Patient-Specific Classification of ICU Sedation Levels From Heart Rate Variability
To develop a personalizable algorithm to discriminate between sedation levels in ICU patients based on heart rate variability. Multicenter, pilot study. Several ICUs at Massachusetts General Hospital, Boston, MA. We gathered 21,912 hours of routine electrocardiogram recordings from a heterogenous gr...
Saved in:
Published in | Critical care medicine Vol. 45; no. 7; p. e683 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.07.2017
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | To develop a personalizable algorithm to discriminate between sedation levels in ICU patients based on heart rate variability.
Multicenter, pilot study.
Several ICUs at Massachusetts General Hospital, Boston, MA.
We gathered 21,912 hours of routine electrocardiogram recordings from a heterogenous group of 70 adult ICU patients. All patients included in the study were mechanically ventilated and were receiving sedatives.
As "ground truth" for developing our method, we used Richmond Agitation Sedation Scale scores grouped into four levels denoted "comatose" (-5), "deeply sedated" (-4 to -3), "lightly sedated" (-2 to 0), and "agitated" (+1 to +4). We trained a support vector machine learning algorithm to calculate the probability of each sedation level from heart rate variability measures derived from the electrocardiogram. To estimate algorithm performance, we calculated leave-one-subject out cross-validated accuracy. The patient-independent version of the proposed system discriminated between the four sedation levels with an overall accuracy of 59%. Upon personalizing the system supplementing the training data with patient-specific calibration data, consisting of an individual's labeled heart rate variability epochs from the preceding 24 hours, accuracy improved to 67%. The personalized system discriminated between light- and deep-sedation states with an average accuracy of 75%.
With further refinement, the methodology reported herein could lead to a fully automated system for depth of sedation monitoring. By enabling monitoring to be continuous, such technology may help clinical staff to monitor sedation levels more effectively and to reduce complications related to over- and under sedation. |
---|---|
AbstractList | To develop a personalizable algorithm to discriminate between sedation levels in ICU patients based on heart rate variability.
Multicenter, pilot study.
Several ICUs at Massachusetts General Hospital, Boston, MA.
We gathered 21,912 hours of routine electrocardiogram recordings from a heterogenous group of 70 adult ICU patients. All patients included in the study were mechanically ventilated and were receiving sedatives.
As "ground truth" for developing our method, we used Richmond Agitation Sedation Scale scores grouped into four levels denoted "comatose" (-5), "deeply sedated" (-4 to -3), "lightly sedated" (-2 to 0), and "agitated" (+1 to +4). We trained a support vector machine learning algorithm to calculate the probability of each sedation level from heart rate variability measures derived from the electrocardiogram. To estimate algorithm performance, we calculated leave-one-subject out cross-validated accuracy. The patient-independent version of the proposed system discriminated between the four sedation levels with an overall accuracy of 59%. Upon personalizing the system supplementing the training data with patient-specific calibration data, consisting of an individual's labeled heart rate variability epochs from the preceding 24 hours, accuracy improved to 67%. The personalized system discriminated between light- and deep-sedation states with an average accuracy of 75%.
With further refinement, the methodology reported herein could lead to a fully automated system for depth of sedation monitoring. By enabling monitoring to be continuous, such technology may help clinical staff to monitor sedation levels more effectively and to reduce complications related to over- and under sedation. |
Author | Quraishi, Sadeq A Westover, M Brandon Akeju, Oluwaseun Barbieri, Riccardo Boyle, Emily J Bajwa, Ednan K McClain, Lauren M Nagaraj, Sunil B Purdon, Patrick L Biswal, Siddharth Zhou, David W |
Author_xml | – sequence: 1 givenname: Sunil B surname: Nagaraj fullname: Nagaraj, Sunil B organization: 1Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.2Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.3Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.4Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Milan, Italy – sequence: 2 givenname: Siddharth surname: Biswal fullname: Biswal, Siddharth – sequence: 3 givenname: Emily J surname: Boyle fullname: Boyle, Emily J – sequence: 4 givenname: David W surname: Zhou fullname: Zhou, David W – sequence: 5 givenname: Lauren M surname: McClain fullname: McClain, Lauren M – sequence: 6 givenname: Ednan K surname: Bajwa fullname: Bajwa, Ednan K – sequence: 7 givenname: Sadeq A surname: Quraishi fullname: Quraishi, Sadeq A – sequence: 8 givenname: Oluwaseun surname: Akeju fullname: Akeju, Oluwaseun – sequence: 9 givenname: Riccardo surname: Barbieri fullname: Barbieri, Riccardo – sequence: 10 givenname: Patrick L surname: Purdon fullname: Purdon, Patrick L – sequence: 11 givenname: M Brandon surname: Westover fullname: Westover, M Brandon |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28441231$$D View this record in MEDLINE/PubMed |
BookMark | eNpNj1tLw0AUhBdR7EX_gcj-gdRzdjfJ7qMEawsRpbW-lr2cwEouJYlC_71KFZyXmY-BgZmx87ZribEbhAWCye-K4mkB_yRkps7YFFMJCQgjJ2w2DO8AqNJcXrKJ0EqhkDhlmxc7RmrHZHsgH6voeVHbYfhJ30XX8q7i62LHtxROXNIn1QNf9l3DV2T7kW_sSPzN9tG6WMfxeMUuKlsPdP3rc7ZbPrwWq6R8flwX92Xi00yrRHtvgpE6GCElBCEActAiQ2fAea-UTx05mXmUIVeVJONQkUePGjGAEnN2e9o9fLiGwv7Qx8b2x_3fOfEFo2FQuQ |
CitedBy_id | crossref_primary_10_1007_s12028_022_01586_0 crossref_primary_10_4103_ija_ija_1198_23 crossref_primary_10_4274_atfm_galenos_2022_19981 crossref_primary_10_20535_2523_4455_2018_23_3_125236 crossref_primary_10_4187_respcare_07561 crossref_primary_10_1109_JSEN_2024_3387407 crossref_primary_10_1016_j_anclin_2021_03_012 crossref_primary_10_3390_jcm9061767 crossref_primary_10_1186_s13019_018_0804_8 crossref_primary_10_1007_s13193_024_01883_4 crossref_primary_10_1097_INF_0000000000004376 crossref_primary_10_1007_s10943_019_00895_7 crossref_primary_10_1016_j_compbiomed_2022_105407 crossref_primary_10_1038_s41598_022_06301_9 crossref_primary_10_1097_ALN_0000000000002694 crossref_primary_10_1097_CCM_0000000000002422 crossref_primary_10_1007_s10877_018_0219_z crossref_primary_10_61189_536468bkwzzn crossref_primary_10_1088_1741_2552_ab039f crossref_primary_10_1007_s10877_019_00447_0 crossref_primary_10_1016_j_ccc_2019_02_005 crossref_primary_10_1016_j_jcjq_2023_03_009 crossref_primary_10_1055_s_0044_1785504 crossref_primary_10_1097_ALN_0000000000002960 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1097/CCM.0000000000002364 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1530-0293 |
ExternalDocumentID | 28441231 |
Genre | Multicenter Study Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: K23 NS090900 |
GroupedDBID | --- .-D .3C .55 .GJ .XZ .Z2 01R 0R~ 1J1 354 3O- 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6J9 6PF 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AAQQT AARTV AASCR AASOK AASXQ AAUEB AAWTL AAXQO AAYEP AAYOK ABASU ABBUW ABDIG ABJNI ABOCM ABPPZ ABVCZ ABXVJ ABZAD ACCJW ACDDN ACEWG ACGFO ACGFS ACIJW ACILI ACLDA ACOAL ACWDW ACWRI ACXJB ACXNZ ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEBDS AEETU AENEX AFDTB AFEXH AFFNX AFSOK AFUWQ AGINI AHOMT AHQNM AHRYX AHVBC AI. AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AWKKM BOYCO BQLVK BS7 BYPQX C45 CGR CS3 CUY CVF DIWNM DU5 DUNZO E.X EBS ECM EEVPB EIF EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL H0~ HLJTE HZ~ IE0 IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI L-C L7B M18 N4W N9A NEJ NPM N~7 N~B N~M O9- OAG OAH OB4 OBH OCUKA ODA ODMTH ODZKP OHH OHT OHYEH OJAPA OL1 OLB OLG OLH OLU OLV OLW OLY OLZ ONV OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PKN PONUX R58 RIG RLZ S4R S4S T8P TEORI TSPGW V2I VH1 VVN W3M WOQ WOW X3V X3W X7M XXN XYM YCJ YFH YOC YOJ ZCG ZFV ZGI ZXP ZY1 ZZMQN ~9M |
ID | FETCH-LOGICAL-c5684-8cc9d938d92330d2200708261b90bcc44c5beb36c13d74f3e9b14ec1c1811d042 |
IngestDate | Wed Feb 19 02:35:03 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5684-8cc9d938d92330d2200708261b90bcc44c5beb36c13d74f3e9b14ec1c1811d042 |
OpenAccessLink | https://research.rug.nl/en/publications/017079d0-3124-48cc-a263-30dd8ed44d90 |
PMID | 28441231 |
ParticipantIDs | pubmed_primary_28441231 |
PublicationCentury | 2000 |
PublicationDate | 2017-Jul |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-Jul |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Critical care medicine |
PublicationTitleAlternate | Crit Care Med |
PublicationYear | 2017 |
References | 28622227 - Crit Care Med. 2017 Jul;45(7):1257-1258 |
References_xml | – reference: 28622227 - Crit Care Med. 2017 Jul;45(7):1257-1258 |
SSID | ssj0014573 |
Score | 2.3775568 |
Snippet | To develop a personalizable algorithm to discriminate between sedation levels in ICU patients based on heart rate variability.
Multicenter, pilot study.... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | e683 |
SubjectTerms | Aged Algorithms Anesthesia - methods Boston Electrocardiography Female Heart Rate - physiology Humans Intensive Care Units Male Middle Aged Pilot Projects Respiration, Artificial - methods Support Vector Machine |
Title | Patient-Specific Classification of ICU Sedation Levels From Heart Rate Variability |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28441231 |
Volume | 45 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG5WTYwX4_ttevC2qQItsD3qRqPGNUZd483Ql67RxeyuMXrwtzulgLhqfHAghBIgzMd0ZjozH0IbQggfZh1OhDAJYYFmhHPhEWUUGOfU8NDYauTWcbTfZoeX4WWt9lqtLhmITfnyZV3Jf6QK50Cutkr2D5Itbwon4BjkC3uQMOx_JeMT1xSVZCTypiMdxaU9Kg3Bg2Yb9IEjTqof2QyhPhir6b2tP-oN6qdgatYvwF927bo_rPGWLAhZdtjwIvxxcp30kluX2dPt3L3TN-90-k8ZjUD9rKPUDTymDDnvpM8ufXk3C6tUwtbpY5lh73L-ilCEH5dpqzCTFOrTI17gOA8L_eraReY4iivKUkeOw-aTFs-7AzdbrrtkvtlW99XLQRYP95lkYYplMAP7P48O9dYuhkbQCHgZljbVxnryNSgWxrQotuTx1levY1tJ57cYcksy8-R8Ck3mfgXediCZRjXdnUHjrVxos-h0GCv4I1ZwajBgBRdYwQ4r2GIFZ1jBFiu4gpU51N7bPW_uk5xPg8gwajDSkJIrThsKjHrqqcCGqcECjHzBPSElYzIUWtBI-lTFzFDNhc-09CVYgb4C7T6PRrtpVy8inDQoA2fAM5qDRy5jwanN0wgEU0EsQraEFtzXuHpwTVOuiu-0_O3ICpp4B9UqGjPwl-o1MPkGYj2TzBs4flGd |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient-Specific+Classification+of+ICU+Sedation+Levels+From+Heart+Rate+Variability&rft.jtitle=Critical+care+medicine&rft.au=Nagaraj%2C+Sunil+B&rft.au=Biswal%2C+Siddharth&rft.au=Boyle%2C+Emily+J&rft.au=Zhou%2C+David+W&rft.date=2017-07-01&rft.eissn=1530-0293&rft.volume=45&rft.issue=7&rft.spage=e683&rft_id=info:doi/10.1097%2FCCM.0000000000002364&rft_id=info%3Apmid%2F28441231&rft_id=info%3Apmid%2F28441231&rft.externalDocID=28441231 |