Specificity models in MAPK cascade signaling
The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However, diverse signaling pathways share similar or identical intermediate components. A well‐conserved intermediate, the Mitogen‐Activated Protein Kinase...
Saved in:
Published in | FEBS open bio Vol. 13; no. 7; pp. 1177 - 1192 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.07.2023
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However, diverse signaling pathways share similar or identical intermediate components. A well‐conserved intermediate, the Mitogen‐Activated Protein Kinase (MAPK) cascade, participates in a myriad of signaling pathways, regulating signal transduction from input to output. This typifies the “hourglass conundrum”, where a multitude of inputs and outputs all operate through a limited number of common intermediates. Therefore, understanding how MAPK cascades regulate a variety of outputs with specificity is a fundamental question in biology. This review highlights four major insulating mechanisms that improve signaling specificity: selective activation, compartmentalization, combinatorial signaling, and cross‐pathway inhibition. We focus on plant pathways that share MAPK cascade components and compare mechanisms with those of animals and yeast. We hope this conceptual overview will aid future studies to better understand plant signaling specificity.
Diverse signaling pathways share similar or identical intermediate components. The MAPK cascade is a well‐conserved intermediate, participating in myriad signaling pathways. The precise execution of various cellular functions relies on signaling specificity from input detection to cellular outputs. Comparing plant and animal pathways, this review highlights four major insulating mechanisms that improve signaling specificity. |
---|---|
AbstractList | The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However, diverse signaling pathways share similar or identical intermediate components. A well-conserved intermediate, the Mitogen-Activated Protein Kinase (MAPK) cascade, participates in a myriad of signaling pathways, regulating signal transduction from input to output. This typifies the "hourglass conundrum", where a multitude of inputs and outputs all operate through a limited number of common intermediates. Therefore, understanding how MAPK cascades regulate a variety of outputs with specificity is a fundamental question in biology. This review highlights four major insulating mechanisms that improve signaling specificity: selective activation, compartmentalization, combinatorial signaling, and cross-pathway inhibition. We focus on plant pathways that share MAPK cascade components and compare mechanisms with those of animals and yeast. We hope this conceptual overview will aid future studies to better understand plant signaling specificity. The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However, diverse signaling pathways share similar or identical intermediate components. A well‐conserved intermediate, the Mitogen‐Activated Protein Kinase (MAPK) cascade, participates in a myriad of signaling pathways, regulating signal transduction from input to output. This typifies the “hourglass conundrum”, where a multitude of inputs and outputs all operate through a limited number of common intermediates. Therefore, understanding how MAPK cascades regulate a variety of outputs with specificity is a fundamental question in biology. This review highlights four major insulating mechanisms that improve signaling specificity: selective activation, compartmentalization, combinatorial signaling, and cross‐pathway inhibition. We focus on plant pathways that share MAPK cascade components and compare mechanisms with those of animals and yeast. We hope this conceptual overview will aid future studies to better understand plant signaling specificity. Diverse signaling pathways share similar or identical intermediate components. The MAPK cascade is a well‐conserved intermediate, participating in myriad signaling pathways. The precise execution of various cellular functions relies on signaling specificity from input detection to cellular outputs. Comparing plant and animal pathways, this review highlights four major insulating mechanisms that improve signaling specificity. The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However, diverse signaling pathways share similar or identical intermediate components. A well-conserved intermediate, the Mitogen-Activated Protein Kinase (MAPK) cascade, participates in a myriad of signaling pathways, regulating signal transduction from input to output. This typifies the "hourglass conundrum", where a multitude of inputs and outputs all operate through a limited number of common intermediates. Therefore, understanding how MAPK cascades regulate a variety of outputs with specificity is a fundamental question in biology. This review highlights four major insulating mechanisms that improve signaling specificity: selective activation, compartmentalization, combinatorial signaling, and cross-pathway inhibition. We focus on plant pathways that share MAPK cascade components and compare mechanisms with those of animals and yeast. We hope this conceptual overview will aid future studies to better understand plant signaling specificity.The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However, diverse signaling pathways share similar or identical intermediate components. A well-conserved intermediate, the Mitogen-Activated Protein Kinase (MAPK) cascade, participates in a myriad of signaling pathways, regulating signal transduction from input to output. This typifies the "hourglass conundrum", where a multitude of inputs and outputs all operate through a limited number of common intermediates. Therefore, understanding how MAPK cascades regulate a variety of outputs with specificity is a fundamental question in biology. This review highlights four major insulating mechanisms that improve signaling specificity: selective activation, compartmentalization, combinatorial signaling, and cross-pathway inhibition. We focus on plant pathways that share MAPK cascade components and compare mechanisms with those of animals and yeast. We hope this conceptual overview will aid future studies to better understand plant signaling specificity. |
Author | Nicolet, Jade Ma, Yan |
AuthorAffiliation | 1 Department of Plant Molecular Biology, Biophore, UNIL‐Sorge University of Lausanne Switzerland |
AuthorAffiliation_xml | – name: 1 Department of Plant Molecular Biology, Biophore, UNIL‐Sorge University of Lausanne Switzerland |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0003-3663-9060 surname: Ma fullname: Ma, Yan email: yan.ma@unil.ch organization: University of Lausanne – sequence: 2 givenname: Jade orcidid: 0000-0002-9007-7719 surname: Nicolet fullname: Nicolet, Jade organization: University of Lausanne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37157227$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9PFDEUxxuDkZ9nb2YSLx5Y6O9OTwYJKAEjiXpuOp03azfd6dLOava_t8MAARKivbR5_Xy_fX3v7aKtPvaA0FuCjwjG9JhSQmaCS3ZEmCT6Fdp5iGw9Om-jg5wXuCyJicT4DdpmighFqdpBh99X4HznnR821TK2EHLl--rryfVl5Wx2toUq-3lvg-_n--h1Z0OGg7t9D_08P_tx-mV29e3zxenJ1cwJWetZp3XTasw61TYNBauFqDmXhNais0x2DXZALFaMaY6l0FIpWRIVuJWu1bpje-hi8m2jXZhV8kubNiZab24DMc2NTYN3AYyVoF1Ly0s14UrLmjKrNAfKa2wbB8Xr4-S1WjdLaB30Q7LhienTm97_MvP42xDMSpEULw4f7hxSvFlDHszSZwch2B7iOhtac11rTKX8D5SQUqLSroK-f4Yu4jqVOo8Uo0RLrkSh3j3O_iHt-wYWQEyASzHnBJ0pnbSDj-NnfCi_MOOsmHEazDgN5nZWiu74me7e-mWFnBR_fIDNv3BzfvaJT8K_3ufKXg |
CitedBy_id | crossref_primary_10_1093_jxb_erae104 crossref_primary_10_1007_s10753_024_01989_5 crossref_primary_10_3390_biomedicines12020353 crossref_primary_10_1016_j_prp_2024_155294 crossref_primary_10_1016_j_bbadis_2025_167770 crossref_primary_10_1016_j_cub_2024_05_057 crossref_primary_10_1126_sciadv_ads3718 crossref_primary_10_1016_j_ijbiomac_2024_130173 crossref_primary_10_1007_s12275_024_00114_3 crossref_primary_10_1007_s10753_024_02080_9 crossref_primary_10_1016_j_funbio_2024_11_002 crossref_primary_10_1007_s12355_024_01435_8 crossref_primary_10_1016_j_ijbiomac_2025_141858 crossref_primary_10_1007_s11011_024_01429_1 crossref_primary_10_1007_s13659_024_00482_8 crossref_primary_10_1007_s00300_025_03352_2 crossref_primary_10_1007_s11627_024_10430_3 crossref_primary_10_1016_j_ejmech_2025_117431 crossref_primary_10_48130_tihort_0024_0023 crossref_primary_10_1038_s41477_024_01768_y crossref_primary_10_3390_ijms242316885 crossref_primary_10_1016_j_heliyon_2024_e33213 crossref_primary_10_3389_fphar_2024_1446707 |
Cites_doi | 10.1016/j.tplants.2010.02.006 10.1529/biophysj.106.090084 10.1016/j.cellsig.2005.04.001 10.1146/annurev.cellbio.19.111401.091942 10.1038/s41598-019-42731-8 10.3389/fpls.2018.01674 10.1371/journal.pgen.1007880 10.1093/jxb/erv346 10.1093/plphys/kiac019 10.1105/tpc.022319 10.1016/S1369-5266(02)00285-6 10.1371/journal.pone.0057547 10.1186/s12864-018-4793-8 10.3389/fpls.2018.01387 10.1105/tpc.106.048140 10.1105/tpc.113.112102 10.1038/nri.2016.77 10.1104/pp.108.134353 10.3389/fpls.2022.984909 10.1007/s00018-019-03270-7 10.1016/S0092-8674(00)81999-6 10.1038/nature05467 10.1038/nature14243 10.1105/tpc.109.070110 10.1023/A:1006070413843 10.1098/rstb.2012.0003 10.1016/j.celrep.2021.110181 10.1126/science.1076979 10.1371/journal.pgen.1005933 10.1038/ng1543 10.1083/jcb.153.2.273 10.1016/j.devcel.2011.01.009 10.1371/journal.pgen.1003422 10.1016/j.cell.2020.01.013 10.1038/415977a 10.1093/pcp/pcy243 10.1038/sj.onc.1210392 10.1074/jbc.M900080200 10.1371/journal.pone.0003873 10.1111/nph.15007 10.1111/j.1469-8137.2008.02552.x 10.1016/j.molp.2018.05.007 10.1016/j.molp.2020.08.015 10.1126/science.aad9964 10.1126/science.1120941 10.15252/embr.201745324 10.1007/978-1-4939-6854-1_13 10.1074/mcp.M500007-MCP200 10.1126/science.aae0109 10.1016/S1360-1385(02)02302-6 10.1093/mp/ssn079 10.1016/j.cell.2004.11.053 10.1111/nph.14924 10.3389/fpls.2018.00469 10.1038/nri3495 10.1111/j.1365-313X.2009.04046.x 10.1038/35000065 10.1101/gad.1740009 10.1016/S0065-230X(08)60765-4 10.1038/s41467-020-18600-8 10.3390/ijms23052744 10.1105/tpc.112.104695 10.1105/tpc.19.00917 10.1186/s12864-018-5367-5 10.1038/s41477-019-0440-x 10.1126/sciadv.1500989 10.1093/jxb/erq204 10.4161/psb.3.12.6848 10.1038/nrm2203 10.1111/j.1469-8137.2010.03565.x 10.1111/j.1365-313X.2006.02806.x 10.1016/j.molcel.2011.02.029 10.1111/tpj.14763 10.1016/j.cell.2004.11.052 10.1038/s41467-022-30254-2 10.1080/15592324.2022.2046412 10.1016/S0959-437X(01)00260-X 10.1186/s12870-018-1274-9 10.1038/s41597-020-0352-7 10.1371/journal.pcbi.1000908 10.3390/ijms20051194 10.1016/j.devcel.2015.02.022 10.1038/nature06543 10.4161/psb.27700 10.1111/jipb.13215 10.1126/science.1096014 10.1110/ps.035121.108 10.1042/BJ20080625 10.1105/tpc.112.097253 10.1371/journal.pgen.1004384 10.1105/tpc.111.084996 10.1105/tpc.113.109355 10.1007/s11103-021-01234-9 10.1105/tpc.10.12.2103 10.1105/tpc.17.00981 10.1016/j.cell.2009.01.049 10.1016/0092-8674(95)90401-8 10.1101/gad.292409.116 10.1074/mcp.M112.020560 10.1038/cr.2008.300 10.1038/s41598-017-08230-4 10.1038/s41467-021-23667-y 10.1016/S0968-0004(00)01627-3 10.1093/pcp/pcq135 10.1105/tpc.114.127415 10.1073/pnas.0438070100 10.1105/tpc.106.046581 10.1016/j.tplants.2009.12.001 10.1016/j.bbamcr.2010.12.012 10.1016/j.cub.2021.08.033 10.2183/pjab.94.006 10.1016/j.semcdb.2016.06.005 10.3390/ijms21155350 10.1016/S1097-2765(01)00322-7 10.1042/BST0340837 10.1146/annurev-arplant-050312-120122 10.1126/scisignal.2003004 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. 2023 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. – notice: 2023 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 7S9 L.6 5PM DOA |
DOI | 10.1002/2211-5463.13619 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Specificity models in MAPK cascade signaling |
EISSN | 2211-5463 |
EndPage | 1192 |
ExternalDocumentID | oai_doaj_org_article_a6e9cd27db814796823a794e2480abce PMC10315774 37157227 10_1002_2211_5463_13619 FEB413619 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: HORIZON EUROPE Marie Sklodowska‐Curie Actions funderid: 846050 – fundername: HORIZON EUROPE Marie Sklodowska‐Curie Actions grantid: 846050 |
GroupedDBID | --- --K 0R~ 0SF 1OC 24P 4.4 53G 5VS 8FE 8FH AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAHHS AAIKJ AALRI AAXUO AAZKR ABMAC ACCFJ ACCMX ACXQS ADBBV ADEZE ADKYN ADPDF ADRAZ ADVLN ADZMN ADZOD AEEZP AENEX AEQDE AEXQZ AFKRA AGHFR AITUG AIWBW AJBDE AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMRAJ AOIJS AVUZU BBNVY BCNDV BENPR BHPHI CCPQU DIK EBS EJD EMOBN FDB GROUPED_DOAJ HCIFZ HYE HZ~ IAO IGS IHR INH IPNFZ ITC IXB KQ8 LK8 M41 M48 M7P M~E NCXOZ O-L O9- OK1 OVD OVEED PIMPY PROAC R9- RIG ROL RPM SSZ TEORI WIN XH2 AAYWO AAYXX ACVFH ADCNI AEUPX AFPKN AFPUW AIGII AKBMS AKYEP CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c5689-f99bd903f7dbb2ea95584461285fa36fb0ce1a0733940659677654650d6cd99f3 |
IEDL.DBID | M48 |
ISSN | 2211-5463 |
IngestDate | Wed Aug 27 01:30:09 EDT 2025 Thu Aug 21 18:37:31 EDT 2025 Fri Jul 11 18:32:59 EDT 2025 Fri Jul 11 13:58:12 EDT 2025 Wed Aug 13 09:10:15 EDT 2025 Mon Jul 21 06:00:53 EDT 2025 Tue Jul 01 01:14:14 EDT 2025 Thu Apr 24 23:06:44 EDT 2025 Wed Jan 22 16:19:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | signaling specificity MAPK cascade RLK receptors plant signaling |
Language | English |
License | Attribution 2023 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5689-f99bd903f7dbb2ea95584461285fa36fb0ce1a0733940659677654650d6cd99f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3663-9060 0000-0002-9007-7719 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/2211-5463.13619 |
PMID | 37157227 |
PQID | 2832196475 |
PQPubID | 4368360 |
PageCount | 1192 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a6e9cd27db814796823a794e2480abce pubmedcentral_primary_oai_pubmedcentral_nih_gov_10315774 proquest_miscellaneous_2849890266 proquest_miscellaneous_2811568136 proquest_journals_2832196475 pubmed_primary_37157227 crossref_citationtrail_10_1002_2211_5463_13619 crossref_primary_10_1002_2211_5463_13619 wiley_primary_10_1002_2211_5463_13619_FEB413619 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Amsterdam – name: Hoboken |
PublicationTitle | FEBS open bio |
PublicationTitleAlternate | FEBS Open Bio |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2010; 15 2006; 34 2002; 12 2022; 23 2014; 26 2020; 13 2020; 11 2012; 367 2013; 8 2013; 9 2018; 9 2019; 20 2018; 218 2018; 217 2007; 8 2018; 30 2012; 24 1998; 10 2010; 6 2014; 10 2007; 445 2007; 19 2019; 9 2019; 5 2015; 521 2002; 5 2002; 7 2002; 415 2007; 92 2020; 32 2016; 16 2004; 304 2003; 299 2016; 12 2018; 19 1990; 2 2022; 189 2018; 18 2001; 153 2016; 2 2015; 66 2006; 47 2005; 4 2022; 13 2011; 1813 2008; 413 2018; 94 2022; 11 2020; 21 1998; 74 2022; 108 2018; 11 1996; 87 2003; 100 2010; 51 2022; 17 2018; 14 2017; 7 2013; 25 2015; 33 2009; 150 2000; 2 2022; 64 2008; 3 2003; 19 2014; 65 2010; 61 2020; 7 2017; 31 2021; 37 2021; 31 2013; 13 2013; 12 2011; 20 2016; 352 2011; 23 2009; 284 2014; 9 2005; 37 2007; 26 2009; 23 2009; 21 2000; 25 2008; 18 2020; 180 2008; 17 2006; 18 2020; 77 2020; 103 2018; 60 2009; 136 2016; 56 2006; 311 1998; 38 1995; 80 2021; 12 2004; 16 2017; 1573 2001; 8 2011; 41 2008; 179 2009; 2 2004; 119 2008; 451 2012; 5 2011; 189 e_1_2_13_120_1 e_1_2_13_24_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_66_1 e_1_2_13_101_1 e_1_2_13_43_1 e_1_2_13_85_1 e_1_2_13_8_1 e_1_2_13_62_1 e_1_2_13_81_1 e_1_2_13_92_1 e_1_2_13_96_1 e_1_2_13_117_1 e_1_2_13_17_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_78_1 e_1_2_13_112_1 e_1_2_13_51_1 e_1_2_13_74_1 e_1_2_13_70_1 e_1_2_13_4_1 e_1_2_13_105_1 e_1_2_13_88_1 e_1_2_13_29_1 e_1_2_13_109_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_100_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_104_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_82_1 e_1_2_13_91_1 e_1_2_13_95_1 e_1_2_13_116_1 e_1_2_13_99_1 e_1_2_13_18_1 e_1_2_13_14_1 e_1_2_13_111_1 e_1_2_13_37_1 e_1_2_13_79_1 e_1_2_13_10_1 e_1_2_13_56_1 e_1_2_13_115_1 e_1_2_13_33_1 e_1_2_13_75_1 e_1_2_13_52_1 e_1_2_13_71_1 e_1_2_13_5_1 e_1_2_13_108_1 e_1_2_13_49_1 e_1_2_13_26_1 e_1_2_13_68_1 e_1_2_13_45_1 e_1_2_13_87_1 e_1_2_13_22_1 e_1_2_13_64_1 e_1_2_13_103_1 e_1_2_13_41_1 e_1_2_13_60_1 e_1_2_13_83_1 e_1_2_13_6_1 e_1_2_13_90_1 e_1_2_13_94_1 e_1_2_13_98_1 Guzmán P (e_1_2_13_86_1) 1990; 2 e_1_2_13_119_1 e_1_2_13_19_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_110_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_76_1 e_1_2_13_114_1 e_1_2_13_30_1 e_1_2_13_72_1 e_1_2_13_2_1 e_1_2_13_107_1 Soltabayeva A (e_1_2_13_9_1) 2022; 11 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_102_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_84_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_80_1 e_1_2_13_93_1 e_1_2_13_97_1 e_1_2_13_118_1 e_1_2_13_39_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_58_1 e_1_2_13_113_1 e_1_2_13_31_1 e_1_2_13_77_1 e_1_2_13_12_1 e_1_2_13_54_1 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_3_1 e_1_2_13_106_1 e_1_2_13_89_1 e_1_2_13_28_1 |
References_xml | – volume: 11 start-page: 1053 year: 2018 end-page: 1066 article-title: Antagonism of transcription factor MYC2 by EDS1/PAD4 complexes bolsters salicylic acid defense in effector‐triggered immunity publication-title: Mol Plant – volume: 37 start-page: 501 year: 2005 end-page: 506 article-title: A gene expression map of development publication-title: Nat Genet – volume: 2 start-page: 110 year: 2000 end-page: 116 article-title: A conserved docking motif in MAP kinases common to substrates, activators and regulators publication-title: Nat Cell Biol – volume: 451 start-page: 789 year: 2008 end-page: 795 article-title: Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling publication-title: Nature – volume: 217 start-page: 1598 year: 2018 end-page: 1609 article-title: Predicting plant immunity gene expression by identifying the decoding mechanism of calcium signatures publication-title: New Phytol – volume: 32 start-page: 1988 year: 2020 end-page: 2003 article-title: Wounding and insect feeding trigger two independent MAPK pathways with distinct regulation and kinetics publication-title: Plant Cell – volume: 25 start-page: 820 year: 2013 end-page: 833 article-title: Interlocking feedback loops govern the dynamic behavior of the floral transition in publication-title: Plant Cell – volume: 415 start-page: 977 year: 2002 end-page: 983 article-title: MAP kinase signalling cascade in innate immunity publication-title: Nature – volume: 367 start-page: 2619 year: 2012 end-page: 2639 article-title: Diversity, classification and function of the plant protein kinase superfamily publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 119 start-page: 981 year: 2004 end-page: 990 article-title: Fus3‐regulated Tec1 degradation through SCFCdc4 determines MAPK signaling specificity during mating in yeast publication-title: Cell – volume: 3 year: 2008 article-title: The N‐terminal domain of ERK1 accounts for the functional differences with ERK2 publication-title: PLoS One – volume: 10 year: 2014 article-title: Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in publication-title: PLoS Genet – volume: 12 start-page: 369 year: 2013 end-page: 380 article-title: Identification of novel in vivo MAP kinase substrates in through use of tandem metal oxide affinity chromatography publication-title: Mol Cell Proteomics – volume: 56 start-page: 174 year: 2016 end-page: 189 article-title: No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens publication-title: Semin Cell Dev Biol – volume: 8 start-page: 530 year: 2007 end-page: 541 article-title: Mechanisms of specificity in protein phosphorylation publication-title: Nat Rev Mol Cell Bio – volume: 445 start-page: 501 year: 2007 article-title: Termination of asymmetric cell division and differentiation of stomata publication-title: Nature – volume: 19 start-page: 407 year: 2018 article-title: Comparative analysis of plant MKK gene family reveals novel expansion mechanism of the members and sheds new light on functional conservation publication-title: BMC Genomics – volume: 61 start-page: 3901 year: 2010 end-page: 3914 article-title: Male gametophyte‐specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in publication-title: J Exp Bot – volume: 521 start-page: 213 year: 2015 end-page: 216 article-title: Pathogen‐secreted proteases activate a novel plant immune pathway publication-title: Nature – volume: 180 start-page: 440 year: 2020 end-page: 453.e18 article-title: Co‐incidence of damage and microbial patterns controls localized immune responses in roots publication-title: Cell – volume: 77 start-page: 275 year: 2020 end-page: 287 article-title: Organization and dynamics of functional plant membrane microdomains publication-title: Cell Mol Life Sci – volume: 16 start-page: 1938 year: 2004 end-page: 1950 article-title: JASMONATE‐INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different Jasmonate‐regulated defense responses in [W] publication-title: Plant Cell – volume: 17 year: 2022 article-title: Simultaneous mutations in SMN1 and SUMM2 fully suppress the dwarf and autoimmune phenotypes of mpk4 mutant publication-title: Plant Signal Behav – volume: 14 year: 2018 article-title: Regulation of pollen lipid body biogenesis by MAP kinases and downstream WRKY transcription factors in publication-title: PLoS Genet – volume: 7 start-page: 8732 year: 2017 article-title: The integration of Gβ and MAPK signaling cascade in zygote development publication-title: Sci Rep – volume: 9 start-page: 469 year: 2018 article-title: Nuclear signaling of plant MAPKs publication-title: Front Plant Sci – volume: 15 start-page: 106 year: 2010 end-page: 113 article-title: Convergence and specificity in the MAPK nexus publication-title: Trends Plant Sci – volume: 9 start-page: 1387 year: 2018 article-title: Mitogen‐activated protein kinase cascades in plant hormone signaling publication-title: Front Plant Sci – volume: 19 start-page: 966 year: 2018 article-title: Plant stress RNA‐seq nexus: a stress‐specific transcriptome database in plant cells publication-title: BMC Genomics – volume: 31 start-page: 617 year: 2017 end-page: 627 article-title: Transcriptional integration of paternal and maternal factors in the zygote publication-title: Genes Dev – volume: 47 start-page: 532 year: 2006 end-page: 546 article-title: Arabidopsis MAP kinase 4 regulates salicylic acid‐ and jasmonic acid/ethylene‐dependent responses via EDS1 and PAD4 publication-title: Plant J – volume: 119 start-page: 991 year: 2004 end-page: 1000 article-title: Pheromone‐dependent destruction of the Tec1 transcription factor is required for MAP kinase signaling specificity in yeast publication-title: Cell – volume: 19 start-page: 805 year: 2007 end-page: 818 article-title: The mitogen‐activated protein kinase cascade MKK3–MPK6 is an important part of the Jasmonate signal transduction pathway in publication-title: Plant Cell – volume: 3 start-page: 1037 year: 2008 end-page: 1041 article-title: Comprehensive analysis of protein‐protein interactions between MAPKs and MAPK kinases helps define potential MAPK signalling modules publication-title: Plant Signal Behav – volume: 5 start-page: 742 year: 2019 end-page: 754 article-title: Bipartite anchoring of SCREAM enforces stomatal initiation by coupling MAP kinases to SPEECHLESS publication-title: Nat Plants – volume: 100 start-page: 2992 year: 2003 end-page: 2997 article-title: Five components of the ethylene‐response pathway identified in a screen for weak ethylene‐insensitive mutants in publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 80 year: 2009 end-page: 92 article-title: MAPK target networks in revealed using functional protein microarrays publication-title: Gene Dev – volume: 61 start-page: 234 year: 2010 end-page: 248 article-title: MPK6 is involved in cell division plane control during early root development, and localizes to the pre‐prophase band, phragmoplast, trans‐Golgi network and plasma membrane publication-title: Plant J – volume: 179 start-page: 643 year: 2008 end-page: 662 article-title: Comprehensive gene expression atlas for the MAP kinase signalling pathways publication-title: New Phytol – volume: 26 start-page: 3358 year: 2014 end-page: 3371 article-title: Manipulation of mitogen‐activated protein kinase kinase signaling in the stomatal lineage reveals motifs that contribute to protein localization and signaling specificity publication-title: Plant Cell – volume: 25 start-page: 1895 year: 2013 end-page: 1910 article-title: Deletion of a tandem gene family in : increased MEKK2 abundance triggers autoimmunity when the MEKK1‐MKK1/2‐MPK4 signaling Cascade is disrupted publication-title: Plant Cell – volume: 21 start-page: 3506 year: 2009 end-page: 3517 article-title: Novel and expanded roles for MAPK signaling in stomatal cell fate revealed by cell type–specific manipulations publication-title: Plant Cell – volume: 21 start-page: 5350 year: 2020 article-title: Expanding the toolkit of fluorescent biosensors for studying mitogen activated protein kinases in plants publication-title: Int J Mol Sci – volume: 153 start-page: 273 year: 2001 end-page: 282 article-title: Integrin‐mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk‐1 publication-title: J Cell Biol – volume: 218 start-page: 661 year: 2018 end-page: 680 article-title: YODA MAP3K kinase regulates plant immune responses conferring broad‐spectrum disease resistance publication-title: New Phytol – volume: 13 year: 2022 article-title: Calcium/calmodulin‐mediated microbial symbiotic interactions in plants publication-title: Front Plant Sci – volume: 136 start-page: 1085 year: 2009 end-page: 1097 article-title: The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation publication-title: Cell – volume: 51 start-page: 1766 year: 2010 end-page: 1776 article-title: HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in publication-title: Plant Cell Physiol – volume: 5 start-page: ra74 year: 2012 article-title: Specificity of linear motifs that bind to a common mitogen‐activated protein kinase docking groove publication-title: Sci Signal – volume: 20 start-page: 264 year: 2011 end-page: 270 article-title: Transcriptional activation of Axis patterning genes WOX8/9 links zygote polarity to embryo development publication-title: Dev Cell – volume: 284 start-page: 13165 year: 2009 end-page: 13173 article-title: Selectivity of docking sites in MAPK kinases publication-title: J Biol Chem – volume: 1813 start-page: 1619 year: 2011 end-page: 1633 article-title: The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation publication-title: Biochim Biophys Acta Mol Cell Res – volume: 37 year: 2021 article-title: Substratum stiffness regulates Erk signaling dynamics through receptor‐level control publication-title: Cell Rep – volume: 5 start-page: 415 year: 2002 end-page: 424 article-title: Complexity, cross talk and integration of plant MAP kinase signalling publication-title: Curr Opin Plant Biol – volume: 18 start-page: 60 year: 2018 article-title: Dissection of MAPK signaling specificity through protein engineering in a developmental context publication-title: BMC Plant Biol – volume: 1573 start-page: 163 year: 2017 end-page: 209 article-title: Ethylene signaling, methods and protocols publication-title: Methods Mol Biol – volume: 103 start-page: 705 year: 2020 end-page: 714 article-title: MEKK2 inhibits activation of MAP kinases in publication-title: Plant J – volume: 19 start-page: 91 year: 2003 end-page: 118 article-title: Regulation of MAP kinase signaling modules by scaffold proteins in mammals publication-title: Annu Rev Cell Dev Biol – volume: 352 start-page: 1102 year: 2016 end-page: 1105 article-title: Nuclear‐localized cyclic nucleotide–gated channels mediate symbiotic calcium oscillations publication-title: Science – volume: 2 year: 2016 article-title: An epidermis‐driven mechanism positions and scales stem cell niches in plants publication-title: Sci Adv – volume: 17 start-page: 1771 year: 2008 end-page: 1780 article-title: Structure of a signal transduction regulator, RACK1, from publication-title: Protein Sci – volume: 304 start-page: 1494 year: 2004 end-page: 1497 article-title: Stomatal development and pattern controlled by a MAPKK kinase publication-title: Science – volume: 9 start-page: 1674 year: 2018 article-title: Cellular complexity in MAPK signaling in plants: questions and emerging tools to answer them publication-title: Front Plant Sci – volume: 9 start-page: 6273 year: 2019 article-title: Abiotic and biotic stresses induce a core transcriptome response in rice publication-title: Sci Rep – volume: 352 start-page: 595 year: 2016 end-page: 599 article-title: Phase separation of signaling molecules promotes T cell receptor signal transduction publication-title: Science – volume: 299 start-page: 1061 year: 2003 end-page: 1064 article-title: Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms publication-title: Science – volume: 18 start-page: 1190 year: 2008 end-page: 1198 article-title: MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen‐activated protein kinase cascade to regulate innate immunity in plants publication-title: Cell Res – volume: 2 start-page: 120 year: 2009 end-page: 137 article-title: A major role of the MEKK1–MKK1/2–MPK4 pathway in ROS signalling publication-title: Mol Plant – volume: 2 start-page: 513 year: 1990 end-page: 523 article-title: Exploiting the triple response of to identify ethylene‐related mutants publication-title: Plant Cell – volume: 7 start-page: 301 year: 2002 end-page: 308 article-title: Mitogen‐activated protein kinase cascades in plants: a new nomenclature publication-title: Trends Plant Sci – volume: 7 start-page: 17 year: 2020 article-title: Transcriptome profiling of abiotic responses to heat, cold, salt, and osmotic stress of L publication-title: Sci Data – volume: 12 year: 2016 article-title: The receptor kinase ZAR1 is required for zygote asymmetric division and its daughter cell fate publication-title: PLoS Genet – volume: 311 start-page: 822 year: 2006 end-page: 826 article-title: The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway publication-title: Science – volume: 20 start-page: 1194 year: 2019 article-title: Nuclear ERK: mechanism of translocation, substrates, and role in cancer publication-title: Int J Mol Sci – volume: 24 start-page: 4948 year: 2012 end-page: 4960 article-title: A MAPK cascade downstream of ERECTA receptor‐like protein kinase regulates inflorescence architecture by promoting localized cell proliferation publication-title: Plant Cell – volume: 87 start-page: 929 year: 1996 end-page: 939 article-title: c‐Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions publication-title: Cell – volume: 13 start-page: 2438 year: 2022 article-title: Dichotomy of the BSL phosphatase signaling spatially regulates MAPK components in stomatal fate determination publication-title: Nat Commun – volume: 4 start-page: 1558 year: 2005 end-page: 1568 article-title: High throughput identification of potential mitogen‐activated protein kinases substrates publication-title: Mol Cell Proteomics – volume: 80 start-page: 179 year: 1995 end-page: 185 article-title: Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal‐regulated kinase activation publication-title: Cell – volume: 24 start-page: 2225 year: 2012 end-page: 2236 article-title: The MEKK1‐MKK1/MKK2‐MPK4 kinase cascade negatively regulates immunity mediated by a mitogen‐activated protein kinase kinase kinase in publication-title: Plant Cell – volume: 25 start-page: 448 year: 2000 end-page: 453 article-title: Docking domains and substrate‐specificity determination for MAP kinases publication-title: Trends Biochem Sci – volume: 9 year: 2013 article-title: Phosphorylation‐coupled proteolysis of the transcription factor MYC2 is important for Jasmonate‐signaled plant immunity publication-title: PLoS Genet – volume: 189 start-page: 1069 year: 2011 end-page: 1083 article-title: Mitogen‐activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in publication-title: New Phytol – volume: 23 start-page: 1639 year: 2011 end-page: 1653 article-title: Phosphorylation of a WRKY transcription factor by two pathogen‐responsive MAPKs drives phytoalexin biosynthesis in publication-title: Plant Cell – volume: 30 start-page: 1543 year: 2018 end-page: 1561 article-title: Receptor‐like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen‐activated protein kinase cascades in publication-title: Plant Cell – volume: 26 start-page: 3100 year: 2007 end-page: 3112 article-title: Differential regulation and properties of MAPKs publication-title: Oncogene – volume: 18 start-page: 123 year: 2006 end-page: 134 article-title: Mitogen‐activated protein kinase (MAPK)‐docking sites in MAPK kinases function as tethers that are crucial for MAPK regulation in vivo publication-title: Cell Signal – volume: 8 year: 2013 article-title: Tight interconnection and multi‐level control of MYB44 in MAPK cascade signalling publication-title: Plos One – volume: 64 start-page: 301 year: 2022 end-page: 341 article-title: Mitogen‐activated protein kinase cascades in plant signaling publication-title: J Integr Plant Biol – volume: 11 start-page: 2660 year: 2022 article-title: Receptor‐like kinases (LRR‐RLKs) in response of plants to biotic and abiotic stresses publication-title: Plan Theory – volume: 11 start-page: 4859 year: 2020 article-title: A trimeric CrRLK1L‐LLG1 complex genetically modulates SUMM2‐mediated autoimmunity publication-title: Nat Commun – volume: 150 start-page: 12 year: 2009 end-page: 26 article-title: Evolutionary history and stress regulation of plant receptor‐like kinase/Pelle genes publication-title: Plant Physiol – volume: 38 start-page: 1071 year: 1998 end-page: 1080 article-title: The promoter of the plant defensin gene PDF1.2 from is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid publication-title: Plant Mol Biol – volume: 9 year: 2014 article-title: WRKY transcription factors publication-title: Plant Signal Behav – volume: 74 start-page: 49 year: 1998 end-page: 139 article-title: Signal transduction through MAP kinase cascades publication-title: Adv Cancer Res – volume: 189 start-page: 557 year: 2022 end-page: 566 article-title: Analysis of exocyst function in endodermis reveals its widespread contribution and specificity of action publication-title: Plant Physiol – volume: 34 start-page: 837 year: 2006 end-page: 841 article-title: Mechanisms of MAPK signalling specificity publication-title: Biochem Soc Trans – volume: 8 start-page: 683 year: 2001 end-page: 691 article-title: Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation publication-title: Mol Cell – volume: 94 start-page: 59 year: 2018 end-page: 74 article-title: Exploring peptide hormones in plants: identification of four peptide hormone‐receptor pairs and two post‐translational modification enzymes publication-title: Proc Jpn Acad Ser B Phys Biol Sci – volume: 23 start-page: 2744 year: 2022 article-title: Mitogen‐activated protein kinase and substrate identification in plant growth and development publication-title: Int J Mol Sci – volume: 6 year: 2010 article-title: Computational prediction and experimental verification of new MAP kinase docking sites and substrates including Gli transcription factors publication-title: PLoS Comput Biol – volume: 19 start-page: 509 year: 2007 end-page: 523 article-title: The EIN3 binding F‐box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling publication-title: Plant Cell – volume: 33 start-page: 136 year: 2015 end-page: 149 article-title: The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division publication-title: Dev Cell – volume: 65 start-page: 385 year: 2014 end-page: 413 article-title: Posttranslationally modified small‐peptide signals in plants publication-title: Annu Rev Plant Biol – volume: 41 start-page: 649 year: 2011 end-page: 660 article-title: Calmodulin‐dependent activation of MAP kinase for ROS homeostasis in publication-title: Mol Cell – volume: 31 start-page: 4810 year: 2021 end-page: 4816 article-title: Independent parental contributions initiate zygote polarization in publication-title: Curr Biol – volume: 16 start-page: 537 year: 2016 end-page: 552 article-title: Regulation of pattern recognition receptor signalling in plants publication-title: Nat Rev Immunol – volume: 66 start-page: 5257 year: 2015 end-page: 5269 article-title: Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays publication-title: J Exp Bot – volume: 19 year: 2018 article-title: Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling publication-title: EMBO Rep – volume: 413 start-page: 217 year: 2008 end-page: 226 article-title: Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes publication-title: Biochem J – volume: 92 start-page: 3425 year: 2007 end-page: 3441 article-title: Mathematical models of specificity in cell signaling publication-title: Biophys J – volume: 13 start-page: 679 year: 2013 end-page: 692 article-title: Mitogen‐activated protein kinases in innate immunity publication-title: Nat Rev Immunol – volume: 60 start-page: 778 year: 2018 end-page: 787 article-title: Disruption of the MAMP‐induced MEKK1‐MKK1/MKK2‐MPK4 pathway activates the TNL immune receptor SMN1/RPS6 publication-title: Plant Cell Physiol – volume: 10 start-page: 2103 year: 1998 end-page: 2113 article-title: Concomitant activation of Jasmonate and ethylene response pathways is required for induction of a plant defensin gene in publication-title: Plant Cell – volume: 108 start-page: 225 year: 2022 end-page: 239 article-title: Root‐specific CLE3 expression is required for WRKY33 activation in shoots publication-title: Plant Mol Biol – volume: 12 start-page: 3341 year: 2021 article-title: Quantitative single‐cell proteomics as a tool to characterize cellular hierarchies publication-title: Nat Commun – volume: 15 start-page: 247 year: 2010 end-page: 258 article-title: WRKY transcription factors publication-title: Trends Plant Sci – volume: 13 start-page: 1582 year: 2020 end-page: 1593 article-title: Stigma receptivity is controlled by functionally redundant MAPK pathway components in publication-title: Mol Plant – volume: 12 start-page: 30 year: 2002 end-page: 35 article-title: Anchorage‐dependent ERK signaling – mechanisms and consequences publication-title: Curr Opin Genet Dev – ident: e_1_2_13_57_1 doi: 10.1016/j.tplants.2010.02.006 – ident: e_1_2_13_27_1 doi: 10.1529/biophysj.106.090084 – ident: e_1_2_13_35_1 doi: 10.1016/j.cellsig.2005.04.001 – ident: e_1_2_13_40_1 doi: 10.1146/annurev.cellbio.19.111401.091942 – ident: e_1_2_13_107_1 doi: 10.1038/s41598-019-42731-8 – ident: e_1_2_13_55_1 doi: 10.3389/fpls.2018.01674 – ident: e_1_2_13_61_1 doi: 10.1371/journal.pgen.1007880 – ident: e_1_2_13_12_1 doi: 10.1093/jxb/erv346 – ident: e_1_2_13_111_1 doi: 10.1093/plphys/kiac019 – ident: e_1_2_13_93_1 doi: 10.1105/tpc.022319 – ident: e_1_2_13_15_1 doi: 10.1016/S1369-5266(02)00285-6 – ident: e_1_2_13_50_1 doi: 10.1371/journal.pone.0057547 – ident: e_1_2_13_13_1 doi: 10.1186/s12864-018-4793-8 – ident: e_1_2_13_81_1 doi: 10.3389/fpls.2018.01387 – ident: e_1_2_13_88_1 doi: 10.1105/tpc.106.048140 – ident: e_1_2_13_97_1 doi: 10.1105/tpc.113.112102 – ident: e_1_2_13_8_1 doi: 10.1038/nri.2016.77 – ident: e_1_2_13_7_1 doi: 10.1104/pp.108.134353 – ident: e_1_2_13_116_1 doi: 10.3389/fpls.2022.984909 – ident: e_1_2_13_74_1 doi: 10.1007/s00018-019-03270-7 – ident: e_1_2_13_30_1 doi: 10.1016/S0092-8674(00)81999-6 – ident: e_1_2_13_120_1 doi: 10.1038/nature05467 – ident: e_1_2_13_42_1 doi: 10.1038/nature14243 – ident: e_1_2_13_110_1 doi: 10.1105/tpc.109.070110 – ident: e_1_2_13_82_1 doi: 10.1023/A:1006070413843 – ident: e_1_2_13_6_1 doi: 10.1098/rstb.2012.0003 – ident: e_1_2_13_100_1 doi: 10.1016/j.celrep.2021.110181 – ident: e_1_2_13_37_1 doi: 10.1126/science.1076979 – ident: e_1_2_13_48_1 doi: 10.1371/journal.pgen.1005933 – ident: e_1_2_13_67_1 doi: 10.1038/ng1543 – ident: e_1_2_13_77_1 doi: 10.1083/jcb.153.2.273 – ident: e_1_2_13_63_1 doi: 10.1016/j.devcel.2011.01.009 – ident: e_1_2_13_94_1 doi: 10.1371/journal.pgen.1003422 – ident: e_1_2_13_99_1 doi: 10.1016/j.cell.2020.01.013 – ident: e_1_2_13_20_1 doi: 10.1038/415977a – ident: e_1_2_13_108_1 doi: 10.1093/pcp/pcy243 – ident: e_1_2_13_18_1 doi: 10.1038/sj.onc.1210392 – ident: e_1_2_13_31_1 doi: 10.1074/jbc.M900080200 – ident: e_1_2_13_53_1 doi: 10.1371/journal.pone.0003873 – ident: e_1_2_13_47_1 doi: 10.1111/nph.15007 – ident: e_1_2_13_66_1 doi: 10.1111/j.1469-8137.2008.02552.x – ident: e_1_2_13_103_1 doi: 10.1016/j.molp.2018.05.007 – ident: e_1_2_13_112_1 doi: 10.1016/j.molp.2020.08.015 – ident: e_1_2_13_75_1 doi: 10.1126/science.aad9964 – ident: e_1_2_13_102_1 doi: 10.1126/science.1120941 – ident: e_1_2_13_46_1 doi: 10.15252/embr.201745324 – ident: e_1_2_13_87_1 doi: 10.1007/978-1-4939-6854-1_13 – ident: e_1_2_13_25_1 doi: 10.1074/mcp.M500007-MCP200 – ident: e_1_2_13_115_1 doi: 10.1126/science.aae0109 – ident: e_1_2_13_14_1 doi: 10.1016/S1360-1385(02)02302-6 – ident: e_1_2_13_51_1 doi: 10.1093/mp/ssn079 – ident: e_1_2_13_92_1 doi: 10.1016/j.cell.2004.11.053 – ident: e_1_2_13_119_1 doi: 10.1111/nph.14924 – ident: e_1_2_13_41_1 doi: 10.3389/fpls.2018.00469 – ident: e_1_2_13_4_1 doi: 10.1038/nri3495 – ident: e_1_2_13_69_1 doi: 10.1111/j.1365-313X.2009.04046.x – ident: e_1_2_13_28_1 doi: 10.1038/35000065 – ident: e_1_2_13_24_1 doi: 10.1101/gad.1740009 – ident: e_1_2_13_2_1 doi: 10.1016/S0065-230X(08)60765-4 – ident: e_1_2_13_98_1 doi: 10.1038/s41467-020-18600-8 – ident: e_1_2_13_16_1 doi: 10.3390/ijms23052744 – ident: e_1_2_13_22_1 doi: 10.1105/tpc.112.104695 – ident: e_1_2_13_85_1 doi: 10.1105/tpc.19.00917 – ident: e_1_2_13_105_1 doi: 10.1186/s12864-018-5367-5 – ident: e_1_2_13_36_1 doi: 10.1038/s41477-019-0440-x – ident: e_1_2_13_118_1 doi: 10.1126/sciadv.1500989 – ident: e_1_2_13_60_1 doi: 10.1093/jxb/erq204 – ident: e_1_2_13_23_1 doi: 10.4161/psb.3.12.6848 – ident: e_1_2_13_38_1 doi: 10.1038/nrm2203 – ident: e_1_2_13_70_1 doi: 10.1111/j.1469-8137.2010.03565.x – ident: e_1_2_13_84_1 doi: 10.1111/j.1365-313X.2006.02806.x – ident: e_1_2_13_34_1 doi: 10.1016/j.molcel.2011.02.029 – ident: e_1_2_13_96_1 doi: 10.1111/tpj.14763 – ident: e_1_2_13_91_1 doi: 10.1016/j.cell.2004.11.052 – ident: e_1_2_13_73_1 doi: 10.1038/s41467-022-30254-2 – ident: e_1_2_13_109_1 doi: 10.1080/15592324.2022.2046412 – ident: e_1_2_13_76_1 doi: 10.1016/S0959-437X(01)00260-X – ident: e_1_2_13_72_1 doi: 10.1186/s12870-018-1274-9 – ident: e_1_2_13_106_1 doi: 10.1038/s41597-020-0352-7 – ident: e_1_2_13_32_1 doi: 10.1371/journal.pcbi.1000908 – ident: e_1_2_13_54_1 doi: 10.3390/ijms20051194 – ident: e_1_2_13_49_1 doi: 10.1016/j.devcel.2015.02.022 – ident: e_1_2_13_83_1 doi: 10.1038/nature06543 – ident: e_1_2_13_56_1 doi: 10.4161/psb.27700 – ident: e_1_2_13_5_1 doi: 10.1111/jipb.13215 – ident: e_1_2_13_21_1 doi: 10.1126/science.1096014 – ident: e_1_2_13_44_1 doi: 10.1110/ps.035121.108 – volume: 2 start-page: 513 year: 1990 ident: e_1_2_13_86_1 article-title: Exploiting the triple response of Arabidopsis to identify ethylene‐related mutants publication-title: Plant Cell – ident: e_1_2_13_3_1 doi: 10.1042/BJ20080625 – ident: e_1_2_13_95_1 doi: 10.1105/tpc.112.097253 – ident: e_1_2_13_58_1 doi: 10.1371/journal.pgen.1004384 – ident: e_1_2_13_59_1 doi: 10.1105/tpc.111.084996 – ident: e_1_2_13_117_1 doi: 10.1105/tpc.113.109355 – ident: e_1_2_13_62_1 doi: 10.1007/s11103-021-01234-9 – ident: e_1_2_13_78_1 doi: 10.1105/tpc.10.12.2103 – ident: e_1_2_13_104_1 doi: 10.1105/tpc.17.00981 – ident: e_1_2_13_39_1 doi: 10.1016/j.cell.2009.01.049 – ident: e_1_2_13_101_1 doi: 10.1016/0092-8674(95)90401-8 – ident: e_1_2_13_64_1 doi: 10.1101/gad.292409.116 – ident: e_1_2_13_26_1 doi: 10.1074/mcp.M112.020560 – ident: e_1_2_13_43_1 doi: 10.1038/cr.2008.300 – ident: e_1_2_13_45_1 doi: 10.1038/s41598-017-08230-4 – ident: e_1_2_13_114_1 doi: 10.1038/s41467-021-23667-y – ident: e_1_2_13_29_1 doi: 10.1016/S0968-0004(00)01627-3 – ident: e_1_2_13_68_1 doi: 10.1093/pcp/pcq135 – ident: e_1_2_13_71_1 doi: 10.1105/tpc.114.127415 – volume: 11 start-page: 2660 year: 2022 ident: e_1_2_13_9_1 article-title: Receptor‐like kinases (LRR‐RLKs) in response of plants to biotic and abiotic stresses publication-title: Plan Theory – ident: e_1_2_13_89_1 doi: 10.1073/pnas.0438070100 – ident: e_1_2_13_79_1 doi: 10.1105/tpc.106.046581 – ident: e_1_2_13_19_1 doi: 10.1016/j.tplants.2009.12.001 – ident: e_1_2_13_52_1 doi: 10.1016/j.bbamcr.2010.12.012 – ident: e_1_2_13_65_1 doi: 10.1016/j.cub.2021.08.033 – ident: e_1_2_13_11_1 doi: 10.2183/pjab.94.006 – ident: e_1_2_13_80_1 doi: 10.1016/j.semcdb.2016.06.005 – ident: e_1_2_13_113_1 doi: 10.3390/ijms21155350 – ident: e_1_2_13_90_1 doi: 10.1016/S1097-2765(01)00322-7 – ident: e_1_2_13_17_1 doi: 10.1042/BST0340837 – ident: e_1_2_13_10_1 doi: 10.1146/annurev-arplant-050312-120122 – ident: e_1_2_13_33_1 doi: 10.1126/scisignal.2003004 |
SSID | ssj0000601600 |
Score | 2.4189281 |
SecondaryResourceType | review_article |
Snippet | The precise execution of various cellular functions relies on the maintenance of signaling specificity from input detection to cellular outputs. However,... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1177 |
SubjectTerms | Animals Flowers & plants Intermediates Kinases Ligands MAP kinase MAP Kinase Signaling System - physiology MAPK cascade MAPK Signalling mitogen-activated protein kinase Mitogen-Activated Protein Kinases - metabolism Phosphorylation plant signaling Proteins Review Reviews RLK receptors Saccharomyces cerevisiae - metabolism Signal Transduction signaling specificity yeasts |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS9xAFH4UodCLaG017VoiePBgutnJZH4cV3ERxeJBwdswk5mgIFnprgf_-743k112sa0XbyF5gcn35sc3zMv3ARwGVyqO81zhbeAF91YUzitbsNoK5p3EJY82ile_xPktv7ir71asvqgmLMkDJ-CGVgTdeCa9UyMutVCsstiHAuOqtK4JNPvimreymUpzMCmnlQstn5INGe50CtJ-p8Iu0tVZWYaiWv_fKObrSslVBhuXoMkWbPbcMR-nNm_Dh9B9ho_JTfJlB46jlzwpQsxf8uhwM8sfuvxqfH2ZN3ZGhfA5lWtY-gP9C9xOzm5Oz4veDKFoaqF00WrtvC6rFpFwLFhdI3VAIJmqW1uJ1pVNGFmyYNSczkqFlNHovPSi8Vq31VfY6KZd2IPc1g5ZSdtiYJRXwz2qlfiaIzNJy5oMfi6wMU2vFE6GFY8maRwzQ2AaAtNEMDM4Wr7wlEQy_h16QmAvw0jdOt7AnJs-5-atnGcwWKTK9ENuZqLnEv1XW2dwsHyMg4VOQGwXps8UgwRYKGzJ_2K4psNXgTG7KfvL1lZyVEvGZAZqrV-sfc76k-7hPop2RzsN5NoZDGMXegsoMzk74fHq23tA9h0-MaRnqdB4ABvz389hH-nU3P2II-cPVSwU3g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BKyQuiDeBgoLEgQNms07ixwl10a4qUKsKUak3y69AJZQt3e2h_54Zxxu6AsotiieSPbbHn-3J9wG8ia5SDcY5FmxsWBOsYC4oy3hrBQ9O4pJHG8XDI3Fw0nw6bU_zgdsqp1VuYmIK1GHp6Yx8kiR16LfJ9sP5T0aqUXS7miU0bsMuhmCFm6_d2fzo-Mt4ypLYRqpqw-lT8QnHHQ8jDnhK8CJ-nWvLUWLt_xvU_DNj8jqSTUvR4j7cyxiy3B86_QHciv1DuDOoSl49gndJU56YIdZXZVK6WZVnfXm4f_y59HZFCfElpW1Y-hP9MZws5l8_HrAsisB8K5RmndYu6KruZHCOR6tbhBDoUK7aztaic5WPU0tSjLqhO1MhZRI8r4LwQeuufgI7_bKPz6C0rUN00nVomGjWcK9qJX7mSFTScl_A-41vjM-M4SRc8cMMXMfckDMNOdMkZxbwdvzgfCDL-LfpjJw9mhHLdXqxvPhm8qQxVkTtA8eWqmkjtVC8thg_Im9UZZ2PBextusrkqbcyvwdKAa_HYpw0dBNi-7i8JBsEwkJhTW6yaTRdwgq0eTr0_ljbWk5bybksQG2Ni63mbJf0Z98TeXeS1UDMXcAkDaH_Ocos5rMmPT2_ubUv4C5HADakEu_BzvriMr5EwLR2r_Ks-AXRlg2d priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2hokpcELR8BEqVShw4EDbrOP44tqirqlVRD1TqzRrHDlRCWdTdHvrvmXGygS2UqrcoGUfJxGM_xzPvAbyPvjSSxrkiYJSFDKgKHwwWokYlgtc05fFC8fSLOjqXxxf1KpuQa2F6fojxhxtHRhqvOcDRLya_SUMFLV0KJnPnTC0m_nzMBbZMny_k2fibJdGNpEKU0X5F8FOKya17rM1NicL_X7jz7_TJP2Ftmpdmz-DpACjz_b4HPIdHsduCzV5i8mYbPiaBeaaJWN7kSfZmkV92-en-2Une4IKz43PO4UAuS38B57PDr5-PikEhoWhqZWzRWuuDLatWB-9FRFsTniDvClO3WKnWl02cIusyWskbqErrpH5eBtUEa9vqJWx08y6-hhxrT1Clbckwca7RwhU1NfOsMImiyeDTyjeuGejDWcXih-uJj4VjZzp2pkvOzODD2OBnz5xxt-kBO3s0Y8rrdGJ-9c0NEeRQRdsEQW9qplJbZUSFNJhEIU2JvokZ7Kw-lRvicOGSEBMX29YZ7I2XKYJ4WwS7OL9mG0LFytCT_M9GWt6RVWTzqv_649NWelprIXQGZq1frL3O-pXu8nti8k4aGwTAM5ikLnSfo9zs8ECmozcPbvEWnggCaH2q8Q5sLK-u4zsCVEu_m0LmF4dTD38 priority: 102 providerName: Wiley-Blackwell |
Title | Specificity models in MAPK cascade signaling |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2211-5463.13619 https://www.ncbi.nlm.nih.gov/pubmed/37157227 https://www.proquest.com/docview/2832196475 https://www.proquest.com/docview/2811568136 https://www.proquest.com/docview/2849890266 https://pubmed.ncbi.nlm.nih.gov/PMC10315774 https://doaj.org/article/a6e9cd27db814796823a794e2480abce |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fa9swED62lo2-jP1s3XbBgz3sYW4dWZashzKakVA2UsJYoG9CsuStUJwtSaH573cn21lD2-3N2CeQz3fSJ-v0fQDvvU0LjuNc4oznCXdGJNYVJmG5EcxZiVMeLRTH5-Jsyr9c5Bd_5YBaBy7uXdqRntR0fnV083v1CRP-pCUQPWa4iEmI1p1qtogCdBunJUlZOm6xfjMsE5la2tH73G23A08z2c8lI4WZW5NU4PK_D4DeraO8jW_DBDV6Ds9aZBmfNqHwAh75-iU8abQmV6_gY1CaJ76I5SoO-jeL-LKOx6eTr3FpFlQmH1Mxh6Hz6a9hOhp-_3yWtFIJSZmLQiWVUtapNKuks5Z5o3IEFuhmVuSVyURl09L3DQk0Kk47qULKIIOeOlE6parsDWzVs9rvQWxyi5ilqtAwkK_hCtZIbGZJatKwMoKjzje6bHnESc7iSjcMyEyTXzX5VQe_RvBh3eBXQ6HxsOmAnL02I-7rcGM2_6HbVNJGeFU6hm9a9LlUomCZwVHFM16kxpY-gsPuU-kunnRQZKJTt3kE79aPMZVof8TUfnZNNgiPRYE9-ZcNV7Q1K9Bmt_n669520RNBsREXG6-z-aS-_BkovYPYBiLxCI5DCP3PUXo0HPBwtf9gNw5ghyEia2qLD2FrOb_2bxFBLW0PHjM-6cH2YHg--dYL_yF6IVv-AGQqEbU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgheEL8JDAgSSDwQmjqOEz8gtEKrjq7VhDZpb54dO9sklI61E-o_xd_InZOUVcB42luUXCL7fGffxefvA3jtTJxznOciqx2PuNUiMjbXEUu1YNZkuORRojiZitEB_3KYHm7Az_YsDJVVtnOin6jtrKB_5F1PqUPHJtOPZ98jYo2i3dWWQqM2i7Fb_sCUbf5h5zOO7xvGhoP9T6OoYRWIilTkMiqlNFbGSZlZY5jTMsU1GFvE8rTUiShNXLieJi5DyWnTUWSZZwyPrSislGWC370BmzzBVKYDm_3BdO_r6q-ORzeJ4xZDKGZdhhlWRJjzVFBGeD6Xlj_PEvC30PbPCs3LkbNf-oZ34U4Ts4bbtZHdgw1X3YebNYvl8gG88xz2hESxWIaeWWcenlbhZHtvHBZ6TgX4IZWJaDr5_hAOrkVdj6BTzSr3BEKdGoyGyhIFPawb5sY6w9cMkVhqVgTwvtWNKhqEciLK-KZqbGWmSJmKlKm8MgN4u3rhrAbn-Ldon5S9EiNUbX9jdn6sGidVWjhZWIY9zXs8kyJnicb5yjGex9oULoCtdqhU4-pz9dswA3i1eoxOSjsvunKzC5LBwFvk2JKrZLikTV-BMo_r0V-1Nsl6acZYFkC-Zhdr3Vl_Up2eeLBwT-OBMX4AXW9C_1OUGg763F89vbq3L-HWaH-yq3Z3puNncJth8FeXMW9BZ3F-4Z5jsLYwLxoPCeHoup3yFyDzSJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN8EBgQJJB4ITZ3Ejh8QWlmrjbKqQkzam7Fjh02a0rF2Qv3X-Ou4cz5YBYynvUXJJbLPd_ZdfP79AF46E-cpznOR1S6NUqt5ZGyuI5ZpzqwRuORRorg_5bsH6cfD7HADfrZnYaissp0T_URt5wX9I-97Sh06Npn1y6YsYrYzfn_6PSIGKdppbek0ahOZuNUPTN8W7_Z2cKxfMTYeffmwGzUMA1GR8VxGpZTGyjgphTWGOS0zXI-xdSzPSp3w0sSFG2jiNZQpbUByITx7eGx5YaUsE_zuNdgUmBXFPdgcjqazz90fHo90EsctnlDM-gyzrYjw56m4jLB9LiyFnjHgb2Hun9WaF6NovwyOb8OtJn4Nt2uDuwMbrroL12tGy9U9eOP57AmVYrkKPcvOIjyuwv3t2SQs9IKK8UMqGdF0Cv4-HFyJuh5Ar5pX7hGEOjMYGZUlCnqIN8yTtcDXDBFaalYE8LbVjSoatHIizThRNc4yU6RMRcpUXpkBvO5eOK2BOv4tOiRld2KEsO1vzM--qcZhleZOFpZhT_NBKiTPWaJx7nIszWNtChfAVjtUqnH7hfptpAG86B6jw9IujK7c_JxkMAjnObbkMplU0gYwR5mH9eh3rU3EIBOMiQDyNbtY6876k-r4yAOHe0oPjPcD6HsT-p-i1Hg0TP3V48t7-xxuoDOqT3vTyRO4yTAOrCuat6C3PDt3TzFuW5pnjYOE8PWqffIX5IdM0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specificity+models+in+MAPK+cascade+signaling&rft.jtitle=FEBS+open+bio&rft.au=Ma%2C+Yan&rft.au=Nicolet%2C+Jade&rft.date=2023-07-01&rft.eissn=2211-5463&rft.volume=13&rft.issue=7&rft.spage=1177&rft_id=info:doi/10.1002%2F2211-5463.13619&rft_id=info%3Apmid%2F37157227&rft.externalDocID=37157227 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-5463&client=summon |