1
  doi: 10.1105/tpc.111.084996
– ident: e_1_2_13_117_1
  doi: 10.1105/tpc.113.109355
– ident: e_1_2_13_62_1
  doi: 10.1007/s11103-021-01234-9
– ident: e_1_2_13_78_1
  doi: 10.1105/tpc.10.12.2103
– ident: e_1_2_13_104_1
  doi: 10.1105/tpc.17.00981
– ident: e_1_2_13_39_1
  doi: 10.1016/j.cell.2009.01.049
– ident: e_1_2_13_101_1
  doi: 10.1016/0092-8674(95)90401-8
– ident: e_1_2_13_64_1
  doi: 10.1101/gad.292409.116
– ident: e_1_2_13_26_1
  doi: 10.1074/mcp.M112.020560
– ident: e_1_2_13_43_1
  doi: 10.1038/cr.2008.300
– ident: e_1_2_13_45_1
  doi: 10.1038/s41598-017-08230-4
– ident: e_1_2_13_114_1
  doi: 10.1038/s41467-021-23667-y
– ident: e_1_2_13_29_1
  doi: 10.1016/S0968-0004(00)01627-3
– ident: e_1_2_13_68_1
  doi: 10.1093/pcp/pcq135
– ident: e_1_2_13_71_1
  doi: 10.1105/tpc.114.127415
– volume: 11
  start-page: 2660
  year: 2022
  ident: e_1_2_13_9_1
  article-title: Receptor‐like kinases (LRR‐RLKs) in response of plants to biotic and abiotic stresses
  publication-title: Plan Theory
– ident: e_1_2_13_89_1
  doi: 10.1073/pnas.0438070100
– ident: e_1_2_13_79_1
  doi: 10.1105/tpc.106.046581
– ident: e_1_2_13_19_1
  doi: 10.1016/j.tplants.2009.12.001
– ident: e_1_2_13_52_1
  doi: 10.1016/j.bbamcr.2010.12.012
– ident: e_1_2_13_65_1
  doi: 10.1016/j.cub.2021.08.033
– ident: e_1_2_13_11_1
  doi: 10.2183/pjab.94.006
– ident: e_1_2_13_80_1
  doi: 10.1016/j.semcdb.2016.06.005
– ident: e_1_2_13_113_1
  doi: 10.3390/ijms21155350
– ident: e_1_2_13_90_1
  doi: 10.1016/S1097-2765(01)00322-7
– ident: e_1_2_13_17_1
  doi: 10.1042/BST0340837
– ident: e_1_2_13_10_1
  doi: 10.1146/annurev-arplant-050312-120122
– ident: e_1_2_13_33_1
  doi: 10.1126/scisignal.2003004
SSID ssj0000601600
Score 2.4189281
SecondaryResourceType review_article
Snippet The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1177
SubjectTerms Animals
Flowers & plants
Intermediates
Kinases
Ligands
MAP kinase
MAP Kinase Signaling System - physiology
MAPK cascade
MAPK Signalling
mitogen-activated protein kinase
Mitogen-Activated Protein Kinases - metabolism
Phosphorylation
plant signaling
Proteins
Review
Reviews
RLK receptors
Saccharomyces cerevisiae - metabolism
Signal Transduction
signaling specificity
yeasts
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS9xAFH4UodCLaG017VoiePBgutnJZH4cV3ERxeJBwdswk5mgIFnprgf_-743k112sa0XbyF5gcn35sc3zMv3ARwGVyqO81zhbeAF91YUzitbsNoK5p3EJY82ile_xPktv7ir71asvqgmLMkDJ-CGVgTdeCa9UyMutVCsstiHAuOqtK4JNPvimreymUpzMCmnlQstn5INGe50CtJ-p8Iu0tVZWYaiWv_fKObrSslVBhuXoMkWbPbcMR-nNm_Dh9B9ho_JTfJlB46jlzwpQsxf8uhwM8sfuvxqfH2ZN3ZGhfA5lWtY-gP9C9xOzm5Oz4veDKFoaqF00WrtvC6rFpFwLFhdI3VAIJmqW1uJ1pVNGFmyYNSczkqFlNHovPSi8Vq31VfY6KZd2IPc1g5ZSdtiYJRXwz2qlfiaIzNJy5oMfi6wMU2vFE6GFY8maRwzQ2AaAtNEMDM4Wr7wlEQy_h16QmAvw0jdOt7AnJs-5-atnGcwWKTK9ENuZqLnEv1XW2dwsHyMg4VOQGwXps8UgwRYKGzJ_2K4psNXgTG7KfvL1lZyVEvGZAZqrV-sfc76k-7hPop2RzsN5NoZDGMXegsoMzk74fHq23tA9h0-MaRnqdB4ABvz389hH-nU3P2II-cPVSwU3g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BKyQuiDeBgoLEgQNms07ixwl10a4qUKsKUak3y69AJZQt3e2h_54Zxxu6AsotiieSPbbHn-3J9wG8ia5SDcY5FmxsWBOsYC4oy3hrBQ9O4pJHG8XDI3Fw0nw6bU_zgdsqp1VuYmIK1GHp6Yx8kiR16LfJ9sP5T0aqUXS7miU0bsMuhmCFm6_d2fzo-Mt4ypLYRqpqw-lT8QnHHQ8jDnhK8CJ-nWvLUWLt_xvU_DNj8jqSTUvR4j7cyxiy3B86_QHciv1DuDOoSl49gndJU56YIdZXZVK6WZVnfXm4f_y59HZFCfElpW1Y-hP9MZws5l8_HrAsisB8K5RmndYu6KruZHCOR6tbhBDoUK7aztaic5WPU0tSjLqhO1MhZRI8r4LwQeuufgI7_bKPz6C0rUN00nVomGjWcK9qJX7mSFTScl_A-41vjM-M4SRc8cMMXMfckDMNOdMkZxbwdvzgfCDL-LfpjJw9mhHLdXqxvPhm8qQxVkTtA8eWqmkjtVC8thg_Im9UZZ2PBextusrkqbcyvwdKAa_HYpw0dBNi-7i8JBsEwkJhTW6yaTRdwgq0eTr0_ljbWk5bybksQG2Ni63mbJf0Z98TeXeS1UDMXcAkDaH_Ocos5rMmPT2_ubUv4C5HADakEu_BzvriMr5EwLR2r_Ks-AXRlg2d
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2hokpcELR8BEqVShw4EDbrOP44tqirqlVRD1TqzRrHDlRCWdTdHvrvmXGygS2UqrcoGUfJxGM_xzPvAbyPvjSSxrkiYJSFDKgKHwwWokYlgtc05fFC8fSLOjqXxxf1KpuQa2F6fojxhxtHRhqvOcDRLya_SUMFLV0KJnPnTC0m_nzMBbZMny_k2fibJdGNpEKU0X5F8FOKya17rM1NicL_X7jz7_TJP2Ftmpdmz-DpACjz_b4HPIdHsduCzV5i8mYbPiaBeaaJWN7kSfZmkV92-en-2Une4IKz43PO4UAuS38B57PDr5-PikEhoWhqZWzRWuuDLatWB-9FRFsTniDvClO3WKnWl02cIusyWskbqErrpH5eBtUEa9vqJWx08y6-hhxrT1Clbckwca7RwhU1NfOsMImiyeDTyjeuGejDWcXih-uJj4VjZzp2pkvOzODD2OBnz5xxt-kBO3s0Y8rrdGJ-9c0NEeRQRdsEQW9qplJbZUSFNJhEIU2JvokZ7Kw-lRvicOGSEBMX29YZ7I2XKYJ4WwS7OL9mG0LFytCT_M9GWt6RVWTzqv_649NWelprIXQGZq1frL3O-pXu8nti8k4aGwTAM5ikLnSfo9zs8ECmozcPbvEWnggCaH2q8Q5sLK-u4zsCVEu_m0LmF4dTD38
  priority: 102
  providerName: Wiley-Blackwell
Title Specificity models in MAPK cascade signaling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2211-5463.13619
https://www.ncbi.nlm.nih.gov/pubmed/37157227
https://www.proquest.com/docview/2832196475
https://www.proquest.com/docview/2811568136
https://www.proquest.com/docview/2849890266
https://pubmed.ncbi.nlm.nih.gov/PMC10315774
https://doaj.org/article/a6e9cd27db814796823a794e2480abce
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fa9swED62lo2-jP1s3XbBgz3sYW4dWZashzKakVA2UsJYoG9CsuStUJwtSaH573cn21lD2-3N2CeQz3fSJ-v0fQDvvU0LjuNc4oznCXdGJNYVJmG5EcxZiVMeLRTH5-Jsyr9c5Bd_5YBaBy7uXdqRntR0fnV083v1CRP-pCUQPWa4iEmI1p1qtogCdBunJUlZOm6xfjMsE5la2tH73G23A08z2c8lI4WZW5NU4PK_D4DeraO8jW_DBDV6Ds9aZBmfNqHwAh75-iU8abQmV6_gY1CaJ76I5SoO-jeL-LKOx6eTr3FpFlQmH1Mxh6Hz6a9hOhp-_3yWtFIJSZmLQiWVUtapNKuks5Z5o3IEFuhmVuSVyURl09L3DQk0Kk47qULKIIOeOlE6parsDWzVs9rvQWxyi5ilqtAwkK_hCtZIbGZJatKwMoKjzje6bHnESc7iSjcMyEyTXzX5VQe_RvBh3eBXQ6HxsOmAnL02I-7rcGM2_6HbVNJGeFU6hm9a9LlUomCZwVHFM16kxpY-gsPuU-kunnRQZKJTt3kE79aPMZVof8TUfnZNNgiPRYE9-ZcNV7Q1K9Bmt_n669520RNBsREXG6-z-aS-_BkovYPYBiLxCI5DCP3PUXo0HPBwtf9gNw5ghyEia2qLD2FrOb_2bxFBLW0PHjM-6cH2YHg--dYL_yF6IVv-AGQqEbU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgheEL8JDAgSSDwQmjqOEz8gtEKrjq7VhDZpb54dO9sklI61E-o_xd_InZOUVcB42luUXCL7fGffxefvA3jtTJxznOciqx2PuNUiMjbXEUu1YNZkuORRojiZitEB_3KYHm7Az_YsDJVVtnOin6jtrKB_5F1PqUPHJtOPZ98jYo2i3dWWQqM2i7Fb_sCUbf5h5zOO7xvGhoP9T6OoYRWIilTkMiqlNFbGSZlZY5jTMsU1GFvE8rTUiShNXLieJi5DyWnTUWSZZwyPrSislGWC370BmzzBVKYDm_3BdO_r6q-ORzeJ4xZDKGZdhhlWRJjzVFBGeD6Xlj_PEvC30PbPCs3LkbNf-oZ34U4Ts4bbtZHdgw1X3YebNYvl8gG88xz2hESxWIaeWWcenlbhZHtvHBZ6TgX4IZWJaDr5_hAOrkVdj6BTzSr3BEKdGoyGyhIFPawb5sY6w9cMkVhqVgTwvtWNKhqEciLK-KZqbGWmSJmKlKm8MgN4u3rhrAbn-Ldon5S9EiNUbX9jdn6sGidVWjhZWIY9zXs8kyJnicb5yjGex9oULoCtdqhU4-pz9dswA3i1eoxOSjsvunKzC5LBwFvk2JKrZLikTV-BMo_r0V-1Nsl6acZYFkC-Zhdr3Vl_Up2eeLBwT-OBMX4AXW9C_1OUGg763F89vbq3L-HWaH-yq3Z3puNncJth8FeXMW9BZ3F-4Z5jsLYwLxoPCeHoup3yFyDzSJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN8EBgQJJB4ITZ3Ejh8QWlmrjbKqQkzam7Fjh02a0rF2Qv3X-Ou4cz5YBYynvUXJJbLPd_ZdfP79AF46E-cpznOR1S6NUqt5ZGyuI5ZpzqwRuORRorg_5bsH6cfD7HADfrZnYaissp0T_URt5wX9I-97Sh06Npn1y6YsYrYzfn_6PSIGKdppbek0ahOZuNUPTN8W7_Z2cKxfMTYeffmwGzUMA1GR8VxGpZTGyjgphTWGOS0zXI-xdSzPSp3w0sSFG2jiNZQpbUByITx7eGx5YaUsE_zuNdgUmBXFPdgcjqazz90fHo90EsctnlDM-gyzrYjw56m4jLB9LiyFnjHgb2Hun9WaF6NovwyOb8OtJn4Nt2uDuwMbrroL12tGy9U9eOP57AmVYrkKPcvOIjyuwv3t2SQs9IKK8UMqGdF0Cv4-HFyJuh5Ar5pX7hGEOjMYGZUlCnqIN8yTtcDXDBFaalYE8LbVjSoatHIizThRNc4yU6RMRcpUXpkBvO5eOK2BOv4tOiRld2KEsO1vzM--qcZhleZOFpZhT_NBKiTPWaJx7nIszWNtChfAVjtUqnH7hfptpAG86B6jw9IujK7c_JxkMAjnObbkMplU0gYwR5mH9eh3rU3EIBOMiQDyNbtY6876k-r4yAOHe0oPjPcD6HsT-p-i1Hg0TP3V48t7-xxuoDOqT3vTyRO4yTAOrCuat6C3PDt3TzFuW5pnjYOE8PWqffIX5IdM0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specificity+models+in+MAPK+cascade+signaling&rft.jtitle=FEBS+open+bio&rft.au=Ma%2C+Yan&rft.au=Nicolet%2C+Jade&rft.date=2023-07-01&rft.eissn=2211-5463&rft.volume=13&rft.issue=7&rft.spage=1177&rft_id=info:doi/10.1002%2F2211-5463.13619&rft_id=info%3Apmid%2F37157227&rft.externalDocID=37157227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-5463&client=summon