Interlayer Structure Engineering of MXene‐Based Capacitor‐Type Electrode for Hybrid Micro‐Supercapacitor toward Battery‐Level Energy Density

Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type electrode materials for alternative zinc‐ion hybrid micro‐supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered st...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 8; no. 16; pp. e2100775 - n/a
Main Authors Cheng, Wenxiang, Fu, Jimin, Hu, Haibo, Ho, Derek
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.08.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type electrode materials for alternative zinc‐ion hybrid micro‐supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc‐ions with large radii intercalation inefficient. Herein, through insertion of 1D core‐shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor‐type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm−2, which is a 10‐fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery‐type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm−2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene‐based MSCs and approaches the level of micro‐batteries. The interlayer structure engineering demonstrated in the MXene‐based capacitor‐type electrode provides a rational means to achieve battery‐levelenergy density in the ZHMSCs. The demonstrated interlayer structure engineering synchronously realized the facilitated zinc‐ion and electron transfer kinetics between loose MXene nanosheets, resulting in enhanced charge storage capacity of MXene‐based capacitor‐type electrode toward hybrid micro‐supercapacitor with battery‐level energy density.
AbstractList Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type electrode materials for alternative zinc‐ion hybrid micro‐supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc‐ions with large radii intercalation inefficient. Herein, through insertion of 1D core‐shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor‐type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm −2 , which is a 10‐fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery‐type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm −2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene‐based MSCs and approaches the level of micro‐batteries. The interlayer structure engineering demonstrated in the MXene‐based capacitor‐type electrode provides a rational means to achieve battery‐levelenergy density in the ZHMSCs.
Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type electrode materials for alternative zinc‐ion hybrid micro‐supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc‐ions with large radii intercalation inefficient. Herein, through insertion of 1D core‐shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor‐type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm −2 , which is a 10‐fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery‐type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm −2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene‐based MSCs and approaches the level of micro‐batteries. The interlayer structure engineering demonstrated in the MXene‐based capacitor‐type electrode provides a rational means to achieve battery‐levelenergy density in the ZHMSCs. The demonstrated interlayer structure engineering synchronously realized the facilitated zinc‐ion and electron transfer kinetics between loose MXene nanosheets, resulting in enhanced charge storage capacity of MXene‐based capacitor‐type electrode toward hybrid micro‐supercapacitor with battery‐level energy density.
Micro-supercapacitors are notorious for their low energy densities compared to micro-batteries. While MXenes have been identified as promising capacitor-type electrode materials for alternative zinc-ion hybrid micro-supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc-ions with large radii intercalation inefficient. Herein, through insertion of 1D core-shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor-type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm , which is a 10-fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery-type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene-based MSCs and approaches the level of micro-batteries. The interlayer structure engineering demonstrated in the MXene-based capacitor-type electrode provides a rational means to achieve battery-levelenergy density in the ZHMSCs.
Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type electrode materials for alternative zinc‐ion hybrid micro‐supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc‐ions with large radii intercalation inefficient. Herein, through insertion of 1D core‐shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor‐type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm−2, which is a 10‐fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery‐type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm−2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene‐based MSCs and approaches the level of micro‐batteries. The interlayer structure engineering demonstrated in the MXene‐based capacitor‐type electrode provides a rational means to achieve battery‐levelenergy density in the ZHMSCs. The demonstrated interlayer structure engineering synchronously realized the facilitated zinc‐ion and electron transfer kinetics between loose MXene nanosheets, resulting in enhanced charge storage capacity of MXene‐based capacitor‐type electrode toward hybrid micro‐supercapacitor with battery‐level energy density.
Abstract Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type electrode materials for alternative zinc‐ion hybrid micro‐supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc‐ions with large radii intercalation inefficient. Herein, through insertion of 1D core‐shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor‐type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm−2, which is a 10‐fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery‐type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm−2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene‐based MSCs and approaches the level of micro‐batteries. The interlayer structure engineering demonstrated in the MXene‐based capacitor‐type electrode provides a rational means to achieve battery‐levelenergy density in the ZHMSCs.
Micro-supercapacitors are notorious for their low energy densities compared to micro-batteries. While MXenes have been identified as promising capacitor-type electrode materials for alternative zinc-ion hybrid micro-supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc-ions with large radii intercalation inefficient. Herein, through insertion of 1D core-shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor-type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm-2 , which is a 10-fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery-type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm-2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene-based MSCs and approaches the level of micro-batteries. The interlayer structure engineering demonstrated in the MXene-based capacitor-type electrode provides a rational means to achieve battery-levelenergy density in the ZHMSCs.Micro-supercapacitors are notorious for their low energy densities compared to micro-batteries. While MXenes have been identified as promising capacitor-type electrode materials for alternative zinc-ion hybrid micro-supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc-ions with large radii intercalation inefficient. Herein, through insertion of 1D core-shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor-type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm-2 , which is a 10-fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery-type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm-2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene-based MSCs and approaches the level of micro-batteries. The interlayer structure engineering demonstrated in the MXene-based capacitor-type electrode provides a rational means to achieve battery-levelenergy density in the ZHMSCs.
Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type electrode materials for alternative zinc‐ion hybrid micro‐supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc‐ions with large radii intercalation inefficient. Herein, through insertion of 1D core‐shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor‐type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm−2, which is a 10‐fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery‐type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm−2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene‐based MSCs and approaches the level of micro‐batteries. The interlayer structure engineering demonstrated in the MXene‐based capacitor‐type electrode provides a rational means to achieve battery‐levelenergy density in the ZHMSCs.
Author Ho, Derek
Fu, Jimin
Cheng, Wenxiang
Hu, Haibo
AuthorAffiliation 2 Nanotechnology Center Institute of Textiles & Clothing The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong
3 Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong
1 School of Physics and Materials Science Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of education Anhui University Hefei China
AuthorAffiliation_xml – name: 1 School of Physics and Materials Science Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of education Anhui University Hefei China
– name: 3 Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong
– name: 2 Nanotechnology Center Institute of Textiles & Clothing The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong
Author_xml – sequence: 1
  givenname: Wenxiang
  surname: Cheng
  fullname: Cheng, Wenxiang
  organization: Anhui University
– sequence: 2
  givenname: Jimin
  surname: Fu
  fullname: Fu, Jimin
  organization: The Hong Kong Polytechnic University
– sequence: 3
  givenname: Haibo
  orcidid: 0000-0001-7494-1469
  surname: Hu
  fullname: Hu, Haibo
  email: haibohu@ahu.edu.cn
  organization: City University of Hong Kong
– sequence: 4
  givenname: Derek
  surname: Ho
  fullname: Ho, Derek
  email: derekho@cityu.edu.hk
  organization: City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34137521$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEQx1eoiJbSK0dkiQuXBH_uxwWpTQuNlIpDCuJmeb2zwdHGTm1vqr3xCBx4Qp4Eh7RR20tPtmd-858Zz7zODqyzkGVvCR4TjOlH1WzCmGKaHkUhXmRHlFTliJWcHzy4H2YnISwxxkSwgpPyVXbIOGGFoOQo-zO1EXynBvBoHn2vY-8BXdiFsQDe2AVyLbr6ARb-_vp9pgI0aKLWSpvofLJcD-tEd6Cjdw2g1nl0OdTeNOjKaO8SMe_X4PV9CIruVvkGnamY0g7JP4MNdCkh-MWAzsEGE4c32ctWdQFO7s7j7Nvni-vJ5Wj29ct0cjobaZGXfCRa0QJUrGhwrhrOdKFVwTADrUVd1mWr6qpmrch5ap4zlfOG16quKalLzXXNjrPpTrdxainX3qyUH6RTRv43OL-QykejO5Casgp4yYRgFRc8rwgvOSW0xTQlJW3S-rTTWvf1ChoNNnrVPRJ97LHmp1y4jSxZqrniSeDDnYB3Nz2EKFcmaOg6ZcH1QVLBKcsJJzih75-gS9d7m74qUTmlOeVYJOrdw4r2pdwPPwHjHZAmFYKHdo8QLLcLJrcLJvcLlgL4k4A0VBWN23ZkumfDbk0HwzNJ5On59zlN42X_AF2w6oE
CitedBy_id crossref_primary_10_1007_s10904_025_03610_0
crossref_primary_10_1039_D2RA01648F
crossref_primary_10_1002_smll_202205101
crossref_primary_10_1016_j_carbon_2022_11_080
crossref_primary_10_1063_5_0152042
crossref_primary_10_1063_5_0138097
crossref_primary_10_1007_s12274_022_5262_x
crossref_primary_10_1021_acs_analchem_4c01484
crossref_primary_10_1002_adsr_202200020
crossref_primary_10_1016_j_est_2024_115028
crossref_primary_10_3390_batteries9020126
crossref_primary_10_1021_acsami_2c17238
crossref_primary_10_2139_ssrn_4141943
crossref_primary_10_1002_aenm_202403757
crossref_primary_10_1016_j_cej_2022_138456
crossref_primary_10_1021_acsnano_2c06656
crossref_primary_10_1039_D3TA03069E
crossref_primary_10_1149_1945_7111_acfff7
crossref_primary_10_1016_j_nanoen_2021_106893
crossref_primary_10_1016_j_apsusc_2023_157138
crossref_primary_10_1016_j_nanoen_2024_110345
crossref_primary_10_1002_adfm_202300149
crossref_primary_10_1016_j_ijbiomac_2023_124912
crossref_primary_10_1002_aenm_202202303
crossref_primary_10_1039_D2TA08662J
crossref_primary_10_1002_adfm_202301351
crossref_primary_10_1088_2515_7655_ad1c43
crossref_primary_10_1039_D2TA09726E
crossref_primary_10_1002_smll_202406690
crossref_primary_10_1021_acsami_4c10354
crossref_primary_10_1039_D2TC00231K
crossref_primary_10_1021_acsaenm_4c00164
crossref_primary_10_1007_s12598_023_02265_5
crossref_primary_10_1016_j_cej_2023_147393
crossref_primary_10_1088_2752_5724_ac4263
crossref_primary_10_3389_fchem_2021_807500
crossref_primary_10_1063_5_0179060
crossref_primary_10_1016_j_diamond_2025_112103
crossref_primary_10_1016_j_jelechem_2022_116716
crossref_primary_10_1021_acsnano_1c08638
crossref_primary_10_2139_ssrn_3974805
crossref_primary_10_1007_s40820_024_01458_6
crossref_primary_10_1021_acs_langmuir_4c01542
crossref_primary_10_1002_ange_202408569
crossref_primary_10_1039_D3TA02790B
crossref_primary_10_1016_j_arabjc_2024_105866
crossref_primary_10_1002_adfm_202303003
crossref_primary_10_1002_admi_202102124
crossref_primary_10_1016_j_cej_2024_156668
crossref_primary_10_1016_j_jacomc_2024_100007
crossref_primary_10_1016_j_est_2023_106975
crossref_primary_10_1021_acsami_2c23260
crossref_primary_10_1021_acsenergylett_3c02406
crossref_primary_10_1016_j_rser_2023_114030
crossref_primary_10_1039_D3NR05222B
crossref_primary_10_1021_acsami_4c00783
crossref_primary_10_1016_j_cej_2023_141434
crossref_primary_10_1016_j_cej_2023_146729
crossref_primary_10_1016_j_est_2024_112746
crossref_primary_10_1007_s12274_022_5272_8
crossref_primary_10_1016_j_jallcom_2023_169347
crossref_primary_10_1016_j_enrev_2024_100084
crossref_primary_10_1016_j_coelec_2024_101557
crossref_primary_10_1039_D2CC06777C
crossref_primary_10_1002_anie_202408569
crossref_primary_10_1016_j_est_2024_113550
crossref_primary_10_1021_acsami_2c22609
crossref_primary_10_1016_j_cej_2024_153149
crossref_primary_10_1002_adfm_202311259
crossref_primary_10_1021_acsnano_3c10246
crossref_primary_10_1002_adfm_202301734
crossref_primary_10_1002_sus2_57
crossref_primary_10_1007_s40820_024_01352_1
crossref_primary_10_1021_acssuschemeng_2c02513
crossref_primary_10_1021_acsaem_2c02393
crossref_primary_10_1016_j_electacta_2024_144778
crossref_primary_10_1016_j_carbpol_2023_121310
crossref_primary_10_1360_nso_20230078
crossref_primary_10_1016_j_cej_2022_139980
crossref_primary_10_1016_j_compositesa_2024_108067
crossref_primary_10_1016_j_compositesb_2023_110669
crossref_primary_10_1016_j_susmat_2022_e00490
crossref_primary_10_1002_smll_202106356
crossref_primary_10_1002_cssc_202301367
crossref_primary_10_1016_j_est_2024_111420
crossref_primary_10_1016_j_porgcoat_2024_108918
crossref_primary_10_1002_ece2_71
crossref_primary_10_1007_s12598_024_02636_6
crossref_primary_10_1021_acsomega_1c06761
crossref_primary_10_1039_D3MH90034G
crossref_primary_10_1016_j_susmat_2022_e00536
crossref_primary_10_3390_nano11123170
crossref_primary_10_1021_acssuschemeng_3c06645
crossref_primary_10_1016_S1872_5805_22_60611_5
crossref_primary_10_1002_inf2_70011
crossref_primary_10_1016_j_jcis_2024_08_102
crossref_primary_10_1016_j_jcis_2023_05_013
crossref_primary_10_1002_adfm_202111805
crossref_primary_10_1016_j_ensm_2024_103523
crossref_primary_10_1016_j_jcis_2024_05_079
crossref_primary_10_1002_adfm_202402419
crossref_primary_10_1002_adfm_202303060
crossref_primary_10_1016_j_pmatsci_2024_101331
crossref_primary_10_1016_j_apsusc_2024_161281
crossref_primary_10_1021_acsapm_3c02124
crossref_primary_10_1016_j_ccr_2022_214518
crossref_primary_10_1016_j_cej_2024_149158
crossref_primary_10_1002_smll_202201290
crossref_primary_10_1039_D1DT03848F
crossref_primary_10_1016_j_ccr_2023_215565
crossref_primary_10_1039_D3TA06032B
crossref_primary_10_1021_acsaem_4c00333
crossref_primary_10_1016_j_diamond_2023_110041
crossref_primary_10_1021_acs_cgd_3c00206
crossref_primary_10_1016_j_est_2024_114836
crossref_primary_10_1016_j_memsci_2024_122867
crossref_primary_10_1016_j_cej_2023_144913
crossref_primary_10_1039_D3QM00003F
crossref_primary_10_1021_acsami_1c23402
crossref_primary_10_1016_j_est_2024_113464
crossref_primary_10_1016_j_jallcom_2022_168262
crossref_primary_10_1002_adfm_202310775
crossref_primary_10_1002_ente_202200133
crossref_primary_10_1021_acsami_3c11005
crossref_primary_10_3390_ma16020841
crossref_primary_10_1021_acsaem_3c00597
crossref_primary_10_1021_acs_langmuir_3c03277
crossref_primary_10_1016_j_est_2023_109920
crossref_primary_10_1039_D2AN01143C
crossref_primary_10_1021_acsaem_2c02565
crossref_primary_10_1016_j_cej_2024_151857
crossref_primary_10_1021_acsaem_3c02376
crossref_primary_10_1021_acsomega_3c04932
crossref_primary_10_1002_smll_202400179
crossref_primary_10_1002_smtd_202201609
crossref_primary_10_3389_fbioe_2022_1024453
crossref_primary_10_1016_j_rser_2023_113423
crossref_primary_10_1039_D2TA02255A
crossref_primary_10_1016_j_ijbiomac_2025_141148
crossref_primary_10_2174_0127723348268837231206095532
crossref_primary_10_1002_adfm_202201166
Cites_doi 10.1016/j.nanoen.2019.05.059
10.1002/smll.201503527
10.1002/adfm.201802564
10.1002/adfm.202007843
10.1039/c3ee43526a
10.1039/C7EE03232C
10.1002/adma.201301332
10.1002/adfm.201505548
10.1038/nnano.2011.110
10.1007/s10570-020-03310-7
10.1002/aenm.201601372
10.1021/cm049649j
10.1016/j.jechem.2020.08.005
10.1016/j.ensm.2015.08.005
10.1038/nenergy.2016.39
10.1039/C6EE01717G
10.1021/acs.accounts.8b00486
10.1038/ncomms3487
10.1002/adma.201806005
10.1093/nsr/nwz070
10.1039/C8TA05862H
10.1002/adma.201501622
10.1002/aenm.201802800
10.1016/j.nanoen.2020.104812
10.1002/smtd.201600029
10.1039/C7TA10936A
10.1016/j.elecom.2015.09.002
10.1002/aenm.201703043
10.1039/C8EE02567C
10.1002/adfm.202003721
10.1002/adma.201200246
10.1002/smll.201470106
10.1002/adma.202000716
10.1002/adfm.202000706
10.1038/ncomms7544
10.1038/nnano.2010.162
10.1002/aenm.201901957
10.1002/adma.201602802
ContentType Journal Article
Copyright 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202100775
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Research Library
Science Database (ProQuest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed


MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_c239e4835539454691484212f02ca71f
PMC8373094
34137521
10_1002_advs_202100775
ADVS2684
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51871001
– fundername: City University of Hong Kong
  funderid: 6000697
– fundername: National Natural Science Foundation of China
  grantid: 51871001
– fundername: City University of Hong Kong
  grantid: 6000697
– fundername: ;
  grantid: 51871001
– fundername: ;
  grantid: 6000697
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5684-5f5fee937d06ad43c7ca7303ecc5b8b8fab9b3f56400043a64d4babb21b8c4cb3
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Wed Aug 27 01:32:10 EDT 2025
Thu Aug 21 13:59:45 EDT 2025
Fri Jul 11 15:26:22 EDT 2025
Sun Jul 13 04:10:07 EDT 2025
Mon Jul 21 06:01:49 EDT 2025
Tue Jul 01 03:59:30 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Wed Jan 22 16:29:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords interlayer engineering
Zn2+ transfer kinetics
capacitor-type anodes
hybrid micro-supercapacitors
MXene
Language English
License Attribution
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5684-5f5fee937d06ad43c7ca7303ecc5b8b8fab9b3f56400043a64d4babb21b8c4cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7494-1469
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202100775
PMID 34137521
PQID 2562262405
PQPubID 4365299
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_c239e4835539454691484212f02ca71f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8373094
proquest_miscellaneous_2542361410
proquest_journals_2562262405
pubmed_primary_34137521
crossref_primary_10_1002_advs_202100775
crossref_citationtrail_10_1002_advs_202100775
wiley_primary_10_1002_advs_202100775_ADVS2684
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 1
2013; 25
2013; 4
2019; 52
2016; 306
2014; 26
2020; 14
2020; 10
2012; 12
2020; 7
2018; 6
2018; 8
2019; 60
2020; 4
2021; 31
2019; 62
2019; 20
2019; 29
2012; 24
2014; 7
2010; 5
2014; 10
2021; 9
2015; 1
2019; 9
2018; 28
2015; 6
2019; 3
2019; 6
2019; 31
2017; 27
2017; 29
2020; 32
2011; 6
2016; 12
2016; 6
2015; 27
2016; 1
2021; 56
2015; 60
2020; 74
2020; 30
2004; 16
2017; 13
2020; 27
2018; 50
2018; 11
2016; 26
2016; 9
2014; 267
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
Xue Z. (e_1_2_7_40_1) 2020; 32
Xue Q. (e_1_2_7_60_1) 2017; 13
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
Qin L. Q. (e_1_2_7_55_1) 2019; 60
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
Yan J. (e_1_2_7_35_1) 2017; 27
e_1_2_7_49_1
e_1_2_7_50_1
e_1_2_7_52_1
e_1_2_7_23_1
Xie K. (e_1_2_7_36_1) 2014; 26
e_1_2_7_21_1
e_1_2_7_56_1
Wang C. D. (e_1_2_7_26_1) 2019; 3
e_1_2_7_37_1
Jiao S. Q. (e_1_2_7_33_1) 2019; 6
e_1_2_7_39_1
Li R. (e_1_2_7_58_1) 2020; 4
Luo S. J. (e_1_2_7_28_1) 2019; 29
Zhang F. (e_1_2_7_31_1) 2020; 10
Li Z. (e_1_2_7_42_1) 2021; 9
e_1_2_7_6_1
e_1_2_7_4_1
Zhao M. Q. (e_1_2_7_34_1) 2015; 27
e_1_2_7_8_1
e_1_2_7_18_1
Xu S. (e_1_2_7_54_1) 2018; 50
e_1_2_7_16_1
e_1_2_7_2_1
Zuo W. (e_1_2_7_43_1) 2017; 29
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_1
Liu W. (e_1_2_7_38_1) 2017; 29
e_1_2_7_46_1
Liu Z. (e_1_2_7_47_1) 2014; 267
e_1_2_7_48_1
e_1_2_7_29_1
Wang J. Q. (e_1_2_7_44_1) 2018; 6
Jian Z. (e_1_2_7_27_1) 2020; 10
e_1_2_7_51_1
e_1_2_7_53_1
Park Y. L. (e_1_2_7_61_1) 2012; 12
e_1_2_7_24_1
Ma X. P. (e_1_2_7_25_1) 2019; 20
e_1_2_7_22_1
e_1_2_7_20_1
e_1_2_7_59_1
Dall'Agnese Y. (e_1_2_7_32_1) 2016; 306
Zhao F. F. (e_1_2_7_57_1) 2020; 14
Li X. L. (e_1_2_7_30_1) 2020; 14
References_xml – volume: 267
  start-page: 941
  year: 2014
  publication-title: J. Power Sources
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 867
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 4
  start-page: 2487
  year: 2013
  publication-title: Nat. Commun.
– volume: 11
  start-page: 941
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 496
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 25
  start-page: 4035
  year: 2013
  publication-title: Adv. Mater.
– volume: 50
  year: 2018
  publication-title: Nano Energy
– volume: 26
  start-page: 3711
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 62
  start-page: 550
  year: 2019
  publication-title: Nano Energy
– volume: 11
  start-page: 3367
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 20
  start-page: 172
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 27
  year: 2015
  publication-title: Adv. Mater.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 9
  start-page: 2847
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 32
  start-page: 734
  year: 2020
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 2899
  year: 2017
  publication-title: Adv. Mater.
– volume: 60
  start-page: 479
  year: 2019
  publication-title: Nano Energy
– volume: 12
  start-page: 3059
  year: 2016
  publication-title: Small
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 510
  year: 2019
  publication-title: Adv. Sci.
– volume: 4
  start-page: 603
  year: 2020
  publication-title: Small Methods
– volume: 306
  year: 2016
  publication-title: J. Power Sources
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 1
  start-page: 82
  year: 2015
  publication-title: Energy Storage Mater.
– volume: 10
  start-page: 541
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 32
  start-page: 53
  year: 2020
  publication-title: Adv. Mater.
– volume: 3
  start-page: 335
  year: 2019
  publication-title: Small Methods
– volume: 60
  start-page: 172
  year: 2015
  publication-title: Electrochem. Commun.
– volume: 27
  start-page: 339
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 16
  start-page: 812
  year: 2004
  publication-title: Chem. Mater.
– volume: 6
  start-page: 3933
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 3443
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 651
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 64
  year: 2020
  publication-title: Natl. Sci. Rev.
– volume: 6
  start-page: 6544
  year: 2015
  publication-title: Nat. Commun.
– volume: 10
  start-page: 3592
  year: 2014
  publication-title: Small
– volume: 56
  start-page: 404
  year: 2021
  publication-title: J. Energy Chem.
– volume: 9
  start-page: 7475
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 53
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 27
  start-page: 7475
  year: 2020
  publication-title: Cellulose
– volume: 24
  start-page: 3184
  year: 2012
  publication-title: Adv. Mater.
– volume: 26
  year: 2014
  publication-title: Adv. Mater.
– volume: 12
  year: 2012
  publication-title: IEEE Sens. J.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 27
  start-page: 5296
  year: 2015
  publication-title: Adv. Mater.
– ident: e_1_2_7_16_1
  doi: 10.1016/j.nanoen.2019.05.059
– ident: e_1_2_7_5_1
  doi: 10.1002/smll.201503527
– volume: 9
  start-page: 7475
  year: 2021
  ident: e_1_2_7_42_1
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_17_1
  doi: 10.1002/adfm.201802564
– volume: 29
  start-page: 3443
  year: 2017
  ident: e_1_2_7_38_1
  publication-title: Adv. Mater.
– ident: e_1_2_7_19_1
  doi: 10.1002/adfm.202007843
– volume: 14
  year: 2020
  ident: e_1_2_7_57_1
  publication-title: ACS Nano
– ident: e_1_2_7_1_1
  doi: 10.1039/c3ee43526a
– ident: e_1_2_7_46_1
  doi: 10.1039/C7EE03232C
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201301332
– ident: e_1_2_7_22_1
  doi: 10.1002/adfm.201505548
– volume: 4
  start-page: 603
  year: 2020
  ident: e_1_2_7_58_1
  publication-title: Small Methods
– ident: e_1_2_7_13_1
  doi: 10.1038/nnano.2011.110
– volume: 10
  year: 2020
  ident: e_1_2_7_27_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_7_41_1
  doi: 10.1007/s10570-020-03310-7
– volume: 6
  year: 2018
  ident: e_1_2_7_44_1
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.201601372
– ident: e_1_2_7_48_1
  doi: 10.1021/cm049649j
– ident: e_1_2_7_51_1
  doi: 10.1016/j.jechem.2020.08.005
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ensm.2015.08.005
– volume: 20
  start-page: 172
  year: 2019
  ident: e_1_2_7_25_1
  publication-title: Energy Storage Mater.
– ident: e_1_2_7_45_1
  doi: 10.1038/nenergy.2016.39
– volume: 27
  year: 2015
  ident: e_1_2_7_34_1
  publication-title: Adv. Mater.
– ident: e_1_2_7_7_1
  doi: 10.1039/C6EE01717G
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.accounts.8b00486
– ident: e_1_2_7_15_1
  doi: 10.1038/ncomms3487
– volume: 306
  year: 2016
  ident: e_1_2_7_32_1
  publication-title: J. Power Sources
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201806005
– volume: 6
  start-page: 510
  year: 2019
  ident: e_1_2_7_33_1
  publication-title: Adv. Sci.
– ident: e_1_2_7_9_1
  doi: 10.1093/nsr/nwz070
– volume: 14
  year: 2020
  ident: e_1_2_7_30_1
  publication-title: ACS Nano
– ident: e_1_2_7_11_1
  doi: 10.1039/C8TA05862H
– ident: e_1_2_7_21_1
  doi: 10.1002/adma.201501622
– volume: 267
  start-page: 941
  year: 2014
  ident: e_1_2_7_47_1
  publication-title: J. Power Sources
– ident: e_1_2_7_50_1
  doi: 10.1002/aenm.201802800
– ident: e_1_2_7_4_1
  doi: 10.1016/j.nanoen.2020.104812
– volume: 27
  start-page: 339
  year: 2017
  ident: e_1_2_7_35_1
  publication-title: Adv. Funct. Mater.
– volume: 50
  year: 2018
  ident: e_1_2_7_54_1
  publication-title: Nano Energy
– volume: 29
  start-page: 2899
  year: 2017
  ident: e_1_2_7_43_1
  publication-title: Adv. Mater.
– ident: e_1_2_7_59_1
  doi: 10.1002/smtd.201600029
– volume: 29
  year: 2019
  ident: e_1_2_7_28_1
  publication-title: Adv. Funct. Mater.
– volume: 60
  start-page: 479
  year: 2019
  ident: e_1_2_7_55_1
  publication-title: Nano Energy
– volume: 12
  year: 2012
  ident: e_1_2_7_61_1
  publication-title: IEEE Sens. J.
– ident: e_1_2_7_10_1
  doi: 10.1039/C7TA10936A
– ident: e_1_2_7_24_1
  doi: 10.1016/j.elecom.2015.09.002
– volume: 26
  year: 2014
  ident: e_1_2_7_36_1
  publication-title: Adv. Mater.
– volume: 32
  start-page: 53
  year: 2020
  ident: e_1_2_7_40_1
  publication-title: Adv. Mater.
– volume: 10
  start-page: 541
  year: 2020
  ident: e_1_2_7_31_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_7_53_1
  doi: 10.1002/aenm.201703043
– ident: e_1_2_7_20_1
  doi: 10.1039/C8EE02567C
– ident: e_1_2_7_52_1
  doi: 10.1002/adfm.202003721
– ident: e_1_2_7_49_1
  doi: 10.1002/adma.201200246
– ident: e_1_2_7_37_1
  doi: 10.1002/smll.201470106
– ident: e_1_2_7_56_1
  doi: 10.1002/adma.202000716
– ident: e_1_2_7_29_1
  doi: 10.1002/adfm.202000706
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms7544
– ident: e_1_2_7_14_1
  doi: 10.1038/nnano.2010.162
– ident: e_1_2_7_12_1
  doi: 10.1002/aenm.201901957
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201602802
– volume: 13
  year: 2017
  ident: e_1_2_7_60_1
  publication-title: Small
– volume: 3
  start-page: 335
  year: 2019
  ident: e_1_2_7_26_1
  publication-title: Small Methods
SSID ssj0001537418
Score 2.5569515
Snippet Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type...
Micro-supercapacitors are notorious for their low energy densities compared to micro-batteries. While MXenes have been identified as promising capacitor-type...
Abstract Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2100775
SubjectTerms capacitor‐type anodes
Carbon
Cellulose
Design
Electrodes
Electrolytes
Energy storage
Engineering
Graphene
hybrid micro‐supercapacitors
interlayer engineering
MXene
Zn2+ transfer kinetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbhMxFLVQV2wQ5TlQkJGQgMWombE9jyUtrSJE2YRK2Y38FEjVpAoJUnZ8Agu-kC_hXHsySgSoG7bjm7F1H7nnjq-PGXspC13I4ERemrrNUX-JvK2Vyg2iwwrRapG6LT5W00v5fq7mO1d9UU9YogdOiju2pWi9BE5QopUKLwN-p13MMCmtrotA_77IeTvFVDofLIiWZcvSOCmPtftG7NxlEUnf9rJQJOv_G8L8s1FyF8DGDHR-l90ZoCN_m5Z8yG75_h47HILzK389MEi_uc9-xu98Vxpwms8iQex66fkO9SBfBH4xh_yv7z9OkMccP0XStIjuJZ5QbcrP0v04znPAWj7d0MkufkHte5CYra_90m5_wlex95Ynrs4Nxj9QKxImpHOF_B31yK82D9jl-dmn02k-XL-QW1U1MldBBe8BX9yk0k4KW0PhyHgwujKNaYI2rRFBVTLuJ-pKOmm0gZVNY6U14iE76Be9f8w4QIh10gltGyOrEExAmYPa2DpYyiqZsXxrjs4O3OR0RcZVl1iVy47M143my9irUf46sXL8U_KErDtKEZt2fAAf6wYf627ysYwdbX2jG0IcUwA5lhUAEeZ4MQ4jOGnHRfd-sSYZSeQ2sphk7FFypXElBB9qgKeM1XtOtrfU_ZH-y-dIAN4I2KElrUV3vEEFHQDOjEh9nvwPXTxlt-nNqQfyiB3Aif0z4LKVeR5D8Dclrzep
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvcAB0fJoSqmMhAQcom5iO48TYtutVohWiKXS3iI_oVKVLNvdSnvjJ3DgF_JLmHGcsCte13isPGbG8409-YaQ5zyRCXeGxanKyxjyLxaXuRCxAu_QjJWStdUW59n4gr-dimnYcLsOZZXdmugXatNo3CM_gtAMSAHij3g9-xJj1yg8XQ0tNG6TbViCC0i-toej8_cffu2yCIb0LB1b4yA9kuYGWbrTxJO_bUQjT9r_J6T5e8HkOpD1kej0PrkXICR90-p8h9yy9S65u0YsuEt2gste05eBV_rVA_Ld7_5dSQDZdOJpY5dzS9fm0cbRsynI__j6bQjRzdBjCKUafH4OVzBjpaO2a46xFMAuHa_wfy96hkV9IDFZzuxcd1Powlfk0pbBcwXj77BACW6IfxvSE6ycX6wekovT0cfjcRyaMsRaZAWPhRPOWgA1ZpBJw5nOtYRVgoEpCFWowklVKuZExv0po8y44Uoq0L0qNNeKPSJbdVPbPUIBmmjDDZO6UDxzTjlIfiBj1gb0pgWPSNwpp9KBsRwbZ1xVLddyWqEyq16ZEXnRy89aro6_Sg5R170Ucmz7C838UxVcttIpKy0HhCpYyQWYMWSOeH7uBim8cuIictBZShUcH27Rm2lEnvXD4LJ4DiNr2yxRhiPlDU8GEXncGlb_JAgqcoBUEck3TG7jUTdH6svPnha8YKCHEr-aN87_fIIKYM8EqX72__0aT8gdnNPWPB6QLTBP-xRw2EIdBmf7Cfn9NyU
  priority: 102
  providerName: ProQuest
Title Interlayer Structure Engineering of MXene‐Based Capacitor‐Type Electrode for Hybrid Micro‐Supercapacitor toward Battery‐Level Energy Density
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202100775
https://www.ncbi.nlm.nih.gov/pubmed/34137521
https://www.proquest.com/docview/2562262405
https://www.proquest.com/docview/2542361410
https://pubmed.ncbi.nlm.nih.gov/PMC8373094
https://doaj.org/article/c239e4835539454691484212f02ca71f
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5Be-GCKE_TEi0SEnCwmnhn_Tg2baoINVVFqJSbtU9AqpwqTZBy60_gwC_klzCzdtxYgBAnS7tj79oz4_1md_Zbxt7AQA3AWxEnOitijL9EXGRSxhq9wwhRKFFnW5yn40v4MJOzrV38NT9EO-FGnhH-1-TgSt8c3pGGKvuN6LaTQWBxu892aX8tsecncHE3yyIF0bPQCXMYXcciB9gwN_aTw-4jOiNTIPD_E-r8PXlyG9SGUen0EXvYwEl-VOt_j91z1WO21zjsDX_XsEq_f8J-hLm_K4UQm08Daexq4fgWHSGfez6ZofzP2-9DHNssP8aB1KDHL7CE4lU-qs_MsY4j1OXjNe324hNK6UOJ6eraLczmFr4M-bi85u9cY_0ZpSdhg7TXkJ9Q3vxy_ZRdno4-HY_j5kiG2Mg0h1h66Z1DSGP7qbIgTGYU_iMEGoLUuc690oUWXqYQ1hhVCha00qh5nRswWjxjO9W8ci8YR2BiLFihTK4h9V57DH0wXjYWtWYkRCzeqKM0DV85HZtxVdZMy0lJ6itb9UXsbSt_XTN1_FVySNptpYhhOxTMF5_LxmFLk4jCAeJTKQqQaMQYN9Lque8n-MoDH7GDjW2UjdtjE4gmkxRBErbxuq1Gh6VVGFW5-YpkgAhvYNCP2PPalNqeEKTIEFBFLOsYWaer3Zrq65dACp4L1ENBXy2Y4z8-QYmgZ0pEPy__U36fPaDCOgXygO2gvbpXCMuWuhc8r8d2j04mZ1O8DkfnFx97YZLjFxpeOew
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEC0vQ4FFAgEHq7F317EPCJE2VUqTCJFWys3dlwGpSkKagHLjJ3Dgd_Cj-CXM-EUiXqdevbP2rmd2Hruz3wA8FoEKRGa5H-pW4mP8xf2kJaWvcXUYzhPFi2yLQdQ9Ea9HcrQB36u7MJRWWenEXFHbiaE98l00zegpoP2RL6cffaoaRaerVQmNQiyO3PIzhmznLw73kb9PwvCgc7zX9cuqAr6RUSx8mcnMObTKthkpK7hpGYViznEuUsc6zpRONM9kJPJjMhUJK7TSOHgdG2E0x_degk3BMZRpwGa7M3jz9teujuQEB1OhQzbDXWU_ESp4GORgc2vWLy8S8CfP9vcEzVXHObd8B9fhWumysleFjG3Bhhtvw9UVIMNt2CpVxDl7VuJYP78B3_LdxjOFTj0b5jC1i5ljK_3YJGP9EdL_-PK1jdbUsj003QZ1zAyfUITMOkWVHusYOtesu6T7ZaxPSYRIMVxM3cxUXdg8zwBmBWLoEtt7lBCFH6TbjWyfMvXny5twciHsugWN8WTs7gBDV8hYYbkysRZRlukMgy2M0I1FvhkpPPAr5qSmREinQh1naYHtHKbEzLRmpgdPa_ppgQ3yV8o28bqmIkzv_MFk9i4tVURqQp44gR6x5ImQuGwwUqXz-qwZ4pSDzIOdSlLSUtHgJ-pl4cGjuhlVBJ37qLGbLIhGEMSOCJoe3C4Eqx4JOTEtdOE8aK2J3NpQ11vGH97nMOQxRz4k9Ndy4fzPL0jRzRoStNDdf0_jIVzuHvd7ae9wcHQPrlD_It9yBxooqu4--oBz_aBceAxOL3qt_wQcEXVo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLS8DAUWCQQcrCTeXT8OCJEmUUrbqKJUys317noBqUpCmoBy4ydw4Nfwc_glzKwfJOJ16tWetb2e9-7sNwCPRTtrC2u4H6go8TH_4n4SSekr1A7NeZLxotpiGA5OxOuRHG3A9-osDJVVVjbRGWoz0bRG3kTXjJEC-h_ZtGVZxFG3_3L60acOUrTTWrXTKERkP19-xvTt_MVeF3n9JAj6vbe7A7_sMOBrGcbCl1baPEcPbVphZgTXkc5Q5DnOS6pYxTZTieJWhsJtmWWhMEJlCieiYi204vjcS7AZYVbUasBmpzc8evNrhUdygoapkCJbQTMznwghPGg74Lk1T-gaBvwpyv29WHM1iHZesH8drpXhK3tVyNsWbOTjbbi6Amq4DVuluThnz0pM6-c34JtbeTzLMMBnxw6ydjHL2co4NrHscIT0P7587aBnNWwX3bhGezPDK5Qts17RscfkDANtNljSWTN2SAWFSHG8mOYzXQ1hc1cNzAr00CXeP6DiKHwhnXRkXarany9vwsmFsOsWNMaTcX4HGIZF2gjDMx0rEVqrLCZemK1rg3zTUnjgV8xJdYmWTk07ztIC5zlIiZlpzUwPntb00wIn5K-UHeJ1TUX43u7CZPYuLc1FqgOe5AKjY8kTIVGFMGulvXvbCnDKbevBTiUpaWl08BW1injwqL6N5oL2gLJxPlkQjSC4HdFueXC7EKz6SyigiTCc8yBaE7m1T12_M_7w3kGSxxz5kNBfc8L5n1-QYsh1TDBDd_89jYdwGXU8Pdgb7t-DKzS8KL3cgQZKan4fw8G5elDqHYPTi1b1nzQveZ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interlayer+Structure+Engineering+of+MXene-Based+Capacitor-Type+Electrode+for+Hybrid+Micro-Supercapacitor+toward+Battery-Level+Energy+Density&rft.jtitle=Advanced+science&rft.au=Cheng%2C+Wenxiang&rft.au=Fu%2C+Jimin&rft.au=Hu%2C+Haibo&rft.au=Ho%2C+Derek&rft.date=2021-08-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=8&rft.issue=16&rft.spage=e2100775&rft_id=info:doi/10.1002%2Fadvs.202100775&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon