Interlayer Structure Engineering of MXene‐Based Capacitor‐Type Electrode for Hybrid Micro‐Supercapacitor toward Battery‐Level Energy Density
Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type electrode materials for alternative zinc‐ion hybrid micro‐supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered st...
Saved in:
Published in | Advanced science Vol. 8; no. 16; pp. e2100775 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.08.2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type electrode materials for alternative zinc‐ion hybrid micro‐supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc‐ions with large radii intercalation inefficient. Herein, through insertion of 1D core‐shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor‐type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm−2, which is a 10‐fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery‐type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm−2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene‐based MSCs and approaches the level of micro‐batteries. The interlayer structure engineering demonstrated in the MXene‐based capacitor‐type electrode provides a rational means to achieve battery‐levelenergy density in the ZHMSCs.
The demonstrated interlayer structure engineering synchronously realized the facilitated zinc‐ion and electron transfer kinetics between loose MXene nanosheets, resulting in enhanced charge storage capacity of MXene‐based capacitor‐type electrode toward hybrid micro‐supercapacitor with battery‐level energy density. |
---|---|
AbstractList | Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type electrode materials for alternative zinc‐ion hybrid micro‐supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc‐ions with large radii intercalation inefficient. Herein, through insertion of 1D core‐shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor‐type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm
−2
, which is a 10‐fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery‐type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm
−2
with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene‐based MSCs and approaches the level of micro‐batteries. The interlayer structure engineering demonstrated in the MXene‐based capacitor‐type electrode provides a rational means to achieve battery‐levelenergy density in the ZHMSCs. Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type electrode materials for alternative zinc‐ion hybrid micro‐supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc‐ions with large radii intercalation inefficient. Herein, through insertion of 1D core‐shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor‐type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm −2 , which is a 10‐fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery‐type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm −2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene‐based MSCs and approaches the level of micro‐batteries. The interlayer structure engineering demonstrated in the MXene‐based capacitor‐type electrode provides a rational means to achieve battery‐levelenergy density in the ZHMSCs. The demonstrated interlayer structure engineering synchronously realized the facilitated zinc‐ion and electron transfer kinetics between loose MXene nanosheets, resulting in enhanced charge storage capacity of MXene‐based capacitor‐type electrode toward hybrid micro‐supercapacitor with battery‐level energy density. Micro-supercapacitors are notorious for their low energy densities compared to micro-batteries. While MXenes have been identified as promising capacitor-type electrode materials for alternative zinc-ion hybrid micro-supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc-ions with large radii intercalation inefficient. Herein, through insertion of 1D core-shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor-type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm , which is a 10-fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery-type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene-based MSCs and approaches the level of micro-batteries. The interlayer structure engineering demonstrated in the MXene-based capacitor-type electrode provides a rational means to achieve battery-levelenergy density in the ZHMSCs. Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type electrode materials for alternative zinc‐ion hybrid micro‐supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc‐ions with large radii intercalation inefficient. Herein, through insertion of 1D core‐shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor‐type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm−2, which is a 10‐fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery‐type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm−2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene‐based MSCs and approaches the level of micro‐batteries. The interlayer structure engineering demonstrated in the MXene‐based capacitor‐type electrode provides a rational means to achieve battery‐levelenergy density in the ZHMSCs. The demonstrated interlayer structure engineering synchronously realized the facilitated zinc‐ion and electron transfer kinetics between loose MXene nanosheets, resulting in enhanced charge storage capacity of MXene‐based capacitor‐type electrode toward hybrid micro‐supercapacitor with battery‐level energy density. Abstract Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type electrode materials for alternative zinc‐ion hybrid micro‐supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc‐ions with large radii intercalation inefficient. Herein, through insertion of 1D core‐shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor‐type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm−2, which is a 10‐fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery‐type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm−2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene‐based MSCs and approaches the level of micro‐batteries. The interlayer structure engineering demonstrated in the MXene‐based capacitor‐type electrode provides a rational means to achieve battery‐levelenergy density in the ZHMSCs. Micro-supercapacitors are notorious for their low energy densities compared to micro-batteries. While MXenes have been identified as promising capacitor-type electrode materials for alternative zinc-ion hybrid micro-supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc-ions with large radii intercalation inefficient. Herein, through insertion of 1D core-shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor-type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm-2 , which is a 10-fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery-type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm-2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene-based MSCs and approaches the level of micro-batteries. The interlayer structure engineering demonstrated in the MXene-based capacitor-type electrode provides a rational means to achieve battery-levelenergy density in the ZHMSCs.Micro-supercapacitors are notorious for their low energy densities compared to micro-batteries. While MXenes have been identified as promising capacitor-type electrode materials for alternative zinc-ion hybrid micro-supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc-ions with large radii intercalation inefficient. Herein, through insertion of 1D core-shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor-type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm-2 , which is a 10-fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery-type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm-2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene-based MSCs and approaches the level of micro-batteries. The interlayer structure engineering demonstrated in the MXene-based capacitor-type electrode provides a rational means to achieve battery-levelenergy density in the ZHMSCs. Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type electrode materials for alternative zinc‐ion hybrid micro‐supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc‐ions with large radii intercalation inefficient. Herein, through insertion of 1D core‐shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor‐type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm−2, which is a 10‐fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery‐type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm−2 with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene‐based MSCs and approaches the level of micro‐batteries. The interlayer structure engineering demonstrated in the MXene‐based capacitor‐type electrode provides a rational means to achieve battery‐levelenergy density in the ZHMSCs. |
Author | Ho, Derek Fu, Jimin Cheng, Wenxiang Hu, Haibo |
AuthorAffiliation | 2 Nanotechnology Center Institute of Textiles & Clothing The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong 3 Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong 1 School of Physics and Materials Science Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of education Anhui University Hefei China |
AuthorAffiliation_xml | – name: 1 School of Physics and Materials Science Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of education Anhui University Hefei China – name: 3 Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong – name: 2 Nanotechnology Center Institute of Textiles & Clothing The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong |
Author_xml | – sequence: 1 givenname: Wenxiang surname: Cheng fullname: Cheng, Wenxiang organization: Anhui University – sequence: 2 givenname: Jimin surname: Fu fullname: Fu, Jimin organization: The Hong Kong Polytechnic University – sequence: 3 givenname: Haibo orcidid: 0000-0001-7494-1469 surname: Hu fullname: Hu, Haibo email: haibohu@ahu.edu.cn organization: City University of Hong Kong – sequence: 4 givenname: Derek surname: Ho fullname: Ho, Derek email: derekho@cityu.edu.hk organization: City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34137521$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEQx1eoiJbSK0dkiQuXBH_uxwWpTQuNlIpDCuJmeb2zwdHGTm1vqr3xCBx4Qp4Eh7RR20tPtmd-858Zz7zODqyzkGVvCR4TjOlH1WzCmGKaHkUhXmRHlFTliJWcHzy4H2YnISwxxkSwgpPyVXbIOGGFoOQo-zO1EXynBvBoHn2vY-8BXdiFsQDe2AVyLbr6ARb-_vp9pgI0aKLWSpvofLJcD-tEd6Cjdw2g1nl0OdTeNOjKaO8SMe_X4PV9CIruVvkGnamY0g7JP4MNdCkh-MWAzsEGE4c32ctWdQFO7s7j7Nvni-vJ5Wj29ct0cjobaZGXfCRa0QJUrGhwrhrOdKFVwTADrUVd1mWr6qpmrch5ap4zlfOG16quKalLzXXNjrPpTrdxainX3qyUH6RTRv43OL-QykejO5Casgp4yYRgFRc8rwgvOSW0xTQlJW3S-rTTWvf1ChoNNnrVPRJ97LHmp1y4jSxZqrniSeDDnYB3Nz2EKFcmaOg6ZcH1QVLBKcsJJzih75-gS9d7m74qUTmlOeVYJOrdw4r2pdwPPwHjHZAmFYKHdo8QLLcLJrcLJvcLlgL4k4A0VBWN23ZkumfDbk0HwzNJ5On59zlN42X_AF2w6oE |
CitedBy_id | crossref_primary_10_1007_s10904_025_03610_0 crossref_primary_10_1039_D2RA01648F crossref_primary_10_1002_smll_202205101 crossref_primary_10_1016_j_carbon_2022_11_080 crossref_primary_10_1063_5_0152042 crossref_primary_10_1063_5_0138097 crossref_primary_10_1007_s12274_022_5262_x crossref_primary_10_1021_acs_analchem_4c01484 crossref_primary_10_1002_adsr_202200020 crossref_primary_10_1016_j_est_2024_115028 crossref_primary_10_3390_batteries9020126 crossref_primary_10_1021_acsami_2c17238 crossref_primary_10_2139_ssrn_4141943 crossref_primary_10_1002_aenm_202403757 crossref_primary_10_1016_j_cej_2022_138456 crossref_primary_10_1021_acsnano_2c06656 crossref_primary_10_1039_D3TA03069E crossref_primary_10_1149_1945_7111_acfff7 crossref_primary_10_1016_j_nanoen_2021_106893 crossref_primary_10_1016_j_apsusc_2023_157138 crossref_primary_10_1016_j_nanoen_2024_110345 crossref_primary_10_1002_adfm_202300149 crossref_primary_10_1016_j_ijbiomac_2023_124912 crossref_primary_10_1002_aenm_202202303 crossref_primary_10_1039_D2TA08662J crossref_primary_10_1002_adfm_202301351 crossref_primary_10_1088_2515_7655_ad1c43 crossref_primary_10_1039_D2TA09726E crossref_primary_10_1002_smll_202406690 crossref_primary_10_1021_acsami_4c10354 crossref_primary_10_1039_D2TC00231K crossref_primary_10_1021_acsaenm_4c00164 crossref_primary_10_1007_s12598_023_02265_5 crossref_primary_10_1016_j_cej_2023_147393 crossref_primary_10_1088_2752_5724_ac4263 crossref_primary_10_3389_fchem_2021_807500 crossref_primary_10_1063_5_0179060 crossref_primary_10_1016_j_diamond_2025_112103 crossref_primary_10_1016_j_jelechem_2022_116716 crossref_primary_10_1021_acsnano_1c08638 crossref_primary_10_2139_ssrn_3974805 crossref_primary_10_1007_s40820_024_01458_6 crossref_primary_10_1021_acs_langmuir_4c01542 crossref_primary_10_1002_ange_202408569 crossref_primary_10_1039_D3TA02790B crossref_primary_10_1016_j_arabjc_2024_105866 crossref_primary_10_1002_adfm_202303003 crossref_primary_10_1002_admi_202102124 crossref_primary_10_1016_j_cej_2024_156668 crossref_primary_10_1016_j_jacomc_2024_100007 crossref_primary_10_1016_j_est_2023_106975 crossref_primary_10_1021_acsami_2c23260 crossref_primary_10_1021_acsenergylett_3c02406 crossref_primary_10_1016_j_rser_2023_114030 crossref_primary_10_1039_D3NR05222B crossref_primary_10_1021_acsami_4c00783 crossref_primary_10_1016_j_cej_2023_141434 crossref_primary_10_1016_j_cej_2023_146729 crossref_primary_10_1016_j_est_2024_112746 crossref_primary_10_1007_s12274_022_5272_8 crossref_primary_10_1016_j_jallcom_2023_169347 crossref_primary_10_1016_j_enrev_2024_100084 crossref_primary_10_1016_j_coelec_2024_101557 crossref_primary_10_1039_D2CC06777C crossref_primary_10_1002_anie_202408569 crossref_primary_10_1016_j_est_2024_113550 crossref_primary_10_1021_acsami_2c22609 crossref_primary_10_1016_j_cej_2024_153149 crossref_primary_10_1002_adfm_202311259 crossref_primary_10_1021_acsnano_3c10246 crossref_primary_10_1002_adfm_202301734 crossref_primary_10_1002_sus2_57 crossref_primary_10_1007_s40820_024_01352_1 crossref_primary_10_1021_acssuschemeng_2c02513 crossref_primary_10_1021_acsaem_2c02393 crossref_primary_10_1016_j_electacta_2024_144778 crossref_primary_10_1016_j_carbpol_2023_121310 crossref_primary_10_1360_nso_20230078 crossref_primary_10_1016_j_cej_2022_139980 crossref_primary_10_1016_j_compositesa_2024_108067 crossref_primary_10_1016_j_compositesb_2023_110669 crossref_primary_10_1016_j_susmat_2022_e00490 crossref_primary_10_1002_smll_202106356 crossref_primary_10_1002_cssc_202301367 crossref_primary_10_1016_j_est_2024_111420 crossref_primary_10_1016_j_porgcoat_2024_108918 crossref_primary_10_1002_ece2_71 crossref_primary_10_1007_s12598_024_02636_6 crossref_primary_10_1021_acsomega_1c06761 crossref_primary_10_1039_D3MH90034G crossref_primary_10_1016_j_susmat_2022_e00536 crossref_primary_10_3390_nano11123170 crossref_primary_10_1021_acssuschemeng_3c06645 crossref_primary_10_1016_S1872_5805_22_60611_5 crossref_primary_10_1002_inf2_70011 crossref_primary_10_1016_j_jcis_2024_08_102 crossref_primary_10_1016_j_jcis_2023_05_013 crossref_primary_10_1002_adfm_202111805 crossref_primary_10_1016_j_ensm_2024_103523 crossref_primary_10_1016_j_jcis_2024_05_079 crossref_primary_10_1002_adfm_202402419 crossref_primary_10_1002_adfm_202303060 crossref_primary_10_1016_j_pmatsci_2024_101331 crossref_primary_10_1016_j_apsusc_2024_161281 crossref_primary_10_1021_acsapm_3c02124 crossref_primary_10_1016_j_ccr_2022_214518 crossref_primary_10_1016_j_cej_2024_149158 crossref_primary_10_1002_smll_202201290 crossref_primary_10_1039_D1DT03848F crossref_primary_10_1016_j_ccr_2023_215565 crossref_primary_10_1039_D3TA06032B crossref_primary_10_1021_acsaem_4c00333 crossref_primary_10_1016_j_diamond_2023_110041 crossref_primary_10_1021_acs_cgd_3c00206 crossref_primary_10_1016_j_est_2024_114836 crossref_primary_10_1016_j_memsci_2024_122867 crossref_primary_10_1016_j_cej_2023_144913 crossref_primary_10_1039_D3QM00003F crossref_primary_10_1021_acsami_1c23402 crossref_primary_10_1016_j_est_2024_113464 crossref_primary_10_1016_j_jallcom_2022_168262 crossref_primary_10_1002_adfm_202310775 crossref_primary_10_1002_ente_202200133 crossref_primary_10_1021_acsami_3c11005 crossref_primary_10_3390_ma16020841 crossref_primary_10_1021_acsaem_3c00597 crossref_primary_10_1021_acs_langmuir_3c03277 crossref_primary_10_1016_j_est_2023_109920 crossref_primary_10_1039_D2AN01143C crossref_primary_10_1021_acsaem_2c02565 crossref_primary_10_1016_j_cej_2024_151857 crossref_primary_10_1021_acsaem_3c02376 crossref_primary_10_1021_acsomega_3c04932 crossref_primary_10_1002_smll_202400179 crossref_primary_10_1002_smtd_202201609 crossref_primary_10_3389_fbioe_2022_1024453 crossref_primary_10_1016_j_rser_2023_113423 crossref_primary_10_1039_D2TA02255A crossref_primary_10_1016_j_ijbiomac_2025_141148 crossref_primary_10_2174_0127723348268837231206095532 crossref_primary_10_1002_adfm_202201166 |
Cites_doi | 10.1016/j.nanoen.2019.05.059 10.1002/smll.201503527 10.1002/adfm.201802564 10.1002/adfm.202007843 10.1039/c3ee43526a 10.1039/C7EE03232C 10.1002/adma.201301332 10.1002/adfm.201505548 10.1038/nnano.2011.110 10.1007/s10570-020-03310-7 10.1002/aenm.201601372 10.1021/cm049649j 10.1016/j.jechem.2020.08.005 10.1016/j.ensm.2015.08.005 10.1038/nenergy.2016.39 10.1039/C6EE01717G 10.1021/acs.accounts.8b00486 10.1038/ncomms3487 10.1002/adma.201806005 10.1093/nsr/nwz070 10.1039/C8TA05862H 10.1002/adma.201501622 10.1002/aenm.201802800 10.1016/j.nanoen.2020.104812 10.1002/smtd.201600029 10.1039/C7TA10936A 10.1016/j.elecom.2015.09.002 10.1002/aenm.201703043 10.1039/C8EE02567C 10.1002/adfm.202003721 10.1002/adma.201200246 10.1002/smll.201470106 10.1002/adma.202000716 10.1002/adfm.202000706 10.1038/ncomms7544 10.1038/nnano.2010.162 10.1002/aenm.201901957 10.1002/adma.201602802 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202100775 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Research Library Science Database (ProQuest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Engineering |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_c239e4835539454691484212f02ca71f PMC8373094 34137521 10_1002_advs_202100775 ADVS2684 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51871001 – fundername: City University of Hong Kong funderid: 6000697 – fundername: National Natural Science Foundation of China grantid: 51871001 – fundername: City University of Hong Kong grantid: 6000697 – fundername: ; grantid: 51871001 – fundername: ; grantid: 6000697 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5684-5f5fee937d06ad43c7ca7303ecc5b8b8fab9b3f56400043a64d4babb21b8c4cb3 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:32:10 EDT 2025 Thu Aug 21 13:59:45 EDT 2025 Fri Jul 11 15:26:22 EDT 2025 Sun Jul 13 04:10:07 EDT 2025 Mon Jul 21 06:01:49 EDT 2025 Tue Jul 01 03:59:30 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Wed Jan 22 16:29:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | interlayer engineering Zn2+ transfer kinetics capacitor-type anodes hybrid micro-supercapacitors MXene |
Language | English |
License | Attribution 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5684-5f5fee937d06ad43c7ca7303ecc5b8b8fab9b3f56400043a64d4babb21b8c4cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7494-1469 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202100775 |
PMID | 34137521 |
PQID | 2562262405 |
PQPubID | 4365299 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c239e4835539454691484212f02ca71f pubmedcentral_primary_oai_pubmedcentral_nih_gov_8373094 proquest_miscellaneous_2542361410 proquest_journals_2562262405 pubmed_primary_34137521 crossref_primary_10_1002_advs_202100775 crossref_citationtrail_10_1002_advs_202100775 wiley_primary_10_1002_advs_202100775_ADVS2684 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 1 2013; 25 2013; 4 2019; 52 2016; 306 2014; 26 2020; 14 2020; 10 2012; 12 2020; 7 2018; 6 2018; 8 2019; 60 2020; 4 2021; 31 2019; 62 2019; 20 2019; 29 2012; 24 2014; 7 2010; 5 2014; 10 2021; 9 2015; 1 2019; 9 2018; 28 2015; 6 2019; 3 2019; 6 2019; 31 2017; 27 2017; 29 2020; 32 2011; 6 2016; 12 2016; 6 2015; 27 2016; 1 2021; 56 2015; 60 2020; 74 2020; 30 2004; 16 2017; 13 2020; 27 2018; 50 2018; 11 2016; 26 2016; 9 2014; 267 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 Xue Z. (e_1_2_7_40_1) 2020; 32 Xue Q. (e_1_2_7_60_1) 2017; 13 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 Qin L. Q. (e_1_2_7_55_1) 2019; 60 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 Yan J. (e_1_2_7_35_1) 2017; 27 e_1_2_7_49_1 e_1_2_7_50_1 e_1_2_7_52_1 e_1_2_7_23_1 Xie K. (e_1_2_7_36_1) 2014; 26 e_1_2_7_21_1 e_1_2_7_56_1 Wang C. D. (e_1_2_7_26_1) 2019; 3 e_1_2_7_37_1 Jiao S. Q. (e_1_2_7_33_1) 2019; 6 e_1_2_7_39_1 Li R. (e_1_2_7_58_1) 2020; 4 Luo S. J. (e_1_2_7_28_1) 2019; 29 Zhang F. (e_1_2_7_31_1) 2020; 10 Li Z. (e_1_2_7_42_1) 2021; 9 e_1_2_7_6_1 e_1_2_7_4_1 Zhao M. Q. (e_1_2_7_34_1) 2015; 27 e_1_2_7_8_1 e_1_2_7_18_1 Xu S. (e_1_2_7_54_1) 2018; 50 e_1_2_7_16_1 e_1_2_7_2_1 Zuo W. (e_1_2_7_43_1) 2017; 29 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_1 Liu W. (e_1_2_7_38_1) 2017; 29 e_1_2_7_46_1 Liu Z. (e_1_2_7_47_1) 2014; 267 e_1_2_7_48_1 e_1_2_7_29_1 Wang J. Q. (e_1_2_7_44_1) 2018; 6 Jian Z. (e_1_2_7_27_1) 2020; 10 e_1_2_7_51_1 e_1_2_7_53_1 Park Y. L. (e_1_2_7_61_1) 2012; 12 e_1_2_7_24_1 Ma X. P. (e_1_2_7_25_1) 2019; 20 e_1_2_7_22_1 e_1_2_7_20_1 e_1_2_7_59_1 Dall'Agnese Y. (e_1_2_7_32_1) 2016; 306 Zhao F. F. (e_1_2_7_57_1) 2020; 14 Li X. L. (e_1_2_7_30_1) 2020; 14 |
References_xml | – volume: 267 start-page: 941 year: 2014 publication-title: J. Power Sources – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 7 start-page: 867 year: 2014 publication-title: Energy Environ. Sci. – volume: 74 year: 2020 publication-title: Nano Energy – volume: 4 start-page: 2487 year: 2013 publication-title: Nat. Commun. – volume: 11 start-page: 941 year: 2018 publication-title: Energy Environ. Sci. – volume: 6 start-page: 496 year: 2011 publication-title: Nat. Nanotechnol. – volume: 25 start-page: 4035 year: 2013 publication-title: Adv. Mater. – volume: 50 year: 2018 publication-title: Nano Energy – volume: 26 start-page: 3711 year: 2016 publication-title: Adv. Funct. Mater. – volume: 62 start-page: 550 year: 2019 publication-title: Nano Energy – volume: 11 start-page: 3367 year: 2018 publication-title: Energy Environ. Sci. – volume: 20 start-page: 172 year: 2019 publication-title: Energy Storage Mater. – volume: 27 year: 2015 publication-title: Adv. Mater. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 9 start-page: 2847 year: 2016 publication-title: Energy Environ. Sci. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 32 start-page: 734 year: 2020 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 29 start-page: 2899 year: 2017 publication-title: Adv. Mater. – volume: 60 start-page: 479 year: 2019 publication-title: Nano Energy – volume: 12 start-page: 3059 year: 2016 publication-title: Small – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 510 year: 2019 publication-title: Adv. Sci. – volume: 4 start-page: 603 year: 2020 publication-title: Small Methods – volume: 306 year: 2016 publication-title: J. Power Sources – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 1 start-page: 82 year: 2015 publication-title: Energy Storage Mater. – volume: 10 start-page: 541 year: 2020 publication-title: Adv. Energy Mater. – volume: 32 start-page: 53 year: 2020 publication-title: Adv. Mater. – volume: 3 start-page: 335 year: 2019 publication-title: Small Methods – volume: 60 start-page: 172 year: 2015 publication-title: Electrochem. Commun. – volume: 27 start-page: 339 year: 2017 publication-title: Adv. Funct. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 16 start-page: 812 year: 2004 publication-title: Chem. Mater. – volume: 6 start-page: 3933 year: 2018 publication-title: J. Mater. Chem. A – volume: 1 year: 2017 publication-title: Small Methods – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 29 start-page: 3443 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 651 year: 2010 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 64 year: 2020 publication-title: Natl. Sci. Rev. – volume: 6 start-page: 6544 year: 2015 publication-title: Nat. Commun. – volume: 10 start-page: 3592 year: 2014 publication-title: Small – volume: 56 start-page: 404 year: 2021 publication-title: J. Energy Chem. – volume: 9 start-page: 7475 year: 2021 publication-title: J. Mater. Chem. A – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 52 start-page: 53 year: 2019 publication-title: Acc. Chem. Res. – volume: 27 start-page: 7475 year: 2020 publication-title: Cellulose – volume: 24 start-page: 3184 year: 2012 publication-title: Adv. Mater. – volume: 26 year: 2014 publication-title: Adv. Mater. – volume: 12 year: 2012 publication-title: IEEE Sens. J. – volume: 13 year: 2017 publication-title: Small – volume: 27 start-page: 5296 year: 2015 publication-title: Adv. Mater. – ident: e_1_2_7_16_1 doi: 10.1016/j.nanoen.2019.05.059 – ident: e_1_2_7_5_1 doi: 10.1002/smll.201503527 – volume: 9 start-page: 7475 year: 2021 ident: e_1_2_7_42_1 publication-title: J. Mater. Chem. A – ident: e_1_2_7_17_1 doi: 10.1002/adfm.201802564 – volume: 29 start-page: 3443 year: 2017 ident: e_1_2_7_38_1 publication-title: Adv. Mater. – ident: e_1_2_7_19_1 doi: 10.1002/adfm.202007843 – volume: 14 year: 2020 ident: e_1_2_7_57_1 publication-title: ACS Nano – ident: e_1_2_7_1_1 doi: 10.1039/c3ee43526a – ident: e_1_2_7_46_1 doi: 10.1039/C7EE03232C – ident: e_1_2_7_8_1 doi: 10.1002/adma.201301332 – ident: e_1_2_7_22_1 doi: 10.1002/adfm.201505548 – volume: 4 start-page: 603 year: 2020 ident: e_1_2_7_58_1 publication-title: Small Methods – ident: e_1_2_7_13_1 doi: 10.1038/nnano.2011.110 – volume: 10 year: 2020 ident: e_1_2_7_27_1 publication-title: Adv. Energy Mater. – ident: e_1_2_7_41_1 doi: 10.1007/s10570-020-03310-7 – volume: 6 year: 2018 ident: e_1_2_7_44_1 publication-title: J. Mater. Chem. A – ident: e_1_2_7_6_1 doi: 10.1002/aenm.201601372 – ident: e_1_2_7_48_1 doi: 10.1021/cm049649j – ident: e_1_2_7_51_1 doi: 10.1016/j.jechem.2020.08.005 – ident: e_1_2_7_3_1 doi: 10.1016/j.ensm.2015.08.005 – volume: 20 start-page: 172 year: 2019 ident: e_1_2_7_25_1 publication-title: Energy Storage Mater. – ident: e_1_2_7_45_1 doi: 10.1038/nenergy.2016.39 – volume: 27 year: 2015 ident: e_1_2_7_34_1 publication-title: Adv. Mater. – ident: e_1_2_7_7_1 doi: 10.1039/C6EE01717G – ident: e_1_2_7_39_1 doi: 10.1021/acs.accounts.8b00486 – ident: e_1_2_7_15_1 doi: 10.1038/ncomms3487 – volume: 306 year: 2016 ident: e_1_2_7_32_1 publication-title: J. Power Sources – ident: e_1_2_7_18_1 doi: 10.1002/adma.201806005 – volume: 6 start-page: 510 year: 2019 ident: e_1_2_7_33_1 publication-title: Adv. Sci. – ident: e_1_2_7_9_1 doi: 10.1093/nsr/nwz070 – volume: 14 year: 2020 ident: e_1_2_7_30_1 publication-title: ACS Nano – ident: e_1_2_7_11_1 doi: 10.1039/C8TA05862H – ident: e_1_2_7_21_1 doi: 10.1002/adma.201501622 – volume: 267 start-page: 941 year: 2014 ident: e_1_2_7_47_1 publication-title: J. Power Sources – ident: e_1_2_7_50_1 doi: 10.1002/aenm.201802800 – ident: e_1_2_7_4_1 doi: 10.1016/j.nanoen.2020.104812 – volume: 27 start-page: 339 year: 2017 ident: e_1_2_7_35_1 publication-title: Adv. Funct. Mater. – volume: 50 year: 2018 ident: e_1_2_7_54_1 publication-title: Nano Energy – volume: 29 start-page: 2899 year: 2017 ident: e_1_2_7_43_1 publication-title: Adv. Mater. – ident: e_1_2_7_59_1 doi: 10.1002/smtd.201600029 – volume: 29 year: 2019 ident: e_1_2_7_28_1 publication-title: Adv. Funct. Mater. – volume: 60 start-page: 479 year: 2019 ident: e_1_2_7_55_1 publication-title: Nano Energy – volume: 12 year: 2012 ident: e_1_2_7_61_1 publication-title: IEEE Sens. J. – ident: e_1_2_7_10_1 doi: 10.1039/C7TA10936A – ident: e_1_2_7_24_1 doi: 10.1016/j.elecom.2015.09.002 – volume: 26 year: 2014 ident: e_1_2_7_36_1 publication-title: Adv. Mater. – volume: 32 start-page: 53 year: 2020 ident: e_1_2_7_40_1 publication-title: Adv. Mater. – volume: 10 start-page: 541 year: 2020 ident: e_1_2_7_31_1 publication-title: Adv. Energy Mater. – ident: e_1_2_7_53_1 doi: 10.1002/aenm.201703043 – ident: e_1_2_7_20_1 doi: 10.1039/C8EE02567C – ident: e_1_2_7_52_1 doi: 10.1002/adfm.202003721 – ident: e_1_2_7_49_1 doi: 10.1002/adma.201200246 – ident: e_1_2_7_37_1 doi: 10.1002/smll.201470106 – ident: e_1_2_7_56_1 doi: 10.1002/adma.202000716 – ident: e_1_2_7_29_1 doi: 10.1002/adfm.202000706 – ident: e_1_2_7_23_1 doi: 10.1038/ncomms7544 – ident: e_1_2_7_14_1 doi: 10.1038/nnano.2010.162 – ident: e_1_2_7_12_1 doi: 10.1002/aenm.201901957 – ident: e_1_2_7_2_1 doi: 10.1002/adma.201602802 – volume: 13 year: 2017 ident: e_1_2_7_60_1 publication-title: Small – volume: 3 start-page: 335 year: 2019 ident: e_1_2_7_26_1 publication-title: Small Methods |
SSID | ssj0001537418 |
Score | 2.5569515 |
Snippet | Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising capacitor‐type... Micro-supercapacitors are notorious for their low energy densities compared to micro-batteries. While MXenes have been identified as promising capacitor-type... Abstract Micro‐supercapacitors are notorious for their low energy densities compared to micro‐batteries. While MXenes have been identified as promising... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2100775 |
SubjectTerms | capacitor‐type anodes Carbon Cellulose Design Electrodes Electrolytes Energy storage Engineering Graphene hybrid micro‐supercapacitors interlayer engineering MXene Zn2+ transfer kinetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbhMxFLVQV2wQ5TlQkJGQgMWombE9jyUtrSJE2YRK2Y38FEjVpAoJUnZ8Agu-kC_hXHsySgSoG7bjm7F1H7nnjq-PGXspC13I4ERemrrNUX-JvK2Vyg2iwwrRapG6LT5W00v5fq7mO1d9UU9YogdOiju2pWi9BE5QopUKLwN-p13MMCmtrotA_77IeTvFVDofLIiWZcvSOCmPtftG7NxlEUnf9rJQJOv_G8L8s1FyF8DGDHR-l90ZoCN_m5Z8yG75_h47HILzK389MEi_uc9-xu98Vxpwms8iQex66fkO9SBfBH4xh_yv7z9OkMccP0XStIjuJZ5QbcrP0v04znPAWj7d0MkufkHte5CYra_90m5_wlex95Ynrs4Nxj9QKxImpHOF_B31yK82D9jl-dmn02k-XL-QW1U1MldBBe8BX9yk0k4KW0PhyHgwujKNaYI2rRFBVTLuJ-pKOmm0gZVNY6U14iE76Be9f8w4QIh10gltGyOrEExAmYPa2DpYyiqZsXxrjs4O3OR0RcZVl1iVy47M143my9irUf46sXL8U_KErDtKEZt2fAAf6wYf627ysYwdbX2jG0IcUwA5lhUAEeZ4MQ4jOGnHRfd-sSYZSeQ2sphk7FFypXElBB9qgKeM1XtOtrfU_ZH-y-dIAN4I2KElrUV3vEEFHQDOjEh9nvwPXTxlt-nNqQfyiB3Aif0z4LKVeR5D8Dclrzep priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvcAB0fJoSqmMhAQcom5iO48TYtutVohWiKXS3iI_oVKVLNvdSnvjJ3DgF_JLmHGcsCte13isPGbG8409-YaQ5zyRCXeGxanKyxjyLxaXuRCxAu_QjJWStdUW59n4gr-dimnYcLsOZZXdmugXatNo3CM_gtAMSAHij3g9-xJj1yg8XQ0tNG6TbViCC0i-toej8_cffu2yCIb0LB1b4yA9kuYGWbrTxJO_bUQjT9r_J6T5e8HkOpD1kej0PrkXICR90-p8h9yy9S65u0YsuEt2gste05eBV_rVA_Ld7_5dSQDZdOJpY5dzS9fm0cbRsynI__j6bQjRzdBjCKUafH4OVzBjpaO2a46xFMAuHa_wfy96hkV9IDFZzuxcd1Powlfk0pbBcwXj77BACW6IfxvSE6ycX6wekovT0cfjcRyaMsRaZAWPhRPOWgA1ZpBJw5nOtYRVgoEpCFWowklVKuZExv0po8y44Uoq0L0qNNeKPSJbdVPbPUIBmmjDDZO6UDxzTjlIfiBj1gb0pgWPSNwpp9KBsRwbZ1xVLddyWqEyq16ZEXnRy89aro6_Sg5R170Ucmz7C838UxVcttIpKy0HhCpYyQWYMWSOeH7uBim8cuIictBZShUcH27Rm2lEnvXD4LJ4DiNr2yxRhiPlDU8GEXncGlb_JAgqcoBUEck3TG7jUTdH6svPnha8YKCHEr-aN87_fIIKYM8EqX72__0aT8gdnNPWPB6QLTBP-xRw2EIdBmf7Cfn9NyU priority: 102 providerName: ProQuest |
Title | Interlayer Structure Engineering of MXene‐Based Capacitor‐Type Electrode for Hybrid Micro‐Supercapacitor toward Battery‐Level Energy Density |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202100775 https://www.ncbi.nlm.nih.gov/pubmed/34137521 https://www.proquest.com/docview/2562262405 https://www.proquest.com/docview/2542361410 https://pubmed.ncbi.nlm.nih.gov/PMC8373094 https://doaj.org/article/c239e4835539454691484212f02ca71f |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5Be-GCKE_TEi0SEnCwmnhn_Tg2baoINVVFqJSbtU9AqpwqTZBy60_gwC_klzCzdtxYgBAnS7tj79oz4_1md_Zbxt7AQA3AWxEnOitijL9EXGRSxhq9wwhRKFFnW5yn40v4MJOzrV38NT9EO-FGnhH-1-TgSt8c3pGGKvuN6LaTQWBxu892aX8tsecncHE3yyIF0bPQCXMYXcciB9gwN_aTw-4jOiNTIPD_E-r8PXlyG9SGUen0EXvYwEl-VOt_j91z1WO21zjsDX_XsEq_f8J-hLm_K4UQm08Daexq4fgWHSGfez6ZofzP2-9DHNssP8aB1KDHL7CE4lU-qs_MsY4j1OXjNe324hNK6UOJ6eraLczmFr4M-bi85u9cY_0ZpSdhg7TXkJ9Q3vxy_ZRdno4-HY_j5kiG2Mg0h1h66Z1DSGP7qbIgTGYU_iMEGoLUuc690oUWXqYQ1hhVCha00qh5nRswWjxjO9W8ci8YR2BiLFihTK4h9V57DH0wXjYWtWYkRCzeqKM0DV85HZtxVdZMy0lJ6itb9UXsbSt_XTN1_FVySNptpYhhOxTMF5_LxmFLk4jCAeJTKQqQaMQYN9Lque8n-MoDH7GDjW2UjdtjE4gmkxRBErbxuq1Gh6VVGFW5-YpkgAhvYNCP2PPalNqeEKTIEFBFLOsYWaer3Zrq65dACp4L1ENBXy2Y4z8-QYmgZ0pEPy__U36fPaDCOgXygO2gvbpXCMuWuhc8r8d2j04mZ1O8DkfnFx97YZLjFxpeOew |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEC0vQ4FFAgEHq7F317EPCJE2VUqTCJFWys3dlwGpSkKagHLjJ3Dgd_Cj-CXM-EUiXqdevbP2rmd2Hruz3wA8FoEKRGa5H-pW4mP8xf2kJaWvcXUYzhPFi2yLQdQ9Ea9HcrQB36u7MJRWWenEXFHbiaE98l00zegpoP2RL6cffaoaRaerVQmNQiyO3PIzhmznLw73kb9PwvCgc7zX9cuqAr6RUSx8mcnMObTKthkpK7hpGYViznEuUsc6zpRONM9kJPJjMhUJK7TSOHgdG2E0x_degk3BMZRpwGa7M3jz9teujuQEB1OhQzbDXWU_ESp4GORgc2vWLy8S8CfP9vcEzVXHObd8B9fhWumysleFjG3Bhhtvw9UVIMNt2CpVxDl7VuJYP78B3_LdxjOFTj0b5jC1i5ljK_3YJGP9EdL_-PK1jdbUsj003QZ1zAyfUITMOkWVHusYOtesu6T7ZaxPSYRIMVxM3cxUXdg8zwBmBWLoEtt7lBCFH6TbjWyfMvXny5twciHsugWN8WTs7gBDV8hYYbkysRZRlukMgy2M0I1FvhkpPPAr5qSmREinQh1naYHtHKbEzLRmpgdPa_ppgQ3yV8o28bqmIkzv_MFk9i4tVURqQp44gR6x5ImQuGwwUqXz-qwZ4pSDzIOdSlLSUtHgJ-pl4cGjuhlVBJ37qLGbLIhGEMSOCJoe3C4Eqx4JOTEtdOE8aK2J3NpQ11vGH97nMOQxRz4k9Ndy4fzPL0jRzRoStNDdf0_jIVzuHvd7ae9wcHQPrlD_It9yBxooqu4--oBz_aBceAxOL3qt_wQcEXVo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLS8DAUWCQQcrCTeXT8OCJEmUUrbqKJUys317noBqUpCmoBy4ydw4Nfwc_glzKwfJOJ16tWetb2e9-7sNwCPRTtrC2u4H6go8TH_4n4SSekr1A7NeZLxotpiGA5OxOuRHG3A9-osDJVVVjbRGWoz0bRG3kTXjJEC-h_ZtGVZxFG3_3L60acOUrTTWrXTKERkP19-xvTt_MVeF3n9JAj6vbe7A7_sMOBrGcbCl1baPEcPbVphZgTXkc5Q5DnOS6pYxTZTieJWhsJtmWWhMEJlCieiYi204vjcS7AZYVbUasBmpzc8evNrhUdygoapkCJbQTMznwghPGg74Lk1T-gaBvwpyv29WHM1iHZesH8drpXhK3tVyNsWbOTjbbi6Amq4DVuluThnz0pM6-c34JtbeTzLMMBnxw6ydjHL2co4NrHscIT0P7587aBnNWwX3bhGezPDK5Qts17RscfkDANtNljSWTN2SAWFSHG8mOYzXQ1hc1cNzAr00CXeP6DiKHwhnXRkXarany9vwsmFsOsWNMaTcX4HGIZF2gjDMx0rEVqrLCZemK1rg3zTUnjgV8xJdYmWTk07ztIC5zlIiZlpzUwPntb00wIn5K-UHeJ1TUX43u7CZPYuLc1FqgOe5AKjY8kTIVGFMGulvXvbCnDKbevBTiUpaWl08BW1injwqL6N5oL2gLJxPlkQjSC4HdFueXC7EKz6SyigiTCc8yBaE7m1T12_M_7w3kGSxxz5kNBfc8L5n1-QYsh1TDBDd_89jYdwGXU8Pdgb7t-DKzS8KL3cgQZKan4fw8G5elDqHYPTi1b1nzQveZ0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interlayer+Structure+Engineering+of+MXene-Based+Capacitor-Type+Electrode+for+Hybrid+Micro-Supercapacitor+toward+Battery-Level+Energy+Density&rft.jtitle=Advanced+science&rft.au=Cheng%2C+Wenxiang&rft.au=Fu%2C+Jimin&rft.au=Hu%2C+Haibo&rft.au=Ho%2C+Derek&rft.date=2021-08-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=8&rft.issue=16&rft.spage=e2100775&rft_id=info:doi/10.1002%2Fadvs.202100775&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |