Patient-Specific Classification of ICU Sedation Levels From Heart Rate Variability

To develop a personalizable algorithm to discriminate between sedation levels in ICU patients based on heart rate variability. Multicenter, pilot study. Several ICUs at Massachusetts General Hospital, Boston, MA. We gathered 21,912 hours of routine electrocardiogram recordings from a heterogenous gr...

Full description

Saved in:
Bibliographic Details
Published inCritical care medicine Vol. 45; no. 7; p. e683
Main Authors Nagaraj, Sunil B, Biswal, Siddharth, Boyle, Emily J, Zhou, David W, McClain, Lauren M, Bajwa, Ednan K, Quraishi, Sadeq A, Akeju, Oluwaseun, Barbieri, Riccardo, Purdon, Patrick L, Westover, M Brandon
Format Journal Article
LanguageEnglish
Published United States 01.07.2017
Subjects
Online AccessGet more information

Cover

Loading…
Abstract To develop a personalizable algorithm to discriminate between sedation levels in ICU patients based on heart rate variability. Multicenter, pilot study. Several ICUs at Massachusetts General Hospital, Boston, MA. We gathered 21,912 hours of routine electrocardiogram recordings from a heterogenous group of 70 adult ICU patients. All patients included in the study were mechanically ventilated and were receiving sedatives. As "ground truth" for developing our method, we used Richmond Agitation Sedation Scale scores grouped into four levels denoted "comatose" (-5), "deeply sedated" (-4 to -3), "lightly sedated" (-2 to 0), and "agitated" (+1 to +4). We trained a support vector machine learning algorithm to calculate the probability of each sedation level from heart rate variability measures derived from the electrocardiogram. To estimate algorithm performance, we calculated leave-one-subject out cross-validated accuracy. The patient-independent version of the proposed system discriminated between the four sedation levels with an overall accuracy of 59%. Upon personalizing the system supplementing the training data with patient-specific calibration data, consisting of an individual's labeled heart rate variability epochs from the preceding 24 hours, accuracy improved to 67%. The personalized system discriminated between light- and deep-sedation states with an average accuracy of 75%. With further refinement, the methodology reported herein could lead to a fully automated system for depth of sedation monitoring. By enabling monitoring to be continuous, such technology may help clinical staff to monitor sedation levels more effectively and to reduce complications related to over- and under sedation.
AbstractList To develop a personalizable algorithm to discriminate between sedation levels in ICU patients based on heart rate variability. Multicenter, pilot study. Several ICUs at Massachusetts General Hospital, Boston, MA. We gathered 21,912 hours of routine electrocardiogram recordings from a heterogenous group of 70 adult ICU patients. All patients included in the study were mechanically ventilated and were receiving sedatives. As "ground truth" for developing our method, we used Richmond Agitation Sedation Scale scores grouped into four levels denoted "comatose" (-5), "deeply sedated" (-4 to -3), "lightly sedated" (-2 to 0), and "agitated" (+1 to +4). We trained a support vector machine learning algorithm to calculate the probability of each sedation level from heart rate variability measures derived from the electrocardiogram. To estimate algorithm performance, we calculated leave-one-subject out cross-validated accuracy. The patient-independent version of the proposed system discriminated between the four sedation levels with an overall accuracy of 59%. Upon personalizing the system supplementing the training data with patient-specific calibration data, consisting of an individual's labeled heart rate variability epochs from the preceding 24 hours, accuracy improved to 67%. The personalized system discriminated between light- and deep-sedation states with an average accuracy of 75%. With further refinement, the methodology reported herein could lead to a fully automated system for depth of sedation monitoring. By enabling monitoring to be continuous, such technology may help clinical staff to monitor sedation levels more effectively and to reduce complications related to over- and under sedation.
Author Quraishi, Sadeq A
Westover, M Brandon
Akeju, Oluwaseun
Barbieri, Riccardo
Boyle, Emily J
Bajwa, Ednan K
McClain, Lauren M
Nagaraj, Sunil B
Purdon, Patrick L
Biswal, Siddharth
Zhou, David W
Author_xml – sequence: 1
  givenname: Sunil B
  surname: Nagaraj
  fullname: Nagaraj, Sunil B
  organization: 1Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.2Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.3Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.4Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Milan, Italy
– sequence: 2
  givenname: Siddharth
  surname: Biswal
  fullname: Biswal, Siddharth
– sequence: 3
  givenname: Emily J
  surname: Boyle
  fullname: Boyle, Emily J
– sequence: 4
  givenname: David W
  surname: Zhou
  fullname: Zhou, David W
– sequence: 5
  givenname: Lauren M
  surname: McClain
  fullname: McClain, Lauren M
– sequence: 6
  givenname: Ednan K
  surname: Bajwa
  fullname: Bajwa, Ednan K
– sequence: 7
  givenname: Sadeq A
  surname: Quraishi
  fullname: Quraishi, Sadeq A
– sequence: 8
  givenname: Oluwaseun
  surname: Akeju
  fullname: Akeju, Oluwaseun
– sequence: 9
  givenname: Riccardo
  surname: Barbieri
  fullname: Barbieri, Riccardo
– sequence: 10
  givenname: Patrick L
  surname: Purdon
  fullname: Purdon, Patrick L
– sequence: 11
  givenname: M Brandon
  surname: Westover
  fullname: Westover, M Brandon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28441231$$D View this record in MEDLINE/PubMed
BookMark eNpNj1tLw0AUhBdR7EX_gcj-gdRzdjfJ7qMEawsRpbW-lr2cwEouJYlC_71KFZyXmY-BgZmx87ZribEbhAWCye-K4mkB_yRkps7YFFMJCQgjJ2w2DO8AqNJcXrKJ0EqhkDhlmxc7RmrHZHsgH6voeVHbYfhJ30XX8q7i62LHtxROXNIn1QNf9l3DV2T7kW_sSPzN9tG6WMfxeMUuKlsPdP3rc7ZbPrwWq6R8flwX92Xi00yrRHtvgpE6GCElBCEActAiQ2fAea-UTx05mXmUIVeVJONQkUePGjGAEnN2e9o9fLiGwv7Qx8b2x_3fOfEFo2FQuQ
CitedBy_id crossref_primary_10_1007_s12028_022_01586_0
crossref_primary_10_4103_ija_ija_1198_23
crossref_primary_10_4274_atfm_galenos_2022_19981
crossref_primary_10_20535_2523_4455_2018_23_3_125236
crossref_primary_10_4187_respcare_07561
crossref_primary_10_1109_JSEN_2024_3387407
crossref_primary_10_1016_j_anclin_2021_03_012
crossref_primary_10_3390_jcm9061767
crossref_primary_10_1186_s13019_018_0804_8
crossref_primary_10_1007_s13193_024_01883_4
crossref_primary_10_1097_INF_0000000000004376
crossref_primary_10_1007_s10943_019_00895_7
crossref_primary_10_1016_j_compbiomed_2022_105407
crossref_primary_10_1038_s41598_022_06301_9
crossref_primary_10_1097_ALN_0000000000002694
crossref_primary_10_1097_CCM_0000000000002422
crossref_primary_10_1007_s10877_018_0219_z
crossref_primary_10_61189_536468bkwzzn
crossref_primary_10_1088_1741_2552_ab039f
crossref_primary_10_1007_s10877_019_00447_0
crossref_primary_10_1016_j_ccc_2019_02_005
crossref_primary_10_1016_j_jcjq_2023_03_009
crossref_primary_10_1055_s_0044_1785504
crossref_primary_10_1097_ALN_0000000000002960
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1097/CCM.0000000000002364
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1530-0293
ExternalDocumentID 28441231
Genre Multicenter Study
Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: K23 NS090900
GroupedDBID ---
.-D
.3C
.55
.GJ
.XZ
.Z2
01R
0R~
1J1
354
3O-
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6J9
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AAQQT
AARTV
AASCR
AASOK
AASXQ
AAUEB
AAWTL
AAXQO
AAYEP
AAYOK
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPPZ
ABVCZ
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACIJW
ACILI
ACLDA
ACOAL
ACWDW
ACWRI
ACXJB
ACXNZ
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEBDS
AEETU
AENEX
AFDTB
AFEXH
AFFNX
AFSOK
AFUWQ
AGINI
AHOMT
AHQNM
AHRYX
AHVBC
AI.
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AWKKM
BOYCO
BQLVK
BS7
BYPQX
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
DUNZO
E.X
EBS
ECM
EEVPB
EIF
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
H0~
HLJTE
HZ~
IE0
IKREB
IKYAY
IN~
IPNFZ
J5H
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
L-C
L7B
M18
N4W
N9A
NEJ
NPM
N~7
N~B
N~M
O9-
OAG
OAH
OB4
OBH
OCUKA
ODA
ODMTH
ODZKP
OHH
OHT
OHYEH
OJAPA
OL1
OLB
OLG
OLH
OLU
OLV
OLW
OLY
OLZ
ONV
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PKN
PONUX
R58
RIG
RLZ
S4R
S4S
T8P
TEORI
TSPGW
V2I
VH1
VVN
W3M
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YCJ
YFH
YOC
YOJ
ZCG
ZFV
ZGI
ZXP
ZY1
ZZMQN
~9M
ID FETCH-LOGICAL-c5684-8cc9d938d92330d2200708261b90bcc44c5beb36c13d74f3e9b14ec1c1811d042
IngestDate Wed Feb 19 02:35:03 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5684-8cc9d938d92330d2200708261b90bcc44c5beb36c13d74f3e9b14ec1c1811d042
OpenAccessLink https://research.rug.nl/en/publications/017079d0-3124-48cc-a263-30dd8ed44d90
PMID 28441231
ParticipantIDs pubmed_primary_28441231
PublicationCentury 2000
PublicationDate 2017-Jul
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-Jul
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Critical care medicine
PublicationTitleAlternate Crit Care Med
PublicationYear 2017
References 28622227 - Crit Care Med. 2017 Jul;45(7):1257-1258
References_xml – reference: 28622227 - Crit Care Med. 2017 Jul;45(7):1257-1258
SSID ssj0014573
Score 2.3775568
Snippet To develop a personalizable algorithm to discriminate between sedation levels in ICU patients based on heart rate variability. Multicenter, pilot study....
SourceID pubmed
SourceType Index Database
StartPage e683
SubjectTerms Aged
Algorithms
Anesthesia - methods
Boston
Electrocardiography
Female
Heart Rate - physiology
Humans
Intensive Care Units
Male
Middle Aged
Pilot Projects
Respiration, Artificial - methods
Support Vector Machine
Title Patient-Specific Classification of ICU Sedation Levels From Heart Rate Variability
URI https://www.ncbi.nlm.nih.gov/pubmed/28441231
Volume 45
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG5WTYwX4_ttevC2qQItsD3qRqPGNUZd483Ql67RxeyuMXrwtzulgLhqfHAghBIgzMd0ZjozH0IbQggfZh1OhDAJYYFmhHPhEWUUGOfU8NDYauTWcbTfZoeX4WWt9lqtLhmITfnyZV3Jf6QK50Cutkr2D5Itbwon4BjkC3uQMOx_JeMT1xSVZCTypiMdxaU9Kg3Bg2Yb9IEjTqof2QyhPhir6b2tP-oN6qdgatYvwF927bo_rPGWLAhZdtjwIvxxcp30kluX2dPt3L3TN-90-k8ZjUD9rKPUDTymDDnvpM8ufXk3C6tUwtbpY5lh73L-ilCEH5dpqzCTFOrTI17gOA8L_eraReY4iivKUkeOw-aTFs-7AzdbrrtkvtlW99XLQRYP95lkYYplMAP7P48O9dYuhkbQCHgZljbVxnryNSgWxrQotuTx1levY1tJ57cYcksy8-R8Ck3mfgXediCZRjXdnUHjrVxos-h0GCv4I1ZwajBgBRdYwQ4r2GIFZ1jBFiu4gpU51N7bPW_uk5xPg8gwajDSkJIrThsKjHrqqcCGqcECjHzBPSElYzIUWtBI-lTFzFDNhc-09CVYgb4C7T6PRrtpVy8inDQoA2fAM5qDRy5jwanN0wgEU0EsQraEFtzXuHpwTVOuiu-0_O3ICpp4B9UqGjPwl-o1MPkGYj2TzBs4flGd
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient-Specific+Classification+of+ICU+Sedation+Levels+From+Heart+Rate+Variability&rft.jtitle=Critical+care+medicine&rft.au=Nagaraj%2C+Sunil+B&rft.au=Biswal%2C+Siddharth&rft.au=Boyle%2C+Emily+J&rft.au=Zhou%2C+David+W&rft.date=2017-07-01&rft.eissn=1530-0293&rft.volume=45&rft.issue=7&rft.spage=e683&rft_id=info:doi/10.1097%2FCCM.0000000000002364&rft_id=info%3Apmid%2F28441231&rft_id=info%3Apmid%2F28441231&rft.externalDocID=28441231