Tolerance landscapes in thermal ecology

How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect. Survival probability is determined by both...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 28; no. 4; pp. 799 - 809
Main Authors Rezende, Enrico L, Castañeda, Luis E, Santos, Mauro, Fox, Charles
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Scientific Publications 01.08.2014
John Wiley & Sons Ltd
Wiley-Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect. Survival probability is determined by both the intensity and the duration of a thermal stress, and the association between these variables can be adequately conveyed by a thermal tolerance landscape. Employing this framework, we demonstrate that the temperature range that an organism can tolerate is expected to narrow down with the duration of the thermal challenge. Analyses suggest that a trade‐off exists between tolerances to acute and chronic exposition to thermal stress, and that changes in temperature means or extremes may result in drastically different selective pressures and subsequent evolutionary responses. After controlling for the duration of the thermal challenge, we also uncover latitudinal effects on upper lethal temperatures in insects that remained unnoticed in previous broad‐scale comparative analyses. Ultimately, critical thermal limits have been adopted in the ecological literature for logistic reasons and are inadequate descriptors of thermal tolerance on conceptual grounds. We consider that tolerance landscapes provide a more suitable framework to study temperature tolerance and its potential impact in ecological settings.
AbstractList 1. How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect. 2. Survival probability is determined by both the intensity and the duration of a thermal stress, and the association between these variables can be adequately conveyed by a thermal tolerance landscape. Employing this framework, we demonstrate that the temperature range that an organism can tolerate is expected to narrow down with the duration of the thermal challenge. 3. Analyses suggest that a trade-off exists between tolerances to acute and chronic exposition to thermal stress, and that changes in temperature means or extremes may result in drastically different selective pressures and subsequent evolutionary responses. 4. After controlling for the duration of the thermal challenge, we also uncover latitudinal effects on upper lethal temperatures in insects that remained unnoticed in previous broad-scale comparative analyses. 5. Ultimately, critical thermal limits have been adopted in the ecological literature for logistic reasons and are inadequate descriptors of thermal tolerance on conceptual grounds. We consider that tolerance landscapes provide a more suitable framework to study temperature tolerance and its potential impact in ecological settings.
How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect. Survival probability is determined by both the intensity and the duration of a thermal stress, and the association between these variables can be adequately conveyed by a thermal tolerance landscape. Employing this framework, we demonstrate that the temperature range that an organism can tolerate is expected to narrow down with the duration of the thermal challenge. Analyses suggest that a trade‐off exists between tolerances to acute and chronic exposition to thermal stress, and that changes in temperature means or extremes may result in drastically different selective pressures and subsequent evolutionary responses. After controlling for the duration of the thermal challenge, we also uncover latitudinal effects on upper lethal temperatures in insects that remained unnoticed in previous broad‐scale comparative analyses. Ultimately, critical thermal limits have been adopted in the ecological literature for logistic reasons and are inadequate descriptors of thermal tolerance on conceptual grounds. We consider that tolerance landscapes provide a more suitable framework to study temperature tolerance and its potential impact in ecological settings.
How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect. Survival probability is determined by both the intensity and the duration of a thermal stress, and the association between these variables can be adequately conveyed by a thermal tolerance landscape. Employing this framework, we demonstrate that the temperature range that an organism can tolerate is expected to narrow down with the duration of the thermal challenge. Analyses suggest that a trade‐off exists between tolerances to acute and chronic exposition to thermal stress, and that changes in temperature means or extremes may result in drastically different selective pressures and subsequent evolutionary responses. After controlling for the duration of the thermal challenge, we also uncover latitudinal effects on upper lethal temperatures in insects that remained unnoticed in previous broad‐scale comparative analyses. Ultimately, critical thermal limits have been adopted in the ecological literature for logistic reasons and are inadequate descriptors of thermal tolerance on conceptual grounds. We consider that tolerance landscapes provide a more suitable framework to study temperature tolerance and its potential impact in ecological settings.
Summary How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect. Survival probability is determined by both the intensity and the duration of a thermal stress, and the association between these variables can be adequately conveyed by a thermal tolerance landscape. Employing this framework, we demonstrate that the temperature range that an organism can tolerate is expected to narrow down with the duration of the thermal challenge. Analyses suggest that a trade‐off exists between tolerances to acute and chronic exposition to thermal stress, and that changes in temperature means or extremes may result in drastically different selective pressures and subsequent evolutionary responses. After controlling for the duration of the thermal challenge, we also uncover latitudinal effects on upper lethal temperatures in insects that remained unnoticed in previous broad‐scale comparative analyses. Ultimately, critical thermal limits have been adopted in the ecological literature for logistic reasons and are inadequate descriptors of thermal tolerance on conceptual grounds. We consider that tolerance landscapes provide a more suitable framework to study temperature tolerance and its potential impact in ecological settings. Lay Summary
Summary How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect. Survival probability is determined by both the intensity and the duration of a thermal stress, and the association between these variables can be adequately conveyed by a thermal tolerance landscape. Employing this framework, we demonstrate that the temperature range that an organism can tolerate is expected to narrow down with the duration of the thermal challenge. Analyses suggest that a trade-off exists between tolerances to acute and chronic exposition to thermal stress, and that changes in temperature means or extremes may result in drastically different selective pressures and subsequent evolutionary responses. After controlling for the duration of the thermal challenge, we also uncover latitudinal effects on upper lethal temperatures in insects that remained unnoticed in previous broad-scale comparative analyses. Ultimately, critical thermal limits have been adopted in the ecological literature for logistic reasons and are inadequate descriptors of thermal tolerance on conceptual grounds. We consider that tolerance landscapes provide a more suitable framework to study temperature tolerance and its potential impact in ecological settings. [PUBLICATION ABSTRACT]
How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general premise that a single temperature can accurately describe upper or lower tolerance limits is incorrect.Survival probability is determined by both the intensity and the duration of a thermal stress, and the association between these variables can be adequately conveyed by a thermal tolerance landscape. Employing this framework, we demonstrate that the temperature range that an organism can tolerate is expected to narrow down with the duration of the thermal challenge.Analyses suggest that a trade-off exists between tolerances to acute and chronic exposition to thermal stress, and that changes in temperature means or extremes may result in drastically different selective pressures and subsequent evolutionary responses.After controlling for the duration of the thermal challenge, we also uncover latitudinal effects on upper lethal temperatures in insects that remained unnoticed in previous broad-scale comparative analyses.Ultimately, critical thermal limits have been adopted in the ecological literature for logistic reasons and are inadequate descriptors of thermal tolerance on conceptual grounds. We consider that tolerance landscapes provide a more suitable framework to study temperature tolerance and its potential impact in ecological settings.Original Abstract: Lay Summary
Author Rezende, Enrico L
Santos, Mauro
Fox, Charles
Castañeda, Luis E
Author_xml – sequence: 1
  fullname: Rezende, Enrico L
– sequence: 2
  fullname: Castañeda, Luis E
– sequence: 3
  fullname: Santos, Mauro
– sequence: 4
  fullname: Fox, Charles
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28673852$$DView record in Pascal Francis
BookMark eNqFkU1rGzEURUVIIY6TdVelhhKazcT6epJmWUzcBAJdJF4LWfMmHSOPXGlM8b-PHKcpZGNtBNI5ku7VOTntY4-EfGb0hpUxZUJBxaWAG8a5Midk9L5ySkaUq7oyUokzcp7zilJaA-cj8v0pBkyu9zgJrm-ydxvMk66fDL8xrV2YoI8hPu8uyKfWhYyXb_OYLOa3T7O76uHXz_vZj4fKgzKmwqVpaqlrxg0q1ygnlEbmpGZeo2hEox0sqaeK1tphvWwa3ra1AlHkZQNCjMn14dxNin-2mAe77rLHUB6HcZstU0qAAQr6OArAlGRcy4J--4Cu4jb1JUihJFBpjIZCXb1RrvQQ2n0tXbab1K1d2llulBYGeOGmB86nmHPC9h1h1O7_wu6bt_vm7etfFAM-GL4b3NDFfkiuC8e9v13A3bFr7Px29s_7cvBWeYjpfwJJhYDXBF8P-62L1j2nknLxyCmTlLLSLafiBSq2rM4
CODEN FECOE5
CitedBy_id crossref_primary_10_1111_gcb_15978
crossref_primary_10_1016_j_jinsphys_2024_104619
crossref_primary_10_1007_s13592_020_00824_8
crossref_primary_10_1002_ece3_6496
crossref_primary_10_1002_jez_2791
crossref_primary_10_1111_gcb_13313
crossref_primary_10_1007_s10750_015_2386_y
crossref_primary_10_1242_jeb_236505
crossref_primary_10_1146_annurev_ecolsys_011521_102856
crossref_primary_10_1002_jez_2433
crossref_primary_10_1016_j_ecss_2021_107284
crossref_primary_10_1007_s10682_022_10157_w
crossref_primary_10_3389_fphys_2021_738804
crossref_primary_10_1002_ecm_1550
crossref_primary_10_1016_j_cois_2015_10_001
crossref_primary_10_3390_insects11020102
crossref_primary_10_1086_718556
crossref_primary_10_1016_j_tree_2014_11_008
crossref_primary_10_1242_jeb_246548
crossref_primary_10_1016_j_jinsphys_2020_104056
crossref_primary_10_1111_gcb_13552
crossref_primary_10_1111_gcb_12695
crossref_primary_10_1073_pnas_2418199122
crossref_primary_10_1371_journal_pone_0239485
crossref_primary_10_1016_j_scitotenv_2021_145208
crossref_primary_10_1016_j_jtherbio_2017_03_010
crossref_primary_10_1016_j_envpol_2017_10_071
crossref_primary_10_1016_j_jembe_2017_12_005
crossref_primary_10_1016_j_jtherbio_2019_03_010
crossref_primary_10_1016_j_jtherbio_2018_01_009
crossref_primary_10_1073_pnas_2102037118
crossref_primary_10_3390_insects11030147
crossref_primary_10_1111_1365_2435_14620
crossref_primary_10_1038_s41598_023_43128_4
crossref_primary_10_1111_1365_2435_14622
crossref_primary_10_1038_s41586_022_05334_4
crossref_primary_10_3920_JIFF2021_0092
crossref_primary_10_1038_s41598_021_92004_6
crossref_primary_10_1016_j_jinsphys_2020_104157
crossref_primary_10_1098_rstb_2018_0549
crossref_primary_10_1007_s10750_016_2826_3
crossref_primary_10_1111_ele_14264
crossref_primary_10_1242_jeb_233254
crossref_primary_10_1016_j_cois_2016_08_003
crossref_primary_10_1002_ecs2_3083
crossref_primary_10_1093_plankt_fbw058
crossref_primary_10_1016_j_jtherbio_2014_10_012
crossref_primary_10_1002_ecm_1517
crossref_primary_10_1016_j_agrformet_2022_108813
crossref_primary_10_1002_jez_2540
crossref_primary_10_1086_716176
crossref_primary_10_1111_gcb_16834
crossref_primary_10_1016_j_jinsphys_2021_104323
crossref_primary_10_1038_s41558_021_01047_0
crossref_primary_10_1111_ddi_12999
crossref_primary_10_1016_j_baae_2023_01_002
crossref_primary_10_1242_jeb_230797
crossref_primary_10_1242_jeb_238840
crossref_primary_10_1111_1744_7917_12466
crossref_primary_10_1242_jeb_218602
crossref_primary_10_1002_ece3_2923
crossref_primary_10_1016_j_cbpa_2023_111522
crossref_primary_10_1371_journal_pone_0127555
crossref_primary_10_1016_j_jtherbio_2023_103757
crossref_primary_10_1038_s41437_021_00442_9
crossref_primary_10_1007_s00484_021_02222_w
crossref_primary_10_1016_j_cois_2015_09_013
crossref_primary_10_1016_j_jtherbio_2020_102721
crossref_primary_10_1016_j_jtherbio_2014_10_002
crossref_primary_10_1016_j_cois_2018_07_004
crossref_primary_10_1016_j_aquaculture_2024_741350
crossref_primary_10_1111_ddi_13282
crossref_primary_10_1111_1365_2435_12510
crossref_primary_10_1002_eap_1501
crossref_primary_10_1111_gcb_16468
crossref_primary_10_1007_s10452_018_9667_2
crossref_primary_10_1016_j_jinsphys_2019_103946
crossref_primary_10_1016_j_jtherbio_2017_02_008
crossref_primary_10_1016_j_jtherbio_2018_04_016
crossref_primary_10_1152_physiol_00027_2022
crossref_primary_10_1890_14_0744_1
crossref_primary_10_1016_j_jtherbio_2021_102997
crossref_primary_10_1016_j_scitotenv_2023_162135
crossref_primary_10_1111_jfb_15368
crossref_primary_10_1242_jeb_244729
crossref_primary_10_1093_ee_nvz154
crossref_primary_10_1093_conphys_coaa038
crossref_primary_10_1016_j_jtherbio_2024_104013
crossref_primary_10_1086_716577
crossref_primary_10_1016_j_scitotenv_2024_170165
crossref_primary_10_1111_gcb_14713
crossref_primary_10_1016_j_ecolind_2018_04_044
crossref_primary_10_1042_ETLS20180135
crossref_primary_10_1093_pnasnexus_pgae260
crossref_primary_10_1098_rspb_2023_0507
crossref_primary_10_1139_cjfas_2023_0145
crossref_primary_10_1038_s41586_025_08665_0
crossref_primary_10_1086_726011
crossref_primary_10_3389_fmicb_2021_654108
crossref_primary_10_1093_biosci_biac080
crossref_primary_10_1242_jeb_167858
crossref_primary_10_1111_ecog_06217
crossref_primary_10_1016_j_jtherbio_2020_102582
crossref_primary_10_1098_rspb_2022_1703
crossref_primary_10_1371_journal_pone_0169371
crossref_primary_10_1002_tafs_10169
crossref_primary_10_1093_conphys_coae086
crossref_primary_10_1242_jeb_128892
crossref_primary_10_3389_fmars_2022_1108330
crossref_primary_10_1111_gcb_16453
crossref_primary_10_3389_frish_2024_1276161
crossref_primary_10_1111_1365_2435_13850
crossref_primary_10_1111_1365_2435_14147
crossref_primary_10_1007_s00360_021_01413_6
crossref_primary_10_1146_annurev_marine_032223_024511
crossref_primary_10_3389_fevo_2021_656504
crossref_primary_10_1016_j_ecochg_2021_100003
crossref_primary_10_1371_journal_pone_0193788
crossref_primary_10_1152_ajpregu_00268_2016
crossref_primary_10_3354_meps14039
crossref_primary_10_1016_j_envpol_2016_11_014
crossref_primary_10_1098_rspb_2019_0174
crossref_primary_10_1242_jeb_114926
crossref_primary_10_1016_j_jtherbio_2016_08_001
crossref_primary_10_1111_jbi_15020
crossref_primary_10_1111_nrm_12331
crossref_primary_10_1038_s41558_020_00948_w
crossref_primary_10_1098_rstb_2019_0036
crossref_primary_10_1098_rstb_2019_0035
crossref_primary_10_1111_geb_13570
crossref_primary_10_1242_jeb_249651
crossref_primary_10_1038_s41597_024_04191_2
crossref_primary_10_1016_j_ecolmodel_2022_110209
crossref_primary_10_1016_j_marpolbul_2022_114223
crossref_primary_10_1098_rspb_2024_2679
crossref_primary_10_1111_fwb_14190
crossref_primary_10_3389_fmars_2021_812902
crossref_primary_10_1111_gcb_13407
crossref_primary_10_1016_j_scitotenv_2024_176120
crossref_primary_10_1073_pnas_2407057121
crossref_primary_10_1016_j_jtherbio_2017_01_008
crossref_primary_10_1111_1365_2435_14284
crossref_primary_10_1002_ecm_1561
crossref_primary_10_1093_evolut_qpae126
crossref_primary_10_1016_j_jtherbio_2023_103671
crossref_primary_10_1016_j_flora_2017_05_003
crossref_primary_10_1016_j_cris_2024_100089
crossref_primary_10_1016_j_ecolind_2019_105561
crossref_primary_10_7717_peerj_3112
crossref_primary_10_1098_rspb_2020_2508
crossref_primary_10_1242_jeb_244514
crossref_primary_10_1111_1365_2435_13006
crossref_primary_10_1126_science_adl6480
crossref_primary_10_1038_srep23381
crossref_primary_10_3897_subtbiol_25_23530
crossref_primary_10_1016_j_jtherbio_2014_11_009
crossref_primary_10_1002_jez_2396
crossref_primary_10_1086_680384
crossref_primary_10_1016_j_pedobi_2023_150876
crossref_primary_10_3389_fmars_2023_1173358
crossref_primary_10_1038_s41597_022_01704_9
crossref_primary_10_1093_icb_icz084
crossref_primary_10_1163_15707563_00002510
crossref_primary_10_1093_iob_obac016
crossref_primary_10_1016_j_cbpa_2016_05_026
crossref_primary_10_1111_2041_210X_13035
crossref_primary_10_1098_rsbl_2018_0498
crossref_primary_10_3390_d15050680
crossref_primary_10_1111_ele_13917
crossref_primary_10_1242_jeb_171629
crossref_primary_10_1098_rspb_2019_2333
crossref_primary_10_1016_j_jtherbio_2023_103485
crossref_primary_10_1016_j_jtherbio_2016_11_017
crossref_primary_10_1098_rspb_2024_2216
crossref_primary_10_1016_j_jtherbio_2016_11_012
crossref_primary_10_1086_722899
crossref_primary_10_1111_nyas_13223
crossref_primary_10_1016_j_marenvres_2023_106038
crossref_primary_10_1111_nph_17052
crossref_primary_10_1007_s00360_017_1124_3
crossref_primary_10_1016_j_jtherbio_2024_103997
crossref_primary_10_1016_j_cbpa_2023_111388
crossref_primary_10_1111_1365_2435_12609
crossref_primary_10_1242_jeb_245749
crossref_primary_10_2139_ssrn_4167525
crossref_primary_10_1098_rstb_2016_0147
crossref_primary_10_1093_plankt_fbad037
crossref_primary_10_1111_evo_12757
crossref_primary_10_1242_jeb_242479
crossref_primary_10_1111_jbi_14380
crossref_primary_10_1002_lno_12332
crossref_primary_10_1038_s41598_020_70173_0
crossref_primary_10_1016_j_apsoil_2022_104692
crossref_primary_10_1002_lol2_10286
crossref_primary_10_1093_jxb_erae096
crossref_primary_10_1111_jeb_13483
crossref_primary_10_1111_ele_14421
crossref_primary_10_1002_ece3_1785
crossref_primary_10_1098_rstb_2021_0394
crossref_primary_10_1086_728672
crossref_primary_10_1111_jeb_12832
crossref_primary_10_1016_j_jtherbio_2023_103583
crossref_primary_10_1111_gcb_15356
crossref_primary_10_1093_icb_icw004
crossref_primary_10_1111_1365_2435_13279
crossref_primary_10_1111_ele_13107
crossref_primary_10_1016_j_cbpa_2020_110697
crossref_primary_10_1002_jez_2388
crossref_primary_10_1007_s00360_015_0952_2
crossref_primary_10_1093_etojnl_vgae082
crossref_primary_10_1007_s11356_021_14892_5
crossref_primary_10_1111_1744_7917_12742
crossref_primary_10_1111_ele_70054
crossref_primary_10_1016_j_jtherbio_2023_103599
crossref_primary_10_1038_s41558_020_00938_y
crossref_primary_10_1111_1365_2435_14485
crossref_primary_10_1242_jeb_245645
crossref_primary_10_1002_ecm_1247
crossref_primary_10_1016_j_jtherbio_2019_102406
crossref_primary_10_1098_rstb_2022_0011
crossref_primary_10_1242_jeb_247167
crossref_primary_10_1111_ele_14405
crossref_primary_10_1016_j_marenvres_2024_106646
crossref_primary_10_1086_684786
crossref_primary_10_3354_meps14414
crossref_primary_10_1002_ecy_3368
crossref_primary_10_1016_j_pedobi_2022_150789
crossref_primary_10_1093_conphys_cow053
crossref_primary_10_3897_subtbiol_49_125131
crossref_primary_10_1016_j_aquatox_2017_02_029
crossref_primary_10_1111_1365_2656_12933
crossref_primary_10_5869_fc_2023_v28_1_37
crossref_primary_10_1111_gcb_15772
crossref_primary_10_1111_1365_2656_12818
crossref_primary_10_1111_eva_12772
crossref_primary_10_1093_icb_icy005
crossref_primary_10_1111_ele_14416
crossref_primary_10_1007_s13592_020_00811_z
crossref_primary_10_1016_j_jtherbio_2018_06_011
crossref_primary_10_1071_MF22260
crossref_primary_10_1016_j_marenvres_2024_106896
crossref_primary_10_1111_1365_2656_12388
crossref_primary_10_1016_j_jtherbio_2022_103435
crossref_primary_10_1016_j_jtherbio_2022_103439
crossref_primary_10_1242_jeb_229195
crossref_primary_10_1038_s41437_018_0138_2
crossref_primary_10_5869_fc_2023_v28_1_27
crossref_primary_10_1111_gcb_15761
crossref_primary_10_1002_ece3_10937
crossref_primary_10_1098_rsbl_2023_0106
crossref_primary_10_1016_j_rsma_2024_103467
crossref_primary_10_1111_1365_2435_12499
crossref_primary_10_1242_jeb_120733
crossref_primary_10_1111_ele_12686
crossref_primary_10_1111_ele_13779
crossref_primary_10_1002_jez_2577
crossref_primary_10_1111_eea_12432
crossref_primary_10_1111_phen_12416
crossref_primary_10_1086_682220
crossref_primary_10_1007_s10750_017_3151_1
crossref_primary_10_1016_j_jtherbio_2021_103106
crossref_primary_10_1111_1365_2435_12818
crossref_primary_10_3390_insects11080537
crossref_primary_10_4996_fireecology_130302441
crossref_primary_10_1016_j_cris_2021_100019
crossref_primary_10_1016_j_ecolind_2015_11_010
crossref_primary_10_1017_S0007485321000146
crossref_primary_10_1002_ps_6784
crossref_primary_10_1111_ele_12696
crossref_primary_10_3390_biology11101506
crossref_primary_10_1242_jeb_245210
crossref_primary_10_1126_science_aba9287
crossref_primary_10_1002_ece3_1472
crossref_primary_10_1016_j_aquaculture_2020_735685
crossref_primary_10_1016_j_cris_2021_100023
crossref_primary_10_1016_j_jtherbio_2021_103113
crossref_primary_10_1111_ecog_04576
crossref_primary_10_1371_journal_pone_0307030
crossref_primary_10_1111_ele_14083
crossref_primary_10_1126_science_abe0320
crossref_primary_10_1111_gcb_13240
Cites_doi 10.1111/j.1095-8312.1998.tb00343.x
10.1111/j.1365-2435.2008.01481.x
10.1016/j.jspr.2011.03.005
10.1046/j.1365-2435.2003.00750.x
10.1016/S0169-5347(03)00014-4
10.1016/j.jinsphys.2007.12.011
10.1111/ele.12155
10.1603/029.102.0209
10.1016/S1095-6433(02)00045-4
10.1242/jeb.061283
10.1242/jeb.037523
10.1111/j.1365-2435.2011.01908.x
10.1093/acprof:oso/9780198570875.001.1
10.1016/S0306-4565(02)00057-8
10.1093/infdis/29.5.528
10.1038/nclimate1259
10.1098/rspb.2008.1957
10.1038/nature09670
10.1139/z97-782
10.1111/j.1558-5646.1987.tb05879.x
10.1016/j.jtherbio.2012.03.005
10.1016/0169-5347(89)90211-5
10.1007/s10682-006-9119-7
10.1016/0022-474X(92)90018-L
10.1016/j.jtherbio.2008.04.001
10.1016/j.jtherbio.2011.07.005
10.1002/ece3.385
10.1046/j.1365-2435.1998.00160.x
10.1111/j.1365-2435.2009.01666.x
10.1098/rspb.2007.0985
10.1111/j.1365-2435.2012.02036.x
10.1111/j.1365-2486.2011.02542.x
10.1016/j.jinsphys.2007.08.007
10.1098/rspb.2000.1065
10.1016/S0022-1910(96)00108-4
10.1603/EC10054
10.1016/S0925-5214(00)00171-X
10.1016/j.jinsphys.2010.09.013
10.1093/oso/9780195117028.001.0001
10.1303/aez.2006.87
10.2307/1311113
10.1242/jeb.34.1.85
10.1034/j.1600-0706.2000.890117.x
10.1111/j.1365-2435.2010.01778.x
10.1111/j.1420-9101.2010.02110.x
10.1098/rspb.2010.1295
10.1242/jeb.067835
10.1079/9781845932527.0000
10.1073/pnas.0709472105
10.1016/S0022-474X(01)00046-7
10.1034/j.1600-0706.2000.890211.x
10.1111/j.0307-6962.2004.00377.x
ContentType Journal Article
Copyright 2014 British Ecological Society
2014 The Authors. Functional Ecology © 2014 British Ecological Society
2015 INIST-CNRS
Functional Ecology © 2014 British Ecological Society
Copyright_xml – notice: 2014 British Ecological Society
– notice: 2014 The Authors. Functional Ecology © 2014 British Ecological Society
– notice: 2015 INIST-CNRS
– notice: Functional Ecology © 2014 British Ecological Society
DBID FBQ
AAYXX
CITATION
IQODW
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/1365-2435.12268
DatabaseName AGRIS
CrossRef
Pascal-Francis
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef


Entomology Abstracts
Ecology Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 809
ExternalDocumentID 3372741801
28673852
10_1111_1365_2435_12268
FEC12268
24033552
US201400150520
Genre article
GrantInformation_xml – fundername: Generalitat de Catalunya to the Grup de Biologia Evolutiva
  funderid: 2009SGR 636
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABSQW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGUYK
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FBQ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AEUQT
AFPWT
DOOOF
ESX
HGLYW
JSODD
WRC
AAYXX
AGHNM
CITATION
IQODW
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c5688-eb8d9479128e6ad6a367e1a471c7e3d3d7a5b0c06097ae9bdd2ff9653688bd533
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 18:29:35 EDT 2025
Thu Jul 10 18:23:59 EDT 2025
Sun Jul 13 04:21:18 EDT 2025
Wed Apr 02 07:16:09 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Tue Jul 01 01:15:42 EDT 2025
Wed Jan 22 16:35:37 EST 2025
Thu Jul 03 22:43:58 EDT 2025
Thu Apr 03 09:44:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords heat tolerance
Landscape
Cold resistance
Tolerance
Environmental factor
thermal adaptation
cold tolerance
Landscape ecology
Dynamical climatology
Climate change
Heat
critical thermal limits
Adaptation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5688-eb8d9479128e6ad6a367e1a471c7e3d3d7a5b0c06097ae9bdd2ff9653688bd533
Notes http://dx.doi.org/10.1111/1365-2435.12268
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://hdl.handle.net/10533/148494
PQID 1545048875
PQPubID 1066355
PageCount 11
ParticipantIDs proquest_miscellaneous_1663585057
proquest_miscellaneous_1551641274
proquest_journals_1545048875
pascalfrancis_primary_28673852
crossref_primary_10_1111_1365_2435_12268
crossref_citationtrail_10_1111_1365_2435_12268
wiley_primary_10_1111_1365_2435_12268_FEC12268
jstor_primary_24033552
fao_agris_US201400150520
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: London
PublicationTitle Functional ecology
PublicationYear 2014
Publisher Blackwell Scientific Publications
John Wiley & Sons Ltd
Wiley-Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Scientific Publications
– name: John Wiley & Sons Ltd
– name: Wiley-Blackwell
– name: Wiley Subscription Services, Inc
References 2011; 278
2013; 27
2004; 29
1997; 43
2000; 89
2010; 103
2009; 276
2011; 57
2003; 17
2008; 105
2012; 18
2008; 33
2003; 18
2011; 470
2010; 23
1992; 8
2006; 20
2013; 16
1987; 41
2010; 24
1999; 96
2011; 25
1944; 83
2012; 215
1998; 12
1989; 39
2009; 23
2002; 38
2011; 214
1989; 4
2011; 1
2002; 132
2000; 21
1921; 29
2009
1998
2007
2008; 54
2012; 37
2002
2011; 36
1998; 64
1957; 34
2006; 41
2012; 2
2000; 267
1997; 75
2010; 213
2007; 274
1992; 28
2009; 102
2003; 28
2011; 47
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Hochachka P.W. (e_1_2_9_23_1) 2002
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Strang T.J.K. (e_1_2_9_50_1) 1992; 8
Cowles R.B. (e_1_2_9_17_1) 1944; 83
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Delinger D.L. (e_1_2_9_19_1) 1998
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_36_1
Maynard Smith J. (e_1_2_9_35_1) 1957; 34
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Sinclair B.J. (e_1_2_9_48_1) 1999; 96
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 132
  start-page: 739
  year: 2002
  end-page: 761
  article-title: Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals
  publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
– year: 2009
– volume: 267
  start-page: 739
  year: 2000
  end-page: 745
  article-title: Thermal tolerance, climatic variability and latitude
  publication-title: Proceedings Biological Sciences/The Royal Society
– volume: 213
  start-page: 881
  year: 2010
  end-page: 893
  article-title: Oxygen‐ and capacity‐limitation of thermal tolerance: a matrix for integrating climate‐related stressor effects in marine ecosystems
  publication-title: Journal of Experimental Biology
– volume: 54
  start-page: 619
  year: 2008
  end-page: 629
  article-title: Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly
  publication-title: Journal of Insect Physiology
– volume: 18
  start-page: 257
  year: 2003
  end-page: 262
  article-title: Insects at low temperatures: an ecological perspective
  publication-title: Trends in Ecology & Evolution
– volume: 36
  start-page: 409
  year: 2011
  end-page: 416
  article-title: Assessing population and environmental effects on thermal resistance in using ecologically relevant assays
  publication-title: Journal of Thermal Biology
– volume: 20
  start-page: 591
  year: 2006
  end-page: 602
  article-title: Factors influencing changes in trait correlations across species after using phylogenetic independent contrasts
  publication-title: Evolutionary Ecology
– volume: 28
  start-page: 89
  year: 1992
  end-page: 118
  article-title: The control of stored‐product insects and mites with extreme temperatures
  publication-title: Journal of Stored Products Research
– volume: 470
  start-page: 429
  year: 2011
  end-page: 485
  article-title: Climate change and evolutionary adaptation
  publication-title: Nature
– volume: 39
  start-page: 308
  year: 1989
  end-page: 313
  article-title: Insect cold‐hardiness: to freeze or not to freeze
  publication-title: BioScience
– volume: 41
  start-page: 1098
  year: 1987
  end-page: 1115
  article-title: Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards
  publication-title: Evolution
– volume: 25
  start-page: 111
  year: 2011
  end-page: 121
  article-title: Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications
  publication-title: Functional Ecology
– volume: 57
  start-page: 108
  year: 2011
  end-page: 117
  article-title: Rapid thermal responses and thermal tolerance in adult codling moth (Lepidoptera: Tortricidae)
  publication-title: Journal of Insect Physiology
– volume: 54
  start-page: 114
  year: 2008
  end-page: 127
  article-title: Thermal tolerance in a south‐east African population of the tsetse fly (Diptera, Glossinidae): implications for forecasting climate change impacts
  publication-title: Journal of Insect Physiology
– volume: 43
  start-page: 393
  year: 1997
  end-page: 405
  article-title: Comparing different measures of heat resistance in selected lines of
  publication-title: Journal of Insect Physiology
– volume: 29
  start-page: 139
  year: 2004
  end-page: 145
  article-title: The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle (Coleoptera: Tenebrionidae) during exposure to low temperature
  publication-title: Physiological Entomology
– volume: 28
  start-page: 175
  year: 2003
  end-page: 216
  article-title: Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches
  publication-title: Journal of Thermal Biology
– volume: 21
  start-page: 129
  year: 2000
  end-page: 145
  article-title: High‐temperature‐short‐time thermal quarantine methods
  publication-title: Postharvest Biology and Technology
– volume: 278
  start-page: 1823
  year: 2011
  end-page: 1830
  article-title: Global analysis of thermal tolerance and latitude in ectotherms
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– start-page: 55
  year: 1998
  end-page: 95
– volume: 18
  start-page: 448
  year: 2012
  end-page: 456
  article-title: Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants
  publication-title: Global Change Biology
– volume: 23
  start-page: 2484
  year: 2010
  end-page: 2493
  article-title: A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of from eastern Australia
  publication-title: Journal of Evolutionary Biology
– volume: 23
  start-page: 133
  year: 2009
  end-page: 140
  article-title: Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context
  publication-title: Functional Ecology
– volume: 38
  start-page: 427
  year: 2002
  end-page: 440
  article-title: Thermal‐death kinetics of fifth‐instar (Walker) (Lepidoptera: Pyralidae)
  publication-title: Journal of Stored Products Research
– volume: 215
  start-page: 702
  year: 2012
  end-page: 703
  article-title: Comment on ‘Ecologically relevant measures of tolerance to potentially lethal temperatures'
  publication-title: Journal of Experimental Biology
– volume: 214
  start-page: 3713
  year: 2011
  end-page: 3725
  article-title: Ecologically relevant measures of tolerance to potentially lethal temperatures
  publication-title: Journal of Experimental Biology
– volume: 102
  start-page: 522
  year: 2009
  end-page: 532
  article-title: Thermal death kinetics of Mediterranean, Malasyan, melon and oriental fruit fly (Diptera: Tephritidae) eggs and third instars
  publication-title: Journal of Economic Entomology
– volume: 8
  start-page: 41
  year: 1992
  end-page: 67
  article-title: A review of published temperatures for the control of pest insects in museums
  publication-title: Collection Forum
– year: 2007
– volume: 2
  start-page: 2866
  year: 2012
  end-page: 2880
  article-title: Keeping pace with climate change: what is wrong with the evolutionary potential of upper thermal limits?
  publication-title: Ecology and Evolution
– volume: 89
  start-page: 301
  year: 2000
  end-page: 304
  article-title: Correlations between measures of thermal stress resistance within and between species
  publication-title: Oikos
– volume: 29
  start-page: 528
  year: 1921
  end-page: 536
  article-title: The logarithmic nature of thermal death time curves
  publication-title: Journal of Infectious Diseases
– volume: 47
  start-page: 244
  year: 2011
  end-page: 248
  article-title: Low and high temperatures for the control of cowpea beetle, (F.) (coleoptera: Bruchidae) in chickpeas
  publication-title: Journal of Stored Products Research
– volume: 37
  start-page: 432
  year: 2012
  end-page: 437
  article-title: Measurement error in heat tolerance assays
  publication-title: Journal of Thermal Biology
– volume: 75
  start-page: 1553
  year: 1997
  end-page: 1560
  article-title: The critical thermal maximum: data to support the onset of spasms as the definitive end point
  publication-title: Canadian Journal of Zoology
– volume: 103
  start-page: 1909
  year: 2010
  end-page: 1914
  article-title: Effect of high and low temperatures on the drugstore beetle (Coleoptera: Anobiidae)
  publication-title: Journal of Economic Entomology
– volume: 41
  start-page: 87
  year: 2006
  end-page: 91
  article-title: Low‐temperature as an alternative to fumigation to disinfest stored tobacco of the cigarette beetle, (F.) (Coleoptera: Anobiidae)
  publication-title: Applied Entomology and Zoology
– volume: 64
  start-page: 449
  year: 1998
  end-page: 462
  article-title: Correlations between measures of heat resistance and acclimation in two species of Drosophila and their hybrids
  publication-title: Biological Journal of the Linnean Society
– volume: 25
  start-page: 1169
  year: 2011
  end-page: 1180
  article-title: Making sense of heat tolerance estimates in ectotherms: lessons from
  publication-title: Functional Ecology
– volume: 96
  start-page: 157
  year: 1999
  end-page: 164
  article-title: Insect cold tolerance: how many kinds of frozen?
  publication-title: European Journal of Entomology
– volume: 24
  start-page: 694
  year: 2010
  end-page: 700
  article-title: Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in
  publication-title: Functional Ecology
– volume: 34
  start-page: 85
  year: 1957
  end-page: 96
  article-title: Temperature tolerance and acclimatization in
  publication-title: Journal of Experimental Biology
– volume: 274
  start-page: 2935
  year: 2007
  end-page: 2942
  article-title: Critical thermal limits depend on methodological context
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 276
  start-page: 1939
  year: 2009
  end-page: 1948
  article-title: Why tropical forest lizards are vulnerable to climate warming
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 16
  start-page: 1206
  year: 2013
  end-page: 1219
  article-title: Heat freezes niche evolution
  publication-title: Ecology Letters
– year: 2002
– volume: 27
  start-page: 934
  year: 2013
  end-page: 949
  article-title: Upper thermal limits in terrestrial ectotherms: how constrained are they?
  publication-title: Functional Ecology
– volume: 1
  start-page: 401
  year: 2011
  end-page: 406
  article-title: Shrinking body size as an ecological response to climate change
  publication-title: Nature Climate Change
– volume: 33
  start-page: 320
  year: 2008
  end-page: 323
  article-title: Unifying indices of heat tolerance in ectotherms
  publication-title: Journal of Thermal Biology
– volume: 105
  start-page: 6668
  year: 2008
  end-page: 6672
  article-title: Impacts of climate warming on terrestrial ectotherms across latitude
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 89
  start-page: 155
  year: 2000
  end-page: 163
  article-title: Alternative strategies by thermophilic ants to cope with extreme heat: individual versus colony level traits
  publication-title: Oikos
– volume: 12
  start-page: 45
  year: 1998
  end-page: 55
  article-title: Critical thermal limits in Mediterranean ant species: trade‐off between mortality risk and foraging performance
  publication-title: Functional Ecology
– volume: 83
  start-page: 261
  year: 1944
  end-page: 296
  article-title: A preliminary study of the thermal requirements of desert reptiles
  publication-title: Bulletin of the American Museum of Natural History
– volume: 17
  start-page: 425
  year: 2003
  end-page: 430
  article-title: The fly that came in from the cold: geographic variation of recovery time from low‐temperature exposure in
  publication-title: Functional Ecology
– volume: 4
  start-page: 131
  year: 1989
  end-page: 135
  article-title: Evolution of thermal sensitivity of ectotherm performance
  publication-title: Trends in Ecology & Evolution
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1095-8312.1998.tb00343.x
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1365-2435.2008.01481.x
– ident: e_1_2_9_33_1
  doi: 10.1016/j.jspr.2011.03.005
– ident: e_1_2_9_18_1
  doi: 10.1046/j.1365-2435.2003.00750.x
– volume: 83
  start-page: 261
  year: 1944
  ident: e_1_2_9_17_1
  article-title: A preliminary study of the thermal requirements of desert reptiles
  publication-title: Bulletin of the American Museum of Natural History
– ident: e_1_2_9_49_1
  doi: 10.1016/S0169-5347(03)00014-4
– ident: e_1_2_9_38_1
  doi: 10.1016/j.jinsphys.2007.12.011
– ident: e_1_2_9_5_1
  doi: 10.1111/ele.12155
– ident: e_1_2_9_6_1
  doi: 10.1603/029.102.0209
– ident: e_1_2_9_39_1
  doi: 10.1016/S1095-6433(02)00045-4
– ident: e_1_2_9_56_1
  doi: 10.1242/jeb.061283
– ident: e_1_2_9_40_1
  doi: 10.1242/jeb.037523
– volume: 96
  start-page: 157
  year: 1999
  ident: e_1_2_9_48_1
  article-title: Insect cold tolerance: how many kinds of frozen?
  publication-title: European Journal of Entomology
– ident: e_1_2_9_44_1
  doi: 10.1111/j.1365-2435.2011.01908.x
– ident: e_1_2_9_4_1
  doi: 10.1093/acprof:oso/9780198570875.001.1
– ident: e_1_2_9_26_1
  doi: 10.1016/S0306-4565(02)00057-8
– ident: e_1_2_9_9_1
  doi: 10.1093/infdis/29.5.528
– ident: e_1_2_9_47_1
  doi: 10.1038/nclimate1259
– ident: e_1_2_9_30_1
  doi: 10.1098/rspb.2008.1957
– ident: e_1_2_9_25_1
  doi: 10.1038/nature09670
– ident: e_1_2_9_34_1
  doi: 10.1139/z97-782
– ident: e_1_2_9_28_1
  doi: 10.1111/j.1558-5646.1987.tb05879.x
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jtherbio.2012.03.005
– ident: e_1_2_9_29_1
  doi: 10.1016/0169-5347(89)90211-5
– ident: e_1_2_9_10_1
  doi: 10.1007/s10682-006-9119-7
– ident: e_1_2_9_22_1
  doi: 10.1016/0022-474X(92)90018-L
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jtherbio.2008.04.001
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jtherbio.2011.07.005
– ident: e_1_2_9_45_1
  doi: 10.1002/ece3.385
– ident: e_1_2_9_13_1
  doi: 10.1046/j.1365-2435.1998.00160.x
– ident: e_1_2_9_36_1
  doi: 10.1111/j.1365-2435.2009.01666.x
– ident: e_1_2_9_54_1
  doi: 10.1098/rspb.2007.0985
– ident: e_1_2_9_24_1
  doi: 10.1111/j.1365-2435.2012.02036.x
– ident: e_1_2_9_21_1
  doi: 10.1111/j.1365-2486.2011.02542.x
– ident: e_1_2_9_55_1
  doi: 10.1016/j.jinsphys.2007.08.007
– ident: e_1_2_9_3_1
  doi: 10.1098/rspb.2000.1065
– ident: e_1_2_9_27_1
  doi: 10.1016/S0022-1910(96)00108-4
– ident: e_1_2_9_2_1
  doi: 10.1603/EC10054
– ident: e_1_2_9_52_1
  doi: 10.1016/S0925-5214(00)00171-X
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jinsphys.2010.09.013
– volume-title: Biochemical Adaptation. Mechanism and Process in Physiological Evolution
  year: 2002
  ident: e_1_2_9_23_1
  doi: 10.1093/oso/9780195117028.001.0001
– ident: e_1_2_9_31_1
  doi: 10.1303/aez.2006.87
– ident: e_1_2_9_32_1
  doi: 10.2307/1311113
– volume: 34
  start-page: 85
  year: 1957
  ident: e_1_2_9_35_1
  article-title: Temperature tolerance and acclimatization in Drosophila subobscura
  publication-title: Journal of Experimental Biology
  doi: 10.1242/jeb.34.1.85
– ident: e_1_2_9_12_1
  doi: 10.1034/j.1600-0706.2000.890117.x
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1365-2435.2010.01778.x
– ident: e_1_2_9_46_1
  doi: 10.1111/j.1420-9101.2010.02110.x
– ident: e_1_2_9_51_1
  doi: 10.1098/rspb.2010.1295
– start-page: 55
  volume-title: Temperature Sensitivity in Insects and Application in Integrated Pest Management
  year: 1998
  ident: e_1_2_9_19_1
– ident: e_1_2_9_42_1
  doi: 10.1242/jeb.067835
– ident: e_1_2_9_53_1
  doi: 10.1079/9781845932527.0000
– ident: e_1_2_9_20_1
  doi: 10.1073/pnas.0709472105
– ident: e_1_2_9_57_1
  doi: 10.1016/S0022-474X(01)00046-7
– ident: e_1_2_9_7_1
  doi: 10.1034/j.1600-0706.2000.890211.x
– ident: e_1_2_9_41_1
  doi: 10.1111/j.0307-6962.2004.00377.x
– volume: 8
  start-page: 41
  year: 1992
  ident: e_1_2_9_50_1
  article-title: A review of published temperatures for the control of pest insects in museums
  publication-title: Collection Forum
SSID ssj0009522
Score 2.5722504
Snippet How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general...
1. How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the general...
Summary How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the...
Summary How thermal tolerance estimated in the laboratory can be extrapolated to natural settings remains a contentious subject. Here, we argue that the...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 799
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Autoecology
Biological and medical sciences
climate change
Climatology. Bioclimatology. Climate change
cold tolerance
critical thermal limits
Drosophila
Earth, ocean, space
Ecological genetics
ecology
environmental impact
Exact sciences and technology
External geophysics
Fundamental and applied biological sciences. Psychology
General aspects
Heat tolerance
Human ecology
Insect ecology
insects
Landscape ecology
Landscapes
Meteorology
Mortality rates
PERSPECTIVES
probability
Temperature
Temperature control
thermal adaptation
Thermal stress
Title Tolerance landscapes in thermal ecology
URI https://www.jstor.org/stable/24033552
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12268
https://www.proquest.com/docview/1545048875
https://www.proquest.com/docview/1551641274
https://www.proquest.com/docview/1663585057
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB7SQKCXvk3UukGFQHuRkVdayXsswSYU2kMTQ2_LPmZLSSKHyj60v74zWsmxA20pvS32jGBHMzvfaOcBcCqxKEoXbBZQ-awkB5UZ4XNaudpLxJBbrnf--Kk6X5Yfvsghm5BrYWJ_iO0HN7aM7rxmAze23THymJ9F3n4yJQjB5b78C8Oiz2Kn7W68RxCVysjTFn1zH87luce_55ceBLMaEhQ5W9K0JLAQJ13sQdFdQNt5pMVjsMNeYiLK1WSzthP3816bx__a7BN41OPV9H1UsKdwgM0zOIoTLH_Qau761Wh-VzJHDP2Z0T6Ht5era-RNYdrVFXPGVZt-a1KGnjdEivERL2C5mF-enWf9eIbMyYrsC-3Mq7JW5OGwMr4yRVXj1JC3czUWvvC1kTZ3eZWr2qCy3osQVCULYraeYOYIDptVg8eQohIuELahSJ3ioeBnfL9bGgwqR0Nqk8BkeDna9b3LeYTGtR5iGBaQZgHpTkAJvNsy3Ma2Hb8nPaa3rc1XOlT18kJwyMmfgaTIExh1KrB9BDcvJIAmEjjZ04k7ghlPUWWC8aAkuj8UWs1olQ_MWibwZvs3mTPf0ZgGVxumkRTATkVd_oGGUeKMI0uSS6c1f9ujXszPusXLf2V4BQ9ZIjHlcQyH6-8bfE0wbG1POkv7BTdzIB0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xIQQvfFcLjBEkJHhJlTpxEj-i0arAtgdopb1Zjn2eECNFtH2Av567OOnaSYAQb5ZytuTLffzOPt8BvJSYZbn1deJRuSQnB5UY4VIa2dJJRJ_W_N759KyYzvP35_J86y1MqA-xOXBjzWjtNSs4H0hvaXlI0CJ3PxwRhqj24Cb39eb6-W8_iq3Cu-EmQRQqIV-bdeV9OJvn2gI7nmnPm0Wfosj5kmZJLPOh18UOGN2GtK1PmtwD2-8mpKJ8Ga5X9dD-vFbo8f-2ex_udpA1fhNk7AHcwOYh3ApNLH_QaGy70WB89WqOJnRmY_kIXs0Wl8i7wrh9WsxJV8v4cxMz-vxKpBiWeAzzyXh2PE26Dg2JlQWpGNaVU3mpyMlhYVxhsqLEkSGHZ0vMXOZKI-vUpkWqSoOqdk54rwqZ0eTaEdIcwH6zaPAAYlTCeoI3FKxTSORdxVe8uUGvUjQkOREM-7-jbVe-nLtoXOo-jGEGaWaQbhkUwevNhG-hcsfvSQ_od2tzQXZVzz8Jjjr5JEiKNIJBKwObJbh-IWE0EcHRjlBcEVTcSJUJDnsp0Z1dWGoGrGwzSxnBi81n0mi-pjENLtZMIymGHYky_wMNA8WKg0viSys2f9ujnoyP28GTf53wHG5PZ6cn-uTd2YencIe5EzIgD2F_9X2NzwiVreqjVu1-AU27JDk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9sRfHF-nU02tYIgr7kyCXZJPso7R31q4j2wLdlP2aLWHPFu3vQv96ZbHK9K7Qivi1kdmFn5-M32dkZgJcC87yw3iQepUsKclCJzlxKI1s5gehTw--dP56Ux9Pi3VfRZxPyW5hQH2L1w401o7XXrOAXzq8pecjPIm8_HBGEqLfgdlGmkrs3HH3O1uruhouErJQJudq8q-7DyTxXFthwTFtez_oMRU6X1HPimA-tLjaw6DqibV3SZAdMv5mQifJ9uFyYof19pc7jf-32AdzvAGv8JkjYQ7iFzSO4E1pY_qLR2HajwfjyzRxN6IzG_DG8Op2dI28K4_ZhMadczeNvTczY8weRYljiCUwn49PD46Trz5BYUZKCoamdLCpJLg5L7UqdlxWONLk7W2HucldpYVKb0rFUGqVxLvNeliKnycYRzhzAdjNrcBdilJn1BG4oVKeAyLuaL3gLjV6mqEluIhj2h6NsV7yce2icqz6IYQYpZpBqGRTB69WEi1C343rSXTptpc_Iqqrpl4xjTv4PJLI0gkErAqsluHohIbQsgoMNmbgkqLmNKhPs9UKiOqswVwxX2WJWIoIXq8-kz3xJoxucLZlGUAQ7yqriBhqGiTWHlsSXVmr-tkc1GR-2g6f_OuE53P10NFEf3p68fwb3mDkh_XEPthc_l7hPkGxhDlql-wOmjiLo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tolerance+landscapes+in+thermal+ecology&rft.jtitle=Functional+ecology&rft.au=Rezende%2C+Enrico+L&rft.au=Casta%C3%B1eda%2C+Luis+E&rft.au=Santos%2C+Mauro&rft.au=Fox%2C+Charles&rft.date=2014-08-01&rft.issn=0269-8463&rft.volume=28&rft.issue=4+p.799-809&rft.spage=799&rft.epage=809&rft_id=info:doi/10.1111%2F1365-2435.12268&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon