Tolerance landscapes in thermal ecology
How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect. Survival probability is determined by both...
Saved in:
Published in | Functional ecology Vol. 28; no. 4; pp. 799 - 809 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Scientific Publications
01.08.2014
John Wiley & Sons Ltd Wiley-Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect. Survival probability is determined by both the intensity and the duration of a thermal stress, and the association between these variables can be adequately conveyed by a thermal tolerance landscape. Employing this framework, we demonstrate that the temperature range that an organism can tolerate is expected to narrow down with the duration of the thermal challenge. Analyses suggest that a trade‐off exists between tolerances to acute and chronic exposition to thermal stress, and that changes in temperature means or extremes may result in drastically different selective pressures and subsequent evolutionary responses. After controlling for the duration of the thermal challenge, we also uncover latitudinal effects on upper lethal temperatures in insects that remained unnoticed in previous broad‐scale comparative analyses. Ultimately, critical thermal limits have been adopted in the ecological literature for logistic reasons and are inadequate descriptors of thermal tolerance on conceptual grounds. We consider that tolerance landscapes provide a more suitable framework to study temperature tolerance and its potential impact in ecological settings. |
---|---|
AbstractList | 1. How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect. 2. Survival probability is determined by both the intensity and the duration of a thermal stress, and the association between these variables can be adequately conveyed by a thermal tolerance landscape. Employing this framework, we demonstrate that the temperature range that an organism can tolerate is expected to narrow down with the duration of the thermal challenge. 3. Analyses suggest that a trade-off exists between tolerances to acute and chronic exposition to thermal stress, and that changes in temperature means or extremes may result in drastically different selective pressures and subsequent evolutionary responses. 4. After controlling for the duration of the thermal challenge, we also uncover latitudinal effects on upper lethal temperatures in insects that remained unnoticed in previous broad-scale comparative analyses. 5. Ultimately, critical thermal limits have been adopted in the ecological literature for logistic reasons and are inadequate descriptors of thermal tolerance on conceptual grounds. We consider that tolerance landscapes provide a more suitable framework to study temperature tolerance and its potential impact in ecological settings. How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect. Survival probability is determined by both the intensity and the duration of a thermal stress, and the association between these variables can be adequately conveyed by a thermal tolerance landscape. Employing this framework, we demonstrate that the temperature range that an organism can tolerate is expected to narrow down with the duration of the thermal challenge. Analyses suggest that a trade‐off exists between tolerances to acute and chronic exposition to thermal stress, and that changes in temperature means or extremes may result in drastically different selective pressures and subsequent evolutionary responses. After controlling for the duration of the thermal challenge, we also uncover latitudinal effects on upper lethal temperatures in insects that remained unnoticed in previous broad‐scale comparative analyses. Ultimately, critical thermal limits have been adopted in the ecological literature for logistic reasons and are inadequate descriptors of thermal tolerance on conceptual grounds. We consider that tolerance landscapes provide a more suitable framework to study temperature tolerance and its potential impact in ecological settings. How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect. Survival probability is determined by both the intensity and the duration of a thermal stress, and the association between these variables can be adequately conveyed by a thermal tolerance landscape. Employing this framework, we demonstrate that the temperature range that an organism can tolerate is expected to narrow down with the duration of the thermal challenge. Analyses suggest that a trade‐off exists between tolerances to acute and chronic exposition to thermal stress, and that changes in temperature means or extremes may result in drastically different selective pressures and subsequent evolutionary responses. After controlling for the duration of the thermal challenge, we also uncover latitudinal effects on upper lethal temperatures in insects that remained unnoticed in previous broad‐scale comparative analyses. Ultimately, critical thermal limits have been adopted in the ecological literature for logistic reasons and are inadequate descriptors of thermal tolerance on conceptual grounds. We consider that tolerance landscapes provide a more suitable framework to study temperature tolerance and its potential impact in ecological settings. Summary How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect. Survival probability is determined by both the intensity and the duration of a thermal stress, and the association between these variables can be adequately conveyed by a thermal tolerance landscape. Employing this framework, we demonstrate that the temperature range that an organism can tolerate is expected to narrow down with the duration of the thermal challenge. Analyses suggest that a trade‐off exists between tolerances to acute and chronic exposition to thermal stress, and that changes in temperature means or extremes may result in drastically different selective pressures and subsequent evolutionary responses. After controlling for the duration of the thermal challenge, we also uncover latitudinal effects on upper lethal temperatures in insects that remained unnoticed in previous broad‐scale comparative analyses. Ultimately, critical thermal limits have been adopted in the ecological literature for logistic reasons and are inadequate descriptors of thermal tolerance on conceptual grounds. We consider that tolerance landscapes provide a more suitable framework to study temperature tolerance and its potential impact in ecological settings. Lay Summary Summary How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect. Survival probability is determined by both the intensity and the duration of a thermal stress, and the association between these variables can be adequately conveyed by a thermal tolerance landscape. Employing this framework, we demonstrate that the temperature range that an organism can tolerate is expected to narrow down with the duration of the thermal challenge. Analyses suggest that a trade-off exists between tolerances to acute and chronic exposition to thermal stress, and that changes in temperature means or extremes may result in drastically different selective pressures and subsequent evolutionary responses. After controlling for the duration of the thermal challenge, we also uncover latitudinal effects on upper lethal temperatures in insects that remained unnoticed in previous broad-scale comparative analyses. Ultimately, critical thermal limits have been adopted in the ecological literature for logistic reasons and are inadequate descriptors of thermal tolerance on conceptual grounds. We consider that tolerance landscapes provide a more suitable framework to study temperature tolerance and its potential impact in ecological settings. [PUBLICATION ABSTRACT] How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect.Survival probability is determined by both the intensity and the duration of a thermal stress, and the association between these variables can be adequately conveyed by a thermal tolerance landscape. Employing this framework, we demonstrate that the temperature range that an organism can tolerate is expected to narrow down with the duration of the thermal challenge.Analyses suggest that a trade-off exists between tolerances to acute and chronic exposition to thermal stress, and that changes in temperature means or extremes may result in drastically different selective pressures and subsequent evolutionary responses.After controlling for the duration of the thermal challenge, we also uncover latitudinal effects on upper lethal temperatures in insects that remained unnoticed in previous broad-scale comparative analyses.Ultimately, critical thermal limits have been adopted in the ecological literature for logistic reasons and are inadequate descriptors of thermal tolerance on conceptual grounds. We consider that tolerance landscapes provide a more suitable framework to study temperature tolerance and its potential impact in ecological settings.Original Abstract: Lay Summary |
Author | Rezende, Enrico L Santos, Mauro Fox, Charles Castañeda, Luis E |
Author_xml | – sequence: 1 fullname: Rezende, Enrico L – sequence: 2 fullname: Castañeda, Luis E – sequence: 3 fullname: Santos, Mauro – sequence: 4 fullname: Fox, Charles |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28673852$$DView record in Pascal Francis |
BookMark | eNqFkU1rGzEURUVIIY6TdVelhhKazcT6epJmWUzcBAJdJF4LWfMmHSOPXGlM8b-PHKcpZGNtBNI5ku7VOTntY4-EfGb0hpUxZUJBxaWAG8a5Midk9L5ySkaUq7oyUokzcp7zilJaA-cj8v0pBkyu9zgJrm-ydxvMk66fDL8xrV2YoI8hPu8uyKfWhYyXb_OYLOa3T7O76uHXz_vZj4fKgzKmwqVpaqlrxg0q1ygnlEbmpGZeo2hEox0sqaeK1tphvWwa3ra1AlHkZQNCjMn14dxNin-2mAe77rLHUB6HcZstU0qAAQr6OArAlGRcy4J--4Cu4jb1JUihJFBpjIZCXb1RrvQQ2n0tXbab1K1d2llulBYGeOGmB86nmHPC9h1h1O7_wu6bt_vm7etfFAM-GL4b3NDFfkiuC8e9v13A3bFr7Px29s_7cvBWeYjpfwJJhYDXBF8P-62L1j2nknLxyCmTlLLSLafiBSq2rM4 |
CODEN | FECOE5 |
CitedBy_id | crossref_primary_10_1111_gcb_15978 crossref_primary_10_1016_j_jinsphys_2024_104619 crossref_primary_10_1007_s13592_020_00824_8 crossref_primary_10_1002_ece3_6496 crossref_primary_10_1002_jez_2791 crossref_primary_10_1111_gcb_13313 crossref_primary_10_1007_s10750_015_2386_y crossref_primary_10_1242_jeb_236505 crossref_primary_10_1146_annurev_ecolsys_011521_102856 crossref_primary_10_1002_jez_2433 crossref_primary_10_1016_j_ecss_2021_107284 crossref_primary_10_1007_s10682_022_10157_w crossref_primary_10_3389_fphys_2021_738804 crossref_primary_10_1002_ecm_1550 crossref_primary_10_1016_j_cois_2015_10_001 crossref_primary_10_3390_insects11020102 crossref_primary_10_1086_718556 crossref_primary_10_1016_j_tree_2014_11_008 crossref_primary_10_1242_jeb_246548 crossref_primary_10_1016_j_jinsphys_2020_104056 crossref_primary_10_1111_gcb_13552 crossref_primary_10_1111_gcb_12695 crossref_primary_10_1073_pnas_2418199122 crossref_primary_10_1371_journal_pone_0239485 crossref_primary_10_1016_j_scitotenv_2021_145208 crossref_primary_10_1016_j_jtherbio_2017_03_010 crossref_primary_10_1016_j_envpol_2017_10_071 crossref_primary_10_1016_j_jembe_2017_12_005 crossref_primary_10_1016_j_jtherbio_2019_03_010 crossref_primary_10_1016_j_jtherbio_2018_01_009 crossref_primary_10_1073_pnas_2102037118 crossref_primary_10_3390_insects11030147 crossref_primary_10_1111_1365_2435_14620 crossref_primary_10_1038_s41598_023_43128_4 crossref_primary_10_1111_1365_2435_14622 crossref_primary_10_1038_s41586_022_05334_4 crossref_primary_10_3920_JIFF2021_0092 crossref_primary_10_1038_s41598_021_92004_6 crossref_primary_10_1016_j_jinsphys_2020_104157 crossref_primary_10_1098_rstb_2018_0549 crossref_primary_10_1007_s10750_016_2826_3 crossref_primary_10_1111_ele_14264 crossref_primary_10_1242_jeb_233254 crossref_primary_10_1016_j_cois_2016_08_003 crossref_primary_10_1002_ecs2_3083 crossref_primary_10_1093_plankt_fbw058 crossref_primary_10_1016_j_jtherbio_2014_10_012 crossref_primary_10_1002_ecm_1517 crossref_primary_10_1016_j_agrformet_2022_108813 crossref_primary_10_1002_jez_2540 crossref_primary_10_1086_716176 crossref_primary_10_1111_gcb_16834 crossref_primary_10_1016_j_jinsphys_2021_104323 crossref_primary_10_1038_s41558_021_01047_0 crossref_primary_10_1111_ddi_12999 crossref_primary_10_1016_j_baae_2023_01_002 crossref_primary_10_1242_jeb_230797 crossref_primary_10_1242_jeb_238840 crossref_primary_10_1111_1744_7917_12466 crossref_primary_10_1242_jeb_218602 crossref_primary_10_1002_ece3_2923 crossref_primary_10_1016_j_cbpa_2023_111522 crossref_primary_10_1371_journal_pone_0127555 crossref_primary_10_1016_j_jtherbio_2023_103757 crossref_primary_10_1038_s41437_021_00442_9 crossref_primary_10_1007_s00484_021_02222_w crossref_primary_10_1016_j_cois_2015_09_013 crossref_primary_10_1016_j_jtherbio_2020_102721 crossref_primary_10_1016_j_jtherbio_2014_10_002 crossref_primary_10_1016_j_cois_2018_07_004 crossref_primary_10_1016_j_aquaculture_2024_741350 crossref_primary_10_1111_ddi_13282 crossref_primary_10_1111_1365_2435_12510 crossref_primary_10_1002_eap_1501 crossref_primary_10_1111_gcb_16468 crossref_primary_10_1007_s10452_018_9667_2 crossref_primary_10_1016_j_jinsphys_2019_103946 crossref_primary_10_1016_j_jtherbio_2017_02_008 crossref_primary_10_1016_j_jtherbio_2018_04_016 crossref_primary_10_1152_physiol_00027_2022 crossref_primary_10_1890_14_0744_1 crossref_primary_10_1016_j_jtherbio_2021_102997 crossref_primary_10_1016_j_scitotenv_2023_162135 crossref_primary_10_1111_jfb_15368 crossref_primary_10_1242_jeb_244729 crossref_primary_10_1093_ee_nvz154 crossref_primary_10_1093_conphys_coaa038 crossref_primary_10_1016_j_jtherbio_2024_104013 crossref_primary_10_1086_716577 crossref_primary_10_1016_j_scitotenv_2024_170165 crossref_primary_10_1111_gcb_14713 crossref_primary_10_1016_j_ecolind_2018_04_044 crossref_primary_10_1042_ETLS20180135 crossref_primary_10_1093_pnasnexus_pgae260 crossref_primary_10_1098_rspb_2023_0507 crossref_primary_10_1139_cjfas_2023_0145 crossref_primary_10_1038_s41586_025_08665_0 crossref_primary_10_1086_726011 crossref_primary_10_3389_fmicb_2021_654108 crossref_primary_10_1093_biosci_biac080 crossref_primary_10_1242_jeb_167858 crossref_primary_10_1111_ecog_06217 crossref_primary_10_1016_j_jtherbio_2020_102582 crossref_primary_10_1098_rspb_2022_1703 crossref_primary_10_1371_journal_pone_0169371 crossref_primary_10_1002_tafs_10169 crossref_primary_10_1093_conphys_coae086 crossref_primary_10_1242_jeb_128892 crossref_primary_10_3389_fmars_2022_1108330 crossref_primary_10_1111_gcb_16453 crossref_primary_10_3389_frish_2024_1276161 crossref_primary_10_1111_1365_2435_13850 crossref_primary_10_1111_1365_2435_14147 crossref_primary_10_1007_s00360_021_01413_6 crossref_primary_10_1146_annurev_marine_032223_024511 crossref_primary_10_3389_fevo_2021_656504 crossref_primary_10_1016_j_ecochg_2021_100003 crossref_primary_10_1371_journal_pone_0193788 crossref_primary_10_1152_ajpregu_00268_2016 crossref_primary_10_3354_meps14039 crossref_primary_10_1016_j_envpol_2016_11_014 crossref_primary_10_1098_rspb_2019_0174 crossref_primary_10_1242_jeb_114926 crossref_primary_10_1016_j_jtherbio_2016_08_001 crossref_primary_10_1111_jbi_15020 crossref_primary_10_1111_nrm_12331 crossref_primary_10_1038_s41558_020_00948_w crossref_primary_10_1098_rstb_2019_0036 crossref_primary_10_1098_rstb_2019_0035 crossref_primary_10_1111_geb_13570 crossref_primary_10_1242_jeb_249651 crossref_primary_10_1038_s41597_024_04191_2 crossref_primary_10_1016_j_ecolmodel_2022_110209 crossref_primary_10_1016_j_marpolbul_2022_114223 crossref_primary_10_1098_rspb_2024_2679 crossref_primary_10_1111_fwb_14190 crossref_primary_10_3389_fmars_2021_812902 crossref_primary_10_1111_gcb_13407 crossref_primary_10_1016_j_scitotenv_2024_176120 crossref_primary_10_1073_pnas_2407057121 crossref_primary_10_1016_j_jtherbio_2017_01_008 crossref_primary_10_1111_1365_2435_14284 crossref_primary_10_1002_ecm_1561 crossref_primary_10_1093_evolut_qpae126 crossref_primary_10_1016_j_jtherbio_2023_103671 crossref_primary_10_1016_j_flora_2017_05_003 crossref_primary_10_1016_j_cris_2024_100089 crossref_primary_10_1016_j_ecolind_2019_105561 crossref_primary_10_7717_peerj_3112 crossref_primary_10_1098_rspb_2020_2508 crossref_primary_10_1242_jeb_244514 crossref_primary_10_1111_1365_2435_13006 crossref_primary_10_1126_science_adl6480 crossref_primary_10_1038_srep23381 crossref_primary_10_3897_subtbiol_25_23530 crossref_primary_10_1016_j_jtherbio_2014_11_009 crossref_primary_10_1002_jez_2396 crossref_primary_10_1086_680384 crossref_primary_10_1016_j_pedobi_2023_150876 crossref_primary_10_3389_fmars_2023_1173358 crossref_primary_10_1038_s41597_022_01704_9 crossref_primary_10_1093_icb_icz084 crossref_primary_10_1163_15707563_00002510 crossref_primary_10_1093_iob_obac016 crossref_primary_10_1016_j_cbpa_2016_05_026 crossref_primary_10_1111_2041_210X_13035 crossref_primary_10_1098_rsbl_2018_0498 crossref_primary_10_3390_d15050680 crossref_primary_10_1111_ele_13917 crossref_primary_10_1242_jeb_171629 crossref_primary_10_1098_rspb_2019_2333 crossref_primary_10_1016_j_jtherbio_2023_103485 crossref_primary_10_1016_j_jtherbio_2016_11_017 crossref_primary_10_1098_rspb_2024_2216 crossref_primary_10_1016_j_jtherbio_2016_11_012 crossref_primary_10_1086_722899 crossref_primary_10_1111_nyas_13223 crossref_primary_10_1016_j_marenvres_2023_106038 crossref_primary_10_1111_nph_17052 crossref_primary_10_1007_s00360_017_1124_3 crossref_primary_10_1016_j_jtherbio_2024_103997 crossref_primary_10_1016_j_cbpa_2023_111388 crossref_primary_10_1111_1365_2435_12609 crossref_primary_10_1242_jeb_245749 crossref_primary_10_2139_ssrn_4167525 crossref_primary_10_1098_rstb_2016_0147 crossref_primary_10_1093_plankt_fbad037 crossref_primary_10_1111_evo_12757 crossref_primary_10_1242_jeb_242479 crossref_primary_10_1111_jbi_14380 crossref_primary_10_1002_lno_12332 crossref_primary_10_1038_s41598_020_70173_0 crossref_primary_10_1016_j_apsoil_2022_104692 crossref_primary_10_1002_lol2_10286 crossref_primary_10_1093_jxb_erae096 crossref_primary_10_1111_jeb_13483 crossref_primary_10_1111_ele_14421 crossref_primary_10_1002_ece3_1785 crossref_primary_10_1098_rstb_2021_0394 crossref_primary_10_1086_728672 crossref_primary_10_1111_jeb_12832 crossref_primary_10_1016_j_jtherbio_2023_103583 crossref_primary_10_1111_gcb_15356 crossref_primary_10_1093_icb_icw004 crossref_primary_10_1111_1365_2435_13279 crossref_primary_10_1111_ele_13107 crossref_primary_10_1016_j_cbpa_2020_110697 crossref_primary_10_1002_jez_2388 crossref_primary_10_1007_s00360_015_0952_2 crossref_primary_10_1093_etojnl_vgae082 crossref_primary_10_1007_s11356_021_14892_5 crossref_primary_10_1111_1744_7917_12742 crossref_primary_10_1111_ele_70054 crossref_primary_10_1016_j_jtherbio_2023_103599 crossref_primary_10_1038_s41558_020_00938_y crossref_primary_10_1111_1365_2435_14485 crossref_primary_10_1242_jeb_245645 crossref_primary_10_1002_ecm_1247 crossref_primary_10_1016_j_jtherbio_2019_102406 crossref_primary_10_1098_rstb_2022_0011 crossref_primary_10_1242_jeb_247167 crossref_primary_10_1111_ele_14405 crossref_primary_10_1016_j_marenvres_2024_106646 crossref_primary_10_1086_684786 crossref_primary_10_3354_meps14414 crossref_primary_10_1002_ecy_3368 crossref_primary_10_1016_j_pedobi_2022_150789 crossref_primary_10_1093_conphys_cow053 crossref_primary_10_3897_subtbiol_49_125131 crossref_primary_10_1016_j_aquatox_2017_02_029 crossref_primary_10_1111_1365_2656_12933 crossref_primary_10_5869_fc_2023_v28_1_37 crossref_primary_10_1111_gcb_15772 crossref_primary_10_1111_1365_2656_12818 crossref_primary_10_1111_eva_12772 crossref_primary_10_1093_icb_icy005 crossref_primary_10_1111_ele_14416 crossref_primary_10_1007_s13592_020_00811_z crossref_primary_10_1016_j_jtherbio_2018_06_011 crossref_primary_10_1071_MF22260 crossref_primary_10_1016_j_marenvres_2024_106896 crossref_primary_10_1111_1365_2656_12388 crossref_primary_10_1016_j_jtherbio_2022_103435 crossref_primary_10_1016_j_jtherbio_2022_103439 crossref_primary_10_1242_jeb_229195 crossref_primary_10_1038_s41437_018_0138_2 crossref_primary_10_5869_fc_2023_v28_1_27 crossref_primary_10_1111_gcb_15761 crossref_primary_10_1002_ece3_10937 crossref_primary_10_1098_rsbl_2023_0106 crossref_primary_10_1016_j_rsma_2024_103467 crossref_primary_10_1111_1365_2435_12499 crossref_primary_10_1242_jeb_120733 crossref_primary_10_1111_ele_12686 crossref_primary_10_1111_ele_13779 crossref_primary_10_1002_jez_2577 crossref_primary_10_1111_eea_12432 crossref_primary_10_1111_phen_12416 crossref_primary_10_1086_682220 crossref_primary_10_1007_s10750_017_3151_1 crossref_primary_10_1016_j_jtherbio_2021_103106 crossref_primary_10_1111_1365_2435_12818 crossref_primary_10_3390_insects11080537 crossref_primary_10_4996_fireecology_130302441 crossref_primary_10_1016_j_cris_2021_100019 crossref_primary_10_1016_j_ecolind_2015_11_010 crossref_primary_10_1017_S0007485321000146 crossref_primary_10_1002_ps_6784 crossref_primary_10_1111_ele_12696 crossref_primary_10_3390_biology11101506 crossref_primary_10_1242_jeb_245210 crossref_primary_10_1126_science_aba9287 crossref_primary_10_1002_ece3_1472 crossref_primary_10_1016_j_aquaculture_2020_735685 crossref_primary_10_1016_j_cris_2021_100023 crossref_primary_10_1016_j_jtherbio_2021_103113 crossref_primary_10_1111_ecog_04576 crossref_primary_10_1371_journal_pone_0307030 crossref_primary_10_1111_ele_14083 crossref_primary_10_1126_science_abe0320 crossref_primary_10_1111_gcb_13240 |
Cites_doi | 10.1111/j.1095-8312.1998.tb00343.x 10.1111/j.1365-2435.2008.01481.x 10.1016/j.jspr.2011.03.005 10.1046/j.1365-2435.2003.00750.x 10.1016/S0169-5347(03)00014-4 10.1016/j.jinsphys.2007.12.011 10.1111/ele.12155 10.1603/029.102.0209 10.1016/S1095-6433(02)00045-4 10.1242/jeb.061283 10.1242/jeb.037523 10.1111/j.1365-2435.2011.01908.x 10.1093/acprof:oso/9780198570875.001.1 10.1016/S0306-4565(02)00057-8 10.1093/infdis/29.5.528 10.1038/nclimate1259 10.1098/rspb.2008.1957 10.1038/nature09670 10.1139/z97-782 10.1111/j.1558-5646.1987.tb05879.x 10.1016/j.jtherbio.2012.03.005 10.1016/0169-5347(89)90211-5 10.1007/s10682-006-9119-7 10.1016/0022-474X(92)90018-L 10.1016/j.jtherbio.2008.04.001 10.1016/j.jtherbio.2011.07.005 10.1002/ece3.385 10.1046/j.1365-2435.1998.00160.x 10.1111/j.1365-2435.2009.01666.x 10.1098/rspb.2007.0985 10.1111/j.1365-2435.2012.02036.x 10.1111/j.1365-2486.2011.02542.x 10.1016/j.jinsphys.2007.08.007 10.1098/rspb.2000.1065 10.1016/S0022-1910(96)00108-4 10.1603/EC10054 10.1016/S0925-5214(00)00171-X 10.1016/j.jinsphys.2010.09.013 10.1093/oso/9780195117028.001.0001 10.1303/aez.2006.87 10.2307/1311113 10.1242/jeb.34.1.85 10.1034/j.1600-0706.2000.890117.x 10.1111/j.1365-2435.2010.01778.x 10.1111/j.1420-9101.2010.02110.x 10.1098/rspb.2010.1295 10.1242/jeb.067835 10.1079/9781845932527.0000 10.1073/pnas.0709472105 10.1016/S0022-474X(01)00046-7 10.1034/j.1600-0706.2000.890211.x 10.1111/j.0307-6962.2004.00377.x |
ContentType | Journal Article |
Copyright | 2014 British Ecological Society 2014 The Authors. Functional Ecology © 2014 British Ecological Society 2015 INIST-CNRS Functional Ecology © 2014 British Ecological Society |
Copyright_xml | – notice: 2014 British Ecological Society – notice: 2014 The Authors. Functional Ecology © 2014 British Ecological Society – notice: 2015 INIST-CNRS – notice: Functional Ecology © 2014 British Ecological Society |
DBID | FBQ AAYXX CITATION IQODW 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/1365-2435.12268 |
DatabaseName | AGRIS CrossRef Pascal-Francis Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Entomology Abstracts Ecology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 809 |
ExternalDocumentID | 3372741801 28673852 10_1111_1365_2435_12268 FEC12268 24033552 US201400150520 |
Genre | article |
GrantInformation_xml | – fundername: Generalitat de Catalunya to the Grup de Biologia Evolutiva funderid: 2009SGR 636 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPVW ABSQW ABTAH ABTLG ABXSQ ACAHQ ACCFJ ACCMX ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGUYK AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P FBQ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K VOH W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AEFGJ AGXDD AIDQK AIDYY AEUQT AFPWT DOOOF ESX HGLYW JSODD WRC AAYXX AGHNM CITATION IQODW 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c5688-eb8d9479128e6ad6a367e1a471c7e3d3d7a5b0c06097ae9bdd2ff9653688bd533 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 18:29:35 EDT 2025 Thu Jul 10 18:23:59 EDT 2025 Sun Jul 13 04:21:18 EDT 2025 Wed Apr 02 07:16:09 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Tue Jul 01 01:15:42 EDT 2025 Wed Jan 22 16:35:37 EST 2025 Thu Jul 03 22:43:58 EDT 2025 Thu Apr 03 09:44:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | heat tolerance Landscape Cold resistance Tolerance Environmental factor thermal adaptation cold tolerance Landscape ecology Dynamical climatology Climate change Heat critical thermal limits Adaptation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5688-eb8d9479128e6ad6a367e1a471c7e3d3d7a5b0c06097ae9bdd2ff9653688bd533 |
Notes | http://dx.doi.org/10.1111/1365-2435.12268 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://hdl.handle.net/10533/148494 |
PQID | 1545048875 |
PQPubID | 1066355 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1663585057 proquest_miscellaneous_1551641274 proquest_journals_1545048875 pascalfrancis_primary_28673852 crossref_primary_10_1111_1365_2435_12268 crossref_citationtrail_10_1111_1365_2435_12268 wiley_primary_10_1111_1365_2435_12268_FEC12268 jstor_primary_24033552 fao_agris_US201400150520 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2014 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: August 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2014 |
Publisher | Blackwell Scientific Publications John Wiley & Sons Ltd Wiley-Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Scientific Publications – name: John Wiley & Sons Ltd – name: Wiley-Blackwell – name: Wiley Subscription Services, Inc |
References | 2011; 278 2013; 27 2004; 29 1997; 43 2000; 89 2010; 103 2009; 276 2011; 57 2003; 17 2008; 105 2012; 18 2008; 33 2003; 18 2011; 470 2010; 23 1992; 8 2006; 20 2013; 16 1987; 41 2010; 24 1999; 96 2011; 25 1944; 83 2012; 215 1998; 12 1989; 39 2009; 23 2002; 38 2011; 214 1989; 4 2011; 1 2002; 132 2000; 21 1921; 29 2009 1998 2007 2008; 54 2012; 37 2002 2011; 36 1998; 64 1957; 34 2006; 41 2012; 2 2000; 267 1997; 75 2010; 213 2007; 274 1992; 28 2009; 102 2003; 28 2011; 47 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Hochachka P.W. (e_1_2_9_23_1) 2002 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Strang T.J.K. (e_1_2_9_50_1) 1992; 8 Cowles R.B. (e_1_2_9_17_1) 1944; 83 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Delinger D.L. (e_1_2_9_19_1) 1998 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_36_1 Maynard Smith J. (e_1_2_9_35_1) 1957; 34 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Sinclair B.J. (e_1_2_9_48_1) 1999; 96 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 132 start-page: 739 year: 2002 end-page: 761 article-title: Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology – year: 2009 – volume: 267 start-page: 739 year: 2000 end-page: 745 article-title: Thermal tolerance, climatic variability and latitude publication-title: Proceedings Biological Sciences/The Royal Society – volume: 213 start-page: 881 year: 2010 end-page: 893 article-title: Oxygen‐ and capacity‐limitation of thermal tolerance: a matrix for integrating climate‐related stressor effects in marine ecosystems publication-title: Journal of Experimental Biology – volume: 54 start-page: 619 year: 2008 end-page: 629 article-title: Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly publication-title: Journal of Insect Physiology – volume: 18 start-page: 257 year: 2003 end-page: 262 article-title: Insects at low temperatures: an ecological perspective publication-title: Trends in Ecology & Evolution – volume: 36 start-page: 409 year: 2011 end-page: 416 article-title: Assessing population and environmental effects on thermal resistance in using ecologically relevant assays publication-title: Journal of Thermal Biology – volume: 20 start-page: 591 year: 2006 end-page: 602 article-title: Factors influencing changes in trait correlations across species after using phylogenetic independent contrasts publication-title: Evolutionary Ecology – volume: 28 start-page: 89 year: 1992 end-page: 118 article-title: The control of stored‐product insects and mites with extreme temperatures publication-title: Journal of Stored Products Research – volume: 470 start-page: 429 year: 2011 end-page: 485 article-title: Climate change and evolutionary adaptation publication-title: Nature – volume: 39 start-page: 308 year: 1989 end-page: 313 article-title: Insect cold‐hardiness: to freeze or not to freeze publication-title: BioScience – volume: 41 start-page: 1098 year: 1987 end-page: 1115 article-title: Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards publication-title: Evolution – volume: 25 start-page: 111 year: 2011 end-page: 121 article-title: Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications publication-title: Functional Ecology – volume: 57 start-page: 108 year: 2011 end-page: 117 article-title: Rapid thermal responses and thermal tolerance in adult codling moth (Lepidoptera: Tortricidae) publication-title: Journal of Insect Physiology – volume: 54 start-page: 114 year: 2008 end-page: 127 article-title: Thermal tolerance in a south‐east African population of the tsetse fly (Diptera, Glossinidae): implications for forecasting climate change impacts publication-title: Journal of Insect Physiology – volume: 43 start-page: 393 year: 1997 end-page: 405 article-title: Comparing different measures of heat resistance in selected lines of publication-title: Journal of Insect Physiology – volume: 29 start-page: 139 year: 2004 end-page: 145 article-title: The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle (Coleoptera: Tenebrionidae) during exposure to low temperature publication-title: Physiological Entomology – volume: 28 start-page: 175 year: 2003 end-page: 216 article-title: Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches publication-title: Journal of Thermal Biology – volume: 21 start-page: 129 year: 2000 end-page: 145 article-title: High‐temperature‐short‐time thermal quarantine methods publication-title: Postharvest Biology and Technology – volume: 278 start-page: 1823 year: 2011 end-page: 1830 article-title: Global analysis of thermal tolerance and latitude in ectotherms publication-title: Proceedings of the Royal Society B: Biological Sciences – start-page: 55 year: 1998 end-page: 95 – volume: 18 start-page: 448 year: 2012 end-page: 456 article-title: Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants publication-title: Global Change Biology – volume: 23 start-page: 2484 year: 2010 end-page: 2493 article-title: A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of from eastern Australia publication-title: Journal of Evolutionary Biology – volume: 23 start-page: 133 year: 2009 end-page: 140 article-title: Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context publication-title: Functional Ecology – volume: 38 start-page: 427 year: 2002 end-page: 440 article-title: Thermal‐death kinetics of fifth‐instar (Walker) (Lepidoptera: Pyralidae) publication-title: Journal of Stored Products Research – volume: 215 start-page: 702 year: 2012 end-page: 703 article-title: Comment on ‘Ecologically relevant measures of tolerance to potentially lethal temperatures' publication-title: Journal of Experimental Biology – volume: 214 start-page: 3713 year: 2011 end-page: 3725 article-title: Ecologically relevant measures of tolerance to potentially lethal temperatures publication-title: Journal of Experimental Biology – volume: 102 start-page: 522 year: 2009 end-page: 532 article-title: Thermal death kinetics of Mediterranean, Malasyan, melon and oriental fruit fly (Diptera: Tephritidae) eggs and third instars publication-title: Journal of Economic Entomology – volume: 8 start-page: 41 year: 1992 end-page: 67 article-title: A review of published temperatures for the control of pest insects in museums publication-title: Collection Forum – year: 2007 – volume: 2 start-page: 2866 year: 2012 end-page: 2880 article-title: Keeping pace with climate change: what is wrong with the evolutionary potential of upper thermal limits? publication-title: Ecology and Evolution – volume: 89 start-page: 301 year: 2000 end-page: 304 article-title: Correlations between measures of thermal stress resistance within and between species publication-title: Oikos – volume: 29 start-page: 528 year: 1921 end-page: 536 article-title: The logarithmic nature of thermal death time curves publication-title: Journal of Infectious Diseases – volume: 47 start-page: 244 year: 2011 end-page: 248 article-title: Low and high temperatures for the control of cowpea beetle, (F.) (coleoptera: Bruchidae) in chickpeas publication-title: Journal of Stored Products Research – volume: 37 start-page: 432 year: 2012 end-page: 437 article-title: Measurement error in heat tolerance assays publication-title: Journal of Thermal Biology – volume: 75 start-page: 1553 year: 1997 end-page: 1560 article-title: The critical thermal maximum: data to support the onset of spasms as the definitive end point publication-title: Canadian Journal of Zoology – volume: 103 start-page: 1909 year: 2010 end-page: 1914 article-title: Effect of high and low temperatures on the drugstore beetle (Coleoptera: Anobiidae) publication-title: Journal of Economic Entomology – volume: 41 start-page: 87 year: 2006 end-page: 91 article-title: Low‐temperature as an alternative to fumigation to disinfest stored tobacco of the cigarette beetle, (F.) (Coleoptera: Anobiidae) publication-title: Applied Entomology and Zoology – volume: 64 start-page: 449 year: 1998 end-page: 462 article-title: Correlations between measures of heat resistance and acclimation in two species of Drosophila and their hybrids publication-title: Biological Journal of the Linnean Society – volume: 25 start-page: 1169 year: 2011 end-page: 1180 article-title: Making sense of heat tolerance estimates in ectotherms: lessons from publication-title: Functional Ecology – volume: 96 start-page: 157 year: 1999 end-page: 164 article-title: Insect cold tolerance: how many kinds of frozen? publication-title: European Journal of Entomology – volume: 24 start-page: 694 year: 2010 end-page: 700 article-title: Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in publication-title: Functional Ecology – volume: 34 start-page: 85 year: 1957 end-page: 96 article-title: Temperature tolerance and acclimatization in publication-title: Journal of Experimental Biology – volume: 274 start-page: 2935 year: 2007 end-page: 2942 article-title: Critical thermal limits depend on methodological context publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 276 start-page: 1939 year: 2009 end-page: 1948 article-title: Why tropical forest lizards are vulnerable to climate warming publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 16 start-page: 1206 year: 2013 end-page: 1219 article-title: Heat freezes niche evolution publication-title: Ecology Letters – year: 2002 – volume: 27 start-page: 934 year: 2013 end-page: 949 article-title: Upper thermal limits in terrestrial ectotherms: how constrained are they? publication-title: Functional Ecology – volume: 1 start-page: 401 year: 2011 end-page: 406 article-title: Shrinking body size as an ecological response to climate change publication-title: Nature Climate Change – volume: 33 start-page: 320 year: 2008 end-page: 323 article-title: Unifying indices of heat tolerance in ectotherms publication-title: Journal of Thermal Biology – volume: 105 start-page: 6668 year: 2008 end-page: 6672 article-title: Impacts of climate warming on terrestrial ectotherms across latitude publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 89 start-page: 155 year: 2000 end-page: 163 article-title: Alternative strategies by thermophilic ants to cope with extreme heat: individual versus colony level traits publication-title: Oikos – volume: 12 start-page: 45 year: 1998 end-page: 55 article-title: Critical thermal limits in Mediterranean ant species: trade‐off between mortality risk and foraging performance publication-title: Functional Ecology – volume: 83 start-page: 261 year: 1944 end-page: 296 article-title: A preliminary study of the thermal requirements of desert reptiles publication-title: Bulletin of the American Museum of Natural History – volume: 17 start-page: 425 year: 2003 end-page: 430 article-title: The fly that came in from the cold: geographic variation of recovery time from low‐temperature exposure in publication-title: Functional Ecology – volume: 4 start-page: 131 year: 1989 end-page: 135 article-title: Evolution of thermal sensitivity of ectotherm performance publication-title: Trends in Ecology & Evolution – ident: e_1_2_9_8_1 doi: 10.1111/j.1095-8312.1998.tb00343.x – ident: e_1_2_9_15_1 doi: 10.1111/j.1365-2435.2008.01481.x – ident: e_1_2_9_33_1 doi: 10.1016/j.jspr.2011.03.005 – ident: e_1_2_9_18_1 doi: 10.1046/j.1365-2435.2003.00750.x – volume: 83 start-page: 261 year: 1944 ident: e_1_2_9_17_1 article-title: A preliminary study of the thermal requirements of desert reptiles publication-title: Bulletin of the American Museum of Natural History – ident: e_1_2_9_49_1 doi: 10.1016/S0169-5347(03)00014-4 – ident: e_1_2_9_38_1 doi: 10.1016/j.jinsphys.2007.12.011 – ident: e_1_2_9_5_1 doi: 10.1111/ele.12155 – ident: e_1_2_9_6_1 doi: 10.1603/029.102.0209 – ident: e_1_2_9_39_1 doi: 10.1016/S1095-6433(02)00045-4 – ident: e_1_2_9_56_1 doi: 10.1242/jeb.061283 – ident: e_1_2_9_40_1 doi: 10.1242/jeb.037523 – volume: 96 start-page: 157 year: 1999 ident: e_1_2_9_48_1 article-title: Insect cold tolerance: how many kinds of frozen? publication-title: European Journal of Entomology – ident: e_1_2_9_44_1 doi: 10.1111/j.1365-2435.2011.01908.x – ident: e_1_2_9_4_1 doi: 10.1093/acprof:oso/9780198570875.001.1 – ident: e_1_2_9_26_1 doi: 10.1016/S0306-4565(02)00057-8 – ident: e_1_2_9_9_1 doi: 10.1093/infdis/29.5.528 – ident: e_1_2_9_47_1 doi: 10.1038/nclimate1259 – ident: e_1_2_9_30_1 doi: 10.1098/rspb.2008.1957 – ident: e_1_2_9_25_1 doi: 10.1038/nature09670 – ident: e_1_2_9_34_1 doi: 10.1139/z97-782 – ident: e_1_2_9_28_1 doi: 10.1111/j.1558-5646.1987.tb05879.x – ident: e_1_2_9_11_1 doi: 10.1016/j.jtherbio.2012.03.005 – ident: e_1_2_9_29_1 doi: 10.1016/0169-5347(89)90211-5 – ident: e_1_2_9_10_1 doi: 10.1007/s10682-006-9119-7 – ident: e_1_2_9_22_1 doi: 10.1016/0022-474X(92)90018-L – ident: e_1_2_9_16_1 doi: 10.1016/j.jtherbio.2008.04.001 – ident: e_1_2_9_37_1 doi: 10.1016/j.jtherbio.2011.07.005 – ident: e_1_2_9_45_1 doi: 10.1002/ece3.385 – ident: e_1_2_9_13_1 doi: 10.1046/j.1365-2435.1998.00160.x – ident: e_1_2_9_36_1 doi: 10.1111/j.1365-2435.2009.01666.x – ident: e_1_2_9_54_1 doi: 10.1098/rspb.2007.0985 – ident: e_1_2_9_24_1 doi: 10.1111/j.1365-2435.2012.02036.x – ident: e_1_2_9_21_1 doi: 10.1111/j.1365-2486.2011.02542.x – ident: e_1_2_9_55_1 doi: 10.1016/j.jinsphys.2007.08.007 – ident: e_1_2_9_3_1 doi: 10.1098/rspb.2000.1065 – ident: e_1_2_9_27_1 doi: 10.1016/S0022-1910(96)00108-4 – ident: e_1_2_9_2_1 doi: 10.1603/EC10054 – ident: e_1_2_9_52_1 doi: 10.1016/S0925-5214(00)00171-X – ident: e_1_2_9_14_1 doi: 10.1016/j.jinsphys.2010.09.013 – volume-title: Biochemical Adaptation. Mechanism and Process in Physiological Evolution year: 2002 ident: e_1_2_9_23_1 doi: 10.1093/oso/9780195117028.001.0001 – ident: e_1_2_9_31_1 doi: 10.1303/aez.2006.87 – ident: e_1_2_9_32_1 doi: 10.2307/1311113 – volume: 34 start-page: 85 year: 1957 ident: e_1_2_9_35_1 article-title: Temperature tolerance and acclimatization in Drosophila subobscura publication-title: Journal of Experimental Biology doi: 10.1242/jeb.34.1.85 – ident: e_1_2_9_12_1 doi: 10.1034/j.1600-0706.2000.890117.x – ident: e_1_2_9_43_1 doi: 10.1111/j.1365-2435.2010.01778.x – ident: e_1_2_9_46_1 doi: 10.1111/j.1420-9101.2010.02110.x – ident: e_1_2_9_51_1 doi: 10.1098/rspb.2010.1295 – start-page: 55 volume-title: Temperature Sensitivity in Insects and Application in Integrated Pest Management year: 1998 ident: e_1_2_9_19_1 – ident: e_1_2_9_42_1 doi: 10.1242/jeb.067835 – ident: e_1_2_9_53_1 doi: 10.1079/9781845932527.0000 – ident: e_1_2_9_20_1 doi: 10.1073/pnas.0709472105 – ident: e_1_2_9_57_1 doi: 10.1016/S0022-474X(01)00046-7 – ident: e_1_2_9_7_1 doi: 10.1034/j.1600-0706.2000.890211.x – ident: e_1_2_9_41_1 doi: 10.1111/j.0307-6962.2004.00377.x – volume: 8 start-page: 41 year: 1992 ident: e_1_2_9_50_1 article-title: A review of published temperatures for the control of pest insects in museums publication-title: Collection Forum |
SSID | ssj0009522 |
Score | 2.5722504 |
Snippet | How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general... 1. How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general... Summary How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the... Summary How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the... |
SourceID | proquest pascalfrancis crossref wiley jstor fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 799 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Autoecology Biological and medical sciences climate change Climatology. Bioclimatology. Climate change cold tolerance critical thermal limits Drosophila Earth, ocean, space Ecological genetics ecology environmental impact Exact sciences and technology External geophysics Fundamental and applied biological sciences. Psychology General aspects Heat tolerance Human ecology Insect ecology insects Landscape ecology Landscapes Meteorology Mortality rates PERSPECTIVES probability Temperature Temperature control thermal adaptation Thermal stress |
Title | Tolerance landscapes in thermal ecology |
URI | https://www.jstor.org/stable/24033552 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12268 https://www.proquest.com/docview/1545048875 https://www.proquest.com/docview/1551641274 https://www.proquest.com/docview/1663585057 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB7SQKCXvk3UukGFQHuRkVdayXsswSYU2kMTQ2_LPmZLSSKHyj60v74zWsmxA20pvS32jGBHMzvfaOcBcCqxKEoXbBZQ-awkB5UZ4XNaudpLxJBbrnf--Kk6X5Yfvsghm5BrYWJ_iO0HN7aM7rxmAze23THymJ9F3n4yJQjB5b78C8Oiz2Kn7W68RxCVysjTFn1zH87luce_55ceBLMaEhQ5W9K0JLAQJ13sQdFdQNt5pMVjsMNeYiLK1WSzthP3816bx__a7BN41OPV9H1UsKdwgM0zOIoTLH_Qau761Wh-VzJHDP2Z0T6Ht5era-RNYdrVFXPGVZt-a1KGnjdEivERL2C5mF-enWf9eIbMyYrsC-3Mq7JW5OGwMr4yRVXj1JC3czUWvvC1kTZ3eZWr2qCy3osQVCULYraeYOYIDptVg8eQohIuELahSJ3ioeBnfL9bGgwqR0Nqk8BkeDna9b3LeYTGtR5iGBaQZgHpTkAJvNsy3Ma2Hb8nPaa3rc1XOlT18kJwyMmfgaTIExh1KrB9BDcvJIAmEjjZ04k7ghlPUWWC8aAkuj8UWs1olQ_MWibwZvs3mTPf0ZgGVxumkRTATkVd_oGGUeKMI0uSS6c1f9ujXszPusXLf2V4BQ9ZIjHlcQyH6-8bfE0wbG1POkv7BTdzIB0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xIQQvfFcLjBEkJHhJlTpxEj-i0arAtgdopb1Zjn2eECNFtH2Av567OOnaSYAQb5ZytuTLffzOPt8BvJSYZbn1deJRuSQnB5UY4VIa2dJJRJ_W_N759KyYzvP35_J86y1MqA-xOXBjzWjtNSs4H0hvaXlI0CJ3PxwRhqj24Cb39eb6-W8_iq3Cu-EmQRQqIV-bdeV9OJvn2gI7nmnPm0Wfosj5kmZJLPOh18UOGN2GtK1PmtwD2-8mpKJ8Ga5X9dD-vFbo8f-2ex_udpA1fhNk7AHcwOYh3ApNLH_QaGy70WB89WqOJnRmY_kIXs0Wl8i7wrh9WsxJV8v4cxMz-vxKpBiWeAzzyXh2PE26Dg2JlQWpGNaVU3mpyMlhYVxhsqLEkSGHZ0vMXOZKI-vUpkWqSoOqdk54rwqZ0eTaEdIcwH6zaPAAYlTCeoI3FKxTSORdxVe8uUGvUjQkOREM-7-jbVe-nLtoXOo-jGEGaWaQbhkUwevNhG-hcsfvSQ_od2tzQXZVzz8Jjjr5JEiKNIJBKwObJbh-IWE0EcHRjlBcEVTcSJUJDnsp0Z1dWGoGrGwzSxnBi81n0mi-pjENLtZMIymGHYky_wMNA8WKg0viSys2f9ujnoyP28GTf53wHG5PZ6cn-uTd2YencIe5EzIgD2F_9X2NzwiVreqjVu1-AU27JDk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9sRfHF-nU02tYIgr7kyCXZJPso7R31q4j2wLdlP2aLWHPFu3vQv96ZbHK9K7Qivi1kdmFn5-M32dkZgJcC87yw3iQepUsKclCJzlxKI1s5gehTw--dP56Ux9Pi3VfRZxPyW5hQH2L1w401o7XXrOAXzq8pecjPIm8_HBGEqLfgdlGmkrs3HH3O1uruhouErJQJudq8q-7DyTxXFthwTFtez_oMRU6X1HPimA-tLjaw6DqibV3SZAdMv5mQifJ9uFyYof19pc7jf-32AdzvAGv8JkjYQ7iFzSO4E1pY_qLR2HajwfjyzRxN6IzG_DG8Op2dI28K4_ZhMadczeNvTczY8weRYljiCUwn49PD46Trz5BYUZKCoamdLCpJLg5L7UqdlxWONLk7W2HucldpYVKb0rFUGqVxLvNeliKnycYRzhzAdjNrcBdilJn1BG4oVKeAyLuaL3gLjV6mqEluIhj2h6NsV7yce2icqz6IYQYpZpBqGRTB69WEi1C343rSXTptpc_Iqqrpl4xjTv4PJLI0gkErAqsluHohIbQsgoMNmbgkqLmNKhPs9UKiOqswVwxX2WJWIoIXq8-kz3xJoxucLZlGUAQ7yqriBhqGiTWHlsSXVmr-tkc1GR-2g6f_OuE53P10NFEf3p68fwb3mDkh_XEPthc_l7hPkGxhDlql-wOmjiLo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tolerance+landscapes+in+thermal+ecology&rft.jtitle=Functional+ecology&rft.au=Rezende%2C+Enrico+L&rft.au=Casta%C3%B1eda%2C+Luis+E&rft.au=Santos%2C+Mauro&rft.au=Fox%2C+Charles&rft.date=2014-08-01&rft.issn=0269-8463&rft.volume=28&rft.issue=4+p.799-809&rft.spage=799&rft.epage=809&rft_id=info:doi/10.1111%2F1365-2435.12268&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |