TP53 Mutations in Human Cancer: Database Reassessment and Prospects for the Next Decade
ABSTRACT More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure–function rela...
Saved in:
Published in | Human mutation Vol. 35; no. 6; pp. 672 - 688 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.06.2014
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure–function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high‐throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor‐suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations‐targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers.
Frequency of cancer deaths worldwide and relationship to the frequency of TP53 mutations. |
---|---|
AbstractList | More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure-function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high-throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor-suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations-targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers.More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure-function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high-throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor-suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations-targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers. More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database ( http://p53.fr ). Analyses of these mutations have been invaluable for bettering our knowledge on the structure-function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high-throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor-suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations-targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers. Frequency of cancer deaths worldwide and relationship to the frequency of TP53 mutations. ABSTRACT More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure–function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high‐throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor‐suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations‐targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers. Frequency of cancer deaths worldwide and relationship to the frequency of TP53 mutations. More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure-function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high-throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor-suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations-targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers. |
Author | Anderson, Martha Leroy, Bernard Soussi, Thierry |
Author_xml | – sequence: 1 givenname: Bernard surname: Leroy fullname: Leroy, Bernard organization: Université Pierre et Marie Curie-Paris 6, 75005, Paris, France – sequence: 2 givenname: Martha surname: Anderson fullname: Anderson, Martha organization: Karolinska Institute Department of Oncology-Pathology Cancer Center Karolinska (CCK), Stockholm SE-171 76, Sweden – sequence: 3 givenname: Thierry surname: Soussi fullname: Soussi, Thierry email: thierry.soussi@ki.se organization: Université Pierre et Marie Curie-Paris 6, 75005, Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24665023$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:129096125$$DView record from Swedish Publication Index |
BookMark | eNqNkU9P3DAQxa2KqvzrpR-gstQLqhTq2LFj91aWslsJFlSx5Wh5nYkIJM7WdgR8e7zNsgdUVT35efR7Y8-8fbTjegcIfcjJcU4I_XI7dMMxpZzTN2gvJ0pmqVzsrDVXWVmqYhfth3BHCJGcs3dolxZCcELZHrq5vuIMXwzRxKZ3ATcOz4bOODwxzoL_ik9NNEsTAP8EEwKE0IGL2LgKX_k-rMDGgOve43gLeA6PEZ-CNRUcore1aQO835wHaHH2_Xoyy84vpz8m384zy4WkmVW2TGJZFdxWQhlmiWDpIqUhdW3SMFZVilqhuAFhleLElkpWNVCuiKrYAcrGvuEBVsNSr3zTGf-ke9PoTek-KdCc0pLKxB-N_Mr3vwcIUXdNsNC2xkE_BJ1zVsicF6T4D5SWjJGiVAn99Aq96wfv0uA6F1zJBMn12x831LDsoNr-9SWNBHweAZtWGzzUWyQneh21Xket_0SdYPIKts2YYvSmaf9uyUfLQ9PC0z-a69niYvHi2Sy4CREetx7j77UoWcn1zXyq6S8xL06mXFP2DPu9yCU |
CitedBy_id | crossref_primary_10_1155_2023_3801526 crossref_primary_10_1016_j_mcp_2023_101897 crossref_primary_10_1186_s40364_024_00710_w crossref_primary_10_3233_THC_231051 crossref_primary_10_1007_s12253_018_0543_0 crossref_primary_10_1016_j_drup_2018_05_001 crossref_primary_10_1158_0008_5472_CAN_16_2179 crossref_primary_10_1007_s13273_023_00340_7 crossref_primary_10_1016_j_cllc_2023_12_004 crossref_primary_10_1136_gutjnl_2019_318279 crossref_primary_10_3390_biom10040548 crossref_primary_10_18632_oncotarget_11169 crossref_primary_10_1016_j_prp_2020_152997 crossref_primary_10_1158_1535_7163_MCT_19_0366 crossref_primary_10_1063_5_0243722 crossref_primary_10_1002_mco2_586 crossref_primary_10_3892_ijo_2023_5587 crossref_primary_10_1177_10668969211006194 crossref_primary_10_1186_s40164_022_00317_7 crossref_primary_10_1002_jcp_24813 crossref_primary_10_1007_s11684_023_1016_8 crossref_primary_10_18632_oncotarget_27738 crossref_primary_10_3389_fonc_2022_895112 crossref_primary_10_1016_j_xjidi_2022_100152 crossref_primary_10_1186_s12935_023_03208_x crossref_primary_10_3389_fonc_2021_687899 crossref_primary_10_3724_abbs_2023270 crossref_primary_10_1038_s41467_019_13305_z crossref_primary_10_3389_fonc_2020_554165 crossref_primary_10_4103_joah_joah_71_24 crossref_primary_10_5937_mp71_28969 crossref_primary_10_1093_nar_gkx721 crossref_primary_10_1371_journal_pone_0318856 crossref_primary_10_1016_j_hoc_2021_04_002 crossref_primary_10_7759_cureus_61165 crossref_primary_10_1002_anbr_202200083 crossref_primary_10_1038_s41416_023_02378_9 crossref_primary_10_1038_s41467_018_05368_1 crossref_primary_10_3390_cancers10060166 crossref_primary_10_1002_cac2_12520 crossref_primary_10_3390_cancers12071713 crossref_primary_10_1093_bfgp_elac015 crossref_primary_10_1016_j_ejphar_2022_174807 crossref_primary_10_1038_bjc_2017_152 crossref_primary_10_1002_humu_22562 crossref_primary_10_1097_MD_0000000000031023 crossref_primary_10_1002_humu_22561 crossref_primary_10_1002_ijc_29886 crossref_primary_10_3389_fendo_2019_00152 crossref_primary_10_3390_cancers15245834 crossref_primary_10_2174_1871520618666180911112127 crossref_primary_10_1007_s00438_017_1328_y crossref_primary_10_1016_j_celrep_2019_05_109 crossref_primary_10_1096_fba_2020_00044 crossref_primary_10_1177_03946320231211795 crossref_primary_10_3390_cancers15143560 crossref_primary_10_3390_genes13122302 crossref_primary_10_1016_j_yexcr_2022_113210 crossref_primary_10_1080_10428194_2018_1564825 crossref_primary_10_1073_pnas_2015618118 crossref_primary_10_1038_s41375_024_02267_x crossref_primary_10_3390_cells9071656 crossref_primary_10_3390_cancers15102707 crossref_primary_10_1016_j_envpol_2019_113908 crossref_primary_10_1097_HS9_0000000000000761 crossref_primary_10_1016_j_ygyno_2020_12_007 crossref_primary_10_1038_s41392_022_01042_7 crossref_primary_10_3390_ijms222212516 crossref_primary_10_2958_suizo_33_937 crossref_primary_10_1097_PGP_0000000000000243 crossref_primary_10_1111_his_15398 crossref_primary_10_1016_j_prp_2019_03_007 crossref_primary_10_1101_cshperspect_a026252 crossref_primary_10_1007_s40259_024_00702_0 crossref_primary_10_1055_s_0043_1774776 crossref_primary_10_1146_annurev_biochem_060815_014710 crossref_primary_10_1089_scd_2017_0254 crossref_primary_10_1002_cbf_4075 crossref_primary_10_3390_cancers10040110 crossref_primary_10_1186_s41544_019_0045_6 crossref_primary_10_1007_s12094_019_02236_2 crossref_primary_10_1021_acsptsci_2c00164 crossref_primary_10_1002_humu_23673 crossref_primary_10_1093_hmg_ddy323 crossref_primary_10_3389_fgene_2023_1061569 crossref_primary_10_1200_JCO_2017_75_5215 crossref_primary_10_3390_genes15050577 crossref_primary_10_1016_j_jmb_2022_167663 crossref_primary_10_1016_j_biopha_2022_113524 crossref_primary_10_3390_ijms241914862 crossref_primary_10_3390_cells8060584 crossref_primary_10_1186_s40164_022_00353_3 crossref_primary_10_3892_or_2017_5891 crossref_primary_10_1093_jmcb_mjaa065 crossref_primary_10_3389_fonc_2020_607149 crossref_primary_10_3390_diagnostics10070455 crossref_primary_10_6004_jnccn_2021_0001 crossref_primary_10_1002_jcla_23765 crossref_primary_10_1158_1541_7786_MCR_21_0098 crossref_primary_10_1038_cddis_2015_33 crossref_primary_10_1093_jnci_djad106 crossref_primary_10_1371_journal_pgph_0002841 crossref_primary_10_3390_cimb44110372 crossref_primary_10_2174_1389203724666230816090504 crossref_primary_10_1038_s41389_019_0141_3 crossref_primary_10_3390_cells10123315 crossref_primary_10_1016_j_hoc_2022_07_008 crossref_primary_10_1186_s40478_016_0307_6 crossref_primary_10_1186_s12896_015_0208_y crossref_primary_10_1080_15384101_2017_1367070 crossref_primary_10_1002_humu_23543 crossref_primary_10_1186_s13046_019_1137_8 crossref_primary_10_1038_s41598_022_17927_0 crossref_primary_10_1371_journal_pone_0185126 crossref_primary_10_3389_fgene_2014_00447 crossref_primary_10_1016_j_bbrep_2021_101165 crossref_primary_10_3724_abbs_2023021 crossref_primary_10_1016_j_yexmp_2014_10_011 crossref_primary_10_3390_v14040739 crossref_primary_10_3390_curroncol29100582 crossref_primary_10_3390_cancers16183191 crossref_primary_10_1039_C5SC01403D crossref_primary_10_1371_journal_pone_0231665 crossref_primary_10_1186_s12864_018_5262_0 crossref_primary_10_3389_fcell_2020_596679 crossref_primary_10_12998_wjcc_v10_i33_12104 crossref_primary_10_1016_j_biomaterials_2021_120720 crossref_primary_10_1007_s00432_023_04922_9 crossref_primary_10_1038_s41389_022_00401_x crossref_primary_10_1038_s41375_021_01444_6 crossref_primary_10_1016_j_exphem_2022_03_007 crossref_primary_10_1186_s13046_023_02785_z crossref_primary_10_1371_journal_pone_0173171 crossref_primary_10_1002_path_5677 crossref_primary_10_3390_molecules29225315 crossref_primary_10_1530_JME_18_0122 crossref_primary_10_18632_oncotarget_10445 crossref_primary_10_3389_fonc_2020_01103 crossref_primary_10_1007_s11033_024_10051_4 crossref_primary_10_1097_MPA_0000000000000931 crossref_primary_10_1155_2017_3859582 crossref_primary_10_18632_oncotarget_20951 crossref_primary_10_3748_wjg_v28_i25_2854 crossref_primary_10_3390_cancers17030446 crossref_primary_10_1007_s13577_022_00700_w crossref_primary_10_1084_jem_20171066 crossref_primary_10_1016_j_cancergen_2020_01_001 crossref_primary_10_4143_crt_2023_794 crossref_primary_10_1016_j_semcancer_2020_07_005 crossref_primary_10_1093_bib_bbab524 crossref_primary_10_1016_j_trecan_2018_07_001 crossref_primary_10_1016_j_leukres_2020_106402 crossref_primary_10_1021_acs_analchem_7b03487 crossref_primary_10_1016_j_trecan_2018_07_005 crossref_primary_10_12737_article_5b83b6185814e7_31842273 crossref_primary_10_1038_s41698_024_00554_5 crossref_primary_10_1371_journal_pone_0288013 crossref_primary_10_1002_ijc_30222 crossref_primary_10_1038_s41586_022_05551_x crossref_primary_10_1155_2022_3891598 crossref_primary_10_1371_journal_pone_0148529 crossref_primary_10_1016_j_canlet_2020_10_014 crossref_primary_10_1038_s41419_024_07190_8 crossref_primary_10_3390_diagnostics11122174 crossref_primary_10_1007_s12094_024_03841_6 crossref_primary_10_1038_ncomms7605 crossref_primary_10_2174_1566523221666211119110755 crossref_primary_10_1002_iid3_1266 crossref_primary_10_1038_cddis_2015_415 crossref_primary_10_1007_s12041_020_01224_8 crossref_primary_10_1016_j_cancergen_2017_01_001 crossref_primary_10_1051_medsci_20153110013 crossref_primary_10_1021_acs_biochem_8b00271 crossref_primary_10_3389_fonc_2022_995929 crossref_primary_10_1016_j_advms_2016_12_002 crossref_primary_10_3389_fphar_2025_1529483 crossref_primary_10_18632_oncotarget_13406 crossref_primary_10_1016_j_canlet_2023_216391 crossref_primary_10_1097_CCO_0000000000000152 crossref_primary_10_1016_j_celrep_2019_07_001 crossref_primary_10_1080_14728222_2020_1832465 crossref_primary_10_3389_fonc_2022_808886 crossref_primary_10_1016_j_fct_2020_111855 crossref_primary_10_1038_s41523_023_00582_7 crossref_primary_10_1038_s41698_024_00722_7 crossref_primary_10_1186_s13148_017_0334_6 crossref_primary_10_1038_s41525_018_0074_3 crossref_primary_10_1093_annonc_mdv613 crossref_primary_10_2196_35020 crossref_primary_10_1016_j_gene_2017_01_018 crossref_primary_10_1016_j_clml_2018_06_015 crossref_primary_10_1016_j_prp_2024_155183 crossref_primary_10_1186_s13000_022_01273_w crossref_primary_10_1002_hem3_70065 crossref_primary_10_3390_cimb45100501 crossref_primary_10_1002_mc_23804 crossref_primary_10_1038_s41401_021_00852_9 crossref_primary_10_3389_fcimb_2020_609071 crossref_primary_10_3390_biom10020307 crossref_primary_10_1021_acssynbio_8b00202 crossref_primary_10_1038_s41375_017_0007_7 crossref_primary_10_3390_cancers13205251 crossref_primary_10_1002_ijc_33197 crossref_primary_10_1049_iet_syb_2019_0095 crossref_primary_10_15252_embj_2019102096 crossref_primary_10_3390_genes15121615 crossref_primary_10_1093_carcin_bgv039 crossref_primary_10_1371_journal_pone_0137823 crossref_primary_10_3892_or_2014_3579 crossref_primary_10_1186_s12935_018_0528_9 crossref_primary_10_3390_ijms21249648 crossref_primary_10_3390_ijms25010652 crossref_primary_10_1186_s12885_019_5312_2 crossref_primary_10_1002_humu_23717 crossref_primary_10_3389_fsurg_2023_1079129 crossref_primary_10_1098_rsfs_2020_0072 crossref_primary_10_3390_cells10010098 crossref_primary_10_3390_cancers15102834 crossref_primary_10_1016_j_ebiom_2020_102990 crossref_primary_10_1111_bjh_13849 crossref_primary_10_1038_cdd_2015_53 crossref_primary_10_1002_gcc_22318 crossref_primary_10_18632_oncotarget_27814 crossref_primary_10_18632_aging_203219 crossref_primary_10_3390_ijms25126612 crossref_primary_10_3390_cancers13102422 crossref_primary_10_1093_pnasnexus_pgac128 crossref_primary_10_1002_cnr2_1822 crossref_primary_10_3390_cancers13071531 crossref_primary_10_1371_journal_pone_0142750 crossref_primary_10_1016_j_apsb_2021_09_028 crossref_primary_10_2139_ssrn_3307592 crossref_primary_10_1016_j_gendis_2020_11_007 crossref_primary_10_1158_0008_5472_CAN_20_2002 crossref_primary_10_1109_TCBB_2018_2814049 crossref_primary_10_1016_j_bcp_2018_12_014 crossref_primary_10_1002_cam4_6729 crossref_primary_10_1007_s11033_021_06505_8 crossref_primary_10_1016_j_biopha_2023_114683 crossref_primary_10_1021_acsami_2c18020 crossref_primary_10_1007_s11060_017_2676_5 crossref_primary_10_1155_2022_4049147 crossref_primary_10_1158_0008_5472_CAN_21_0033 crossref_primary_10_3389_fcell_2021_762796 crossref_primary_10_1016_j_bneo_2024_100004 crossref_primary_10_1038_s41419_024_06429_8 crossref_primary_10_1186_s13046_022_02269_6 crossref_primary_10_1002_jcb_28404 crossref_primary_10_1038_nrc_2017_109 crossref_primary_10_1016_j_canlet_2017_07_010 crossref_primary_10_1002_humu_23163 crossref_primary_10_1155_2019_1410495 crossref_primary_10_1007_s10549_020_05536_2 crossref_primary_10_3390_cancers16132479 crossref_primary_10_3390_cancers12123699 crossref_primary_10_2174_0113892029278082240118053857 crossref_primary_10_1016_j_aca_2018_07_027 crossref_primary_10_1016_j_ygyno_2024_03_023 crossref_primary_10_1038_s41388_021_02141_5 crossref_primary_10_3389_fonc_2022_940402 crossref_primary_10_1007_s12551_020_00723_3 |
Cites_doi | 10.1038/sj.onc.1201878 10.1002/humu.20114 10.1126/science.2554494 10.1074/jbc.M110.174698 10.1158/1078-0432.CCR-05-0413 10.1016/j.semcancer.2010.02.006 10.1038/nature10166 10.1038/nrc2232 10.1016/0092-8674(90)90409-8 10.1371/journal.ppat.1003246 10.1038/sj.cdd.4402196 10.1002/j.1460-2075.1994.tb06656.x 10.4161/cc.3.4.801 10.1074/jbc.M603387200 10.1200/JCO.2011.40.7783 10.1210/jc.2012-1184 10.1038/nrc3430 10.1038/nrc1783 10.1093/nar/gkr407 10.1038/sj.onc.1210279 10.1073/pnas.0907840106 10.1016/j.gde.2010.10.002 10.1073/pnas.161479898 10.1126/scisignal.2004088 10.1177/1947601911404223 10.1002/gcc.2870040102 10.1016/j.mrfmmm.2009.01.005 10.1126/science.2649981 10.1128/JVI.31.2.472-483.1979 10.1038/nature10983 10.1093/carcin/21.11.2113 10.1038/nature05194 10.1093/emboj/18.16.4424 10.1038/nrm3086 10.1038/nsb730 10.1073/pnas.1205457109 10.1002/humu.22561 10.1016/j.celrep.2013.04.012 10.1073/pnas.84.21.7716 10.1038/nrc2724 10.1038/nrg3051 10.1038/sj.onc.1208839 10.1038/nature11881 10.1126/scitranslmed.3006086 10.1002/ijc.27767 10.1038/nature12213 10.1586/erm.12.46 10.1038/nrm2147 10.1038/ng.619 10.1038/nrc3318 10.1016/j.virol.2008.09.034 10.1016/j.cell.2012.04.026 10.1002/humu.10189 10.1038/ng.2702 10.1038/nature12477 10.1016/j.cell.2014.01.051 10.4103/2229-3485.111800 10.1126/science.1204040 10.1002/humu.22556 10.1038/nature11252 10.1073/pnas.1311126110 10.1093/carcin/bgp269 10.1073/pnas.1431692100 10.1016/S0168-9525(96)10043-3 10.1200/JCO.2012.46.3711 10.1056/NEJMoa1213261 10.1002/humu.22508 10.1016/B978-0-12-386469-7.00005-0 10.1002/humu.22506 10.1182/blood-2011-11-366062 10.1158/2159-8290.CD-12-0095 10.1126/science.274.5289.948 10.1038/nsb0495-321 10.1038/35106009 10.1002/humu.22518 10.1002/humu.10177 10.1073/pnas.94.8.3893 10.1038/nrc2886 10.1038/modpathol.2008.104 10.1126/scitranslmed.3006200 10.4161/cc.9.9.11545 10.1126/science.8023159 10.1016/j.celrep.2012.12.008 10.1101/cshperspect.a000927 10.1038/nature08629 10.1101/cshperspect.a000950 10.1073/pnas.1200019109 10.1038/sj.onc.1202314 10.1002/humu.10179 10.1016/0140-6736(91)92236-U 10.1038/nature07943 10.1007/BF00278187 10.1126/science.1905840 10.1093/emboj/18.6.1660 10.1016/S0168-9525(97)01246-8 10.1073/pnas.0507904102 10.1016/j.cell.2011.03.035 10.1101/gr.125567.111 10.1002/humu.22559 10.1038/278261a0 10.4161/cbt.7.5.5712 10.1002/humu.22507 10.1016/0092-8674(79)90293-9 10.1021/bi200642e 10.2174/1389450114666140106101412 10.1002/humu.10176 10.1101/cshperspect.a001222 10.1126/science.8023157 10.1093/nar/gkq800 10.1038/nrclinonc.2009.145 10.1073/pnas.0701248104 10.1016/j.cmet.2013.06.019 10.1038/nature12634 10.1038/nrg2164 10.1101/gad.2017311 10.1038/362857a0 10.1146/annurev.genom.7.080505.115630 10.1016/j.molonc.2010.04.004 10.1073/pnas.0907948106 |
ContentType | Journal Article |
Copyright | 2014 WILEY PERIODICALS, INC. Copyright © 2014 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 WILEY PERIODICALS, INC. – notice: Copyright © 2014 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 8FD FR3 K9. P64 RC3 7X8 ADTPV AOWAS |
DOI | 10.1002/humu.22552 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic SwePub SwePub Articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1098-1004 |
EndPage | 688 |
ExternalDocumentID | oai_swepub_ki_se_522728 3610748421 24665023 10_1002_humu_22552 HUMU22552 ark_67375_WNG_2V6N4BG5_2 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Cancerföreningen iStockholm and Cancerfonden |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 29I 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88A 88E 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DVXWH EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GNP GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HHZ HMCUK HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M0L M1P M66 M7P MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PIMPY PQQKQ PROAC PSQYO Q.N Q11 Q2X QB0 QRW R.K RHX RIWAO RJQFR ROL RWI RWV RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS UKHRP V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WTM WXSBR WYISQ X7M XG1 XSW XV2 ZZTAW ~IA ~KM ~WT AANHP ACCMX ACRPL ACYXJ ADNMO PHGZT RPM AAYXX AGQPQ CITATION PHGZM CGR CUY CVF ECM EIF NPM 7QP 7TK 8FD FR3 K9. P64 RC3 7X8 AAMMB ADTPV AEFGJ AGXDD AIDQK AIDYY AOWAS PJZUB PPXIY PQGLB PUEGO |
ID | FETCH-LOGICAL-c5682-c9c7568bd45cd69a3c063d4588a0ffa109c9d92c695ae6c9950c798dfe25909d3 |
IEDL.DBID | DR2 |
ISSN | 1059-7794 1098-1004 |
IngestDate | Mon Aug 25 03:31:13 EDT 2025 Fri Jul 11 10:09:24 EDT 2025 Fri Jul 11 07:18:22 EDT 2025 Fri Jul 25 19:44:46 EDT 2025 Thu Apr 03 07:09:17 EDT 2025 Tue Jul 01 04:33:47 EDT 2025 Thu Apr 24 23:02:27 EDT 2025 Wed Apr 02 05:42:36 EDT 2025 Wed Oct 30 09:58:56 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | mutation cancer TP53 LSDB |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 2014 WILEY PERIODICALS, INC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5682-c9c7568bd45cd69a3c063d4588a0ffa109c9d92c695ae6c9950c798dfe25909d3 |
Notes | ArticleID:HUMU22552 Cancerföreningen iStockholm and Cancerfonden ark:/67375/WNG-2V6N4BG5-2 istex:B192AA349C12F87F7611A32C73F4D1DA35495A61 For the TP53 Special Issue ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/humu.22552 |
PMID | 24665023 |
PQID | 1659804788 |
PQPubID | 30498 |
PageCount | 17 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_522728 proquest_miscellaneous_1534815404 proquest_miscellaneous_1527330479 proquest_journals_1659804788 pubmed_primary_24665023 crossref_primary_10_1002_humu_22552 crossref_citationtrail_10_1002_humu_22552 wiley_primary_10_1002_humu_22552_HUMU22552 istex_primary_ark_67375_WNG_2V6N4BG5_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2014 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: June 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Human mutation |
PublicationTitleAlternate | Human Mutation |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, Johnson D, Wilson M, et al. 2006. Inactivation of the p53 pathway in retinoblastoma. Nature 444:61-66. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. 2013b. Deciphering signatures of mutational processes operative in human cancer. Cell Rep 3:246-259. Clore GM, Omichinski JG, Sakaguchi K, Zambrano N, Sakamoto H, Appella E, Gronenborn AM. 1994. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science 265:386-391. Soussi T, Leroy B, Taschner PEM. 2014. Recommendations for analyzing and reporting TP53 gene alterations in the high throughput sequencing era. Hum Mutat 35:766-778. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP. 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948-953. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, et al. 2012. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346-352. Caron de Fromentel C, Soussi T. 1992. TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer 4:1-15. Brash DE. 1997. Sunlight and the onset of skin cancer. Trends Genet 13:410-414. Rodenhuis S, Slebos RJ, Boot AJ, Evers SG, Mooi WJ, Wagenaar SS, van Bodegom PC, Bos JL. 1988. Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung. Cancer Res 48:5738-5741. Levine AJ, Tomasini R, McKeon FD, Mak TW, Melino G. 2011. The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol 12:259-265. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. 1993. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362:857-860. Letouze E, Rosati R, Komechen H, Doghman M, Marisa L, Fluck C, de Krijger RR, van Noesel MM, Mas JC, Pianovski MA, Zambetti GP, Figueiredo BC, et al. 2012. SNP array profiling of childhood adrenocortical tumors reveals distinct pathways of tumorigenesis and highlights candidate driver genes. J Clin Endocrinol Metab 97:E1284-E1293. Schlomm T, Iwers L, Kirstein P, Jessen B, Kollermann J, Minner S, Passow-Drolet A, Mirlacher M, Milde-Langosch K, Graefen M, Haese A, Steuber T, et al. 2008. Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol 21:1371-1378. Aylon Y, Oren M. 2011. New plays in the p53 theater. Curr Opin Genet Dev 21:86-92. Clore GM, Ernst J, Clubb R, Omichinski JG, Kennedy WM, Sakaguchi K, Appella E, Gronenborn AM. 1995. Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nat Struct Biol 2:321-333. Kamada R, Nomura T, Anderson CW, Sakaguchi K. 2011. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. J Biol Chem 286:252-258. Linzer DI, Levine AJ. 1979. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43-52. Soussi T, Beroud C. 2003. Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Hum Mutat 21:192-200. Cooper WA, Lam DC, O'Toole SA, Minna JD. 2013. Molecular biology of lung cancer. J Thorac Dis 5(Suppl 5):S479-S490. Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, Leonard B, Refsland EW, Kotandeniya D, Tretyakova N, Nikas JB, Yee D, Temiz NA, et al. 2013. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494:366-370. Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, Decarolis PL, Shah K, Socci ND, Weir BA, Ho A, Chiang DY, Reva B, et al. 2010. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 42:715-721. Lane DP, Cheok CF, Lain S. 2010. p53-based cancer therapy. Cold Spring Harb Perspect Biol 2:a001222. Hong B, van den Heuvel AP, Prabhu VV, Zhang S, El-Deiry WS. 2014. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr Drug Targets 15:80-89. Zhao CY, Grinkevich VV, Nikulenkov F, Bao W, Selivanova G. 2010. Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA. Cell Cycle 9:1847-1855. Stratton MR. 2011. Exploring the genomes of cancer cells: progress and promise. Science 331:1553-1558. Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W. 2012. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149:1269-1283. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129-1136. Wade M, Li YC, Wahl GM. 2013. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13:83-96. Ory K, Legros Y, Auguin C, Soussi T. 1994. Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J 13:3496-3504. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, Carter SL, Saksena G, Harris S, Shah RR, et al. 2013. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45:970-976. Leroy B, Girard L, Minna JD, Gazdar AF, Soussi T. 2014. Analysis of p53 mutation status in human cancer cell lines: a reassessment. Hum Mutat 35:756-765. Hutchinson L, DeVita VTJ. 2009. The Holy Grail of biomarkers. Nat Rev Clin Oncol 6:553. Zheng R, Blobel GA. 2010. GATA transcription factors and cancer. Genes Cancer 1:1178-1188. Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U, Suzuki N, Fernandes A, Rosenquist T, Medverec Z, Jakovina K, Brdar B, et al. 2007. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci USA 104:12129-12134. You YH, Szabo PE, Pfeifer GP. 2000. Cyclobutane pyrimidine dimers form preferentially at the major p53 mutational hotspot in UVB-induced mouse skin tumors. Carcinogenesis 21:2113-2117. Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Minna JD. 1989. p53: a frequent target for genetic abnormalities in lung cancer. Science 246:491-494. Kamihara J, Rana HQ, Garber JE. 2014. Germline TP53 mutations and the changing landscape of Li-Fraumeni syndrome. Hum Mutat 35:654-662. Blandino G, Levine AJ, Oren M. 1999. Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18:477-485. Soussi T. 2014. Locus-specific databases in cancer: what future in a post-genomic era? The TP53 LSDB paradigm. Hum Mutat 35:643-653. Poon SL, Pang ST, McPherson JR, Yu W, Huang KK, Guan P, Weng WH, Siew EY, Liu Y, Heng HL, Chong SC, Gan A, et al. 2013. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med 5:197ra101. Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, Diaz LAJ, Goodman SN, David KA, Juhl H, Kinzler KW, Vogelstein B. 2005. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA 102:16368-16373. Malcikova J, Pavlova S, Kozubik KS, Pospisilova S. 2014. TP53 mutation analysis in clinical practice: lessons from chronic lymphocytic leukemia. Hum Mutat 35:663-671. Chin L, Hahn WC, Getz G, Meyerson M. 2011. Making sense of cancer genomic data. Genes Dev 25:534-555. Gupta A. 2013. Fraud and misconduct in clinical research: a concern. Perspect Clin Res 4:144-147. Li J, Poi MJ, Tsai MD. 2011. Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry 50:5566-5582. Soussi T, Asselain B, Hamroun D, Kato S, Ishioka C, Claustres M, Beroud C. 2006a. Meta-analysis of the p53 mutation database for mutant p53 biological activity reveals a methodologic bias in mutation detection. Clin Cancer Res 12:62-69. Toyooka S, Tsuda T, Gazdar AF. 2003. The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat 21:229-239. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, et al. 2012. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401-404. Reva B, Antipin Y, Sander C. 2011. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39:e118. DiGiammarino EL, Lee AS, Cadwell C, Zhang W, Bothner B, Ribeiro RC, Zambetti G, Kriwacki RW. 2002. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat Struct Biol 9:12-16. Hermeking H. 2012. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12:613-626. Ribeiro RC, Sandrini F, Figueiredo B, Zambetti GP, Michalkiewicz E, Lafferty AR, DeLacerda L, Rabin M, Cadwell C, Sampaio G, Cat I, Stratakis CA, et al. 2001. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci USA 98:9330-9335. Meek DW, Anderson CW. 2009. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1:a000950. Soussi T, Ishioka C, Claustres M, Beroud C. 2006b. Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nat Rev Cancer 6:83-90. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C. 2003. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100:8424-8429. Hoang ML, Chen CH, Sidorenko VS, He J, Dickman KG, Yun BH, Moriya M, Niknafs N, Douville C, Karchin R, Turesky RJ, Pu YS, 2007; 104 2010; 10 2013; 3 2013; 4 2012; 486 2012; 487 2013; 368 2010; 463 2004; 3 1988; 78 1979; 31 2013; 5 2012; 12 2013; 6 2011; 474 2012; 97 1993; 362 2013; 9 1998; 16 1979; 278 1994; 265 2010; 20 2010; 1 2005; 102 2007; 8 2014; 15 2007; 7 2008; 21 2013; 110 2006; 281 2010; 2 2012; 22 2010; 4 1992; 4 2006; 444 2010; 9 1979; 17 2010; 31 2002; 9 2013; 502 2013a; 500 1995; 2 1991; 338 2007; 14 2012; 109 2012; 30 2014; 156 2009; 458 2010; 42 2011a; 110 1989; 244 1989; 246 2013b; 3 2014; 35 1994; 13 2011; 145 2003; 100 2003; 21 2012; 119 2009; 106 2006b; 6 2008; 7 2011; 12 2006a; 12 2005; 24 2005; 25 2013; 18 1997; 94 1987; 84 2013; 13 1999; 18 1988; 48 1997; 13 2011; 21 2011; 25 2007; 26 2011; 286 2001; 98 1991; 253 2013; 45 2000; 21 1995; 10 2006; 7 2011; 39 2011b; 1816 2012; 149 2011; 331 1990; 63 2012; 2 2013; 31 2011; 50 2013; 499 2009; 9 2009; 663 2009; 6 2013; 132 1996; 274 2001; 1 2013; 494 2009; 384 2009; 1 Pugh (10.1002/humu.22552-BIB0081|humu22552-cit-0081) 2012; 487 Li (10.1002/humu.22552-BIB0064|humu22552-cit-0064) 2011; 50 Laurie (10.1002/humu.22552-BIB0057|humu22552-cit-0057) 2006; 444 Slade (10.1002/humu.22552-BIB0093|humu22552-cit-0093) 2009; 663 Brady (10.1002/humu.22552-BIB0011|humu22552-cit-0011) 2011; 145 Tornaletti (10.1002/humu.22552-BIB0109|humu22552-cit-0109) 1995; 10 Sauna (10.1002/humu.22552-BIB0088|humu22552-cit-0088) 2011; 12 Soussi (10.1002/humu.22552-BIB0099|humu22552-cit-0099) 2003; 21 Dumay (10.1002/humu.22552-BIB0032|humu22552-cit-0032) 2013; 132 Li (10.1002/humu.22552-BIB0065|humu22552-cit-0065) 2012; 149 Oliner (10.1002/humu.22552-BIB0075|humu22552-cit-0075) 1993; 362 Brash (10.1002/humu.22552-BIB0012|humu22552-cit-0012) 1997; 13 Soussi (10.1002/humu.22552-BIB0101|humu22552-cit-0101) 2005; 25 Curtis (10.1002/humu.22552-BIB0025|humu22552-cit-0025) 2012; 486 Schetter (10.1002/humu.22552-BIB0090|humu22552-cit-0090) 2012; 109 Blandino (10.1002/humu.22552-BIB0009|humu22552-cit-0009) 1999; 18 Alexandrov (10.1002/humu.22552-BIB0002|humu22552-cit-0002) 2013b; 3 Soussi (10.1002/humu.22552-BIB0097|humu22552-cit-0097) 2006a; 12 Hussain (10.1002/humu.22552-BIB0045|humu22552-cit-0045) 2007; 26 Cerami (10.1002/humu.22552-BIB0015|humu22552-cit-0015) 2012; 2 Linzer (10.1002/humu.22552-BIB0066|humu22552-cit-0066) 1979; 17 Reva (10.1002/humu.22552-BIB0083|humu22552-cit-0083) 2011; 39 Schlomm (10.1002/humu.22552-BIB0091|humu22552-cit-0091) 2008; 21 Soussi (10.1002/humu.22552-BIB0096|humu22552-cit-0096) 2014; 35 Takahashi (10.1002/humu.22552-BIB0107|humu22552-cit-0107) 1989; 246 Lehmann (10.1002/humu.22552-BIB0059|humu22552-cit-0059) 2012; 30 Cho (10.1002/humu.22552-BIB0017|humu22552-cit-0017) 1994; 265 Soussi (10.1002/humu.22552-BIB0094|humu22552-cit-0094) 2011a; 110 Roberts (10.1002/humu.22552-BIB0085|humu22552-cit-0085) 2013; 45 Hermeking (10.1002/humu.22552-BIB0041|humu22552-cit-0041) 2012; 12 Kandoth (10.1002/humu.22552-BIB0049|humu22552-cit-0049) 2013; 502 Ory (10.1002/humu.22552-BIB0077|humu22552-cit-0077) 1994; 13 Valente (10.1002/humu.22552-BIB0111|humu22552-cit-0111) 2013; 3 Berglind (10.1002/humu.22552-BIB0007|humu22552-cit-0007) 2008; 7 Zhao (10.1002/humu.22552-BIB0121|humu22552-cit-0121) 2010; 9 Zheng (10.1002/humu.22552-BIB0122|humu22552-cit-0122) 2010; 1 Toyooka (10.1002/humu.22552-BIB0110|humu22552-cit-0110) 2003; 21 Baker (10.1002/humu.22552-BIB0004|humu22552-cit-0004) 1989; 244 Masuda (10.1002/humu.22552-BIB0068|humu22552-cit-0068) 1987; 84 Natan (10.1002/humu.22552-BIB0071|humu22552-cit-0071) 2009; 106 Pleasance (10.1002/humu.22552-BIB0079|humu22552-cit-0079) 2010; 463 Kussie (10.1002/humu.22552-BIB0054|humu22552-cit-0054) 1996; 274 Leroy (10.1002/humu.22552-BIB0060|humu22552-cit-0060) 2014; 35 Hollstein (10.1002/humu.22552-BIB0043|humu22552-cit-0043) 1991; 253 Levine (10.1002/humu.22552-BIB0063|humu22552-cit-0063) 2011; 12 Vassilev (10.1002/humu.22552-BIB0113|humu22552-cit-0113) 2004; 3 Lane (10.1002/humu.22552-BIB0056|humu22552-cit-0056) 1979; 278 Varley (10.1002/humu.22552-BIB0112|humu22552-cit-0112) 1998; 16 Grollman (10.1002/humu.22552-BIB0037|humu22552-cit-0037) 2007; 104 Selivanova (10.1002/humu.22552-BIB0092|humu22552-cit-0092) 2010; 20 Kamada (10.1002/humu.22552-BIB0047|humu22552-cit-0047) 2011; 286 Wrighton (10.1002/humu.22552-BIB0118|humu22552-cit-0118) 2009; 9 Soussi (10.1002/humu.22552-BIB0100|humu22552-cit-0100) 2006b; 6 Hong (10.1002/humu.22552-BIB0044|humu22552-cit-0044) 2014; 15 Ozturk (10.1002/humu.22552-BIB0078|humu22552-cit-0078) 1991; 338 Nguyen (10.1002/humu.22552-BIB0073|humu22552-cit-0073) 2014; 35 Terrier (10.1002/humu.22552-BIB0108|humu22552-cit-0108) 2013; 9 Xu-Monette (10.1002/humu.22552-BIB0119|humu22552-cit-0119) 2012; 119 Berkers (10.1002/humu.22552-BIB0008|humu22552-cit-0008) 2013; 18 Alexandrov (10.1002/humu.22552-BIB0001|humu22552-cit-0001) 2013a; 500 Soussi (10.1002/humu.22552-BIB0095|humu22552-cit-0095) 2011b; 1816 Ribeiro (10.1002/humu.22552-BIB0084|humu22552-cit-0084) 2001; 98 Hoang (10.1002/humu.22552-BIB0042|humu22552-cit-0042) 2013; 5 Cooper (10.1002/humu.22552-BIB0023|humu22552-cit-0023) 2013; 5 Vousden (10.1002/humu.22552-BIB0114|humu22552-cit-0114) 2007; 8 Wang (10.1002/humu.22552-BIB0116|humu22552-cit-0116) 2007; 8 Scheffner (10.1002/humu.22552-BIB0089|humu22552-cit-0089) 1990; 63 Fromentel (10.1002/humu.22552-BIB0014|humu22552-cit-0014) 1992; 4 Chin (10.1002/humu.22552-BIB0016|humu22552-cit-0016) 2011; 25 Zupnick (10.1002/humu.22552-BIB0123|humu22552-cit-0123) 2006; 281 Moody (10.1002/humu.22552-BIB0070|humu22552-cit-0070) 2010; 10 Ogino (10.1002/humu.22552-BIB0074|humu22552-cit-0074) 2012; 12 Hartmann (10.1002/humu.22552-BIB0039|humu22552-cit-0039) 1997; 13 Kato (10.1002/humu.22552-BIB0050|humu22552-cit-0050) 2003; 100 Custodio (10.1002/humu.22552-BIB0026|humu22552-cit-0026) 2013; 31 Levine (10.1002/humu.22552-BIB0062|humu22552-cit-0062) 2009; 384 Barretina (10.1002/humu.22552-BIB0005|humu22552-cit-0005) 2010; 42 Kawaguchi (10.1002/humu.22552-BIB0051|humu22552-cit-0051) 2005; 24 Wade (10.1002/humu.22552-BIB0115|humu22552-cit-0115) 2013; 13 Bell (10.1002/humu.22552-BIB0006|humu22552-cit-0006) 2011; 474 Giglia-Mari (10.1002/humu.22552-BIB0036|humu22552-cit-0036) 2003; 21 Malcikova (10.1002/humu.22552-BIB0067|humu22552-cit-0067) 2014; 35 Edlund (10.1002/humu.22552-BIB0033|humu22552-cit-0033) 2012; 109 Saller (10.1002/humu.22552-BIB0087|humu22552-cit-0087) 1999; 18 Ng (10.1002/humu.22552-BIB0072|humu22552-cit-0072) 2006; 7 Aylon (10.1002/humu.22552-BIB0003|humu22552-cit-0003) 2011; 21 Diehl (10.1002/humu.22552-BIB0029|humu22552-cit-0029) 2005; 102 Stratton (10.1002/humu.22552-BIB0105|humu22552-cit-0105) 2011; 331 Rodenhuis (10.1002/humu.22552-BIB0086|humu22552-cit-0086) 1988; 48 Staib (10.1002/humu.22552-BIB0103|humu22552-cit-0103) 2003; 21 Hutchinson (10.1002/humu.22552-BIB0046|humu22552-cit-0046) 2009; 6 Soussi (10.1002/humu.22552-BIB0098|humu22552-cit-0098) 2001; 1 Weigelt (10.1002/humu.22552-BIB0117|humu22552-cit-0117) 2010; 4 He (10.1002/humu.22552-BIB0040|humu22552-cit-0040) 2007; 7 Poon (10.1002/humu.22552-BIB0080|humu22552-cit-0080) 2013; 5 Donehower (10.1002/humu.22552-BIB0031|humu22552-cit-0031) 2014; 35 Ciriello (10.1002/humu.22552-BIB0018|humu22552-cit-0018) 2012; 22 Kamihara (10.1002/humu.22552-BIB0048|humu22552-cit-0048) 2014; 35 Kress (10.1002/humu.22552-BIB0053|humu22552-cit-0053) 1979; 31 Clore (10.1002/humu.22552-BIB0020|humu22552-cit-0020) 1995; 2 Khoury (10.1002/humu.22552-BIB0052|humu22552-cit-0052) 2010; 2 You (10.1002/humu.22552-BIB0120|humu22552-cit-0120) 2000; 21 Stommel (10.1002/humu.22552-BIB0104|humu22552-cit-0104) 1999; 18 Lane (10.1002/humu.22552-BIB0055|humu22552-cit-0055) 2010; 2 Lawrence (10.1002/humu.22552-BIB0058|humu22552-cit-0058) 2013; 499 DiGiammarino (10.1002/humu.22552-BIB0030|humu22552-cit-0030) 2002; 9 Crotti (10.1002/humu.22552-BIB0024|humu22552-cit-0024) 2009; 106 Gupta (10.1002/humu.22552-BIB0038|humu22552-cit-0038) 2013; 4 Boffetta (10.1002/humu.22552-BIB0010|humu22552-cit-0010) 2010; 31 Gao (10.1002/humu.22552-BIB0035|humu22552-cit-0035) 2013; 6 Denissenko (10.1002/humu.22552-BIB0028|humu22552-cit-0028) 1997; 94 Stratton (10.1002/humu.22552-BIB0106|humu22552-cit-0106) 2009; 458 Burns (10.1002/humu.22552-BIB0013|humu22552-cit-0013) 2013; 494 Rajagopalan (10.1002/humu.22552-BIB0082|humu22552-cit-0082) 2011; 39 Olsson (10.1002/humu.22552-BIB0076|humu22552-cit-0076) 2007; 14 Clore (10.1002/humu.22552-BIB0021|humu22552-cit-0021) 1994; 265 Supek (10.1002/humu.22552-BIB0124|humu22552-cit-0124) 2014; 156 Dawson (10.1002/humu.22552-BIB0027|humu22552-cit-0027) 2013; 368 CLCG Project (10.1002/humu.22552-BIB0019|humu22552-cit-0019) 2013; 5 Gaglia (10.1002/humu.22552-BIB0034|humu22552-cit-0034) 2013; 110 Cooper (10.1002/humu.22552-BIB0022|humu22552-cit-0022) 1988; 78 Soussi (10.1002/humu.22552-BIB0102|humu22552-cit-0102) 2014; 35 Letouze (10.1002/humu.22552-BIB0061|humu22552-cit-0061) 2012; 97 Meek (10.1002/humu.22552-BIB0069|humu22552-cit-0069) 2009; 1 |
References_xml | – reference: Hoang ML, Chen CH, Sidorenko VS, He J, Dickman KG, Yun BH, Moriya M, Niknafs N, Douville C, Karchin R, Turesky RJ, Pu YS, et al. 2013. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci Transl Med 5:197ra102. – reference: Staib F, Hussain SP, Hofseth LJ, Wang XW, Harris CC. 2003. TP53 and liver carcinogenesis. Hum Mutat 21:201-216. – reference: Dumay A, Feugeas JP, Wittmer E, Lehmann-Che J, Bertheau P, Espie M, Plassa LF, Cottu P, Marty M, Andre F, Sotiriou C, Pusztai L, et al. 2013. Distinct tumor protein p53 mutants in breast cancer subgroups. Int J Cancer 132:1227-1231. – reference: Ribeiro RC, Sandrini F, Figueiredo B, Zambetti GP, Michalkiewicz E, Lafferty AR, DeLacerda L, Rabin M, Cadwell C, Sampaio G, Cat I, Stratakis CA, et al. 2001. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci USA 98:9330-9335. – reference: Li J, Poi MJ, Tsai MD. 2011. Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry 50:5566-5582. – reference: Aylon Y, Oren M. 2011. New plays in the p53 theater. Curr Opin Genet Dev 21:86-92. – reference: Gaglia G, Guan Y, Shah JV, Lahav G. 2013. Activation and control of p53 tetramerization in individual living cells. Proc Natl Acad Sci USA 110:15497-15501. – reference: Slade N, Moll UM, Brdar B, Zoric A, Jelakovic B. 2009. p53 mutations as fingerprints for aristolochic acid: an environmental carcinogen in endemic (Balkan) nephropathy. Mutat Res 663:1-6. – reference: He L, He X, Lowe SW, Hannon GJ. 2007. microRNAs join the p53 network-another piece in the tumour-suppression puzzle. Nat Rev Cancer 7:819-822. – reference: Gupta A. 2013. Fraud and misconduct in clinical research: a concern. Perspect Clin Res 4:144-147. – reference: Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM. 1999. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18:1660-1672. – reference: Tornaletti S, Pfeifer GP. 1995. Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers. Oncogene 10:1493-1499. – reference: Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH. 2013. Metabolic regulation by p53 family members. Cell Metab 18:617-633. – reference: Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, et al. 2012. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401-404. – reference: Denissenko MF, Chen JX, Tang MS, Pfeifer GP. 1997. Cytosine methylation determines hot spots of DNA damage in the human P53 gene. Proc Natl Acad Sci USA 94:3893-3898. – reference: Hong B, van den Heuvel AP, Prabhu VV, Zhang S, El-Deiry WS. 2014. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr Drug Targets 15:80-89. – reference: Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W. 2012. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149:1269-1283. – reference: Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, Diaz LAJ, Goodman SN, David KA, Juhl H, Kinzler KW, Vogelstein B. 2005. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA 102:16368-16373. – reference: Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, Leonard B, Refsland EW, Kotandeniya D, Tretyakova N, Nikas JB, Yee D, Temiz NA, et al. 2013. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494:366-370. – reference: Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U, Suzuki N, Fernandes A, Rosenquist T, Medverec Z, Jakovina K, Brdar B, et al. 2007. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci USA 104:12129-12134. – reference: Boffetta P. 2010. Biomarkers in cancer epidemiology: an integrative approach. Carcinogenesis 31:121-126. – reference: Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, et al. 2013. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1. – reference: Kawaguchi T, Kato S, Otsuka K, Watanabe G, Kumabe T, Tominaga T, Yoshimoto T, Ishioka C. 2005. The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene 24:6976-6981. – reference: Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP. 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948-953. – reference: Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C, Varela I, Nik-Zainal S, et al. 2010. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463:184-190. – reference: Hermeking H. 2012. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12:613-626. – reference: Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, Leiserson MD, Miller CA, et al. 2013. Mutational landscape and significance across 12 major cancer types. Nature 502:333-339. – reference: Wang GS, Cooper TA. 2007. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8:749-761. – reference: Blandino G, Levine AJ, Oren M. 1999. Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18:477-485. – reference: Zhao CY, Grinkevich VV, Nikulenkov F, Bao W, Selivanova G. 2010. Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA. Cell Cycle 9:1847-1855. – reference: Zupnick A, Prives C. 2006. Mutational analysis of the p53 core domain L1 loop. J Biol Chem 281:20464-20473. – reference: Kamihara J, Rana HQ, Garber JE. 2014. Germline TP53 mutations and the changing landscape of Li-Fraumeni syndrome. Hum Mutat 35:654-662. – reference: Poon SL, Pang ST, McPherson JR, Yu W, Huang KK, Guan P, Weng WH, Siew EY, Liu Y, Heng HL, Chong SC, Gan A, et al. 2013. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med 5:197ra101. – reference: Soussi T. 2014. Locus-specific databases in cancer: what future in a post-genomic era? The TP53 LSDB paradigm. Hum Mutat 35:643-653. – reference: Sauna ZE, Kimchi-Sarfaty C. 2011. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683-691. – reference: Rajagopalan S, Huang F, Fersht AR. 2011. Single-molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53. Nucleic Acids Res 39:2294-2303. – reference: Levine AJ. 2009. The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53. Virology 384:285-293. – reference: Hutchinson L, DeVita VTJ. 2009. The Holy Grail of biomarkers. Nat Rev Clin Oncol 6:553. – reference: Soussi T, Leroy B, Taschner PEM. 2014. Recommendations for analyzing and reporting TP53 gene alterations in the high throughput sequencing era. Hum Mutat 35:766-778. – reference: Vassilev LT. 2004. Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 3:419-421. – reference: Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, Boyault S, Burkhardt B, et al. 2013a. Signatures of mutational processes in human cancer. Nature 500:415-421. – reference: Weigelt B, Geyer FC, Reis-Filho JS. 2010. Histological types of breast cancer: how special are they? Mol Oncol 4:192-208. – reference: Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, Carter SL, Saksena G, Harris S, Shah RR, et al. 2013. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45:970-976. – reference: Soussi T, Beroud C. 2003. Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Hum Mutat 21:192-200. – reference: Leroy B, Girard L, Minna JD, Gazdar AF, Soussi T. 2014. Analysis of p53 mutation status in human cancer cell lines: a reassessment. Hum Mutat 35:756-765. – reference: Moody CA, Laimins LA. 2010. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550-560. – reference: Malcikova J, Pavlova S, Kozubik KS, Pospisilova S. 2014. TP53 mutation analysis in clinical practice: lessons from chronic lymphocytic leukemia. Hum Mutat 35:663-671. – reference: Soussi T, Beroud C. 2001. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1:233-240. – reference: Clore GM, Omichinski JG, Sakaguchi K, Zambrano N, Sakamoto H, Appella E, Gronenborn AM. 1994. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science 265:386-391. – reference: Custodio G, Parise GA, Kiesel Filho N, Komechen H, Sabbaga CC, Rosati R, Grisa L, Parise IZ, Pianovski MA, Fiori CM, Ledesma JA, Barbosa JR, et al. 2013. Impact of neonatal screening and surveillance for the TP53 R337H mutation on early detection of childhood adrenocortical tumors. J Clin Oncol 31:2619-2626. – reference: Hussain SP, Schwank J, Staib F, Wang XW, Harris CC. 2007. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26:2166-2176. – reference: Caron de Fromentel C, Soussi T. 1992. TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer 4:1-15. – reference: DiGiammarino EL, Lee AS, Cadwell C, Zhang W, Bothner B, Ribeiro RC, Zambetti G, Kriwacki RW. 2002. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat Struct Biol 9:12-16. – reference: Ory K, Legros Y, Auguin C, Soussi T. 1994. Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J 13:3496-3504. – reference: You YH, Szabo PE, Pfeifer GP. 2000. Cyclobutane pyrimidine dimers form preferentially at the major p53 mutational hotspot in UVB-induced mouse skin tumors. Carcinogenesis 21:2113-2117. – reference: Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, et al. 2013. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368:1199-1209. – reference: Meek DW, Anderson CW. 2009. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1:a000950. – reference: Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, Kenzelmann Broz D, Basak S, Park EJ, McLaughlin ME, Karnezis AN, Attardi LD. 2011. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145:571-583. – reference: Stratton MR, Campbell PJ, Futreal PA. 2009. The cancer genome. Nature 458:719-724. – reference: Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, Decarolis PL, Shah K, Socci ND, Weir BA, Ho A, Chiang DY, Reva B, et al. 2010. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 42:715-721. – reference: Selivanova G. 2010. Therapeutic targeting of p53 by small molecules. Semin Cancer Biol 20:46-56. – reference: Ozturk M. 1991. p53 mutation in hepatocellular carcinoma after aflatoxin exposure. Lancet 338:1356-1359. – reference: Terrier O, Bourdon JC, Rosa-Calatrava M. 2013. p53 protein isoforms: key regulators in the front line of pathogen infections? PLoS Pathog 9:e1003246. – reference: Ciriello G, Cerami E, Sander C, Schultz N. 2012. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res 22:398-406. – reference: Kamada R, Nomura T, Anderson CW, Sakaguchi K. 2011. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. J Biol Chem 286:252-258. – reference: Xu-Monette ZY, Medeiros LJ, Li Y, Orlowski RZ, Andreeff M, Bueso-Ramos CE, Greiner TC, McDonnell TJ, Young KH. 2012. Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. Blood 119:3668-3683. – reference: Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, Johnson D, Wilson M, et al. 2006. Inactivation of the p53 pathway in retinoblastoma. Nature 444:61-66. – reference: Lane DP, Cheok CF, Lain S. 2010. p53-based cancer therapy. Cold Spring Harb Perspect Biol 2:a001222. – reference: Soussi T, Asselain B, Hamroun D, Kato S, Ishioka C, Claustres M, Beroud C. 2006a. Meta-analysis of the p53 mutation database for mutant p53 biological activity reveals a methodologic bias in mutation detection. Clin Cancer Res 12:62-69. – reference: Stratton MR. 2011. Exploring the genomes of cancer cells: progress and promise. Science 331:1553-1558. – reference: Clore GM, Ernst J, Clubb R, Omichinski JG, Kennedy WM, Sakaguchi K, Appella E, Gronenborn AM. 1995. Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nat Struct Biol 2:321-333. – reference: Varley JM, Chapman P, McGown G, Thorncroft M, White GR, Greaves MJ, Scott D, Spreadborough A, Tricker KJ, Birch JM, Evans DG, Reddel R, et al. 1998. Genetic and functional studies of a germline TP53 splicing mutation in a Li-Fraumeni-like family. Oncogene 16:3291-3298. – reference: Donehower LA. 2014. Insights into wild-type and mutant p53 functions provided by genetically engineered mice. Hum Mutat 35:715-727. – reference: Rodenhuis S, Slebos RJ, Boot AJ, Evers SG, Mooi WJ, Wagenaar SS, van Bodegom PC, Bos JL. 1988. Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung. Cancer Res 48:5738-5741. – reference: Bell D, Berchuck A, Birrer M, Chien J, Cramer DW, Dao F, Dhir R, Disaia P, Gabra H, Glenn P, Godwin AK, Gross J, et al. 2011. Integrated genomic analyses of ovarian carcinoma. Nature 474:609-615. – reference: Zheng R, Blobel GA. 2010. GATA transcription factors and cancer. Genes Cancer 1:1178-1188. – reference: Masuda H, Miller C, Koeffler HP, Battifora H, Cline MJ. 1987. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci USA 84:7716-7719. – reference: Khoury MP, Bourdon JC. 2010. The isoforms of the p53 protein. Cold Spring Harb Perspect Biol 2:a000927. – reference: Olsson A, Manzl C, Strasser A, Villunger A. 2007. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 14:1561-1575. – reference: Lehmann S, Bykov VJ, Ali D, Andren O, Cherif H, Tidefelt U, Uggla B, Yachnin J, Juliusson G, Moshfegh A, Paul C, Wiman KG, et al. 2012. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol 30:3633-3639. – reference: Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J, Carneiro MO, Carter SL, Cibulskis K, Erlich RL, Greulich H, Lawrence MS, et al. 2012. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330-337. – reference: Brash DE. 1997. Sunlight and the onset of skin cancer. Trends Genet 13:410-414. – reference: Reva B, Antipin Y, Sander C. 2011. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39:e118. – reference: Wade M, Li YC, Wahl GM. 2013. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13:83-96. – reference: Kress M, May E, Cassingena R, May P. 1979. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol 31:472-483. – reference: Hollstein M, Sidransky D, Vogelstein B, Harris CC. 1991. p53 mutations in human cancers. Science 253:49-53. – reference: Giglia-Mari G, Sarasin A. 2003. TP53 mutations in human skin cancers. Hum Mutat 21:217-228. – reference: Linzer DI, Levine AJ. 1979. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43-52. – reference: Crotti LB, Horowitz DS. 2009. Exon sequences at the splice junctions affect splicing fidelity and alternative splicing. Proc Natl Acad Sci USA 106:18954-18959. – reference: Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF, Nakamura Y, White R, Vogelstein B. 1989. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217-221. – reference: Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129-1136. – reference: Cho Y, Gorina S, Jeffrey PD, Pavletich NP. 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346-355. – reference: Toyooka S, Tsuda T, Gazdar AF. 2003. The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat 21:229-239. – reference: Berglind H, Pawitan Y, Kato S, Ishioka C, Soussi T. 2008. Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination. Cancer Biol Ther 7:699-708. – reference: Natan E, Hirschberg D, Morgner N, Robinson CV, Fersht AR. 2009. Ultraslow oligomerization equilibria of p53 and its implications. Proc Natl Acad Sci USA 106:14327-14332. – reference: Ogino S, Fuchs CS, Giovannucci E. 2012. How many molecular subtypes? Implications of the unique tumor principle in personalized medicine. Expert Rev Mol Diagn 12:621-628. – reference: Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. 1993. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362:857-860. – reference: Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Minna JD. 1989. p53: a frequent target for genetic abnormalities in lung cancer. Science 246:491-494. – reference: Schlomm T, Iwers L, Kirstein P, Jessen B, Kollermann J, Minner S, Passow-Drolet A, Mirlacher M, Milde-Langosch K, Graefen M, Haese A, Steuber T, et al. 2008. Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol 21:1371-1378. – reference: Chin L, Hahn WC, Getz G, Meyerson M. 2011. Making sense of cancer genomic data. Genes Dev 25:534-555. – reference: Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, et al. 2012. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346-352. – reference: Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, Kiezun A, Hammerman PS, et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214-218. – reference: Lane DP, Crawford LV. 1979. T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261-263. – reference: Saller E, Tom E, Brunori M, Otter M, Estreicher A, Mack DH, Iggo R. 1999. Increased apoptosis induction by 121F mutant p53. EMBO J 18:4424-4437. – reference: Schetter AJ, Harris CC. 2012. Tumor suppressor p53 (TP53) at the crossroads of the exposome and the cancer genome. Proc Natl Acad Sci USA 109:7955-7956. – reference: Vousden KH, Lane DP. 2007. p53 in health and disease. Nat Rev Mol Cell Biol 8:275-283. – reference: Hartmann A, Blaszyk H, Kovach JS, Sommer SS. 1997. The molecular epidemiology of p53 gene mutations in human breast cancer. Trends Genet 13:27-33. – reference: Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C. 2003. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100:8424-8429. – reference: Nguyen TA, Menendez D, Resnick MA, Anderson CW. 2014. Mutant TP53 posttranslational modifications: challenges and opportunities. Hum Mutat 35:738-755. – reference: Soussi T. 2011a. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Adv Cancer Res 110:107-139. – reference: Ng PC, Henikoff S. 2006. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 7:61-80. – reference: Valente LJ, Gray DH, Michalak EM, Pinon-Hofbauer J, Egle A, Scott CL, Janic A, Strasser A. 2013. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, puma, and noxa. Cell Rep 3:1339-1345. – reference: CLCG Project. 2013. A genomics-based classification of human lung tumors. Sci Transl Med 5:209ra153. – reference: Soussi T. 2011b. Advances in carcinogenesis: a historical perspective from observational studies to tumor genome sequencing and TP53 mutation spectrum analysis. Biochim Biophys Acta 1816:199-208. – reference: Supek F, Minana B, Valcarcel J, Gabaldon T, Lehner B. 2014. Synonymous mutations frequently act as driver mutations in human cancers. Cell 156:1324-1335. – reference: Letouze E, Rosati R, Komechen H, Doghman M, Marisa L, Fluck C, de Krijger RR, van Noesel MM, Mas JC, Pianovski MA, Zambetti GP, Figueiredo BC, et al. 2012. SNP array profiling of childhood adrenocortical tumors reveals distinct pathways of tumorigenesis and highlights candidate driver genes. J Clin Endocrinol Metab 97:E1284-E1293. – reference: Soussi T, Ishioka C, Claustres M, Beroud C. 2006b. Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nat Rev Cancer 6:83-90. – reference: Wrighton KH. 2009. Small RNAs: p53 makes microRNAs mature. Nat Rev Cancer 9:612. – reference: Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. 2013b. Deciphering signatures of mutational processes operative in human cancer. Cell Rep 3:246-259. – reference: Levine AJ, Tomasini R, McKeon FD, Mak TW, Melino G. 2011. The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol 12:259-265. – reference: Soussi T, Kato S, Levy PP, Ishioka C. 2005. Reassessment of the TP53 mutation database in human disease by data mining with a library of TP53 missense mutations. Hum Mutat 25:6-17. – reference: Cooper DN, Youssoufian H. 1988. The CpG dinucleotide and human genetic disease. Hum Genet 78:151-155. – reference: Cooper WA, Lam DC, O'Toole SA, Minna JD. 2013. Molecular biology of lung cancer. J Thorac Dis 5(Suppl 5):S479-S490. – reference: Edlund K, Larsson O, Ameur A, Bunikis I, Gyllensten U, Leroy B, Sundstrom M, Micke P, Botling J, Soussi T. 2012. Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proc Natl Acad Sci USA 109:9551-9556. – volume: 4 start-page: 1 year: 1992 end-page: 15 article-title: 53 tumor suppressor gene: a model for investigating human mutagenesis publication-title: Genes Chromosomes Cancer – volume: 12 start-page: 683 year: 2011 end-page: 691 article-title: Understanding the contribution of synonymous mutations to human disease publication-title: Nat Rev Genet – volume: 24 start-page: 6976 year: 2005 end-page: 6981 article-title: The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library publication-title: Oncogene – volume: 21 start-page: 2113 year: 2000 end-page: 2117 article-title: Cyclobutane pyrimidine dimers form preferentially at the major p53 mutational hotspot in ‐induced mouse skin tumors publication-title: Carcinogenesis – volume: 145 start-page: 571 year: 2011 end-page: 583 article-title: Distinct p53 transcriptional programs dictate acute ‐damage responses and tumor suppression publication-title: Cell – volume: 2 start-page: 321 year: 1995 end-page: 333 article-title: Refined solution structure of the oligomerization domain of the tumour suppressor p53 publication-title: Nat Struct Biol – volume: 35 start-page: 766 year: 2014 end-page: 778 article-title: Recommendations for analyzing and reporting 53 gene alterations in the high throughput sequencing era publication-title: Hum Mutat – volume: 8 start-page: 749 year: 2007 end-page: 761 article-title: Splicing in disease: disruption of the splicing code and the decoding machinery publication-title: Nat Rev Genet – volume: 22 start-page: 398 year: 2012 end-page: 406 article-title: Mutual exclusivity analysis identifies oncogenic network modules publication-title: Genome Res – volume: 16 start-page: 3291 year: 1998 end-page: 3298 article-title: Genetic and functional studies of a germline 53 splicing mutation in a i– raumeni‐like family publication-title: Oncogene – volume: 12 start-page: 62 year: 2006a end-page: 69 article-title: Meta‐analysis of the p53 mutation database for mutant p53 biological activity reveals a methodologic bias in mutation detection publication-title: Clin Cancer Res – volume: 26 start-page: 2166 year: 2007 end-page: 2176 article-title: 53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer publication-title: Oncogene – volume: 94 start-page: 3893 year: 1997 end-page: 3898 article-title: Cytosine methylation determines hot spots of damage in the human 53 gene publication-title: Proc Natl Acad Sci USA – volume: 45 start-page: 970 year: 2013 end-page: 976 article-title: An cytidine deaminase mutagenesis pattern is widespread in human cancers publication-title: Nat Genet – volume: 106 start-page: 14327 year: 2009 end-page: 14332 article-title: Ultraslow oligomerization equilibria of p53 and its implications publication-title: Proc Natl Acad Sci USA – volume: 21 start-page: 192 year: 2003 end-page: 200 article-title: Significance of 53 mutations in human cancer: a critical analysis of mutations at p dinucleotides publication-title: Hum Mutat – volume: 12 start-page: 621 year: 2012 end-page: 628 article-title: How many molecular subtypes? Implications of the unique tumor principle in personalized medicine publication-title: Expert Rev Mol Diagn – volume: 35 start-page: 715 year: 2014 end-page: 727 article-title: Insights into wild‐type and mutant p53 functions provided by genetically engineered mice publication-title: Hum Mutat – volume: 109 start-page: 9551 year: 2012 end-page: 9556 article-title: Data‐driven unbiased curation of the 53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 275 year: 2007 end-page: 283 article-title: p53 in health and disease publication-title: Nat Rev Mol Cell Biol – volume: 494 start-page: 366 year: 2013 end-page: 370 article-title: 3 is an enzymatic source of mutation in breast cancer publication-title: Nature – volume: 31 start-page: 2619 year: 2013 end-page: 2626 article-title: Impact of neonatal screening and surveillance for the 53 337 mutation on early detection of childhood adrenocortical tumors publication-title: J Clin Oncol – volume: 7 start-page: 699 year: 2008 end-page: 708 article-title: Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross‐contamination publication-title: Cancer Biol Ther – volume: 368 start-page: 1199 year: 2013 end-page: 1209 article-title: Analysis of circulating tumor to monitor metastatic breast cancer publication-title: N Engl J Med – volume: 35 start-page: 654 year: 2014 end-page: 662 article-title: Germline 53 mutations and the changing landscape of i– raumeni syndrome publication-title: Hum Mutat – volume: 25 start-page: 534 year: 2011 end-page: 555 article-title: Making sense of cancer genomic data publication-title: Genes Dev – volume: 5 start-page: S479 issue: Suppl 5 year: 2013 end-page: S490 article-title: Molecular biology of lung cancer publication-title: J Thorac Dis – volume: 253 start-page: 49 year: 1991 end-page: 53 article-title: p53 mutations in human cancers publication-title: Science – volume: 384 start-page: 285 year: 2009 end-page: 293 article-title: The common mechanisms of transformation by the small tumor viruses: the inactivation of tumor suppressor gene products: p53 publication-title: Virology – volume: 39 start-page: 2294 year: 2011 end-page: 2303 article-title: Single‐molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53 publication-title: Nucleic Acids Res – volume: 5 start-page: 209ra153 year: 2013 article-title: A genomics‐based classification of human lung tumors publication-title: Sci Transl Med – volume: 21 start-page: 201 year: 2003 end-page: 216 article-title: 53 and liver carcinogenesis publication-title: Hum Mutat – volume: 3 start-page: 419 year: 2004 end-page: 421 article-title: Small‐molecule antagonists of p53‐ 2 binding: research tools and potential therapeutics publication-title: Cell Cycle – volume: 13 start-page: 27 year: 1997 end-page: 33 article-title: The molecular epidemiology of p53 gene mutations in human breast cancer publication-title: Trends Genet – volume: 63 start-page: 1129 year: 1990 end-page: 1136 article-title: The 6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53 publication-title: Cell – volume: 9 start-page: 12 year: 2002 end-page: 16 article-title: A novel mechanism of tumorigenesis involving p ‐dependent destabilization of a mutant p53 tetramer publication-title: Nat Struct Biol – volume: 7 start-page: 61 year: 2006 end-page: 80 article-title: Predicting the effects of amino acid substitutions on protein function publication-title: Annu Rev Genomics Hum Genet – volume: 35 start-page: 756 year: 2014 end-page: 765 article-title: Analysis of p53 mutation status in human cancer cell lines: a reassessment publication-title: Hum Mutat – volume: 13 start-page: 83 year: 2013 end-page: 96 article-title: 2, and p53 in oncogenesis and cancer therapy publication-title: Nat Rev Cancer – volume: 21 start-page: 86 year: 2011 end-page: 92 article-title: New plays in the p53 theater publication-title: Curr Opin Genet Dev – volume: 35 start-page: 663 year: 2014 end-page: 671 article-title: 53 mutation analysis in clinical practice: lessons from chronic lymphocytic leukemia publication-title: Hum Mutat – volume: 42 start-page: 715 year: 2010 end-page: 721 article-title: Subtype‐specific genomic alterations define new targets for soft‐tissue sarcoma therapy publication-title: Nat Genet – volume: 21 start-page: 1371 year: 2008 end-page: 1378 article-title: Clinical significance of p53 alterations in surgically treated prostate cancers publication-title: Mod Pathol – volume: 10 start-page: 550 year: 2010 end-page: 560 article-title: Human papillomavirus oncoproteins: pathways to transformation publication-title: Nat Rev Cancer – volume: 35 start-page: 643 year: 2014 end-page: 653 article-title: Locus‐specific databases in cancer: what future in a post‐genomic era? The 53 paradigm publication-title: Hum Mutat – volume: 17 start-page: 43 year: 1979 end-page: 52 article-title: Characterization of a 54K dalton cellular 40 tumor antigen present in 40‐transformed cells and uninfected embryonal carcinoma cells publication-title: Cell – volume: 663 start-page: 1 year: 2009 end-page: 6 article-title: p53 mutations as fingerprints for aristolochic acid: an environmental carcinogen in endemic ( alkan) nephropathy publication-title: Mutat Res – volume: 286 start-page: 252 year: 2011 end-page: 258 article-title: Cancer‐associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation publication-title: J Biol Chem – volume: 39 start-page: e118 year: 2011 article-title: Predicting the functional impact of protein mutations: application to cancer genomics publication-title: Nucleic Acids Res – volume: 486 start-page: 346 year: 2012 end-page: 352 article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups publication-title: Nature – volume: 31 start-page: 121 year: 2010 end-page: 126 article-title: Biomarkers in cancer epidemiology: an integrative approach publication-title: Carcinogenesis – volume: 1 start-page: 233 year: 2001 end-page: 240 article-title: Assessing 53 status in human tumours to evaluate clinical outcome publication-title: Nat Rev Cancer – volume: 1 start-page: 1178 year: 2010 end-page: 1188 article-title: transcription factors and cancer publication-title: Genes Cancer – volume: 78 start-page: 151 year: 1988 end-page: 155 article-title: The p dinucleotide and human genetic disease publication-title: Hum Genet – volume: 31 start-page: 472 year: 1979 end-page: 483 article-title: Simian virus 40‐transformed cells express new species of proteins precipitable by anti‐simian virus 40 tumor serum publication-title: J Virol – volume: 12 start-page: 259 year: 2011 end-page: 265 article-title: The p53 family: guardians of maternal reproduction publication-title: Nat Rev Mol Cell Biol – volume: 18 start-page: 477 year: 1999 end-page: 485 article-title: Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy publication-title: Oncogene – volume: 106 start-page: 18954 year: 2009 end-page: 18959 article-title: Exon sequences at the splice junctions affect splicing fidelity and alternative splicing publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 197ra102 year: 2013 article-title: Mutational signature of aristolochic acid exposure as revealed by whole‐exome sequencing publication-title: Sci Transl Med – volume: 499 start-page: 214 year: 2013 end-page: 218 article-title: Mutational heterogeneity in cancer and the search for new cancer‐associated genes publication-title: Nature – volume: 9 start-page: 1847 year: 2010 end-page: 1855 article-title: Rescue of the apoptotic‐inducing function of mutant p53 by small molecule publication-title: Cell Cycle – volume: 100 start-page: 8424 year: 2003 end-page: 8429 article-title: Understanding the function‐structure and function‐mutation relationships of p53 tumor suppressor protein by high‐resolution missense mutation analysis publication-title: Proc Natl Acad Sci USA – volume: 97 start-page: E1284 year: 2012 end-page: E1293 article-title: array profiling of childhood adrenocortical tumors reveals distinct pathways of tumorigenesis and highlights candidate driver genes publication-title: J Clin Endocrinol Metab – volume: 2 start-page: 401 year: 2012 end-page: 404 article-title: The c io cancer genomics portal: an open platform for exploring multidimensional cancer genomics data publication-title: Cancer Discov – volume: 281 start-page: 20464 year: 2006 end-page: 20473 article-title: Mutational analysis of the p53 core domain 1 loop publication-title: J Biol Chem – volume: 13 start-page: 410 year: 1997 end-page: 414 article-title: Sunlight and the onset of skin cancer publication-title: Trends Genet – volume: 444 start-page: 61 year: 2006 end-page: 66 article-title: Inactivation of the p53 pathway in retinoblastoma publication-title: Nature – volume: 246 start-page: 491 year: 1989 end-page: 494 article-title: p53: a frequent target for genetic abnormalities in lung cancer publication-title: Science – volume: 10 start-page: 1493 year: 1995 end-page: 1499 article-title: Complete and tissue‐independent methylation of p sites in the p53 gene: implications for mutations in human cancers publication-title: Oncogene – volume: 110 start-page: 107 year: 2011a end-page: 139 article-title: 53 mutations in human cancer: database reassessment and prospects for the next decade publication-title: Adv Cancer Res – volume: 9 start-page: 612 year: 2009 article-title: Small s: p53 makes micro s mature publication-title: Nat Rev Cancer – volume: 2 start-page: a001222 year: 2010 article-title: p53‐based cancer therapy publication-title: Cold Spring Harb Perspect Biol – volume: 35 start-page: 738 year: 2014 end-page: 755 article-title: Mutant 53 posttranslational modifications: challenges and opportunities publication-title: Hum Mutat – volume: 1816 start-page: 199 year: 2011b end-page: 208 article-title: Advances in carcinogenesis: a historical perspective from observational studies to tumor genome sequencing and 53 mutation spectrum analysis publication-title: Biochim Biophys Acta – volume: 278 start-page: 261 year: 1979 end-page: 263 article-title: antigen is bound to a host protein in 40‐transformed cells publication-title: Nature – volume: 14 start-page: 1561 year: 2007 end-page: 1575 article-title: How important are post‐translational modifications in p53 for selectivity in target‐gene transcription and tumour suppression publication-title: Cell Death Differ – volume: 13 start-page: 3496 year: 1994 end-page: 3504 article-title: Analysis of the most representative tumour‐derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation publication-title: EMBO J – volume: 474 start-page: 609 year: 2011 end-page: 615 article-title: Integrated genomic analyses of ovarian carcinoma publication-title: Nature – volume: 6 start-page: 83 year: 2006b end-page: 90 article-title: Locus‐specific mutation databases: pitfalls and good practice based on the p53 experience publication-title: Nat Rev Cancer – volume: 15 start-page: 80 year: 2014 end-page: 89 article-title: Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities publication-title: Curr Drug Targets – volume: 98 start-page: 9330 year: 2001 end-page: 9335 article-title: An inherited p53 mutation that contributes in a tissue‐specific manner to pediatric adrenal cortical carcinoma publication-title: Proc Natl Acad Sci USA – volume: 463 start-page: 184 year: 2010 end-page: 190 article-title: A small‐cell lung cancer genome with complex signatures of tobacco exposure publication-title: Nature – volume: 331 start-page: 1553 year: 2011 end-page: 1558 article-title: Exploring the genomes of cancer cells: progress and promise publication-title: Science – volume: 274 start-page: 948 year: 1996 end-page: 953 article-title: Structure of the 2 oncoprotein bound to the p53 tumor suppressor transactivation domain publication-title: Science – volume: 21 start-page: 229 year: 2003 end-page: 239 article-title: The 53 gene, tobacco exposure, and lung cancer publication-title: Hum Mutat – volume: 18 start-page: 4424 year: 1999 end-page: 4437 article-title: Increased apoptosis induction by 121 mutant p53 publication-title: EMBO J – volume: 110 start-page: 15497 year: 2013 end-page: 15501 article-title: Activation and control of p53 tetramerization in individual living cells publication-title: Proc Natl Acad Sci USA – volume: 104 start-page: 12129 year: 2007 end-page: 12134 article-title: Aristolochic acid and the etiology of endemic ( alkan) nephropathy publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 613 year: 2012 end-page: 626 article-title: Micro s in the p53 network: micromanagement of tumour suppression publication-title: Nat Rev Cancer – volume: 6 start-page: pl1 year: 2013 article-title: Integrative analysis of complex cancer genomics and clinical profiles using the c io ortal publication-title: Sci Signal – volume: 25 start-page: 6 year: 2005 end-page: 17 article-title: Reassessment of the 53 mutation database in human disease by data mining with a library of 53 missense mutations publication-title: Hum Mutat – volume: 6 start-page: 553 year: 2009 article-title: The oly rail of biomarkers publication-title: Nat Rev Clin Oncol – volume: 156 start-page: 1324 year: 2014 end-page: 1335 article-title: Synonymous mutations frequently act as driver mutations in human cancers publication-title: Cell – volume: 9 start-page: e1003246 year: 2013 article-title: p53 protein isoforms: key regulators in the front line of pathogen infections publication-title: PLoS Pathog – volume: 21 start-page: 217 year: 2003 end-page: 228 article-title: 53 mutations in human skin cancers publication-title: Hum Mutat – volume: 20 start-page: 46 year: 2010 end-page: 56 article-title: Therapeutic targeting of p53 by small molecules publication-title: Semin Cancer Biol – volume: 149 start-page: 1269 year: 2012 end-page: 1283 article-title: Tumor suppression in the absence of p53‐mediated cell‐cycle arrest, apoptosis, and senescence publication-title: Cell – volume: 2 start-page: a000927 year: 2010 article-title: The isoforms of the p53 protein publication-title: Cold Spring Harb Perspect Biol – volume: 30 start-page: 3633 year: 2012 end-page: 3639 article-title: Targeting p53 in vivo: a first‐in‐human study with p53‐targeting compound ‐246 in refractory hematologic malignancies and prostate cancer publication-title: J Clin Oncol – volume: 132 start-page: 1227 year: 2013 end-page: 1231 article-title: Distinct tumor protein p53 mutants in breast cancer subgroups publication-title: Int J Cancer – volume: 265 start-page: 386 year: 1994 end-page: 391 article-title: High‐resolution structure of the oligomerization domain of p53 by multidimensional publication-title: Science – volume: 109 start-page: 7955 year: 2012 end-page: 7956 article-title: Tumor suppressor p53 ( 53) at the crossroads of the exposome and the cancer genome publication-title: Proc Natl Acad Sci USA – volume: 338 start-page: 1356 year: 1991 end-page: 1359 article-title: p53 mutation in hepatocellular carcinoma after aflatoxin exposure publication-title: Lancet – volume: 18 start-page: 617 year: 2013 end-page: 633 article-title: Metabolic regulation by p53 family members publication-title: Cell Metab – volume: 500 start-page: 415 year: 2013a end-page: 421 article-title: Signatures of mutational processes in human cancer publication-title: Nature – volume: 4 start-page: 144 year: 2013 end-page: 147 article-title: Fraud and misconduct in clinical research: a concern publication-title: Perspect Clin Res – volume: 50 start-page: 5566 year: 2011 end-page: 5582 article-title: Regulatory mechanisms of tumor suppressor 16( 4 ) and their relevance to cancer publication-title: Biochemistry – volume: 4 start-page: 192 year: 2010 end-page: 208 article-title: Histological types of breast cancer: how special are they publication-title: Mol Oncol – volume: 102 start-page: 16368 year: 2005 end-page: 16373 article-title: Detection and quantification of mutations in the plasma of patients with colorectal tumors publication-title: Proc Natl Acad Sci USA – volume: 244 start-page: 217 year: 1989 end-page: 221 article-title: Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas publication-title: Science – volume: 1 start-page: a000950 year: 2009 article-title: Posttranslational modification of p53: cooperative integrators of function publication-title: Cold Spring Harb Perspect Biol – volume: 265 start-page: 346 year: 1994 end-page: 355 article-title: Crystal structure of a p53 tumor suppressor‐DNA complex: understanding tumorigenic mutations publication-title: Science – volume: 487 start-page: 330 year: 2012 end-page: 337 article-title: Comprehensive molecular characterization of human colon and rectal cancer publication-title: Nature – volume: 48 start-page: 5738 year: 1988 end-page: 5741 article-title: Incidence and possible clinical significance of ‐ras oncogene activation in adenocarcinoma of the human lung publication-title: Cancer Res – volume: 119 start-page: 3668 year: 2012 end-page: 3683 article-title: Dysfunction of the 53 tumor suppressor gene in lymphoid malignancies publication-title: Blood – volume: 7 start-page: 819 year: 2007 end-page: 822 article-title: micro s join the p53 network—another piece in the tumour‐suppression puzzle publication-title: Nat Rev Cancer – volume: 18 start-page: 1660 year: 1999 end-page: 1672 article-title: A leucine‐rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by masking publication-title: EMBO J – volume: 362 start-page: 857 year: 1993 end-page: 860 article-title: Oncoprotein 2 conceals the activation domain of tumour suppressor p53 publication-title: Nature – volume: 5 start-page: 197ra101 year: 2013 article-title: Genome‐wide mutational signatures of aristolochic acid and its application as a screening tool publication-title: Sci Transl Med – volume: 3 start-page: 246 year: 2013b end-page: 259 article-title: Deciphering signatures of mutational processes operative in human cancer publication-title: Cell Rep – volume: 502 start-page: 333 year: 2013 end-page: 339 article-title: Mutational landscape and significance across 12 major cancer types publication-title: Nature – volume: 458 start-page: 719 year: 2009 end-page: 724 article-title: The cancer genome publication-title: Nature – volume: 3 start-page: 1339 year: 2013 end-page: 1345 article-title: p53 efficiently suppresses tumor development in the complete absence of its cell‐cycle inhibitory and proapoptotic effectors p21, puma, and noxa publication-title: Cell Rep – volume: 84 start-page: 7716 year: 1987 end-page: 7719 article-title: Rearrangement of the p53 gene in human osteogenic sarcomas publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 3291 year: 1998 ident: 10.1002/humu.22552-BIB0112|humu22552-cit-0112 article-title: Genetic and functional studies of a germline TP53 splicing mutation in a Li-Fraumeni-like family publication-title: Oncogene doi: 10.1038/sj.onc.1201878 – volume: 25 start-page: 6 year: 2005 ident: 10.1002/humu.22552-BIB0101|humu22552-cit-0101 article-title: Reassessment of the TP53 mutation database in human disease by data mining with a library of TP53 missense mutations publication-title: Hum Mutat doi: 10.1002/humu.20114 – volume: 246 start-page: 491 year: 1989 ident: 10.1002/humu.22552-BIB0107|humu22552-cit-0107 article-title: p53: a frequent target for genetic abnormalities in lung cancer publication-title: Science doi: 10.1126/science.2554494 – volume: 286 start-page: 252 year: 2011 ident: 10.1002/humu.22552-BIB0047|humu22552-cit-0047 article-title: Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation publication-title: J Biol Chem doi: 10.1074/jbc.M110.174698 – volume: 12 start-page: 62 year: 2006a ident: 10.1002/humu.22552-BIB0097|humu22552-cit-0097 article-title: Meta-analysis of the p53 mutation database for mutant p53 biological activity reveals a methodologic bias in mutation detection publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-05-0413 – volume: 20 start-page: 46 year: 2010 ident: 10.1002/humu.22552-BIB0092|humu22552-cit-0092 article-title: Therapeutic targeting of p53 by small molecules publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2010.02.006 – volume: 474 start-page: 609 year: 2011 ident: 10.1002/humu.22552-BIB0006|humu22552-cit-0006 article-title: Integrated genomic analyses of ovarian carcinoma publication-title: Nature doi: 10.1038/nature10166 – volume: 7 start-page: 819 year: 2007 ident: 10.1002/humu.22552-BIB0040|humu22552-cit-0040 article-title: microRNAs join the p53 network-another piece in the tumour-suppression puzzle publication-title: Nat Rev Cancer doi: 10.1038/nrc2232 – volume: 63 start-page: 1129 year: 1990 ident: 10.1002/humu.22552-BIB0089|humu22552-cit-0089 article-title: The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53 publication-title: Cell doi: 10.1016/0092-8674(90)90409-8 – volume: 9 start-page: e1003246 year: 2013 ident: 10.1002/humu.22552-BIB0108|humu22552-cit-0108 article-title: p53 protein isoforms: key regulators in the front line of pathogen infections publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003246 – volume: 14 start-page: 1561 year: 2007 ident: 10.1002/humu.22552-BIB0076|humu22552-cit-0076 article-title: How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4402196 – volume: 13 start-page: 3496 year: 1994 ident: 10.1002/humu.22552-BIB0077|humu22552-cit-0077 article-title: Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation publication-title: EMBO J doi: 10.1002/j.1460-2075.1994.tb06656.x – volume: 3 start-page: 419 year: 2004 ident: 10.1002/humu.22552-BIB0113|humu22552-cit-0113 article-title: Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics publication-title: Cell Cycle doi: 10.4161/cc.3.4.801 – volume: 281 start-page: 20464 year: 2006 ident: 10.1002/humu.22552-BIB0123|humu22552-cit-0123 article-title: Mutational analysis of the p53 core domain L1 loop publication-title: J Biol Chem doi: 10.1074/jbc.M603387200 – volume: 30 start-page: 3633 year: 2012 ident: 10.1002/humu.22552-BIB0059|humu22552-cit-0059 article-title: Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2011.40.7783 – volume: 97 start-page: E1284 year: 2012 ident: 10.1002/humu.22552-BIB0061|humu22552-cit-0061 article-title: SNP array profiling of childhood adrenocortical tumors reveals distinct pathways of tumorigenesis and highlights candidate driver genes publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2012-1184 – volume: 48 start-page: 5738 year: 1988 ident: 10.1002/humu.22552-BIB0086|humu22552-cit-0086 article-title: Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung publication-title: Cancer Res – volume: 13 start-page: 83 year: 2013 ident: 10.1002/humu.22552-BIB0115|humu22552-cit-0115 article-title: MDM2, MDMX and p53 in oncogenesis and cancer therapy publication-title: Nat Rev Cancer doi: 10.1038/nrc3430 – volume: 6 start-page: 83 year: 2006b ident: 10.1002/humu.22552-BIB0100|humu22552-cit-0100 article-title: Locus-specific mutation databases: pitfalls and good practice based on the p53 experience publication-title: Nat Rev Cancer doi: 10.1038/nrc1783 – volume: 39 start-page: e118 year: 2011 ident: 10.1002/humu.22552-BIB0083|humu22552-cit-0083 article-title: Predicting the functional impact of protein mutations: application to cancer genomics publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr407 – volume: 26 start-page: 2166 year: 2007 ident: 10.1002/humu.22552-BIB0045|humu22552-cit-0045 article-title: TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer publication-title: Oncogene doi: 10.1038/sj.onc.1210279 – volume: 106 start-page: 14327 year: 2009 ident: 10.1002/humu.22552-BIB0071|humu22552-cit-0071 article-title: Ultraslow oligomerization equilibria of p53 and its implications publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0907840106 – volume: 21 start-page: 86 year: 2011 ident: 10.1002/humu.22552-BIB0003|humu22552-cit-0003 article-title: New plays in the p53 theater publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2010.10.002 – volume: 98 start-page: 9330 year: 2001 ident: 10.1002/humu.22552-BIB0084|humu22552-cit-0084 article-title: An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.161479898 – volume: 6 start-page: pl1 year: 2013 ident: 10.1002/humu.22552-BIB0035|humu22552-cit-0035 article-title: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal publication-title: Sci Signal doi: 10.1126/scisignal.2004088 – volume: 1 start-page: 1178 year: 2010 ident: 10.1002/humu.22552-BIB0122|humu22552-cit-0122 article-title: GATA transcription factors and cancer publication-title: Genes Cancer doi: 10.1177/1947601911404223 – volume: 4 start-page: 1 year: 1992 ident: 10.1002/humu.22552-BIB0014|humu22552-cit-0014 article-title: TP53 tumor suppressor gene: a model for investigating human mutagenesis publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.2870040102 – volume: 663 start-page: 1 year: 2009 ident: 10.1002/humu.22552-BIB0093|humu22552-cit-0093 article-title: p53 mutations as fingerprints for aristolochic acid: an environmental carcinogen in endemic (Balkan) nephropathy publication-title: Mutat Res doi: 10.1016/j.mrfmmm.2009.01.005 – volume: 244 start-page: 217 year: 1989 ident: 10.1002/humu.22552-BIB0004|humu22552-cit-0004 article-title: Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas publication-title: Science doi: 10.1126/science.2649981 – volume: 31 start-page: 472 year: 1979 ident: 10.1002/humu.22552-BIB0053|humu22552-cit-0053 article-title: Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum publication-title: J Virol doi: 10.1128/JVI.31.2.472-483.1979 – volume: 486 start-page: 346 year: 2012 ident: 10.1002/humu.22552-BIB0025|humu22552-cit-0025 article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups publication-title: Nature doi: 10.1038/nature10983 – volume: 21 start-page: 2113 year: 2000 ident: 10.1002/humu.22552-BIB0120|humu22552-cit-0120 article-title: Cyclobutane pyrimidine dimers form preferentially at the major p53 mutational hotspot in UVB-induced mouse skin tumors publication-title: Carcinogenesis doi: 10.1093/carcin/21.11.2113 – volume: 444 start-page: 61 year: 2006 ident: 10.1002/humu.22552-BIB0057|humu22552-cit-0057 article-title: Inactivation of the p53 pathway in retinoblastoma publication-title: Nature doi: 10.1038/nature05194 – volume: 18 start-page: 4424 year: 1999 ident: 10.1002/humu.22552-BIB0087|humu22552-cit-0087 article-title: Increased apoptosis induction by 121F mutant p53 publication-title: EMBO J doi: 10.1093/emboj/18.16.4424 – volume: 12 start-page: 259 year: 2011 ident: 10.1002/humu.22552-BIB0063|humu22552-cit-0063 article-title: The p53 family: guardians of maternal reproduction publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3086 – volume: 9 start-page: 12 year: 2002 ident: 10.1002/humu.22552-BIB0030|humu22552-cit-0030 article-title: A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer publication-title: Nat Struct Biol doi: 10.1038/nsb730 – volume: 109 start-page: 7955 year: 2012 ident: 10.1002/humu.22552-BIB0090|humu22552-cit-0090 article-title: Tumor suppressor p53 (TP53) at the crossroads of the exposome and the cancer genome publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1205457109 – volume: 35 start-page: 766 year: 2014 ident: 10.1002/humu.22552-BIB0102|humu22552-cit-0102 article-title: Recommendations for analyzing and reporting TP53 gene alterations in the high throughput sequencing era publication-title: Hum Mutat doi: 10.1002/humu.22561 – volume: 3 start-page: 1339 year: 2013 ident: 10.1002/humu.22552-BIB0111|humu22552-cit-0111 article-title: p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, puma, and noxa publication-title: Cell Rep doi: 10.1016/j.celrep.2013.04.012 – volume: 84 start-page: 7716 year: 1987 ident: 10.1002/humu.22552-BIB0068|humu22552-cit-0068 article-title: Rearrangement of the p53 gene in human osteogenic sarcomas publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.84.21.7716 – volume: 1816 start-page: 199 year: 2011b ident: 10.1002/humu.22552-BIB0095|humu22552-cit-0095 article-title: Advances in carcinogenesis: a historical perspective from observational studies to tumor genome sequencing and TP53 mutation spectrum analysis publication-title: Biochim Biophys Acta – volume: 9 start-page: 612 year: 2009 ident: 10.1002/humu.22552-BIB0118|humu22552-cit-0118 article-title: Small RNAs: p53 makes microRNAs mature publication-title: Nat Rev Cancer doi: 10.1038/nrc2724 – volume: 12 start-page: 683 year: 2011 ident: 10.1002/humu.22552-BIB0088|humu22552-cit-0088 article-title: Understanding the contribution of synonymous mutations to human disease publication-title: Nat Rev Genet doi: 10.1038/nrg3051 – volume: 24 start-page: 6976 year: 2005 ident: 10.1002/humu.22552-BIB0051|humu22552-cit-0051 article-title: The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library publication-title: Oncogene doi: 10.1038/sj.onc.1208839 – volume: 494 start-page: 366 year: 2013 ident: 10.1002/humu.22552-BIB0013|humu22552-cit-0013 article-title: APOBEC3B is an enzymatic source of mutation in breast cancer publication-title: Nature doi: 10.1038/nature11881 – volume: 5 start-page: S479 issue: Suppl 5 year: 2013 ident: 10.1002/humu.22552-BIB0023|humu22552-cit-0023 article-title: Molecular biology of lung cancer publication-title: J Thorac Dis – volume: 5 start-page: 197ra101 year: 2013 ident: 10.1002/humu.22552-BIB0080|humu22552-cit-0080 article-title: Genome-wide mutational signatures of aristolochic acid and its application as a screening tool publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3006086 – volume: 132 start-page: 1227 year: 2013 ident: 10.1002/humu.22552-BIB0032|humu22552-cit-0032 article-title: Distinct tumor protein p53 mutants in breast cancer subgroups publication-title: Int J Cancer doi: 10.1002/ijc.27767 – volume: 499 start-page: 214 year: 2013 ident: 10.1002/humu.22552-BIB0058|humu22552-cit-0058 article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes publication-title: Nature doi: 10.1038/nature12213 – volume: 12 start-page: 621 year: 2012 ident: 10.1002/humu.22552-BIB0074|humu22552-cit-0074 article-title: How many molecular subtypes? Implications of the unique tumor principle in personalized medicine publication-title: Expert Rev Mol Diagn doi: 10.1586/erm.12.46 – volume: 8 start-page: 275 year: 2007 ident: 10.1002/humu.22552-BIB0114|humu22552-cit-0114 article-title: p53 in health and disease publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2147 – volume: 42 start-page: 715 year: 2010 ident: 10.1002/humu.22552-BIB0005|humu22552-cit-0005 article-title: Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy publication-title: Nat Genet doi: 10.1038/ng.619 – volume: 12 start-page: 613 year: 2012 ident: 10.1002/humu.22552-BIB0041|humu22552-cit-0041 article-title: MicroRNAs in the p53 network: micromanagement of tumour suppression publication-title: Nat Rev Cancer doi: 10.1038/nrc3318 – volume: 384 start-page: 285 year: 2009 ident: 10.1002/humu.22552-BIB0062|humu22552-cit-0062 article-title: The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53 publication-title: Virology doi: 10.1016/j.virol.2008.09.034 – volume: 149 start-page: 1269 year: 2012 ident: 10.1002/humu.22552-BIB0065|humu22552-cit-0065 article-title: Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence publication-title: Cell doi: 10.1016/j.cell.2012.04.026 – volume: 10 start-page: 1493 year: 1995 ident: 10.1002/humu.22552-BIB0109|humu22552-cit-0109 article-title: Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers publication-title: Oncogene – volume: 21 start-page: 192 year: 2003 ident: 10.1002/humu.22552-BIB0099|humu22552-cit-0099 article-title: Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides publication-title: Hum Mutat doi: 10.1002/humu.10189 – volume: 45 start-page: 970 year: 2013 ident: 10.1002/humu.22552-BIB0085|humu22552-cit-0085 article-title: An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers publication-title: Nat Genet doi: 10.1038/ng.2702 – volume: 500 start-page: 415 year: 2013a ident: 10.1002/humu.22552-BIB0001|humu22552-cit-0001 article-title: Signatures of mutational processes in human cancer publication-title: Nature doi: 10.1038/nature12477 – volume: 156 start-page: 1324 year: 2014 ident: 10.1002/humu.22552-BIB0124|humu22552-cit-0124 article-title: Synonymous mutations frequently act as driver mutations in human cancers publication-title: Cell doi: 10.1016/j.cell.2014.01.051 – volume: 4 start-page: 144 year: 2013 ident: 10.1002/humu.22552-BIB0038|humu22552-cit-0038 article-title: Fraud and misconduct in clinical research: a concern publication-title: Perspect Clin Res doi: 10.4103/2229-3485.111800 – volume: 331 start-page: 1553 year: 2011 ident: 10.1002/humu.22552-BIB0105|humu22552-cit-0105 article-title: Exploring the genomes of cancer cells: progress and promise publication-title: Science doi: 10.1126/science.1204040 – volume: 35 start-page: 756 year: 2014 ident: 10.1002/humu.22552-BIB0060|humu22552-cit-0060 article-title: Analysis of p53 mutation status in human cancer cell lines: a reassessment publication-title: Hum Mutat doi: 10.1002/humu.22556 – volume: 487 start-page: 330 year: 2012 ident: 10.1002/humu.22552-BIB0081|humu22552-cit-0081 article-title: Comprehensive molecular characterization of human colon and rectal cancer publication-title: Nature doi: 10.1038/nature11252 – volume: 110 start-page: 15497 year: 2013 ident: 10.1002/humu.22552-BIB0034|humu22552-cit-0034 article-title: Activation and control of p53 tetramerization in individual living cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1311126110 – volume: 31 start-page: 121 year: 2010 ident: 10.1002/humu.22552-BIB0010|humu22552-cit-0010 article-title: Biomarkers in cancer epidemiology: an integrative approach publication-title: Carcinogenesis doi: 10.1093/carcin/bgp269 – volume: 100 start-page: 8424 year: 2003 ident: 10.1002/humu.22552-BIB0050|humu22552-cit-0050 article-title: Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1431692100 – volume: 13 start-page: 27 year: 1997 ident: 10.1002/humu.22552-BIB0039|humu22552-cit-0039 article-title: The molecular epidemiology of p53 gene mutations in human breast cancer publication-title: Trends Genet doi: 10.1016/S0168-9525(96)10043-3 – volume: 31 start-page: 2619 year: 2013 ident: 10.1002/humu.22552-BIB0026|humu22552-cit-0026 article-title: Impact of neonatal screening and surveillance for the TP53 R337H mutation on early detection of childhood adrenocortical tumors publication-title: J Clin Oncol doi: 10.1200/JCO.2012.46.3711 – volume: 368 start-page: 1199 year: 2013 ident: 10.1002/humu.22552-BIB0027|humu22552-cit-0027 article-title: Analysis of circulating tumor DNA to monitor metastatic breast cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa1213261 – volume: 35 start-page: 663 year: 2014 ident: 10.1002/humu.22552-BIB0067|humu22552-cit-0067 article-title: TP53 mutation analysis in clinical practice: lessons from chronic lymphocytic leukemia publication-title: Hum Mutat doi: 10.1002/humu.22508 – volume: 110 start-page: 107 year: 2011a ident: 10.1002/humu.22552-BIB0094|humu22552-cit-0094 article-title: TP53 mutations in human cancer: database reassessment and prospects for the next decade publication-title: Adv Cancer Res doi: 10.1016/B978-0-12-386469-7.00005-0 – volume: 35 start-page: 738 year: 2014 ident: 10.1002/humu.22552-BIB0073|humu22552-cit-0073 article-title: Mutant TP53 posttranslational modifications: challenges and opportunities publication-title: Hum Mutat doi: 10.1002/humu.22506 – volume: 119 start-page: 3668 year: 2012 ident: 10.1002/humu.22552-BIB0119|humu22552-cit-0119 article-title: Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies publication-title: Blood doi: 10.1182/blood-2011-11-366062 – volume: 2 start-page: 401 year: 2012 ident: 10.1002/humu.22552-BIB0015|humu22552-cit-0015 article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-12-0095 – volume: 274 start-page: 948 year: 1996 ident: 10.1002/humu.22552-BIB0054|humu22552-cit-0054 article-title: Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain publication-title: Science doi: 10.1126/science.274.5289.948 – volume: 2 start-page: 321 year: 1995 ident: 10.1002/humu.22552-BIB0020|humu22552-cit-0020 article-title: Refined solution structure of the oligomerization domain of the tumour suppressor p53 publication-title: Nat Struct Biol doi: 10.1038/nsb0495-321 – volume: 5 start-page: 209ra153 year: 2013 ident: 10.1002/humu.22552-BIB0019|humu22552-cit-0019 article-title: A genomics-based classification of human lung tumors publication-title: Sci Transl Med – volume: 1 start-page: 233 year: 2001 ident: 10.1002/humu.22552-BIB0098|humu22552-cit-0098 article-title: Assessing TP53 status in human tumours to evaluate clinical outcome publication-title: Nat Rev Cancer doi: 10.1038/35106009 – volume: 35 start-page: 643 year: 2014 ident: 10.1002/humu.22552-BIB0096|humu22552-cit-0096 article-title: Locus-specific databases in cancer: what future in a post-genomic era? The TP53 LSDB paradigm publication-title: Hum Mutat doi: 10.1002/humu.22518 – volume: 21 start-page: 229 year: 2003 ident: 10.1002/humu.22552-BIB0110|humu22552-cit-0110 article-title: The TP53 gene, tobacco exposure, and lung cancer publication-title: Hum Mutat doi: 10.1002/humu.10177 – volume: 94 start-page: 3893 year: 1997 ident: 10.1002/humu.22552-BIB0028|humu22552-cit-0028 article-title: Cytosine methylation determines hot spots of DNA damage in the human P53 gene publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.8.3893 – volume: 10 start-page: 550 year: 2010 ident: 10.1002/humu.22552-BIB0070|humu22552-cit-0070 article-title: Human papillomavirus oncoproteins: pathways to transformation publication-title: Nat Rev Cancer doi: 10.1038/nrc2886 – volume: 21 start-page: 1371 year: 2008 ident: 10.1002/humu.22552-BIB0091|humu22552-cit-0091 article-title: Clinical significance of p53 alterations in surgically treated prostate cancers publication-title: Mod Pathol doi: 10.1038/modpathol.2008.104 – volume: 5 start-page: 197ra102 year: 2013 ident: 10.1002/humu.22552-BIB0042|humu22552-cit-0042 article-title: Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3006200 – volume: 9 start-page: 1847 year: 2010 ident: 10.1002/humu.22552-BIB0121|humu22552-cit-0121 article-title: Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA publication-title: Cell Cycle doi: 10.4161/cc.9.9.11545 – volume: 265 start-page: 386 year: 1994 ident: 10.1002/humu.22552-BIB0021|humu22552-cit-0021 article-title: High-resolution structure of the oligomerization domain of p53 by multidimensional NMR publication-title: Science doi: 10.1126/science.8023159 – volume: 3 start-page: 246 year: 2013b ident: 10.1002/humu.22552-BIB0002|humu22552-cit-0002 article-title: Deciphering signatures of mutational processes operative in human cancer publication-title: Cell Rep doi: 10.1016/j.celrep.2012.12.008 – volume: 2 start-page: a000927 year: 2010 ident: 10.1002/humu.22552-BIB0052|humu22552-cit-0052 article-title: The isoforms of the p53 protein publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a000927 – volume: 463 start-page: 184 year: 2010 ident: 10.1002/humu.22552-BIB0079|humu22552-cit-0079 article-title: A small-cell lung cancer genome with complex signatures of tobacco exposure publication-title: Nature doi: 10.1038/nature08629 – volume: 1 start-page: a000950 year: 2009 ident: 10.1002/humu.22552-BIB0069|humu22552-cit-0069 article-title: Posttranslational modification of p53: cooperative integrators of function publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a000950 – volume: 109 start-page: 9551 year: 2012 ident: 10.1002/humu.22552-BIB0033|humu22552-cit-0033 article-title: Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1200019109 – volume: 18 start-page: 477 year: 1999 ident: 10.1002/humu.22552-BIB0009|humu22552-cit-0009 article-title: Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy publication-title: Oncogene doi: 10.1038/sj.onc.1202314 – volume: 21 start-page: 217 year: 2003 ident: 10.1002/humu.22552-BIB0036|humu22552-cit-0036 article-title: TP53 mutations in human skin cancers publication-title: Hum Mutat doi: 10.1002/humu.10179 – volume: 338 start-page: 1356 year: 1991 ident: 10.1002/humu.22552-BIB0078|humu22552-cit-0078 article-title: p53 mutation in hepatocellular carcinoma after aflatoxin exposure publication-title: Lancet doi: 10.1016/0140-6736(91)92236-U – volume: 458 start-page: 719 year: 2009 ident: 10.1002/humu.22552-BIB0106|humu22552-cit-0106 article-title: The cancer genome publication-title: Nature doi: 10.1038/nature07943 – volume: 78 start-page: 151 year: 1988 ident: 10.1002/humu.22552-BIB0022|humu22552-cit-0022 article-title: The CpG dinucleotide and human genetic disease publication-title: Hum Genet doi: 10.1007/BF00278187 – volume: 253 start-page: 49 year: 1991 ident: 10.1002/humu.22552-BIB0043|humu22552-cit-0043 article-title: p53 mutations in human cancers publication-title: Science doi: 10.1126/science.1905840 – volume: 18 start-page: 1660 year: 1999 ident: 10.1002/humu.22552-BIB0104|humu22552-cit-0104 article-title: A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking publication-title: EMBO J doi: 10.1093/emboj/18.6.1660 – volume: 13 start-page: 410 year: 1997 ident: 10.1002/humu.22552-BIB0012|humu22552-cit-0012 article-title: Sunlight and the onset of skin cancer publication-title: Trends Genet doi: 10.1016/S0168-9525(97)01246-8 – volume: 102 start-page: 16368 year: 2005 ident: 10.1002/humu.22552-BIB0029|humu22552-cit-0029 article-title: Detection and quantification of mutations in the plasma of patients with colorectal tumors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0507904102 – volume: 145 start-page: 571 year: 2011 ident: 10.1002/humu.22552-BIB0011|humu22552-cit-0011 article-title: Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression publication-title: Cell doi: 10.1016/j.cell.2011.03.035 – volume: 22 start-page: 398 year: 2012 ident: 10.1002/humu.22552-BIB0018|humu22552-cit-0018 article-title: Mutual exclusivity analysis identifies oncogenic network modules publication-title: Genome Res doi: 10.1101/gr.125567.111 – volume: 35 start-page: 654 year: 2014 ident: 10.1002/humu.22552-BIB0048|humu22552-cit-0048 article-title: Germline TP53 mutations and the changing landscape of Li-Fraumeni syndrome publication-title: Hum Mutat doi: 10.1002/humu.22559 – volume: 278 start-page: 261 year: 1979 ident: 10.1002/humu.22552-BIB0056|humu22552-cit-0056 article-title: T antigen is bound to a host protein in SV40-transformed cells publication-title: Nature doi: 10.1038/278261a0 – volume: 7 start-page: 699 year: 2008 ident: 10.1002/humu.22552-BIB0007|humu22552-cit-0007 article-title: Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination publication-title: Cancer Biol Ther doi: 10.4161/cbt.7.5.5712 – volume: 35 start-page: 715 year: 2014 ident: 10.1002/humu.22552-BIB0031|humu22552-cit-0031 article-title: Insights into wild-type and mutant p53 functions provided by genetically engineered mice publication-title: Hum Mutat doi: 10.1002/humu.22507 – volume: 17 start-page: 43 year: 1979 ident: 10.1002/humu.22552-BIB0066|humu22552-cit-0066 article-title: Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells publication-title: Cell doi: 10.1016/0092-8674(79)90293-9 – volume: 50 start-page: 5566 year: 2011 ident: 10.1002/humu.22552-BIB0064|humu22552-cit-0064 article-title: Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer publication-title: Biochemistry doi: 10.1021/bi200642e – volume: 15 start-page: 80 year: 2014 ident: 10.1002/humu.22552-BIB0044|humu22552-cit-0044 article-title: Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities publication-title: Curr Drug Targets doi: 10.2174/1389450114666140106101412 – volume: 21 start-page: 201 year: 2003 ident: 10.1002/humu.22552-BIB0103|humu22552-cit-0103 article-title: TP53 and liver carcinogenesis publication-title: Hum Mutat doi: 10.1002/humu.10176 – volume: 2 start-page: a001222 year: 2010 ident: 10.1002/humu.22552-BIB0055|humu22552-cit-0055 article-title: p53-based cancer therapy publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a001222 – volume: 265 start-page: 346 year: 1994 ident: 10.1002/humu.22552-BIB0017|humu22552-cit-0017 article-title: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations publication-title: Science doi: 10.1126/science.8023157 – volume: 39 start-page: 2294 year: 2011 ident: 10.1002/humu.22552-BIB0082|humu22552-cit-0082 article-title: Single-molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq800 – volume: 6 start-page: 553 year: 2009 ident: 10.1002/humu.22552-BIB0046|humu22552-cit-0046 article-title: The Holy Grail of biomarkers publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2009.145 – volume: 104 start-page: 12129 year: 2007 ident: 10.1002/humu.22552-BIB0037|humu22552-cit-0037 article-title: Aristolochic acid and the etiology of endemic (Balkan) nephropathy publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0701248104 – volume: 18 start-page: 617 year: 2013 ident: 10.1002/humu.22552-BIB0008|humu22552-cit-0008 article-title: Metabolic regulation by p53 family members publication-title: Cell Metab doi: 10.1016/j.cmet.2013.06.019 – volume: 502 start-page: 333 year: 2013 ident: 10.1002/humu.22552-BIB0049|humu22552-cit-0049 article-title: Mutational landscape and significance across 12 major cancer types publication-title: Nature doi: 10.1038/nature12634 – volume: 8 start-page: 749 year: 2007 ident: 10.1002/humu.22552-BIB0116|humu22552-cit-0116 article-title: Splicing in disease: disruption of the splicing code and the decoding machinery publication-title: Nat Rev Genet doi: 10.1038/nrg2164 – volume: 25 start-page: 534 year: 2011 ident: 10.1002/humu.22552-BIB0016|humu22552-cit-0016 article-title: Making sense of cancer genomic data publication-title: Genes Dev doi: 10.1101/gad.2017311 – volume: 362 start-page: 857 year: 1993 ident: 10.1002/humu.22552-BIB0075|humu22552-cit-0075 article-title: Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53 publication-title: Nature doi: 10.1038/362857a0 – volume: 7 start-page: 61 year: 2006 ident: 10.1002/humu.22552-BIB0072|humu22552-cit-0072 article-title: Predicting the effects of amino acid substitutions on protein function publication-title: Annu Rev Genomics Hum Genet doi: 10.1146/annurev.genom.7.080505.115630 – volume: 4 start-page: 192 year: 2010 ident: 10.1002/humu.22552-BIB0117|humu22552-cit-0117 article-title: Histological types of breast cancer: how special are they publication-title: Mol Oncol doi: 10.1016/j.molonc.2010.04.004 – volume: 106 start-page: 18954 year: 2009 ident: 10.1002/humu.22552-BIB0024|humu22552-cit-0024 article-title: Exon sequences at the splice junctions affect splicing fidelity and alternative splicing publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0907948106 |
SSID | ssj0008553 |
Score | 2.5628562 |
SecondaryResourceType | review_article |
Snippet | ABSTRACT
More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the... More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53... |
SourceID | swepub proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 672 |
SubjectTerms | cancer Databases, Genetic DNA Mutational Analysis Germ-Line Mutation Humans LSDB Mutation Neoplasms - genetics Neoplasms - pathology TP53 Tumor Suppressor Protein p53 - genetics |
Title | TP53 Mutations in Human Cancer: Database Reassessment and Prospects for the Next Decade |
URI | https://api.istex.fr/ark:/67375/WNG-2V6N4BG5-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhumu.22552 https://www.ncbi.nlm.nih.gov/pubmed/24665023 https://www.proquest.com/docview/1659804788 https://www.proquest.com/docview/1527330479 https://www.proquest.com/docview/1534815404 http://kipublications.ki.se/Default.aspx?queryparsed=id:129096125 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lovjSav26WiWiCAp73csmuY34oq3tIdxRSs_2pYQkm6Xl6p7c3YL61zuT7O1RKQV9WcJmFvIxk_yyM_MLIW-UEaawniXc9hw8rEwsrIKJzfGEW8LyWIZoi5EcjPnXM3G2Rj4uc2EiP0T7ww0tI6zXaODGzndXpKEX9fe6C9oocAHGYC1ERMcr7qhciBhdLxRASMVbblK2u_r02m50Bwf2501Qs-URvQ5hwx50sEnOl62PoSeTbr2wXff7L2LH_-3eA7LRgFP6KWrTQ7Lmqy1yN15X-WuL3Bs2jvhH5PTkSGR0WEdH_pxeVjS4A-geatHsA903C4M7JD32piX_pKYq6NFsGtI75xTwMgX8SUewQdB9j5H6j8n44MvJ3iBp7mhInJAAzp1yfSjYggtXSGUyB5inwPRXk5al6aXKqUIxJ5UwXjqlROr6Ki9KD-euVBXZE7JeTSv_jFCTZqUXJSDOXHHpU8PK1MHBn2fMAmpVHfJuOVfaNQTmeI_GlY7Uy0zjmOkwZh3yupX9EWk7bpR6G6a8FTGzCQa69YU-HR1q9k2O-OdDoUFwZ6kTurHxue5JoXIkN8o75FVbDdaJLhdT-WkNMshvh55NdZsMJkMDcuYd8jTqW9sgxiVAaJZBS6MCtjVIC968mkDJawDSfQZNeR-06pZe68F4OA6l7X8Rfk7uA1jkMUxuh6wvZrV_AYBsYV8Gw_sDWT0vJw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQJj5eGIyPFQYYgZBASpc6thvzBhtbgTWapnbbm-U4joYKKWobie2v352dpRqaJsFLZMUXyXbu7J99598R8lYZYYrcsYjnPQuPXEY5zIJRnuIOt4TpsfTRFpkcjPm3E3HSxObgXZjAD9EeuKFl-PkaDRwPpLeWrKGn9a-6C-ooYAZexZTefkd1uGSPSoUI8fVCAYhUvGUnZVvLb6-sR6s4tH-uA5stk-hVEOtXod21kGp17skLMfhk0q0Xedee_0Xt-N8dfEDuN_iUfgoK9ZDcctU6uR0yVp6tkzvDxhf_iByPDkRCh3Xw5c_pj4p6jwDdRkWafaQ7ZmFwkaSHzrT8n9RUBT2YTf0NzzkFyEwBgtIM1gi64zBY_zEZ734ZbQ-iJk1DZIUEfG6V7UMhL7iwhVQmsQB7CrwBa-KyNL1YWVUoZqUSxkmrlIhtX6VF6WDrFasieUJWqmnlNgg1cVI6UQLoTBWXLjasjC3s_XnCcgCuqkPeX_4sbRsOc0yl8VMH9mWmccy0H7MOedPK_g7MHddKvfP_vBUxswnGuvWFPs72NDuSGf-8JzQIbl4qhW7MfK57UqgU-Y3SDnndVoOBotfFVG5agwxS3KFzU90kg_ehATzzDnkaFK5tEOMSUDRLoKVBA9saZAZvXk2g5DRg6T6DpnzwanVDr_VgPBz70rN_EX5F7g5Gw329_zX7_pzcA-zIQ9TcJllZzGr3AvDZIn_prfACMSwzQg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9Nm5h4GTC-CgOMQEggpUsd240RL7DSlY9W1bSyvSDLcRwNFdKpbSTgr-dsp6mGpknwElnxRfLHnf1z7u5ngOdSc51nlkYs6xh8ZCLKcBWMstSdcAtcHgsfbTESgwn7eMpPN-DNKhcm8EM0P9ycZfj12hn4eV7sr0lDz6ofVRu1keMCvMVEnDqd7h2tyaNSzkN4PZeIISVryEnp_vrbC9vRlhvZn5dhzYZI9CKG9ZtQ_wZ8XTU_xJ5M29Uya5vffzE7_m__bsJOjU7J26BOt2DDlrtwLdxX-WsXtoe1J_42nByPeUKGVfDkL8i3knh_ADlwajR_TXp6qd0WSY6sbtg_iS5zMp7PfH7ngiBgJghAyQh3CNKzLlT_Dkz6748PBlF9SUNkuEB0bqTpYiHLGTe5kDoxCHpyl_-q46LQnVgamUtqhOTaCiMlj01Xpnlh8eAVyzy5C5vlrLT3geg4KSwvEHKmkgkba1rEBk_-LKEZwlbZgperuVKmZjB3F2l8V4F7mSo3ZsqPWQueNbLngbfjUqkXfsobET2fuki3Llcno0NFv4gRe3fIFQrurXRC1Ua-UB3BZerYjdIWPG2q0Tydz0WXdlahjCO4c65NeZWMy4ZG6MxacC_oW9MgygRiaJpgS4MCNjWOF7x-NcWSVYikuxSb8spr1RW9VoPJcOJLD_5F-Alsj3t99fnD6NNDuI7AkYWQuT3YXM4r-wjB2TJ77G3wD41NMfo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TP53+Mutations+in+Human+Cancer%3A+Database+Reassessment+and+Prospects+for+the+Next+Decade&rft.jtitle=Human+mutation&rft.au=Leroy%2C+B&rft.au=Anderson%2C+M&rft.au=Soussi%2C+T&rft.date=2014-06-01&rft.issn=1059-7794&rft.volume=35&rft.issue=6&rft.spage=672&rft_id=info:doi/10.1002%2Fhumu.22552&rft.externalDocID=oai_swepub_ki_se_522728 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-7794&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-7794&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-7794&client=summon |