TP53 Mutations in Human Cancer: Database Reassessment and Prospects for the Next Decade

ABSTRACT More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure–function rela...

Full description

Saved in:
Bibliographic Details
Published inHuman mutation Vol. 35; no. 6; pp. 672 - 688
Main Authors Leroy, Bernard, Anderson, Martha, Soussi, Thierry
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.06.2014
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure–function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high‐throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor‐suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations‐targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers. Frequency of cancer deaths worldwide and relationship to the frequency of TP53 mutations.
AbstractList More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure-function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high-throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor-suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations-targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers.More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure-function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high-throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor-suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations-targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers.
More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database ( http://p53.fr ). Analyses of these mutations have been invaluable for bettering our knowledge on the structure-function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high-throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor-suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations-targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers. Frequency of cancer deaths worldwide and relationship to the frequency of TP53 mutations.
ABSTRACT More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure–function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high‐throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor‐suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations‐targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers. Frequency of cancer deaths worldwide and relationship to the frequency of TP53 mutations.
More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure-function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high-throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor-suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations-targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers.
Author Anderson, Martha
Leroy, Bernard
Soussi, Thierry
Author_xml – sequence: 1
  givenname: Bernard
  surname: Leroy
  fullname: Leroy, Bernard
  organization: Université Pierre et Marie Curie-Paris 6, 75005, Paris, France
– sequence: 2
  givenname: Martha
  surname: Anderson
  fullname: Anderson, Martha
  organization: Karolinska Institute Department of Oncology-Pathology Cancer Center Karolinska (CCK), Stockholm SE-171 76, Sweden
– sequence: 3
  givenname: Thierry
  surname: Soussi
  fullname: Soussi, Thierry
  email: thierry.soussi@ki.se
  organization: Université Pierre et Marie Curie-Paris 6, 75005, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24665023$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:129096125$$DView record from Swedish Publication Index
BookMark eNqNkU9P3DAQxa2KqvzrpR-gstQLqhTq2LFj91aWslsJFlSx5Wh5nYkIJM7WdgR8e7zNsgdUVT35efR7Y8-8fbTjegcIfcjJcU4I_XI7dMMxpZzTN2gvJ0pmqVzsrDVXWVmqYhfth3BHCJGcs3dolxZCcELZHrq5vuIMXwzRxKZ3ATcOz4bOODwxzoL_ik9NNEsTAP8EEwKE0IGL2LgKX_k-rMDGgOve43gLeA6PEZ-CNRUcore1aQO835wHaHH2_Xoyy84vpz8m384zy4WkmVW2TGJZFdxWQhlmiWDpIqUhdW3SMFZVilqhuAFhleLElkpWNVCuiKrYAcrGvuEBVsNSr3zTGf-ke9PoTek-KdCc0pLKxB-N_Mr3vwcIUXdNsNC2xkE_BJ1zVsicF6T4D5SWjJGiVAn99Aq96wfv0uA6F1zJBMn12x831LDsoNr-9SWNBHweAZtWGzzUWyQneh21Xket_0SdYPIKts2YYvSmaf9uyUfLQ9PC0z-a69niYvHi2Sy4CREetx7j77UoWcn1zXyq6S8xL06mXFP2DPu9yCU
CitedBy_id crossref_primary_10_1155_2023_3801526
crossref_primary_10_1016_j_mcp_2023_101897
crossref_primary_10_1186_s40364_024_00710_w
crossref_primary_10_3233_THC_231051
crossref_primary_10_1007_s12253_018_0543_0
crossref_primary_10_1016_j_drup_2018_05_001
crossref_primary_10_1158_0008_5472_CAN_16_2179
crossref_primary_10_1007_s13273_023_00340_7
crossref_primary_10_1016_j_cllc_2023_12_004
crossref_primary_10_1136_gutjnl_2019_318279
crossref_primary_10_3390_biom10040548
crossref_primary_10_18632_oncotarget_11169
crossref_primary_10_1016_j_prp_2020_152997
crossref_primary_10_1158_1535_7163_MCT_19_0366
crossref_primary_10_1063_5_0243722
crossref_primary_10_1002_mco2_586
crossref_primary_10_3892_ijo_2023_5587
crossref_primary_10_1177_10668969211006194
crossref_primary_10_1186_s40164_022_00317_7
crossref_primary_10_1002_jcp_24813
crossref_primary_10_1007_s11684_023_1016_8
crossref_primary_10_18632_oncotarget_27738
crossref_primary_10_3389_fonc_2022_895112
crossref_primary_10_1016_j_xjidi_2022_100152
crossref_primary_10_1186_s12935_023_03208_x
crossref_primary_10_3389_fonc_2021_687899
crossref_primary_10_3724_abbs_2023270
crossref_primary_10_1038_s41467_019_13305_z
crossref_primary_10_3389_fonc_2020_554165
crossref_primary_10_4103_joah_joah_71_24
crossref_primary_10_5937_mp71_28969
crossref_primary_10_1093_nar_gkx721
crossref_primary_10_1371_journal_pone_0318856
crossref_primary_10_1016_j_hoc_2021_04_002
crossref_primary_10_7759_cureus_61165
crossref_primary_10_1002_anbr_202200083
crossref_primary_10_1038_s41416_023_02378_9
crossref_primary_10_1038_s41467_018_05368_1
crossref_primary_10_3390_cancers10060166
crossref_primary_10_1002_cac2_12520
crossref_primary_10_3390_cancers12071713
crossref_primary_10_1093_bfgp_elac015
crossref_primary_10_1016_j_ejphar_2022_174807
crossref_primary_10_1038_bjc_2017_152
crossref_primary_10_1002_humu_22562
crossref_primary_10_1097_MD_0000000000031023
crossref_primary_10_1002_humu_22561
crossref_primary_10_1002_ijc_29886
crossref_primary_10_3389_fendo_2019_00152
crossref_primary_10_3390_cancers15245834
crossref_primary_10_2174_1871520618666180911112127
crossref_primary_10_1007_s00438_017_1328_y
crossref_primary_10_1016_j_celrep_2019_05_109
crossref_primary_10_1096_fba_2020_00044
crossref_primary_10_1177_03946320231211795
crossref_primary_10_3390_cancers15143560
crossref_primary_10_3390_genes13122302
crossref_primary_10_1016_j_yexcr_2022_113210
crossref_primary_10_1080_10428194_2018_1564825
crossref_primary_10_1073_pnas_2015618118
crossref_primary_10_1038_s41375_024_02267_x
crossref_primary_10_3390_cells9071656
crossref_primary_10_3390_cancers15102707
crossref_primary_10_1016_j_envpol_2019_113908
crossref_primary_10_1097_HS9_0000000000000761
crossref_primary_10_1016_j_ygyno_2020_12_007
crossref_primary_10_1038_s41392_022_01042_7
crossref_primary_10_3390_ijms222212516
crossref_primary_10_2958_suizo_33_937
crossref_primary_10_1097_PGP_0000000000000243
crossref_primary_10_1111_his_15398
crossref_primary_10_1016_j_prp_2019_03_007
crossref_primary_10_1101_cshperspect_a026252
crossref_primary_10_1007_s40259_024_00702_0
crossref_primary_10_1055_s_0043_1774776
crossref_primary_10_1146_annurev_biochem_060815_014710
crossref_primary_10_1089_scd_2017_0254
crossref_primary_10_1002_cbf_4075
crossref_primary_10_3390_cancers10040110
crossref_primary_10_1186_s41544_019_0045_6
crossref_primary_10_1007_s12094_019_02236_2
crossref_primary_10_1021_acsptsci_2c00164
crossref_primary_10_1002_humu_23673
crossref_primary_10_1093_hmg_ddy323
crossref_primary_10_3389_fgene_2023_1061569
crossref_primary_10_1200_JCO_2017_75_5215
crossref_primary_10_3390_genes15050577
crossref_primary_10_1016_j_jmb_2022_167663
crossref_primary_10_1016_j_biopha_2022_113524
crossref_primary_10_3390_ijms241914862
crossref_primary_10_3390_cells8060584
crossref_primary_10_1186_s40164_022_00353_3
crossref_primary_10_3892_or_2017_5891
crossref_primary_10_1093_jmcb_mjaa065
crossref_primary_10_3389_fonc_2020_607149
crossref_primary_10_3390_diagnostics10070455
crossref_primary_10_6004_jnccn_2021_0001
crossref_primary_10_1002_jcla_23765
crossref_primary_10_1158_1541_7786_MCR_21_0098
crossref_primary_10_1038_cddis_2015_33
crossref_primary_10_1093_jnci_djad106
crossref_primary_10_1371_journal_pgph_0002841
crossref_primary_10_3390_cimb44110372
crossref_primary_10_2174_1389203724666230816090504
crossref_primary_10_1038_s41389_019_0141_3
crossref_primary_10_3390_cells10123315
crossref_primary_10_1016_j_hoc_2022_07_008
crossref_primary_10_1186_s40478_016_0307_6
crossref_primary_10_1186_s12896_015_0208_y
crossref_primary_10_1080_15384101_2017_1367070
crossref_primary_10_1002_humu_23543
crossref_primary_10_1186_s13046_019_1137_8
crossref_primary_10_1038_s41598_022_17927_0
crossref_primary_10_1371_journal_pone_0185126
crossref_primary_10_3389_fgene_2014_00447
crossref_primary_10_1016_j_bbrep_2021_101165
crossref_primary_10_3724_abbs_2023021
crossref_primary_10_1016_j_yexmp_2014_10_011
crossref_primary_10_3390_v14040739
crossref_primary_10_3390_curroncol29100582
crossref_primary_10_3390_cancers16183191
crossref_primary_10_1039_C5SC01403D
crossref_primary_10_1371_journal_pone_0231665
crossref_primary_10_1186_s12864_018_5262_0
crossref_primary_10_3389_fcell_2020_596679
crossref_primary_10_12998_wjcc_v10_i33_12104
crossref_primary_10_1016_j_biomaterials_2021_120720
crossref_primary_10_1007_s00432_023_04922_9
crossref_primary_10_1038_s41389_022_00401_x
crossref_primary_10_1038_s41375_021_01444_6
crossref_primary_10_1016_j_exphem_2022_03_007
crossref_primary_10_1186_s13046_023_02785_z
crossref_primary_10_1371_journal_pone_0173171
crossref_primary_10_1002_path_5677
crossref_primary_10_3390_molecules29225315
crossref_primary_10_1530_JME_18_0122
crossref_primary_10_18632_oncotarget_10445
crossref_primary_10_3389_fonc_2020_01103
crossref_primary_10_1007_s11033_024_10051_4
crossref_primary_10_1097_MPA_0000000000000931
crossref_primary_10_1155_2017_3859582
crossref_primary_10_18632_oncotarget_20951
crossref_primary_10_3748_wjg_v28_i25_2854
crossref_primary_10_3390_cancers17030446
crossref_primary_10_1007_s13577_022_00700_w
crossref_primary_10_1084_jem_20171066
crossref_primary_10_1016_j_cancergen_2020_01_001
crossref_primary_10_4143_crt_2023_794
crossref_primary_10_1016_j_semcancer_2020_07_005
crossref_primary_10_1093_bib_bbab524
crossref_primary_10_1016_j_trecan_2018_07_001
crossref_primary_10_1016_j_leukres_2020_106402
crossref_primary_10_1021_acs_analchem_7b03487
crossref_primary_10_1016_j_trecan_2018_07_005
crossref_primary_10_12737_article_5b83b6185814e7_31842273
crossref_primary_10_1038_s41698_024_00554_5
crossref_primary_10_1371_journal_pone_0288013
crossref_primary_10_1002_ijc_30222
crossref_primary_10_1038_s41586_022_05551_x
crossref_primary_10_1155_2022_3891598
crossref_primary_10_1371_journal_pone_0148529
crossref_primary_10_1016_j_canlet_2020_10_014
crossref_primary_10_1038_s41419_024_07190_8
crossref_primary_10_3390_diagnostics11122174
crossref_primary_10_1007_s12094_024_03841_6
crossref_primary_10_1038_ncomms7605
crossref_primary_10_2174_1566523221666211119110755
crossref_primary_10_1002_iid3_1266
crossref_primary_10_1038_cddis_2015_415
crossref_primary_10_1007_s12041_020_01224_8
crossref_primary_10_1016_j_cancergen_2017_01_001
crossref_primary_10_1051_medsci_20153110013
crossref_primary_10_1021_acs_biochem_8b00271
crossref_primary_10_3389_fonc_2022_995929
crossref_primary_10_1016_j_advms_2016_12_002
crossref_primary_10_3389_fphar_2025_1529483
crossref_primary_10_18632_oncotarget_13406
crossref_primary_10_1016_j_canlet_2023_216391
crossref_primary_10_1097_CCO_0000000000000152
crossref_primary_10_1016_j_celrep_2019_07_001
crossref_primary_10_1080_14728222_2020_1832465
crossref_primary_10_3389_fonc_2022_808886
crossref_primary_10_1016_j_fct_2020_111855
crossref_primary_10_1038_s41523_023_00582_7
crossref_primary_10_1038_s41698_024_00722_7
crossref_primary_10_1186_s13148_017_0334_6
crossref_primary_10_1038_s41525_018_0074_3
crossref_primary_10_1093_annonc_mdv613
crossref_primary_10_2196_35020
crossref_primary_10_1016_j_gene_2017_01_018
crossref_primary_10_1016_j_clml_2018_06_015
crossref_primary_10_1016_j_prp_2024_155183
crossref_primary_10_1186_s13000_022_01273_w
crossref_primary_10_1002_hem3_70065
crossref_primary_10_3390_cimb45100501
crossref_primary_10_1002_mc_23804
crossref_primary_10_1038_s41401_021_00852_9
crossref_primary_10_3389_fcimb_2020_609071
crossref_primary_10_3390_biom10020307
crossref_primary_10_1021_acssynbio_8b00202
crossref_primary_10_1038_s41375_017_0007_7
crossref_primary_10_3390_cancers13205251
crossref_primary_10_1002_ijc_33197
crossref_primary_10_1049_iet_syb_2019_0095
crossref_primary_10_15252_embj_2019102096
crossref_primary_10_3390_genes15121615
crossref_primary_10_1093_carcin_bgv039
crossref_primary_10_1371_journal_pone_0137823
crossref_primary_10_3892_or_2014_3579
crossref_primary_10_1186_s12935_018_0528_9
crossref_primary_10_3390_ijms21249648
crossref_primary_10_3390_ijms25010652
crossref_primary_10_1186_s12885_019_5312_2
crossref_primary_10_1002_humu_23717
crossref_primary_10_3389_fsurg_2023_1079129
crossref_primary_10_1098_rsfs_2020_0072
crossref_primary_10_3390_cells10010098
crossref_primary_10_3390_cancers15102834
crossref_primary_10_1016_j_ebiom_2020_102990
crossref_primary_10_1111_bjh_13849
crossref_primary_10_1038_cdd_2015_53
crossref_primary_10_1002_gcc_22318
crossref_primary_10_18632_oncotarget_27814
crossref_primary_10_18632_aging_203219
crossref_primary_10_3390_ijms25126612
crossref_primary_10_3390_cancers13102422
crossref_primary_10_1093_pnasnexus_pgac128
crossref_primary_10_1002_cnr2_1822
crossref_primary_10_3390_cancers13071531
crossref_primary_10_1371_journal_pone_0142750
crossref_primary_10_1016_j_apsb_2021_09_028
crossref_primary_10_2139_ssrn_3307592
crossref_primary_10_1016_j_gendis_2020_11_007
crossref_primary_10_1158_0008_5472_CAN_20_2002
crossref_primary_10_1109_TCBB_2018_2814049
crossref_primary_10_1016_j_bcp_2018_12_014
crossref_primary_10_1002_cam4_6729
crossref_primary_10_1007_s11033_021_06505_8
crossref_primary_10_1016_j_biopha_2023_114683
crossref_primary_10_1021_acsami_2c18020
crossref_primary_10_1007_s11060_017_2676_5
crossref_primary_10_1155_2022_4049147
crossref_primary_10_1158_0008_5472_CAN_21_0033
crossref_primary_10_3389_fcell_2021_762796
crossref_primary_10_1016_j_bneo_2024_100004
crossref_primary_10_1038_s41419_024_06429_8
crossref_primary_10_1186_s13046_022_02269_6
crossref_primary_10_1002_jcb_28404
crossref_primary_10_1038_nrc_2017_109
crossref_primary_10_1016_j_canlet_2017_07_010
crossref_primary_10_1002_humu_23163
crossref_primary_10_1155_2019_1410495
crossref_primary_10_1007_s10549_020_05536_2
crossref_primary_10_3390_cancers16132479
crossref_primary_10_3390_cancers12123699
crossref_primary_10_2174_0113892029278082240118053857
crossref_primary_10_1016_j_aca_2018_07_027
crossref_primary_10_1016_j_ygyno_2024_03_023
crossref_primary_10_1038_s41388_021_02141_5
crossref_primary_10_3389_fonc_2022_940402
crossref_primary_10_1007_s12551_020_00723_3
Cites_doi 10.1038/sj.onc.1201878
10.1002/humu.20114
10.1126/science.2554494
10.1074/jbc.M110.174698
10.1158/1078-0432.CCR-05-0413
10.1016/j.semcancer.2010.02.006
10.1038/nature10166
10.1038/nrc2232
10.1016/0092-8674(90)90409-8
10.1371/journal.ppat.1003246
10.1038/sj.cdd.4402196
10.1002/j.1460-2075.1994.tb06656.x
10.4161/cc.3.4.801
10.1074/jbc.M603387200
10.1200/JCO.2011.40.7783
10.1210/jc.2012-1184
10.1038/nrc3430
10.1038/nrc1783
10.1093/nar/gkr407
10.1038/sj.onc.1210279
10.1073/pnas.0907840106
10.1016/j.gde.2010.10.002
10.1073/pnas.161479898
10.1126/scisignal.2004088
10.1177/1947601911404223
10.1002/gcc.2870040102
10.1016/j.mrfmmm.2009.01.005
10.1126/science.2649981
10.1128/JVI.31.2.472-483.1979
10.1038/nature10983
10.1093/carcin/21.11.2113
10.1038/nature05194
10.1093/emboj/18.16.4424
10.1038/nrm3086
10.1038/nsb730
10.1073/pnas.1205457109
10.1002/humu.22561
10.1016/j.celrep.2013.04.012
10.1073/pnas.84.21.7716
10.1038/nrc2724
10.1038/nrg3051
10.1038/sj.onc.1208839
10.1038/nature11881
10.1126/scitranslmed.3006086
10.1002/ijc.27767
10.1038/nature12213
10.1586/erm.12.46
10.1038/nrm2147
10.1038/ng.619
10.1038/nrc3318
10.1016/j.virol.2008.09.034
10.1016/j.cell.2012.04.026
10.1002/humu.10189
10.1038/ng.2702
10.1038/nature12477
10.1016/j.cell.2014.01.051
10.4103/2229-3485.111800
10.1126/science.1204040
10.1002/humu.22556
10.1038/nature11252
10.1073/pnas.1311126110
10.1093/carcin/bgp269
10.1073/pnas.1431692100
10.1016/S0168-9525(96)10043-3
10.1200/JCO.2012.46.3711
10.1056/NEJMoa1213261
10.1002/humu.22508
10.1016/B978-0-12-386469-7.00005-0
10.1002/humu.22506
10.1182/blood-2011-11-366062
10.1158/2159-8290.CD-12-0095
10.1126/science.274.5289.948
10.1038/nsb0495-321
10.1038/35106009
10.1002/humu.22518
10.1002/humu.10177
10.1073/pnas.94.8.3893
10.1038/nrc2886
10.1038/modpathol.2008.104
10.1126/scitranslmed.3006200
10.4161/cc.9.9.11545
10.1126/science.8023159
10.1016/j.celrep.2012.12.008
10.1101/cshperspect.a000927
10.1038/nature08629
10.1101/cshperspect.a000950
10.1073/pnas.1200019109
10.1038/sj.onc.1202314
10.1002/humu.10179
10.1016/0140-6736(91)92236-U
10.1038/nature07943
10.1007/BF00278187
10.1126/science.1905840
10.1093/emboj/18.6.1660
10.1016/S0168-9525(97)01246-8
10.1073/pnas.0507904102
10.1016/j.cell.2011.03.035
10.1101/gr.125567.111
10.1002/humu.22559
10.1038/278261a0
10.4161/cbt.7.5.5712
10.1002/humu.22507
10.1016/0092-8674(79)90293-9
10.1021/bi200642e
10.2174/1389450114666140106101412
10.1002/humu.10176
10.1101/cshperspect.a001222
10.1126/science.8023157
10.1093/nar/gkq800
10.1038/nrclinonc.2009.145
10.1073/pnas.0701248104
10.1016/j.cmet.2013.06.019
10.1038/nature12634
10.1038/nrg2164
10.1101/gad.2017311
10.1038/362857a0
10.1146/annurev.genom.7.080505.115630
10.1016/j.molonc.2010.04.004
10.1073/pnas.0907948106
ContentType Journal Article
Copyright 2014 WILEY PERIODICALS, INC.
Copyright © 2014 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 WILEY PERIODICALS, INC.
– notice: Copyright © 2014 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
ADTPV
AOWAS
DOI 10.1002/humu.22552
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
SwePub
SwePub Articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts

MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-1004
EndPage 688
ExternalDocumentID oai_swepub_ki_se_522728
3610748421
24665023
10_1002_humu_22552
HUMU22552
ark_67375_WNG_2V6N4BG5_2
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Cancerföreningen iStockholm and Cancerfonden
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29I
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88A
88E
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GNP
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0L
M1P
M66
M7P
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
RHX
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
X7M
XG1
XSW
XV2
ZZTAW
~IA
~KM
~WT
AANHP
ACCMX
ACRPL
ACYXJ
ADNMO
PHGZT
RPM
AAYXX
AGQPQ
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
AAMMB
ADTPV
AEFGJ
AGXDD
AIDQK
AIDYY
AOWAS
PJZUB
PPXIY
PQGLB
PUEGO
ID FETCH-LOGICAL-c5682-c9c7568bd45cd69a3c063d4588a0ffa109c9d92c695ae6c9950c798dfe25909d3
IEDL.DBID DR2
ISSN 1059-7794
1098-1004
IngestDate Mon Aug 25 03:31:13 EDT 2025
Fri Jul 11 10:09:24 EDT 2025
Fri Jul 11 07:18:22 EDT 2025
Fri Jul 25 19:44:46 EDT 2025
Thu Apr 03 07:09:17 EDT 2025
Tue Jul 01 04:33:47 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
Wed Apr 02 05:42:36 EDT 2025
Wed Oct 30 09:58:56 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords mutation
cancer
TP53
LSDB
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2014 WILEY PERIODICALS, INC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5682-c9c7568bd45cd69a3c063d4588a0ffa109c9d92c695ae6c9950c798dfe25909d3
Notes ArticleID:HUMU22552
Cancerföreningen iStockholm and Cancerfonden
ark:/67375/WNG-2V6N4BG5-2
istex:B192AA349C12F87F7611A32C73F4D1DA35495A61
For the TP53 Special Issue
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/humu.22552
PMID 24665023
PQID 1659804788
PQPubID 30498
PageCount 17
ParticipantIDs swepub_primary_oai_swepub_ki_se_522728
proquest_miscellaneous_1534815404
proquest_miscellaneous_1527330479
proquest_journals_1659804788
pubmed_primary_24665023
crossref_primary_10_1002_humu_22552
crossref_citationtrail_10_1002_humu_22552
wiley_primary_10_1002_humu_22552_HUMU22552
istex_primary_ark_67375_WNG_2V6N4BG5_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Human mutation
PublicationTitleAlternate Human Mutation
PublicationYear 2014
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, Johnson D, Wilson M, et al. 2006. Inactivation of the p53 pathway in retinoblastoma. Nature 444:61-66.
Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. 2013b. Deciphering signatures of mutational processes operative in human cancer. Cell Rep 3:246-259.
Clore GM, Omichinski JG, Sakaguchi K, Zambrano N, Sakamoto H, Appella E, Gronenborn AM. 1994. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science 265:386-391.
Soussi T, Leroy B, Taschner PEM. 2014. Recommendations for analyzing and reporting TP53 gene alterations in the high throughput sequencing era. Hum Mutat 35:766-778.
Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP. 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948-953.
Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, et al. 2012. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346-352.
Caron de Fromentel C, Soussi T. 1992. TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer 4:1-15.
Brash DE. 1997. Sunlight and the onset of skin cancer. Trends Genet 13:410-414.
Rodenhuis S, Slebos RJ, Boot AJ, Evers SG, Mooi WJ, Wagenaar SS, van Bodegom PC, Bos JL. 1988. Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung. Cancer Res 48:5738-5741.
Levine AJ, Tomasini R, McKeon FD, Mak TW, Melino G. 2011. The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol 12:259-265.
Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. 1993. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362:857-860.
Letouze E, Rosati R, Komechen H, Doghman M, Marisa L, Fluck C, de Krijger RR, van Noesel MM, Mas JC, Pianovski MA, Zambetti GP, Figueiredo BC, et al. 2012. SNP array profiling of childhood adrenocortical tumors reveals distinct pathways of tumorigenesis and highlights candidate driver genes. J Clin Endocrinol Metab 97:E1284-E1293.
Schlomm T, Iwers L, Kirstein P, Jessen B, Kollermann J, Minner S, Passow-Drolet A, Mirlacher M, Milde-Langosch K, Graefen M, Haese A, Steuber T, et al. 2008. Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol 21:1371-1378.
Aylon Y, Oren M. 2011. New plays in the p53 theater. Curr Opin Genet Dev 21:86-92.
Clore GM, Ernst J, Clubb R, Omichinski JG, Kennedy WM, Sakaguchi K, Appella E, Gronenborn AM. 1995. Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nat Struct Biol 2:321-333.
Kamada R, Nomura T, Anderson CW, Sakaguchi K. 2011. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. J Biol Chem 286:252-258.
Linzer DI, Levine AJ. 1979. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43-52.
Soussi T, Beroud C. 2003. Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Hum Mutat 21:192-200.
Cooper WA, Lam DC, O'Toole SA, Minna JD. 2013. Molecular biology of lung cancer. J Thorac Dis 5(Suppl 5):S479-S490.
Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, Leonard B, Refsland EW, Kotandeniya D, Tretyakova N, Nikas JB, Yee D, Temiz NA, et al. 2013. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494:366-370.
Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, Decarolis PL, Shah K, Socci ND, Weir BA, Ho A, Chiang DY, Reva B, et al. 2010. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 42:715-721.
Lane DP, Cheok CF, Lain S. 2010. p53-based cancer therapy. Cold Spring Harb Perspect Biol 2:a001222.
Hong B, van den Heuvel AP, Prabhu VV, Zhang S, El-Deiry WS. 2014. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr Drug Targets 15:80-89.
Zhao CY, Grinkevich VV, Nikulenkov F, Bao W, Selivanova G. 2010. Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA. Cell Cycle 9:1847-1855.
Stratton MR. 2011. Exploring the genomes of cancer cells: progress and promise. Science 331:1553-1558.
Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W. 2012. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149:1269-1283.
Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129-1136.
Wade M, Li YC, Wahl GM. 2013. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13:83-96.
Ory K, Legros Y, Auguin C, Soussi T. 1994. Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J 13:3496-3504.
Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, Carter SL, Saksena G, Harris S, Shah RR, et al. 2013. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45:970-976.
Leroy B, Girard L, Minna JD, Gazdar AF, Soussi T. 2014. Analysis of p53 mutation status in human cancer cell lines: a reassessment. Hum Mutat 35:756-765.
Hutchinson L, DeVita VTJ. 2009. The Holy Grail of biomarkers. Nat Rev Clin Oncol 6:553.
Zheng R, Blobel GA. 2010. GATA transcription factors and cancer. Genes Cancer 1:1178-1188.
Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U, Suzuki N, Fernandes A, Rosenquist T, Medverec Z, Jakovina K, Brdar B, et al. 2007. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci USA 104:12129-12134.
You YH, Szabo PE, Pfeifer GP. 2000. Cyclobutane pyrimidine dimers form preferentially at the major p53 mutational hotspot in UVB-induced mouse skin tumors. Carcinogenesis 21:2113-2117.
Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Minna JD. 1989. p53: a frequent target for genetic abnormalities in lung cancer. Science 246:491-494.
Kamihara J, Rana HQ, Garber JE. 2014. Germline TP53 mutations and the changing landscape of Li-Fraumeni syndrome. Hum Mutat 35:654-662.
Blandino G, Levine AJ, Oren M. 1999. Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18:477-485.
Soussi T. 2014. Locus-specific databases in cancer: what future in a post-genomic era? The TP53 LSDB paradigm. Hum Mutat 35:643-653.
Poon SL, Pang ST, McPherson JR, Yu W, Huang KK, Guan P, Weng WH, Siew EY, Liu Y, Heng HL, Chong SC, Gan A, et al. 2013. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med 5:197ra101.
Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, Diaz LAJ, Goodman SN, David KA, Juhl H, Kinzler KW, Vogelstein B. 2005. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA 102:16368-16373.
Malcikova J, Pavlova S, Kozubik KS, Pospisilova S. 2014. TP53 mutation analysis in clinical practice: lessons from chronic lymphocytic leukemia. Hum Mutat 35:663-671.
Chin L, Hahn WC, Getz G, Meyerson M. 2011. Making sense of cancer genomic data. Genes Dev 25:534-555.
Gupta A. 2013. Fraud and misconduct in clinical research: a concern. Perspect Clin Res 4:144-147.
Li J, Poi MJ, Tsai MD. 2011. Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry 50:5566-5582.
Soussi T, Asselain B, Hamroun D, Kato S, Ishioka C, Claustres M, Beroud C. 2006a. Meta-analysis of the p53 mutation database for mutant p53 biological activity reveals a methodologic bias in mutation detection. Clin Cancer Res 12:62-69.
Toyooka S, Tsuda T, Gazdar AF. 2003. The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat 21:229-239.
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, et al. 2012. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401-404.
Reva B, Antipin Y, Sander C. 2011. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39:e118.
DiGiammarino EL, Lee AS, Cadwell C, Zhang W, Bothner B, Ribeiro RC, Zambetti G, Kriwacki RW. 2002. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat Struct Biol 9:12-16.
Hermeking H. 2012. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12:613-626.
Ribeiro RC, Sandrini F, Figueiredo B, Zambetti GP, Michalkiewicz E, Lafferty AR, DeLacerda L, Rabin M, Cadwell C, Sampaio G, Cat I, Stratakis CA, et al. 2001. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci USA 98:9330-9335.
Meek DW, Anderson CW. 2009. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1:a000950.
Soussi T, Ishioka C, Claustres M, Beroud C. 2006b. Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nat Rev Cancer 6:83-90.
Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C. 2003. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100:8424-8429.
Hoang ML, Chen CH, Sidorenko VS, He J, Dickman KG, Yun BH, Moriya M, Niknafs N, Douville C, Karchin R, Turesky RJ, Pu YS,
2007; 104
2010; 10
2013; 3
2013; 4
2012; 486
2012; 487
2013; 368
2010; 463
2004; 3
1988; 78
1979; 31
2013; 5
2012; 12
2013; 6
2011; 474
2012; 97
1993; 362
2013; 9
1998; 16
1979; 278
1994; 265
2010; 20
2010; 1
2005; 102
2007; 8
2014; 15
2007; 7
2008; 21
2013; 110
2006; 281
2010; 2
2012; 22
2010; 4
1992; 4
2006; 444
2010; 9
1979; 17
2010; 31
2002; 9
2013; 502
2013a; 500
1995; 2
1991; 338
2007; 14
2012; 109
2012; 30
2014; 156
2009; 458
2010; 42
2011a; 110
1989; 244
1989; 246
2013b; 3
2014; 35
1994; 13
2011; 145
2003; 100
2003; 21
2012; 119
2009; 106
2006b; 6
2008; 7
2011; 12
2006a; 12
2005; 24
2005; 25
2013; 18
1997; 94
1987; 84
2013; 13
1999; 18
1988; 48
1997; 13
2011; 21
2011; 25
2007; 26
2011; 286
2001; 98
1991; 253
2013; 45
2000; 21
1995; 10
2006; 7
2011; 39
2011b; 1816
2012; 149
2011; 331
1990; 63
2012; 2
2013; 31
2011; 50
2013; 499
2009; 9
2009; 663
2009; 6
2013; 132
1996; 274
2001; 1
2013; 494
2009; 384
2009; 1
Pugh (10.1002/humu.22552-BIB0081|humu22552-cit-0081) 2012; 487
Li (10.1002/humu.22552-BIB0064|humu22552-cit-0064) 2011; 50
Laurie (10.1002/humu.22552-BIB0057|humu22552-cit-0057) 2006; 444
Slade (10.1002/humu.22552-BIB0093|humu22552-cit-0093) 2009; 663
Brady (10.1002/humu.22552-BIB0011|humu22552-cit-0011) 2011; 145
Tornaletti (10.1002/humu.22552-BIB0109|humu22552-cit-0109) 1995; 10
Sauna (10.1002/humu.22552-BIB0088|humu22552-cit-0088) 2011; 12
Soussi (10.1002/humu.22552-BIB0099|humu22552-cit-0099) 2003; 21
Dumay (10.1002/humu.22552-BIB0032|humu22552-cit-0032) 2013; 132
Li (10.1002/humu.22552-BIB0065|humu22552-cit-0065) 2012; 149
Oliner (10.1002/humu.22552-BIB0075|humu22552-cit-0075) 1993; 362
Brash (10.1002/humu.22552-BIB0012|humu22552-cit-0012) 1997; 13
Soussi (10.1002/humu.22552-BIB0101|humu22552-cit-0101) 2005; 25
Curtis (10.1002/humu.22552-BIB0025|humu22552-cit-0025) 2012; 486
Schetter (10.1002/humu.22552-BIB0090|humu22552-cit-0090) 2012; 109
Blandino (10.1002/humu.22552-BIB0009|humu22552-cit-0009) 1999; 18
Alexandrov (10.1002/humu.22552-BIB0002|humu22552-cit-0002) 2013b; 3
Soussi (10.1002/humu.22552-BIB0097|humu22552-cit-0097) 2006a; 12
Hussain (10.1002/humu.22552-BIB0045|humu22552-cit-0045) 2007; 26
Cerami (10.1002/humu.22552-BIB0015|humu22552-cit-0015) 2012; 2
Linzer (10.1002/humu.22552-BIB0066|humu22552-cit-0066) 1979; 17
Reva (10.1002/humu.22552-BIB0083|humu22552-cit-0083) 2011; 39
Schlomm (10.1002/humu.22552-BIB0091|humu22552-cit-0091) 2008; 21
Soussi (10.1002/humu.22552-BIB0096|humu22552-cit-0096) 2014; 35
Takahashi (10.1002/humu.22552-BIB0107|humu22552-cit-0107) 1989; 246
Lehmann (10.1002/humu.22552-BIB0059|humu22552-cit-0059) 2012; 30
Cho (10.1002/humu.22552-BIB0017|humu22552-cit-0017) 1994; 265
Soussi (10.1002/humu.22552-BIB0094|humu22552-cit-0094) 2011a; 110
Roberts (10.1002/humu.22552-BIB0085|humu22552-cit-0085) 2013; 45
Hermeking (10.1002/humu.22552-BIB0041|humu22552-cit-0041) 2012; 12
Kandoth (10.1002/humu.22552-BIB0049|humu22552-cit-0049) 2013; 502
Ory (10.1002/humu.22552-BIB0077|humu22552-cit-0077) 1994; 13
Valente (10.1002/humu.22552-BIB0111|humu22552-cit-0111) 2013; 3
Berglind (10.1002/humu.22552-BIB0007|humu22552-cit-0007) 2008; 7
Zhao (10.1002/humu.22552-BIB0121|humu22552-cit-0121) 2010; 9
Zheng (10.1002/humu.22552-BIB0122|humu22552-cit-0122) 2010; 1
Toyooka (10.1002/humu.22552-BIB0110|humu22552-cit-0110) 2003; 21
Baker (10.1002/humu.22552-BIB0004|humu22552-cit-0004) 1989; 244
Masuda (10.1002/humu.22552-BIB0068|humu22552-cit-0068) 1987; 84
Natan (10.1002/humu.22552-BIB0071|humu22552-cit-0071) 2009; 106
Pleasance (10.1002/humu.22552-BIB0079|humu22552-cit-0079) 2010; 463
Kussie (10.1002/humu.22552-BIB0054|humu22552-cit-0054) 1996; 274
Leroy (10.1002/humu.22552-BIB0060|humu22552-cit-0060) 2014; 35
Hollstein (10.1002/humu.22552-BIB0043|humu22552-cit-0043) 1991; 253
Levine (10.1002/humu.22552-BIB0063|humu22552-cit-0063) 2011; 12
Vassilev (10.1002/humu.22552-BIB0113|humu22552-cit-0113) 2004; 3
Lane (10.1002/humu.22552-BIB0056|humu22552-cit-0056) 1979; 278
Varley (10.1002/humu.22552-BIB0112|humu22552-cit-0112) 1998; 16
Grollman (10.1002/humu.22552-BIB0037|humu22552-cit-0037) 2007; 104
Selivanova (10.1002/humu.22552-BIB0092|humu22552-cit-0092) 2010; 20
Kamada (10.1002/humu.22552-BIB0047|humu22552-cit-0047) 2011; 286
Wrighton (10.1002/humu.22552-BIB0118|humu22552-cit-0118) 2009; 9
Soussi (10.1002/humu.22552-BIB0100|humu22552-cit-0100) 2006b; 6
Hong (10.1002/humu.22552-BIB0044|humu22552-cit-0044) 2014; 15
Ozturk (10.1002/humu.22552-BIB0078|humu22552-cit-0078) 1991; 338
Nguyen (10.1002/humu.22552-BIB0073|humu22552-cit-0073) 2014; 35
Terrier (10.1002/humu.22552-BIB0108|humu22552-cit-0108) 2013; 9
Xu-Monette (10.1002/humu.22552-BIB0119|humu22552-cit-0119) 2012; 119
Berkers (10.1002/humu.22552-BIB0008|humu22552-cit-0008) 2013; 18
Alexandrov (10.1002/humu.22552-BIB0001|humu22552-cit-0001) 2013a; 500
Soussi (10.1002/humu.22552-BIB0095|humu22552-cit-0095) 2011b; 1816
Ribeiro (10.1002/humu.22552-BIB0084|humu22552-cit-0084) 2001; 98
Hoang (10.1002/humu.22552-BIB0042|humu22552-cit-0042) 2013; 5
Cooper (10.1002/humu.22552-BIB0023|humu22552-cit-0023) 2013; 5
Vousden (10.1002/humu.22552-BIB0114|humu22552-cit-0114) 2007; 8
Wang (10.1002/humu.22552-BIB0116|humu22552-cit-0116) 2007; 8
Scheffner (10.1002/humu.22552-BIB0089|humu22552-cit-0089) 1990; 63
Fromentel (10.1002/humu.22552-BIB0014|humu22552-cit-0014) 1992; 4
Chin (10.1002/humu.22552-BIB0016|humu22552-cit-0016) 2011; 25
Zupnick (10.1002/humu.22552-BIB0123|humu22552-cit-0123) 2006; 281
Moody (10.1002/humu.22552-BIB0070|humu22552-cit-0070) 2010; 10
Ogino (10.1002/humu.22552-BIB0074|humu22552-cit-0074) 2012; 12
Hartmann (10.1002/humu.22552-BIB0039|humu22552-cit-0039) 1997; 13
Kato (10.1002/humu.22552-BIB0050|humu22552-cit-0050) 2003; 100
Custodio (10.1002/humu.22552-BIB0026|humu22552-cit-0026) 2013; 31
Levine (10.1002/humu.22552-BIB0062|humu22552-cit-0062) 2009; 384
Barretina (10.1002/humu.22552-BIB0005|humu22552-cit-0005) 2010; 42
Kawaguchi (10.1002/humu.22552-BIB0051|humu22552-cit-0051) 2005; 24
Wade (10.1002/humu.22552-BIB0115|humu22552-cit-0115) 2013; 13
Bell (10.1002/humu.22552-BIB0006|humu22552-cit-0006) 2011; 474
Giglia-Mari (10.1002/humu.22552-BIB0036|humu22552-cit-0036) 2003; 21
Malcikova (10.1002/humu.22552-BIB0067|humu22552-cit-0067) 2014; 35
Edlund (10.1002/humu.22552-BIB0033|humu22552-cit-0033) 2012; 109
Saller (10.1002/humu.22552-BIB0087|humu22552-cit-0087) 1999; 18
Ng (10.1002/humu.22552-BIB0072|humu22552-cit-0072) 2006; 7
Aylon (10.1002/humu.22552-BIB0003|humu22552-cit-0003) 2011; 21
Diehl (10.1002/humu.22552-BIB0029|humu22552-cit-0029) 2005; 102
Stratton (10.1002/humu.22552-BIB0105|humu22552-cit-0105) 2011; 331
Rodenhuis (10.1002/humu.22552-BIB0086|humu22552-cit-0086) 1988; 48
Staib (10.1002/humu.22552-BIB0103|humu22552-cit-0103) 2003; 21
Hutchinson (10.1002/humu.22552-BIB0046|humu22552-cit-0046) 2009; 6
Soussi (10.1002/humu.22552-BIB0098|humu22552-cit-0098) 2001; 1
Weigelt (10.1002/humu.22552-BIB0117|humu22552-cit-0117) 2010; 4
He (10.1002/humu.22552-BIB0040|humu22552-cit-0040) 2007; 7
Poon (10.1002/humu.22552-BIB0080|humu22552-cit-0080) 2013; 5
Donehower (10.1002/humu.22552-BIB0031|humu22552-cit-0031) 2014; 35
Ciriello (10.1002/humu.22552-BIB0018|humu22552-cit-0018) 2012; 22
Kamihara (10.1002/humu.22552-BIB0048|humu22552-cit-0048) 2014; 35
Kress (10.1002/humu.22552-BIB0053|humu22552-cit-0053) 1979; 31
Clore (10.1002/humu.22552-BIB0020|humu22552-cit-0020) 1995; 2
Khoury (10.1002/humu.22552-BIB0052|humu22552-cit-0052) 2010; 2
You (10.1002/humu.22552-BIB0120|humu22552-cit-0120) 2000; 21
Stommel (10.1002/humu.22552-BIB0104|humu22552-cit-0104) 1999; 18
Lane (10.1002/humu.22552-BIB0055|humu22552-cit-0055) 2010; 2
Lawrence (10.1002/humu.22552-BIB0058|humu22552-cit-0058) 2013; 499
DiGiammarino (10.1002/humu.22552-BIB0030|humu22552-cit-0030) 2002; 9
Crotti (10.1002/humu.22552-BIB0024|humu22552-cit-0024) 2009; 106
Gupta (10.1002/humu.22552-BIB0038|humu22552-cit-0038) 2013; 4
Boffetta (10.1002/humu.22552-BIB0010|humu22552-cit-0010) 2010; 31
Gao (10.1002/humu.22552-BIB0035|humu22552-cit-0035) 2013; 6
Denissenko (10.1002/humu.22552-BIB0028|humu22552-cit-0028) 1997; 94
Stratton (10.1002/humu.22552-BIB0106|humu22552-cit-0106) 2009; 458
Burns (10.1002/humu.22552-BIB0013|humu22552-cit-0013) 2013; 494
Rajagopalan (10.1002/humu.22552-BIB0082|humu22552-cit-0082) 2011; 39
Olsson (10.1002/humu.22552-BIB0076|humu22552-cit-0076) 2007; 14
Clore (10.1002/humu.22552-BIB0021|humu22552-cit-0021) 1994; 265
Supek (10.1002/humu.22552-BIB0124|humu22552-cit-0124) 2014; 156
Dawson (10.1002/humu.22552-BIB0027|humu22552-cit-0027) 2013; 368
CLCG Project (10.1002/humu.22552-BIB0019|humu22552-cit-0019) 2013; 5
Gaglia (10.1002/humu.22552-BIB0034|humu22552-cit-0034) 2013; 110
Cooper (10.1002/humu.22552-BIB0022|humu22552-cit-0022) 1988; 78
Soussi (10.1002/humu.22552-BIB0102|humu22552-cit-0102) 2014; 35
Letouze (10.1002/humu.22552-BIB0061|humu22552-cit-0061) 2012; 97
Meek (10.1002/humu.22552-BIB0069|humu22552-cit-0069) 2009; 1
References_xml – reference: Hoang ML, Chen CH, Sidorenko VS, He J, Dickman KG, Yun BH, Moriya M, Niknafs N, Douville C, Karchin R, Turesky RJ, Pu YS, et al. 2013. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci Transl Med 5:197ra102.
– reference: Staib F, Hussain SP, Hofseth LJ, Wang XW, Harris CC. 2003. TP53 and liver carcinogenesis. Hum Mutat 21:201-216.
– reference: Dumay A, Feugeas JP, Wittmer E, Lehmann-Che J, Bertheau P, Espie M, Plassa LF, Cottu P, Marty M, Andre F, Sotiriou C, Pusztai L, et al. 2013. Distinct tumor protein p53 mutants in breast cancer subgroups. Int J Cancer 132:1227-1231.
– reference: Ribeiro RC, Sandrini F, Figueiredo B, Zambetti GP, Michalkiewicz E, Lafferty AR, DeLacerda L, Rabin M, Cadwell C, Sampaio G, Cat I, Stratakis CA, et al. 2001. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci USA 98:9330-9335.
– reference: Li J, Poi MJ, Tsai MD. 2011. Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry 50:5566-5582.
– reference: Aylon Y, Oren M. 2011. New plays in the p53 theater. Curr Opin Genet Dev 21:86-92.
– reference: Gaglia G, Guan Y, Shah JV, Lahav G. 2013. Activation and control of p53 tetramerization in individual living cells. Proc Natl Acad Sci USA 110:15497-15501.
– reference: Slade N, Moll UM, Brdar B, Zoric A, Jelakovic B. 2009. p53 mutations as fingerprints for aristolochic acid: an environmental carcinogen in endemic (Balkan) nephropathy. Mutat Res 663:1-6.
– reference: He L, He X, Lowe SW, Hannon GJ. 2007. microRNAs join the p53 network-another piece in the tumour-suppression puzzle. Nat Rev Cancer 7:819-822.
– reference: Gupta A. 2013. Fraud and misconduct in clinical research: a concern. Perspect Clin Res 4:144-147.
– reference: Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM. 1999. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18:1660-1672.
– reference: Tornaletti S, Pfeifer GP. 1995. Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers. Oncogene 10:1493-1499.
– reference: Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH. 2013. Metabolic regulation by p53 family members. Cell Metab 18:617-633.
– reference: Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, et al. 2012. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401-404.
– reference: Denissenko MF, Chen JX, Tang MS, Pfeifer GP. 1997. Cytosine methylation determines hot spots of DNA damage in the human P53 gene. Proc Natl Acad Sci USA 94:3893-3898.
– reference: Hong B, van den Heuvel AP, Prabhu VV, Zhang S, El-Deiry WS. 2014. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr Drug Targets 15:80-89.
– reference: Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W. 2012. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149:1269-1283.
– reference: Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, Diaz LAJ, Goodman SN, David KA, Juhl H, Kinzler KW, Vogelstein B. 2005. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA 102:16368-16373.
– reference: Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, Leonard B, Refsland EW, Kotandeniya D, Tretyakova N, Nikas JB, Yee D, Temiz NA, et al. 2013. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494:366-370.
– reference: Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U, Suzuki N, Fernandes A, Rosenquist T, Medverec Z, Jakovina K, Brdar B, et al. 2007. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci USA 104:12129-12134.
– reference: Boffetta P. 2010. Biomarkers in cancer epidemiology: an integrative approach. Carcinogenesis 31:121-126.
– reference: Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, et al. 2013. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1.
– reference: Kawaguchi T, Kato S, Otsuka K, Watanabe G, Kumabe T, Tominaga T, Yoshimoto T, Ishioka C. 2005. The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene 24:6976-6981.
– reference: Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP. 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948-953.
– reference: Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C, Varela I, Nik-Zainal S, et al. 2010. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463:184-190.
– reference: Hermeking H. 2012. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12:613-626.
– reference: Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, Leiserson MD, Miller CA, et al. 2013. Mutational landscape and significance across 12 major cancer types. Nature 502:333-339.
– reference: Wang GS, Cooper TA. 2007. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8:749-761.
– reference: Blandino G, Levine AJ, Oren M. 1999. Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18:477-485.
– reference: Zhao CY, Grinkevich VV, Nikulenkov F, Bao W, Selivanova G. 2010. Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA. Cell Cycle 9:1847-1855.
– reference: Zupnick A, Prives C. 2006. Mutational analysis of the p53 core domain L1 loop. J Biol Chem 281:20464-20473.
– reference: Kamihara J, Rana HQ, Garber JE. 2014. Germline TP53 mutations and the changing landscape of Li-Fraumeni syndrome. Hum Mutat 35:654-662.
– reference: Poon SL, Pang ST, McPherson JR, Yu W, Huang KK, Guan P, Weng WH, Siew EY, Liu Y, Heng HL, Chong SC, Gan A, et al. 2013. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med 5:197ra101.
– reference: Soussi T. 2014. Locus-specific databases in cancer: what future in a post-genomic era? The TP53 LSDB paradigm. Hum Mutat 35:643-653.
– reference: Sauna ZE, Kimchi-Sarfaty C. 2011. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683-691.
– reference: Rajagopalan S, Huang F, Fersht AR. 2011. Single-molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53. Nucleic Acids Res 39:2294-2303.
– reference: Levine AJ. 2009. The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53. Virology 384:285-293.
– reference: Hutchinson L, DeVita VTJ. 2009. The Holy Grail of biomarkers. Nat Rev Clin Oncol 6:553.
– reference: Soussi T, Leroy B, Taschner PEM. 2014. Recommendations for analyzing and reporting TP53 gene alterations in the high throughput sequencing era. Hum Mutat 35:766-778.
– reference: Vassilev LT. 2004. Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 3:419-421.
– reference: Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, Boyault S, Burkhardt B, et al. 2013a. Signatures of mutational processes in human cancer. Nature 500:415-421.
– reference: Weigelt B, Geyer FC, Reis-Filho JS. 2010. Histological types of breast cancer: how special are they? Mol Oncol 4:192-208.
– reference: Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, Carter SL, Saksena G, Harris S, Shah RR, et al. 2013. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45:970-976.
– reference: Soussi T, Beroud C. 2003. Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Hum Mutat 21:192-200.
– reference: Leroy B, Girard L, Minna JD, Gazdar AF, Soussi T. 2014. Analysis of p53 mutation status in human cancer cell lines: a reassessment. Hum Mutat 35:756-765.
– reference: Moody CA, Laimins LA. 2010. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550-560.
– reference: Malcikova J, Pavlova S, Kozubik KS, Pospisilova S. 2014. TP53 mutation analysis in clinical practice: lessons from chronic lymphocytic leukemia. Hum Mutat 35:663-671.
– reference: Soussi T, Beroud C. 2001. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1:233-240.
– reference: Clore GM, Omichinski JG, Sakaguchi K, Zambrano N, Sakamoto H, Appella E, Gronenborn AM. 1994. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science 265:386-391.
– reference: Custodio G, Parise GA, Kiesel Filho N, Komechen H, Sabbaga CC, Rosati R, Grisa L, Parise IZ, Pianovski MA, Fiori CM, Ledesma JA, Barbosa JR, et al. 2013. Impact of neonatal screening and surveillance for the TP53 R337H mutation on early detection of childhood adrenocortical tumors. J Clin Oncol 31:2619-2626.
– reference: Hussain SP, Schwank J, Staib F, Wang XW, Harris CC. 2007. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26:2166-2176.
– reference: Caron de Fromentel C, Soussi T. 1992. TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer 4:1-15.
– reference: DiGiammarino EL, Lee AS, Cadwell C, Zhang W, Bothner B, Ribeiro RC, Zambetti G, Kriwacki RW. 2002. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat Struct Biol 9:12-16.
– reference: Ory K, Legros Y, Auguin C, Soussi T. 1994. Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J 13:3496-3504.
– reference: You YH, Szabo PE, Pfeifer GP. 2000. Cyclobutane pyrimidine dimers form preferentially at the major p53 mutational hotspot in UVB-induced mouse skin tumors. Carcinogenesis 21:2113-2117.
– reference: Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, et al. 2013. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368:1199-1209.
– reference: Meek DW, Anderson CW. 2009. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1:a000950.
– reference: Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, Kenzelmann Broz D, Basak S, Park EJ, McLaughlin ME, Karnezis AN, Attardi LD. 2011. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145:571-583.
– reference: Stratton MR, Campbell PJ, Futreal PA. 2009. The cancer genome. Nature 458:719-724.
– reference: Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, Decarolis PL, Shah K, Socci ND, Weir BA, Ho A, Chiang DY, Reva B, et al. 2010. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 42:715-721.
– reference: Selivanova G. 2010. Therapeutic targeting of p53 by small molecules. Semin Cancer Biol 20:46-56.
– reference: Ozturk M. 1991. p53 mutation in hepatocellular carcinoma after aflatoxin exposure. Lancet 338:1356-1359.
– reference: Terrier O, Bourdon JC, Rosa-Calatrava M. 2013. p53 protein isoforms: key regulators in the front line of pathogen infections? PLoS Pathog 9:e1003246.
– reference: Ciriello G, Cerami E, Sander C, Schultz N. 2012. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res 22:398-406.
– reference: Kamada R, Nomura T, Anderson CW, Sakaguchi K. 2011. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. J Biol Chem 286:252-258.
– reference: Xu-Monette ZY, Medeiros LJ, Li Y, Orlowski RZ, Andreeff M, Bueso-Ramos CE, Greiner TC, McDonnell TJ, Young KH. 2012. Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. Blood 119:3668-3683.
– reference: Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, Johnson D, Wilson M, et al. 2006. Inactivation of the p53 pathway in retinoblastoma. Nature 444:61-66.
– reference: Lane DP, Cheok CF, Lain S. 2010. p53-based cancer therapy. Cold Spring Harb Perspect Biol 2:a001222.
– reference: Soussi T, Asselain B, Hamroun D, Kato S, Ishioka C, Claustres M, Beroud C. 2006a. Meta-analysis of the p53 mutation database for mutant p53 biological activity reveals a methodologic bias in mutation detection. Clin Cancer Res 12:62-69.
– reference: Stratton MR. 2011. Exploring the genomes of cancer cells: progress and promise. Science 331:1553-1558.
– reference: Clore GM, Ernst J, Clubb R, Omichinski JG, Kennedy WM, Sakaguchi K, Appella E, Gronenborn AM. 1995. Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nat Struct Biol 2:321-333.
– reference: Varley JM, Chapman P, McGown G, Thorncroft M, White GR, Greaves MJ, Scott D, Spreadborough A, Tricker KJ, Birch JM, Evans DG, Reddel R, et al. 1998. Genetic and functional studies of a germline TP53 splicing mutation in a Li-Fraumeni-like family. Oncogene 16:3291-3298.
– reference: Donehower LA. 2014. Insights into wild-type and mutant p53 functions provided by genetically engineered mice. Hum Mutat 35:715-727.
– reference: Rodenhuis S, Slebos RJ, Boot AJ, Evers SG, Mooi WJ, Wagenaar SS, van Bodegom PC, Bos JL. 1988. Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung. Cancer Res 48:5738-5741.
– reference: Bell D, Berchuck A, Birrer M, Chien J, Cramer DW, Dao F, Dhir R, Disaia P, Gabra H, Glenn P, Godwin AK, Gross J, et al. 2011. Integrated genomic analyses of ovarian carcinoma. Nature 474:609-615.
– reference: Zheng R, Blobel GA. 2010. GATA transcription factors and cancer. Genes Cancer 1:1178-1188.
– reference: Masuda H, Miller C, Koeffler HP, Battifora H, Cline MJ. 1987. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci USA 84:7716-7719.
– reference: Khoury MP, Bourdon JC. 2010. The isoforms of the p53 protein. Cold Spring Harb Perspect Biol 2:a000927.
– reference: Olsson A, Manzl C, Strasser A, Villunger A. 2007. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 14:1561-1575.
– reference: Lehmann S, Bykov VJ, Ali D, Andren O, Cherif H, Tidefelt U, Uggla B, Yachnin J, Juliusson G, Moshfegh A, Paul C, Wiman KG, et al. 2012. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol 30:3633-3639.
– reference: Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J, Carneiro MO, Carter SL, Cibulskis K, Erlich RL, Greulich H, Lawrence MS, et al. 2012. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330-337.
– reference: Brash DE. 1997. Sunlight and the onset of skin cancer. Trends Genet 13:410-414.
– reference: Reva B, Antipin Y, Sander C. 2011. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 39:e118.
– reference: Wade M, Li YC, Wahl GM. 2013. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13:83-96.
– reference: Kress M, May E, Cassingena R, May P. 1979. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol 31:472-483.
– reference: Hollstein M, Sidransky D, Vogelstein B, Harris CC. 1991. p53 mutations in human cancers. Science 253:49-53.
– reference: Giglia-Mari G, Sarasin A. 2003. TP53 mutations in human skin cancers. Hum Mutat 21:217-228.
– reference: Linzer DI, Levine AJ. 1979. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43-52.
– reference: Crotti LB, Horowitz DS. 2009. Exon sequences at the splice junctions affect splicing fidelity and alternative splicing. Proc Natl Acad Sci USA 106:18954-18959.
– reference: Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF, Nakamura Y, White R, Vogelstein B. 1989. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217-221.
– reference: Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129-1136.
– reference: Cho Y, Gorina S, Jeffrey PD, Pavletich NP. 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346-355.
– reference: Toyooka S, Tsuda T, Gazdar AF. 2003. The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat 21:229-239.
– reference: Berglind H, Pawitan Y, Kato S, Ishioka C, Soussi T. 2008. Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination. Cancer Biol Ther 7:699-708.
– reference: Natan E, Hirschberg D, Morgner N, Robinson CV, Fersht AR. 2009. Ultraslow oligomerization equilibria of p53 and its implications. Proc Natl Acad Sci USA 106:14327-14332.
– reference: Ogino S, Fuchs CS, Giovannucci E. 2012. How many molecular subtypes? Implications of the unique tumor principle in personalized medicine. Expert Rev Mol Diagn 12:621-628.
– reference: Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. 1993. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362:857-860.
– reference: Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Minna JD. 1989. p53: a frequent target for genetic abnormalities in lung cancer. Science 246:491-494.
– reference: Schlomm T, Iwers L, Kirstein P, Jessen B, Kollermann J, Minner S, Passow-Drolet A, Mirlacher M, Milde-Langosch K, Graefen M, Haese A, Steuber T, et al. 2008. Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol 21:1371-1378.
– reference: Chin L, Hahn WC, Getz G, Meyerson M. 2011. Making sense of cancer genomic data. Genes Dev 25:534-555.
– reference: Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, et al. 2012. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346-352.
– reference: Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, Kiezun A, Hammerman PS, et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214-218.
– reference: Lane DP, Crawford LV. 1979. T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261-263.
– reference: Saller E, Tom E, Brunori M, Otter M, Estreicher A, Mack DH, Iggo R. 1999. Increased apoptosis induction by 121F mutant p53. EMBO J 18:4424-4437.
– reference: Schetter AJ, Harris CC. 2012. Tumor suppressor p53 (TP53) at the crossroads of the exposome and the cancer genome. Proc Natl Acad Sci USA 109:7955-7956.
– reference: Vousden KH, Lane DP. 2007. p53 in health and disease. Nat Rev Mol Cell Biol 8:275-283.
– reference: Hartmann A, Blaszyk H, Kovach JS, Sommer SS. 1997. The molecular epidemiology of p53 gene mutations in human breast cancer. Trends Genet 13:27-33.
– reference: Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C. 2003. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100:8424-8429.
– reference: Nguyen TA, Menendez D, Resnick MA, Anderson CW. 2014. Mutant TP53 posttranslational modifications: challenges and opportunities. Hum Mutat 35:738-755.
– reference: Soussi T. 2011a. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Adv Cancer Res 110:107-139.
– reference: Ng PC, Henikoff S. 2006. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 7:61-80.
– reference: Valente LJ, Gray DH, Michalak EM, Pinon-Hofbauer J, Egle A, Scott CL, Janic A, Strasser A. 2013. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, puma, and noxa. Cell Rep 3:1339-1345.
– reference: CLCG Project. 2013. A genomics-based classification of human lung tumors. Sci Transl Med 5:209ra153.
– reference: Soussi T. 2011b. Advances in carcinogenesis: a historical perspective from observational studies to tumor genome sequencing and TP53 mutation spectrum analysis. Biochim Biophys Acta 1816:199-208.
– reference: Supek F, Minana B, Valcarcel J, Gabaldon T, Lehner B. 2014. Synonymous mutations frequently act as driver mutations in human cancers. Cell 156:1324-1335.
– reference: Letouze E, Rosati R, Komechen H, Doghman M, Marisa L, Fluck C, de Krijger RR, van Noesel MM, Mas JC, Pianovski MA, Zambetti GP, Figueiredo BC, et al. 2012. SNP array profiling of childhood adrenocortical tumors reveals distinct pathways of tumorigenesis and highlights candidate driver genes. J Clin Endocrinol Metab 97:E1284-E1293.
– reference: Soussi T, Ishioka C, Claustres M, Beroud C. 2006b. Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nat Rev Cancer 6:83-90.
– reference: Wrighton KH. 2009. Small RNAs: p53 makes microRNAs mature. Nat Rev Cancer 9:612.
– reference: Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. 2013b. Deciphering signatures of mutational processes operative in human cancer. Cell Rep 3:246-259.
– reference: Levine AJ, Tomasini R, McKeon FD, Mak TW, Melino G. 2011. The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol 12:259-265.
– reference: Soussi T, Kato S, Levy PP, Ishioka C. 2005. Reassessment of the TP53 mutation database in human disease by data mining with a library of TP53 missense mutations. Hum Mutat 25:6-17.
– reference: Cooper DN, Youssoufian H. 1988. The CpG dinucleotide and human genetic disease. Hum Genet 78:151-155.
– reference: Cooper WA, Lam DC, O'Toole SA, Minna JD. 2013. Molecular biology of lung cancer. J Thorac Dis 5(Suppl 5):S479-S490.
– reference: Edlund K, Larsson O, Ameur A, Bunikis I, Gyllensten U, Leroy B, Sundstrom M, Micke P, Botling J, Soussi T. 2012. Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proc Natl Acad Sci USA 109:9551-9556.
– volume: 4
  start-page: 1
  year: 1992
  end-page: 15
  article-title: 53 tumor suppressor gene: a model for investigating human mutagenesis
  publication-title: Genes Chromosomes Cancer
– volume: 12
  start-page: 683
  year: 2011
  end-page: 691
  article-title: Understanding the contribution of synonymous mutations to human disease
  publication-title: Nat Rev Genet
– volume: 24
  start-page: 6976
  year: 2005
  end-page: 6981
  article-title: The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library
  publication-title: Oncogene
– volume: 21
  start-page: 2113
  year: 2000
  end-page: 2117
  article-title: Cyclobutane pyrimidine dimers form preferentially at the major p53 mutational hotspot in ‐induced mouse skin tumors
  publication-title: Carcinogenesis
– volume: 145
  start-page: 571
  year: 2011
  end-page: 583
  article-title: Distinct p53 transcriptional programs dictate acute ‐damage responses and tumor suppression
  publication-title: Cell
– volume: 2
  start-page: 321
  year: 1995
  end-page: 333
  article-title: Refined solution structure of the oligomerization domain of the tumour suppressor p53
  publication-title: Nat Struct Biol
– volume: 35
  start-page: 766
  year: 2014
  end-page: 778
  article-title: Recommendations for analyzing and reporting 53 gene alterations in the high throughput sequencing era
  publication-title: Hum Mutat
– volume: 8
  start-page: 749
  year: 2007
  end-page: 761
  article-title: Splicing in disease: disruption of the splicing code and the decoding machinery
  publication-title: Nat Rev Genet
– volume: 22
  start-page: 398
  year: 2012
  end-page: 406
  article-title: Mutual exclusivity analysis identifies oncogenic network modules
  publication-title: Genome Res
– volume: 16
  start-page: 3291
  year: 1998
  end-page: 3298
  article-title: Genetic and functional studies of a germline 53 splicing mutation in a i– raumeni‐like family
  publication-title: Oncogene
– volume: 12
  start-page: 62
  year: 2006a
  end-page: 69
  article-title: Meta‐analysis of the p53 mutation database for mutant p53 biological activity reveals a methodologic bias in mutation detection
  publication-title: Clin Cancer Res
– volume: 26
  start-page: 2166
  year: 2007
  end-page: 2176
  article-title: 53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer
  publication-title: Oncogene
– volume: 94
  start-page: 3893
  year: 1997
  end-page: 3898
  article-title: Cytosine methylation determines hot spots of damage in the human 53 gene
  publication-title: Proc Natl Acad Sci USA
– volume: 45
  start-page: 970
  year: 2013
  end-page: 976
  article-title: An cytidine deaminase mutagenesis pattern is widespread in human cancers
  publication-title: Nat Genet
– volume: 106
  start-page: 14327
  year: 2009
  end-page: 14332
  article-title: Ultraslow oligomerization equilibria of p53 and its implications
  publication-title: Proc Natl Acad Sci USA
– volume: 21
  start-page: 192
  year: 2003
  end-page: 200
  article-title: Significance of 53 mutations in human cancer: a critical analysis of mutations at p dinucleotides
  publication-title: Hum Mutat
– volume: 12
  start-page: 621
  year: 2012
  end-page: 628
  article-title: How many molecular subtypes? Implications of the unique tumor principle in personalized medicine
  publication-title: Expert Rev Mol Diagn
– volume: 35
  start-page: 715
  year: 2014
  end-page: 727
  article-title: Insights into wild‐type and mutant p53 functions provided by genetically engineered mice
  publication-title: Hum Mutat
– volume: 109
  start-page: 9551
  year: 2012
  end-page: 9556
  article-title: Data‐driven unbiased curation of the 53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 275
  year: 2007
  end-page: 283
  article-title: p53 in health and disease
  publication-title: Nat Rev Mol Cell Biol
– volume: 494
  start-page: 366
  year: 2013
  end-page: 370
  article-title: 3 is an enzymatic source of mutation in breast cancer
  publication-title: Nature
– volume: 31
  start-page: 2619
  year: 2013
  end-page: 2626
  article-title: Impact of neonatal screening and surveillance for the 53 337 mutation on early detection of childhood adrenocortical tumors
  publication-title: J Clin Oncol
– volume: 7
  start-page: 699
  year: 2008
  end-page: 708
  article-title: Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross‐contamination
  publication-title: Cancer Biol Ther
– volume: 368
  start-page: 1199
  year: 2013
  end-page: 1209
  article-title: Analysis of circulating tumor to monitor metastatic breast cancer
  publication-title: N Engl J Med
– volume: 35
  start-page: 654
  year: 2014
  end-page: 662
  article-title: Germline 53 mutations and the changing landscape of i– raumeni syndrome
  publication-title: Hum Mutat
– volume: 25
  start-page: 534
  year: 2011
  end-page: 555
  article-title: Making sense of cancer genomic data
  publication-title: Genes Dev
– volume: 5
  start-page: S479
  issue: Suppl 5
  year: 2013
  end-page: S490
  article-title: Molecular biology of lung cancer
  publication-title: J Thorac Dis
– volume: 253
  start-page: 49
  year: 1991
  end-page: 53
  article-title: p53 mutations in human cancers
  publication-title: Science
– volume: 384
  start-page: 285
  year: 2009
  end-page: 293
  article-title: The common mechanisms of transformation by the small tumor viruses: the inactivation of tumor suppressor gene products: p53
  publication-title: Virology
– volume: 39
  start-page: 2294
  year: 2011
  end-page: 2303
  article-title: Single‐molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53
  publication-title: Nucleic Acids Res
– volume: 5
  start-page: 209ra153
  year: 2013
  article-title: A genomics‐based classification of human lung tumors
  publication-title: Sci Transl Med
– volume: 21
  start-page: 201
  year: 2003
  end-page: 216
  article-title: 53 and liver carcinogenesis
  publication-title: Hum Mutat
– volume: 3
  start-page: 419
  year: 2004
  end-page: 421
  article-title: Small‐molecule antagonists of p53‐ 2 binding: research tools and potential therapeutics
  publication-title: Cell Cycle
– volume: 13
  start-page: 27
  year: 1997
  end-page: 33
  article-title: The molecular epidemiology of p53 gene mutations in human breast cancer
  publication-title: Trends Genet
– volume: 63
  start-page: 1129
  year: 1990
  end-page: 1136
  article-title: The 6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53
  publication-title: Cell
– volume: 9
  start-page: 12
  year: 2002
  end-page: 16
  article-title: A novel mechanism of tumorigenesis involving p ‐dependent destabilization of a mutant p53 tetramer
  publication-title: Nat Struct Biol
– volume: 7
  start-page: 61
  year: 2006
  end-page: 80
  article-title: Predicting the effects of amino acid substitutions on protein function
  publication-title: Annu Rev Genomics Hum Genet
– volume: 35
  start-page: 756
  year: 2014
  end-page: 765
  article-title: Analysis of p53 mutation status in human cancer cell lines: a reassessment
  publication-title: Hum Mutat
– volume: 13
  start-page: 83
  year: 2013
  end-page: 96
  article-title: 2, and p53 in oncogenesis and cancer therapy
  publication-title: Nat Rev Cancer
– volume: 21
  start-page: 86
  year: 2011
  end-page: 92
  article-title: New plays in the p53 theater
  publication-title: Curr Opin Genet Dev
– volume: 35
  start-page: 663
  year: 2014
  end-page: 671
  article-title: 53 mutation analysis in clinical practice: lessons from chronic lymphocytic leukemia
  publication-title: Hum Mutat
– volume: 42
  start-page: 715
  year: 2010
  end-page: 721
  article-title: Subtype‐specific genomic alterations define new targets for soft‐tissue sarcoma therapy
  publication-title: Nat Genet
– volume: 21
  start-page: 1371
  year: 2008
  end-page: 1378
  article-title: Clinical significance of p53 alterations in surgically treated prostate cancers
  publication-title: Mod Pathol
– volume: 10
  start-page: 550
  year: 2010
  end-page: 560
  article-title: Human papillomavirus oncoproteins: pathways to transformation
  publication-title: Nat Rev Cancer
– volume: 35
  start-page: 643
  year: 2014
  end-page: 653
  article-title: Locus‐specific databases in cancer: what future in a post‐genomic era? The 53 paradigm
  publication-title: Hum Mutat
– volume: 17
  start-page: 43
  year: 1979
  end-page: 52
  article-title: Characterization of a 54K dalton cellular 40 tumor antigen present in 40‐transformed cells and uninfected embryonal carcinoma cells
  publication-title: Cell
– volume: 663
  start-page: 1
  year: 2009
  end-page: 6
  article-title: p53 mutations as fingerprints for aristolochic acid: an environmental carcinogen in endemic ( alkan) nephropathy
  publication-title: Mutat Res
– volume: 286
  start-page: 252
  year: 2011
  end-page: 258
  article-title: Cancer‐associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation
  publication-title: J Biol Chem
– volume: 39
  start-page: e118
  year: 2011
  article-title: Predicting the functional impact of protein mutations: application to cancer genomics
  publication-title: Nucleic Acids Res
– volume: 486
  start-page: 346
  year: 2012
  end-page: 352
  article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
  publication-title: Nature
– volume: 31
  start-page: 121
  year: 2010
  end-page: 126
  article-title: Biomarkers in cancer epidemiology: an integrative approach
  publication-title: Carcinogenesis
– volume: 1
  start-page: 233
  year: 2001
  end-page: 240
  article-title: Assessing 53 status in human tumours to evaluate clinical outcome
  publication-title: Nat Rev Cancer
– volume: 1
  start-page: 1178
  year: 2010
  end-page: 1188
  article-title: transcription factors and cancer
  publication-title: Genes Cancer
– volume: 78
  start-page: 151
  year: 1988
  end-page: 155
  article-title: The p dinucleotide and human genetic disease
  publication-title: Hum Genet
– volume: 31
  start-page: 472
  year: 1979
  end-page: 483
  article-title: Simian virus 40‐transformed cells express new species of proteins precipitable by anti‐simian virus 40 tumor serum
  publication-title: J Virol
– volume: 12
  start-page: 259
  year: 2011
  end-page: 265
  article-title: The p53 family: guardians of maternal reproduction
  publication-title: Nat Rev Mol Cell Biol
– volume: 18
  start-page: 477
  year: 1999
  end-page: 485
  article-title: Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy
  publication-title: Oncogene
– volume: 106
  start-page: 18954
  year: 2009
  end-page: 18959
  article-title: Exon sequences at the splice junctions affect splicing fidelity and alternative splicing
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: 197ra102
  year: 2013
  article-title: Mutational signature of aristolochic acid exposure as revealed by whole‐exome sequencing
  publication-title: Sci Transl Med
– volume: 499
  start-page: 214
  year: 2013
  end-page: 218
  article-title: Mutational heterogeneity in cancer and the search for new cancer‐associated genes
  publication-title: Nature
– volume: 9
  start-page: 1847
  year: 2010
  end-page: 1855
  article-title: Rescue of the apoptotic‐inducing function of mutant p53 by small molecule
  publication-title: Cell Cycle
– volume: 100
  start-page: 8424
  year: 2003
  end-page: 8429
  article-title: Understanding the function‐structure and function‐mutation relationships of p53 tumor suppressor protein by high‐resolution missense mutation analysis
  publication-title: Proc Natl Acad Sci USA
– volume: 97
  start-page: E1284
  year: 2012
  end-page: E1293
  article-title: array profiling of childhood adrenocortical tumors reveals distinct pathways of tumorigenesis and highlights candidate driver genes
  publication-title: J Clin Endocrinol Metab
– volume: 2
  start-page: 401
  year: 2012
  end-page: 404
  article-title: The c io cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
  publication-title: Cancer Discov
– volume: 281
  start-page: 20464
  year: 2006
  end-page: 20473
  article-title: Mutational analysis of the p53 core domain 1 loop
  publication-title: J Biol Chem
– volume: 13
  start-page: 410
  year: 1997
  end-page: 414
  article-title: Sunlight and the onset of skin cancer
  publication-title: Trends Genet
– volume: 444
  start-page: 61
  year: 2006
  end-page: 66
  article-title: Inactivation of the p53 pathway in retinoblastoma
  publication-title: Nature
– volume: 246
  start-page: 491
  year: 1989
  end-page: 494
  article-title: p53: a frequent target for genetic abnormalities in lung cancer
  publication-title: Science
– volume: 10
  start-page: 1493
  year: 1995
  end-page: 1499
  article-title: Complete and tissue‐independent methylation of p sites in the p53 gene: implications for mutations in human cancers
  publication-title: Oncogene
– volume: 110
  start-page: 107
  year: 2011a
  end-page: 139
  article-title: 53 mutations in human cancer: database reassessment and prospects for the next decade
  publication-title: Adv Cancer Res
– volume: 9
  start-page: 612
  year: 2009
  article-title: Small s: p53 makes micro s mature
  publication-title: Nat Rev Cancer
– volume: 2
  start-page: a001222
  year: 2010
  article-title: p53‐based cancer therapy
  publication-title: Cold Spring Harb Perspect Biol
– volume: 35
  start-page: 738
  year: 2014
  end-page: 755
  article-title: Mutant 53 posttranslational modifications: challenges and opportunities
  publication-title: Hum Mutat
– volume: 1816
  start-page: 199
  year: 2011b
  end-page: 208
  article-title: Advances in carcinogenesis: a historical perspective from observational studies to tumor genome sequencing and 53 mutation spectrum analysis
  publication-title: Biochim Biophys Acta
– volume: 278
  start-page: 261
  year: 1979
  end-page: 263
  article-title: antigen is bound to a host protein in 40‐transformed cells
  publication-title: Nature
– volume: 14
  start-page: 1561
  year: 2007
  end-page: 1575
  article-title: How important are post‐translational modifications in p53 for selectivity in target‐gene transcription and tumour suppression
  publication-title: Cell Death Differ
– volume: 13
  start-page: 3496
  year: 1994
  end-page: 3504
  article-title: Analysis of the most representative tumour‐derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation
  publication-title: EMBO J
– volume: 474
  start-page: 609
  year: 2011
  end-page: 615
  article-title: Integrated genomic analyses of ovarian carcinoma
  publication-title: Nature
– volume: 6
  start-page: 83
  year: 2006b
  end-page: 90
  article-title: Locus‐specific mutation databases: pitfalls and good practice based on the p53 experience
  publication-title: Nat Rev Cancer
– volume: 15
  start-page: 80
  year: 2014
  end-page: 89
  article-title: Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities
  publication-title: Curr Drug Targets
– volume: 98
  start-page: 9330
  year: 2001
  end-page: 9335
  article-title: An inherited p53 mutation that contributes in a tissue‐specific manner to pediatric adrenal cortical carcinoma
  publication-title: Proc Natl Acad Sci USA
– volume: 463
  start-page: 184
  year: 2010
  end-page: 190
  article-title: A small‐cell lung cancer genome with complex signatures of tobacco exposure
  publication-title: Nature
– volume: 331
  start-page: 1553
  year: 2011
  end-page: 1558
  article-title: Exploring the genomes of cancer cells: progress and promise
  publication-title: Science
– volume: 274
  start-page: 948
  year: 1996
  end-page: 953
  article-title: Structure of the 2 oncoprotein bound to the p53 tumor suppressor transactivation domain
  publication-title: Science
– volume: 21
  start-page: 229
  year: 2003
  end-page: 239
  article-title: The 53 gene, tobacco exposure, and lung cancer
  publication-title: Hum Mutat
– volume: 18
  start-page: 4424
  year: 1999
  end-page: 4437
  article-title: Increased apoptosis induction by 121 mutant p53
  publication-title: EMBO J
– volume: 110
  start-page: 15497
  year: 2013
  end-page: 15501
  article-title: Activation and control of p53 tetramerization in individual living cells
  publication-title: Proc Natl Acad Sci USA
– volume: 104
  start-page: 12129
  year: 2007
  end-page: 12134
  article-title: Aristolochic acid and the etiology of endemic ( alkan) nephropathy
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 613
  year: 2012
  end-page: 626
  article-title: Micro s in the p53 network: micromanagement of tumour suppression
  publication-title: Nat Rev Cancer
– volume: 6
  start-page: pl1
  year: 2013
  article-title: Integrative analysis of complex cancer genomics and clinical profiles using the c io ortal
  publication-title: Sci Signal
– volume: 25
  start-page: 6
  year: 2005
  end-page: 17
  article-title: Reassessment of the 53 mutation database in human disease by data mining with a library of 53 missense mutations
  publication-title: Hum Mutat
– volume: 6
  start-page: 553
  year: 2009
  article-title: The oly rail of biomarkers
  publication-title: Nat Rev Clin Oncol
– volume: 156
  start-page: 1324
  year: 2014
  end-page: 1335
  article-title: Synonymous mutations frequently act as driver mutations in human cancers
  publication-title: Cell
– volume: 9
  start-page: e1003246
  year: 2013
  article-title: p53 protein isoforms: key regulators in the front line of pathogen infections
  publication-title: PLoS Pathog
– volume: 21
  start-page: 217
  year: 2003
  end-page: 228
  article-title: 53 mutations in human skin cancers
  publication-title: Hum Mutat
– volume: 20
  start-page: 46
  year: 2010
  end-page: 56
  article-title: Therapeutic targeting of p53 by small molecules
  publication-title: Semin Cancer Biol
– volume: 149
  start-page: 1269
  year: 2012
  end-page: 1283
  article-title: Tumor suppression in the absence of p53‐mediated cell‐cycle arrest, apoptosis, and senescence
  publication-title: Cell
– volume: 2
  start-page: a000927
  year: 2010
  article-title: The isoforms of the p53 protein
  publication-title: Cold Spring Harb Perspect Biol
– volume: 30
  start-page: 3633
  year: 2012
  end-page: 3639
  article-title: Targeting p53 in vivo: a first‐in‐human study with p53‐targeting compound ‐246 in refractory hematologic malignancies and prostate cancer
  publication-title: J Clin Oncol
– volume: 132
  start-page: 1227
  year: 2013
  end-page: 1231
  article-title: Distinct tumor protein p53 mutants in breast cancer subgroups
  publication-title: Int J Cancer
– volume: 265
  start-page: 386
  year: 1994
  end-page: 391
  article-title: High‐resolution structure of the oligomerization domain of p53 by multidimensional
  publication-title: Science
– volume: 109
  start-page: 7955
  year: 2012
  end-page: 7956
  article-title: Tumor suppressor p53 ( 53) at the crossroads of the exposome and the cancer genome
  publication-title: Proc Natl Acad Sci USA
– volume: 338
  start-page: 1356
  year: 1991
  end-page: 1359
  article-title: p53 mutation in hepatocellular carcinoma after aflatoxin exposure
  publication-title: Lancet
– volume: 18
  start-page: 617
  year: 2013
  end-page: 633
  article-title: Metabolic regulation by p53 family members
  publication-title: Cell Metab
– volume: 500
  start-page: 415
  year: 2013a
  end-page: 421
  article-title: Signatures of mutational processes in human cancer
  publication-title: Nature
– volume: 4
  start-page: 144
  year: 2013
  end-page: 147
  article-title: Fraud and misconduct in clinical research: a concern
  publication-title: Perspect Clin Res
– volume: 50
  start-page: 5566
  year: 2011
  end-page: 5582
  article-title: Regulatory mechanisms of tumor suppressor 16( 4 ) and their relevance to cancer
  publication-title: Biochemistry
– volume: 4
  start-page: 192
  year: 2010
  end-page: 208
  article-title: Histological types of breast cancer: how special are they
  publication-title: Mol Oncol
– volume: 102
  start-page: 16368
  year: 2005
  end-page: 16373
  article-title: Detection and quantification of mutations in the plasma of patients with colorectal tumors
  publication-title: Proc Natl Acad Sci USA
– volume: 244
  start-page: 217
  year: 1989
  end-page: 221
  article-title: Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas
  publication-title: Science
– volume: 1
  start-page: a000950
  year: 2009
  article-title: Posttranslational modification of p53: cooperative integrators of function
  publication-title: Cold Spring Harb Perspect Biol
– volume: 265
  start-page: 346
  year: 1994
  end-page: 355
  article-title: Crystal structure of a p53 tumor suppressor‐DNA complex: understanding tumorigenic mutations
  publication-title: Science
– volume: 487
  start-page: 330
  year: 2012
  end-page: 337
  article-title: Comprehensive molecular characterization of human colon and rectal cancer
  publication-title: Nature
– volume: 48
  start-page: 5738
  year: 1988
  end-page: 5741
  article-title: Incidence and possible clinical significance of ‐ras oncogene activation in adenocarcinoma of the human lung
  publication-title: Cancer Res
– volume: 119
  start-page: 3668
  year: 2012
  end-page: 3683
  article-title: Dysfunction of the 53 tumor suppressor gene in lymphoid malignancies
  publication-title: Blood
– volume: 7
  start-page: 819
  year: 2007
  end-page: 822
  article-title: micro s join the p53 network—another piece in the tumour‐suppression puzzle
  publication-title: Nat Rev Cancer
– volume: 18
  start-page: 1660
  year: 1999
  end-page: 1672
  article-title: A leucine‐rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by masking
  publication-title: EMBO J
– volume: 362
  start-page: 857
  year: 1993
  end-page: 860
  article-title: Oncoprotein 2 conceals the activation domain of tumour suppressor p53
  publication-title: Nature
– volume: 5
  start-page: 197ra101
  year: 2013
  article-title: Genome‐wide mutational signatures of aristolochic acid and its application as a screening tool
  publication-title: Sci Transl Med
– volume: 3
  start-page: 246
  year: 2013b
  end-page: 259
  article-title: Deciphering signatures of mutational processes operative in human cancer
  publication-title: Cell Rep
– volume: 502
  start-page: 333
  year: 2013
  end-page: 339
  article-title: Mutational landscape and significance across 12 major cancer types
  publication-title: Nature
– volume: 458
  start-page: 719
  year: 2009
  end-page: 724
  article-title: The cancer genome
  publication-title: Nature
– volume: 3
  start-page: 1339
  year: 2013
  end-page: 1345
  article-title: p53 efficiently suppresses tumor development in the complete absence of its cell‐cycle inhibitory and proapoptotic effectors p21, puma, and noxa
  publication-title: Cell Rep
– volume: 84
  start-page: 7716
  year: 1987
  end-page: 7719
  article-title: Rearrangement of the p53 gene in human osteogenic sarcomas
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 3291
  year: 1998
  ident: 10.1002/humu.22552-BIB0112|humu22552-cit-0112
  article-title: Genetic and functional studies of a germline TP53 splicing mutation in a Li-Fraumeni-like family
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1201878
– volume: 25
  start-page: 6
  year: 2005
  ident: 10.1002/humu.22552-BIB0101|humu22552-cit-0101
  article-title: Reassessment of the TP53 mutation database in human disease by data mining with a library of TP53 missense mutations
  publication-title: Hum Mutat
  doi: 10.1002/humu.20114
– volume: 246
  start-page: 491
  year: 1989
  ident: 10.1002/humu.22552-BIB0107|humu22552-cit-0107
  article-title: p53: a frequent target for genetic abnormalities in lung cancer
  publication-title: Science
  doi: 10.1126/science.2554494
– volume: 286
  start-page: 252
  year: 2011
  ident: 10.1002/humu.22552-BIB0047|humu22552-cit-0047
  article-title: Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.174698
– volume: 12
  start-page: 62
  year: 2006a
  ident: 10.1002/humu.22552-BIB0097|humu22552-cit-0097
  article-title: Meta-analysis of the p53 mutation database for mutant p53 biological activity reveals a methodologic bias in mutation detection
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-05-0413
– volume: 20
  start-page: 46
  year: 2010
  ident: 10.1002/humu.22552-BIB0092|humu22552-cit-0092
  article-title: Therapeutic targeting of p53 by small molecules
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2010.02.006
– volume: 474
  start-page: 609
  year: 2011
  ident: 10.1002/humu.22552-BIB0006|humu22552-cit-0006
  article-title: Integrated genomic analyses of ovarian carcinoma
  publication-title: Nature
  doi: 10.1038/nature10166
– volume: 7
  start-page: 819
  year: 2007
  ident: 10.1002/humu.22552-BIB0040|humu22552-cit-0040
  article-title: microRNAs join the p53 network-another piece in the tumour-suppression puzzle
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2232
– volume: 63
  start-page: 1129
  year: 1990
  ident: 10.1002/humu.22552-BIB0089|humu22552-cit-0089
  article-title: The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90409-8
– volume: 9
  start-page: e1003246
  year: 2013
  ident: 10.1002/humu.22552-BIB0108|humu22552-cit-0108
  article-title: p53 protein isoforms: key regulators in the front line of pathogen infections
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003246
– volume: 14
  start-page: 1561
  year: 2007
  ident: 10.1002/humu.22552-BIB0076|humu22552-cit-0076
  article-title: How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4402196
– volume: 13
  start-page: 3496
  year: 1994
  ident: 10.1002/humu.22552-BIB0077|humu22552-cit-0077
  article-title: Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1994.tb06656.x
– volume: 3
  start-page: 419
  year: 2004
  ident: 10.1002/humu.22552-BIB0113|humu22552-cit-0113
  article-title: Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics
  publication-title: Cell Cycle
  doi: 10.4161/cc.3.4.801
– volume: 281
  start-page: 20464
  year: 2006
  ident: 10.1002/humu.22552-BIB0123|humu22552-cit-0123
  article-title: Mutational analysis of the p53 core domain L1 loop
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M603387200
– volume: 30
  start-page: 3633
  year: 2012
  ident: 10.1002/humu.22552-BIB0059|humu22552-cit-0059
  article-title: Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2011.40.7783
– volume: 97
  start-page: E1284
  year: 2012
  ident: 10.1002/humu.22552-BIB0061|humu22552-cit-0061
  article-title: SNP array profiling of childhood adrenocortical tumors reveals distinct pathways of tumorigenesis and highlights candidate driver genes
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2012-1184
– volume: 48
  start-page: 5738
  year: 1988
  ident: 10.1002/humu.22552-BIB0086|humu22552-cit-0086
  article-title: Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung
  publication-title: Cancer Res
– volume: 13
  start-page: 83
  year: 2013
  ident: 10.1002/humu.22552-BIB0115|humu22552-cit-0115
  article-title: MDM2, MDMX and p53 in oncogenesis and cancer therapy
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3430
– volume: 6
  start-page: 83
  year: 2006b
  ident: 10.1002/humu.22552-BIB0100|humu22552-cit-0100
  article-title: Locus-specific mutation databases: pitfalls and good practice based on the p53 experience
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1783
– volume: 39
  start-page: e118
  year: 2011
  ident: 10.1002/humu.22552-BIB0083|humu22552-cit-0083
  article-title: Predicting the functional impact of protein mutations: application to cancer genomics
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr407
– volume: 26
  start-page: 2166
  year: 2007
  ident: 10.1002/humu.22552-BIB0045|humu22552-cit-0045
  article-title: TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210279
– volume: 106
  start-page: 14327
  year: 2009
  ident: 10.1002/humu.22552-BIB0071|humu22552-cit-0071
  article-title: Ultraslow oligomerization equilibria of p53 and its implications
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0907840106
– volume: 21
  start-page: 86
  year: 2011
  ident: 10.1002/humu.22552-BIB0003|humu22552-cit-0003
  article-title: New plays in the p53 theater
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2010.10.002
– volume: 98
  start-page: 9330
  year: 2001
  ident: 10.1002/humu.22552-BIB0084|humu22552-cit-0084
  article-title: An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.161479898
– volume: 6
  start-page: pl1
  year: 2013
  ident: 10.1002/humu.22552-BIB0035|humu22552-cit-0035
  article-title: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2004088
– volume: 1
  start-page: 1178
  year: 2010
  ident: 10.1002/humu.22552-BIB0122|humu22552-cit-0122
  article-title: GATA transcription factors and cancer
  publication-title: Genes Cancer
  doi: 10.1177/1947601911404223
– volume: 4
  start-page: 1
  year: 1992
  ident: 10.1002/humu.22552-BIB0014|humu22552-cit-0014
  article-title: TP53 tumor suppressor gene: a model for investigating human mutagenesis
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.2870040102
– volume: 663
  start-page: 1
  year: 2009
  ident: 10.1002/humu.22552-BIB0093|humu22552-cit-0093
  article-title: p53 mutations as fingerprints for aristolochic acid: an environmental carcinogen in endemic (Balkan) nephropathy
  publication-title: Mutat Res
  doi: 10.1016/j.mrfmmm.2009.01.005
– volume: 244
  start-page: 217
  year: 1989
  ident: 10.1002/humu.22552-BIB0004|humu22552-cit-0004
  article-title: Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas
  publication-title: Science
  doi: 10.1126/science.2649981
– volume: 31
  start-page: 472
  year: 1979
  ident: 10.1002/humu.22552-BIB0053|humu22552-cit-0053
  article-title: Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum
  publication-title: J Virol
  doi: 10.1128/JVI.31.2.472-483.1979
– volume: 486
  start-page: 346
  year: 2012
  ident: 10.1002/humu.22552-BIB0025|humu22552-cit-0025
  article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
  publication-title: Nature
  doi: 10.1038/nature10983
– volume: 21
  start-page: 2113
  year: 2000
  ident: 10.1002/humu.22552-BIB0120|humu22552-cit-0120
  article-title: Cyclobutane pyrimidine dimers form preferentially at the major p53 mutational hotspot in UVB-induced mouse skin tumors
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/21.11.2113
– volume: 444
  start-page: 61
  year: 2006
  ident: 10.1002/humu.22552-BIB0057|humu22552-cit-0057
  article-title: Inactivation of the p53 pathway in retinoblastoma
  publication-title: Nature
  doi: 10.1038/nature05194
– volume: 18
  start-page: 4424
  year: 1999
  ident: 10.1002/humu.22552-BIB0087|humu22552-cit-0087
  article-title: Increased apoptosis induction by 121F mutant p53
  publication-title: EMBO J
  doi: 10.1093/emboj/18.16.4424
– volume: 12
  start-page: 259
  year: 2011
  ident: 10.1002/humu.22552-BIB0063|humu22552-cit-0063
  article-title: The p53 family: guardians of maternal reproduction
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3086
– volume: 9
  start-page: 12
  year: 2002
  ident: 10.1002/humu.22552-BIB0030|humu22552-cit-0030
  article-title: A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer
  publication-title: Nat Struct Biol
  doi: 10.1038/nsb730
– volume: 109
  start-page: 7955
  year: 2012
  ident: 10.1002/humu.22552-BIB0090|humu22552-cit-0090
  article-title: Tumor suppressor p53 (TP53) at the crossroads of the exposome and the cancer genome
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1205457109
– volume: 35
  start-page: 766
  year: 2014
  ident: 10.1002/humu.22552-BIB0102|humu22552-cit-0102
  article-title: Recommendations for analyzing and reporting TP53 gene alterations in the high throughput sequencing era
  publication-title: Hum Mutat
  doi: 10.1002/humu.22561
– volume: 3
  start-page: 1339
  year: 2013
  ident: 10.1002/humu.22552-BIB0111|humu22552-cit-0111
  article-title: p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, puma, and noxa
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.04.012
– volume: 84
  start-page: 7716
  year: 1987
  ident: 10.1002/humu.22552-BIB0068|humu22552-cit-0068
  article-title: Rearrangement of the p53 gene in human osteogenic sarcomas
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.84.21.7716
– volume: 1816
  start-page: 199
  year: 2011b
  ident: 10.1002/humu.22552-BIB0095|humu22552-cit-0095
  article-title: Advances in carcinogenesis: a historical perspective from observational studies to tumor genome sequencing and TP53 mutation spectrum analysis
  publication-title: Biochim Biophys Acta
– volume: 9
  start-page: 612
  year: 2009
  ident: 10.1002/humu.22552-BIB0118|humu22552-cit-0118
  article-title: Small RNAs: p53 makes microRNAs mature
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2724
– volume: 12
  start-page: 683
  year: 2011
  ident: 10.1002/humu.22552-BIB0088|humu22552-cit-0088
  article-title: Understanding the contribution of synonymous mutations to human disease
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3051
– volume: 24
  start-page: 6976
  year: 2005
  ident: 10.1002/humu.22552-BIB0051|humu22552-cit-0051
  article-title: The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1208839
– volume: 494
  start-page: 366
  year: 2013
  ident: 10.1002/humu.22552-BIB0013|humu22552-cit-0013
  article-title: APOBEC3B is an enzymatic source of mutation in breast cancer
  publication-title: Nature
  doi: 10.1038/nature11881
– volume: 5
  start-page: S479
  issue: Suppl 5
  year: 2013
  ident: 10.1002/humu.22552-BIB0023|humu22552-cit-0023
  article-title: Molecular biology of lung cancer
  publication-title: J Thorac Dis
– volume: 5
  start-page: 197ra101
  year: 2013
  ident: 10.1002/humu.22552-BIB0080|humu22552-cit-0080
  article-title: Genome-wide mutational signatures of aristolochic acid and its application as a screening tool
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3006086
– volume: 132
  start-page: 1227
  year: 2013
  ident: 10.1002/humu.22552-BIB0032|humu22552-cit-0032
  article-title: Distinct tumor protein p53 mutants in breast cancer subgroups
  publication-title: Int J Cancer
  doi: 10.1002/ijc.27767
– volume: 499
  start-page: 214
  year: 2013
  ident: 10.1002/humu.22552-BIB0058|humu22552-cit-0058
  article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes
  publication-title: Nature
  doi: 10.1038/nature12213
– volume: 12
  start-page: 621
  year: 2012
  ident: 10.1002/humu.22552-BIB0074|humu22552-cit-0074
  article-title: How many molecular subtypes? Implications of the unique tumor principle in personalized medicine
  publication-title: Expert Rev Mol Diagn
  doi: 10.1586/erm.12.46
– volume: 8
  start-page: 275
  year: 2007
  ident: 10.1002/humu.22552-BIB0114|humu22552-cit-0114
  article-title: p53 in health and disease
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2147
– volume: 42
  start-page: 715
  year: 2010
  ident: 10.1002/humu.22552-BIB0005|humu22552-cit-0005
  article-title: Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy
  publication-title: Nat Genet
  doi: 10.1038/ng.619
– volume: 12
  start-page: 613
  year: 2012
  ident: 10.1002/humu.22552-BIB0041|humu22552-cit-0041
  article-title: MicroRNAs in the p53 network: micromanagement of tumour suppression
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3318
– volume: 384
  start-page: 285
  year: 2009
  ident: 10.1002/humu.22552-BIB0062|humu22552-cit-0062
  article-title: The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53
  publication-title: Virology
  doi: 10.1016/j.virol.2008.09.034
– volume: 149
  start-page: 1269
  year: 2012
  ident: 10.1002/humu.22552-BIB0065|humu22552-cit-0065
  article-title: Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.026
– volume: 10
  start-page: 1493
  year: 1995
  ident: 10.1002/humu.22552-BIB0109|humu22552-cit-0109
  article-title: Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers
  publication-title: Oncogene
– volume: 21
  start-page: 192
  year: 2003
  ident: 10.1002/humu.22552-BIB0099|humu22552-cit-0099
  article-title: Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides
  publication-title: Hum Mutat
  doi: 10.1002/humu.10189
– volume: 45
  start-page: 970
  year: 2013
  ident: 10.1002/humu.22552-BIB0085|humu22552-cit-0085
  article-title: An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers
  publication-title: Nat Genet
  doi: 10.1038/ng.2702
– volume: 500
  start-page: 415
  year: 2013a
  ident: 10.1002/humu.22552-BIB0001|humu22552-cit-0001
  article-title: Signatures of mutational processes in human cancer
  publication-title: Nature
  doi: 10.1038/nature12477
– volume: 156
  start-page: 1324
  year: 2014
  ident: 10.1002/humu.22552-BIB0124|humu22552-cit-0124
  article-title: Synonymous mutations frequently act as driver mutations in human cancers
  publication-title: Cell
  doi: 10.1016/j.cell.2014.01.051
– volume: 4
  start-page: 144
  year: 2013
  ident: 10.1002/humu.22552-BIB0038|humu22552-cit-0038
  article-title: Fraud and misconduct in clinical research: a concern
  publication-title: Perspect Clin Res
  doi: 10.4103/2229-3485.111800
– volume: 331
  start-page: 1553
  year: 2011
  ident: 10.1002/humu.22552-BIB0105|humu22552-cit-0105
  article-title: Exploring the genomes of cancer cells: progress and promise
  publication-title: Science
  doi: 10.1126/science.1204040
– volume: 35
  start-page: 756
  year: 2014
  ident: 10.1002/humu.22552-BIB0060|humu22552-cit-0060
  article-title: Analysis of p53 mutation status in human cancer cell lines: a reassessment
  publication-title: Hum Mutat
  doi: 10.1002/humu.22556
– volume: 487
  start-page: 330
  year: 2012
  ident: 10.1002/humu.22552-BIB0081|humu22552-cit-0081
  article-title: Comprehensive molecular characterization of human colon and rectal cancer
  publication-title: Nature
  doi: 10.1038/nature11252
– volume: 110
  start-page: 15497
  year: 2013
  ident: 10.1002/humu.22552-BIB0034|humu22552-cit-0034
  article-title: Activation and control of p53 tetramerization in individual living cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1311126110
– volume: 31
  start-page: 121
  year: 2010
  ident: 10.1002/humu.22552-BIB0010|humu22552-cit-0010
  article-title: Biomarkers in cancer epidemiology: an integrative approach
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgp269
– volume: 100
  start-page: 8424
  year: 2003
  ident: 10.1002/humu.22552-BIB0050|humu22552-cit-0050
  article-title: Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1431692100
– volume: 13
  start-page: 27
  year: 1997
  ident: 10.1002/humu.22552-BIB0039|humu22552-cit-0039
  article-title: The molecular epidemiology of p53 gene mutations in human breast cancer
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(96)10043-3
– volume: 31
  start-page: 2619
  year: 2013
  ident: 10.1002/humu.22552-BIB0026|humu22552-cit-0026
  article-title: Impact of neonatal screening and surveillance for the TP53 R337H mutation on early detection of childhood adrenocortical tumors
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.46.3711
– volume: 368
  start-page: 1199
  year: 2013
  ident: 10.1002/humu.22552-BIB0027|humu22552-cit-0027
  article-title: Analysis of circulating tumor DNA to monitor metastatic breast cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1213261
– volume: 35
  start-page: 663
  year: 2014
  ident: 10.1002/humu.22552-BIB0067|humu22552-cit-0067
  article-title: TP53 mutation analysis in clinical practice: lessons from chronic lymphocytic leukemia
  publication-title: Hum Mutat
  doi: 10.1002/humu.22508
– volume: 110
  start-page: 107
  year: 2011a
  ident: 10.1002/humu.22552-BIB0094|humu22552-cit-0094
  article-title: TP53 mutations in human cancer: database reassessment and prospects for the next decade
  publication-title: Adv Cancer Res
  doi: 10.1016/B978-0-12-386469-7.00005-0
– volume: 35
  start-page: 738
  year: 2014
  ident: 10.1002/humu.22552-BIB0073|humu22552-cit-0073
  article-title: Mutant TP53 posttranslational modifications: challenges and opportunities
  publication-title: Hum Mutat
  doi: 10.1002/humu.22506
– volume: 119
  start-page: 3668
  year: 2012
  ident: 10.1002/humu.22552-BIB0119|humu22552-cit-0119
  article-title: Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies
  publication-title: Blood
  doi: 10.1182/blood-2011-11-366062
– volume: 2
  start-page: 401
  year: 2012
  ident: 10.1002/humu.22552-BIB0015|humu22552-cit-0015
  article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-12-0095
– volume: 274
  start-page: 948
  year: 1996
  ident: 10.1002/humu.22552-BIB0054|humu22552-cit-0054
  article-title: Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain
  publication-title: Science
  doi: 10.1126/science.274.5289.948
– volume: 2
  start-page: 321
  year: 1995
  ident: 10.1002/humu.22552-BIB0020|humu22552-cit-0020
  article-title: Refined solution structure of the oligomerization domain of the tumour suppressor p53
  publication-title: Nat Struct Biol
  doi: 10.1038/nsb0495-321
– volume: 5
  start-page: 209ra153
  year: 2013
  ident: 10.1002/humu.22552-BIB0019|humu22552-cit-0019
  article-title: A genomics-based classification of human lung tumors
  publication-title: Sci Transl Med
– volume: 1
  start-page: 233
  year: 2001
  ident: 10.1002/humu.22552-BIB0098|humu22552-cit-0098
  article-title: Assessing TP53 status in human tumours to evaluate clinical outcome
  publication-title: Nat Rev Cancer
  doi: 10.1038/35106009
– volume: 35
  start-page: 643
  year: 2014
  ident: 10.1002/humu.22552-BIB0096|humu22552-cit-0096
  article-title: Locus-specific databases in cancer: what future in a post-genomic era? The TP53 LSDB paradigm
  publication-title: Hum Mutat
  doi: 10.1002/humu.22518
– volume: 21
  start-page: 229
  year: 2003
  ident: 10.1002/humu.22552-BIB0110|humu22552-cit-0110
  article-title: The TP53 gene, tobacco exposure, and lung cancer
  publication-title: Hum Mutat
  doi: 10.1002/humu.10177
– volume: 94
  start-page: 3893
  year: 1997
  ident: 10.1002/humu.22552-BIB0028|humu22552-cit-0028
  article-title: Cytosine methylation determines hot spots of DNA damage in the human P53 gene
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.8.3893
– volume: 10
  start-page: 550
  year: 2010
  ident: 10.1002/humu.22552-BIB0070|humu22552-cit-0070
  article-title: Human papillomavirus oncoproteins: pathways to transformation
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2886
– volume: 21
  start-page: 1371
  year: 2008
  ident: 10.1002/humu.22552-BIB0091|humu22552-cit-0091
  article-title: Clinical significance of p53 alterations in surgically treated prostate cancers
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.2008.104
– volume: 5
  start-page: 197ra102
  year: 2013
  ident: 10.1002/humu.22552-BIB0042|humu22552-cit-0042
  article-title: Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3006200
– volume: 9
  start-page: 1847
  year: 2010
  ident: 10.1002/humu.22552-BIB0121|humu22552-cit-0121
  article-title: Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.9.11545
– volume: 265
  start-page: 386
  year: 1994
  ident: 10.1002/humu.22552-BIB0021|humu22552-cit-0021
  article-title: High-resolution structure of the oligomerization domain of p53 by multidimensional NMR
  publication-title: Science
  doi: 10.1126/science.8023159
– volume: 3
  start-page: 246
  year: 2013b
  ident: 10.1002/humu.22552-BIB0002|humu22552-cit-0002
  article-title: Deciphering signatures of mutational processes operative in human cancer
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.12.008
– volume: 2
  start-page: a000927
  year: 2010
  ident: 10.1002/humu.22552-BIB0052|humu22552-cit-0052
  article-title: The isoforms of the p53 protein
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a000927
– volume: 463
  start-page: 184
  year: 2010
  ident: 10.1002/humu.22552-BIB0079|humu22552-cit-0079
  article-title: A small-cell lung cancer genome with complex signatures of tobacco exposure
  publication-title: Nature
  doi: 10.1038/nature08629
– volume: 1
  start-page: a000950
  year: 2009
  ident: 10.1002/humu.22552-BIB0069|humu22552-cit-0069
  article-title: Posttranslational modification of p53: cooperative integrators of function
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a000950
– volume: 109
  start-page: 9551
  year: 2012
  ident: 10.1002/humu.22552-BIB0033|humu22552-cit-0033
  article-title: Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1200019109
– volume: 18
  start-page: 477
  year: 1999
  ident: 10.1002/humu.22552-BIB0009|humu22552-cit-0009
  article-title: Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1202314
– volume: 21
  start-page: 217
  year: 2003
  ident: 10.1002/humu.22552-BIB0036|humu22552-cit-0036
  article-title: TP53 mutations in human skin cancers
  publication-title: Hum Mutat
  doi: 10.1002/humu.10179
– volume: 338
  start-page: 1356
  year: 1991
  ident: 10.1002/humu.22552-BIB0078|humu22552-cit-0078
  article-title: p53 mutation in hepatocellular carcinoma after aflatoxin exposure
  publication-title: Lancet
  doi: 10.1016/0140-6736(91)92236-U
– volume: 458
  start-page: 719
  year: 2009
  ident: 10.1002/humu.22552-BIB0106|humu22552-cit-0106
  article-title: The cancer genome
  publication-title: Nature
  doi: 10.1038/nature07943
– volume: 78
  start-page: 151
  year: 1988
  ident: 10.1002/humu.22552-BIB0022|humu22552-cit-0022
  article-title: The CpG dinucleotide and human genetic disease
  publication-title: Hum Genet
  doi: 10.1007/BF00278187
– volume: 253
  start-page: 49
  year: 1991
  ident: 10.1002/humu.22552-BIB0043|humu22552-cit-0043
  article-title: p53 mutations in human cancers
  publication-title: Science
  doi: 10.1126/science.1905840
– volume: 18
  start-page: 1660
  year: 1999
  ident: 10.1002/humu.22552-BIB0104|humu22552-cit-0104
  article-title: A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking
  publication-title: EMBO J
  doi: 10.1093/emboj/18.6.1660
– volume: 13
  start-page: 410
  year: 1997
  ident: 10.1002/humu.22552-BIB0012|humu22552-cit-0012
  article-title: Sunlight and the onset of skin cancer
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(97)01246-8
– volume: 102
  start-page: 16368
  year: 2005
  ident: 10.1002/humu.22552-BIB0029|humu22552-cit-0029
  article-title: Detection and quantification of mutations in the plasma of patients with colorectal tumors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0507904102
– volume: 145
  start-page: 571
  year: 2011
  ident: 10.1002/humu.22552-BIB0011|humu22552-cit-0011
  article-title: Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.035
– volume: 22
  start-page: 398
  year: 2012
  ident: 10.1002/humu.22552-BIB0018|humu22552-cit-0018
  article-title: Mutual exclusivity analysis identifies oncogenic network modules
  publication-title: Genome Res
  doi: 10.1101/gr.125567.111
– volume: 35
  start-page: 654
  year: 2014
  ident: 10.1002/humu.22552-BIB0048|humu22552-cit-0048
  article-title: Germline TP53 mutations and the changing landscape of Li-Fraumeni syndrome
  publication-title: Hum Mutat
  doi: 10.1002/humu.22559
– volume: 278
  start-page: 261
  year: 1979
  ident: 10.1002/humu.22552-BIB0056|humu22552-cit-0056
  article-title: T antigen is bound to a host protein in SV40-transformed cells
  publication-title: Nature
  doi: 10.1038/278261a0
– volume: 7
  start-page: 699
  year: 2008
  ident: 10.1002/humu.22552-BIB0007|humu22552-cit-0007
  article-title: Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination
  publication-title: Cancer Biol Ther
  doi: 10.4161/cbt.7.5.5712
– volume: 35
  start-page: 715
  year: 2014
  ident: 10.1002/humu.22552-BIB0031|humu22552-cit-0031
  article-title: Insights into wild-type and mutant p53 functions provided by genetically engineered mice
  publication-title: Hum Mutat
  doi: 10.1002/humu.22507
– volume: 17
  start-page: 43
  year: 1979
  ident: 10.1002/humu.22552-BIB0066|humu22552-cit-0066
  article-title: Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells
  publication-title: Cell
  doi: 10.1016/0092-8674(79)90293-9
– volume: 50
  start-page: 5566
  year: 2011
  ident: 10.1002/humu.22552-BIB0064|humu22552-cit-0064
  article-title: Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer
  publication-title: Biochemistry
  doi: 10.1021/bi200642e
– volume: 15
  start-page: 80
  year: 2014
  ident: 10.1002/humu.22552-BIB0044|humu22552-cit-0044
  article-title: Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities
  publication-title: Curr Drug Targets
  doi: 10.2174/1389450114666140106101412
– volume: 21
  start-page: 201
  year: 2003
  ident: 10.1002/humu.22552-BIB0103|humu22552-cit-0103
  article-title: TP53 and liver carcinogenesis
  publication-title: Hum Mutat
  doi: 10.1002/humu.10176
– volume: 2
  start-page: a001222
  year: 2010
  ident: 10.1002/humu.22552-BIB0055|humu22552-cit-0055
  article-title: p53-based cancer therapy
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a001222
– volume: 265
  start-page: 346
  year: 1994
  ident: 10.1002/humu.22552-BIB0017|humu22552-cit-0017
  article-title: Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations
  publication-title: Science
  doi: 10.1126/science.8023157
– volume: 39
  start-page: 2294
  year: 2011
  ident: 10.1002/humu.22552-BIB0082|humu22552-cit-0082
  article-title: Single-molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq800
– volume: 6
  start-page: 553
  year: 2009
  ident: 10.1002/humu.22552-BIB0046|humu22552-cit-0046
  article-title: The Holy Grail of biomarkers
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2009.145
– volume: 104
  start-page: 12129
  year: 2007
  ident: 10.1002/humu.22552-BIB0037|humu22552-cit-0037
  article-title: Aristolochic acid and the etiology of endemic (Balkan) nephropathy
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0701248104
– volume: 18
  start-page: 617
  year: 2013
  ident: 10.1002/humu.22552-BIB0008|humu22552-cit-0008
  article-title: Metabolic regulation by p53 family members
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.06.019
– volume: 502
  start-page: 333
  year: 2013
  ident: 10.1002/humu.22552-BIB0049|humu22552-cit-0049
  article-title: Mutational landscape and significance across 12 major cancer types
  publication-title: Nature
  doi: 10.1038/nature12634
– volume: 8
  start-page: 749
  year: 2007
  ident: 10.1002/humu.22552-BIB0116|humu22552-cit-0116
  article-title: Splicing in disease: disruption of the splicing code and the decoding machinery
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2164
– volume: 25
  start-page: 534
  year: 2011
  ident: 10.1002/humu.22552-BIB0016|humu22552-cit-0016
  article-title: Making sense of cancer genomic data
  publication-title: Genes Dev
  doi: 10.1101/gad.2017311
– volume: 362
  start-page: 857
  year: 1993
  ident: 10.1002/humu.22552-BIB0075|humu22552-cit-0075
  article-title: Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53
  publication-title: Nature
  doi: 10.1038/362857a0
– volume: 7
  start-page: 61
  year: 2006
  ident: 10.1002/humu.22552-BIB0072|humu22552-cit-0072
  article-title: Predicting the effects of amino acid substitutions on protein function
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev.genom.7.080505.115630
– volume: 4
  start-page: 192
  year: 2010
  ident: 10.1002/humu.22552-BIB0117|humu22552-cit-0117
  article-title: Histological types of breast cancer: how special are they
  publication-title: Mol Oncol
  doi: 10.1016/j.molonc.2010.04.004
– volume: 106
  start-page: 18954
  year: 2009
  ident: 10.1002/humu.22552-BIB0024|humu22552-cit-0024
  article-title: Exon sequences at the splice junctions affect splicing fidelity and alternative splicing
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0907948106
SSID ssj0008553
Score 2.5628562
SecondaryResourceType review_article
Snippet ABSTRACT More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the...
More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53...
SourceID swepub
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 672
SubjectTerms cancer
Databases, Genetic
DNA Mutational Analysis
Germ-Line Mutation
Humans
LSDB
Mutation
Neoplasms - genetics
Neoplasms - pathology
TP53
Tumor Suppressor Protein p53 - genetics
Title TP53 Mutations in Human Cancer: Database Reassessment and Prospects for the Next Decade
URI https://api.istex.fr/ark:/67375/WNG-2V6N4BG5-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhumu.22552
https://www.ncbi.nlm.nih.gov/pubmed/24665023
https://www.proquest.com/docview/1659804788
https://www.proquest.com/docview/1527330479
https://www.proquest.com/docview/1534815404
http://kipublications.ki.se/Default.aspx?queryparsed=id:129096125
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lovjSav26WiWiCAp73csmuY34oq3tIdxRSs_2pYQkm6Xl6p7c3YL61zuT7O1RKQV9WcJmFvIxk_yyM_MLIW-UEaawniXc9hw8rEwsrIKJzfGEW8LyWIZoi5EcjPnXM3G2Rj4uc2EiP0T7ww0tI6zXaODGzndXpKEX9fe6C9oocAHGYC1ERMcr7qhciBhdLxRASMVbblK2u_r02m50Bwf2501Qs-URvQ5hwx50sEnOl62PoSeTbr2wXff7L2LH_-3eA7LRgFP6KWrTQ7Lmqy1yN15X-WuL3Bs2jvhH5PTkSGR0WEdH_pxeVjS4A-geatHsA903C4M7JD32piX_pKYq6NFsGtI75xTwMgX8SUewQdB9j5H6j8n44MvJ3iBp7mhInJAAzp1yfSjYggtXSGUyB5inwPRXk5al6aXKqUIxJ5UwXjqlROr6Ki9KD-euVBXZE7JeTSv_jFCTZqUXJSDOXHHpU8PK1MHBn2fMAmpVHfJuOVfaNQTmeI_GlY7Uy0zjmOkwZh3yupX9EWk7bpR6G6a8FTGzCQa69YU-HR1q9k2O-OdDoUFwZ6kTurHxue5JoXIkN8o75FVbDdaJLhdT-WkNMshvh55NdZsMJkMDcuYd8jTqW9sgxiVAaJZBS6MCtjVIC968mkDJawDSfQZNeR-06pZe68F4OA6l7X8Rfk7uA1jkMUxuh6wvZrV_AYBsYV8Gw_sDWT0vJw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQJj5eGIyPFQYYgZBASpc6thvzBhtbgTWapnbbm-U4joYKKWobie2v352dpRqaJsFLZMUXyXbu7J99598R8lYZYYrcsYjnPQuPXEY5zIJRnuIOt4TpsfTRFpkcjPm3E3HSxObgXZjAD9EeuKFl-PkaDRwPpLeWrKGn9a-6C-ooYAZexZTefkd1uGSPSoUI8fVCAYhUvGUnZVvLb6-sR6s4tH-uA5stk-hVEOtXod21kGp17skLMfhk0q0Xedee_0Xt-N8dfEDuN_iUfgoK9ZDcctU6uR0yVp6tkzvDxhf_iByPDkRCh3Xw5c_pj4p6jwDdRkWafaQ7ZmFwkaSHzrT8n9RUBT2YTf0NzzkFyEwBgtIM1gi64zBY_zEZ734ZbQ-iJk1DZIUEfG6V7UMhL7iwhVQmsQB7CrwBa-KyNL1YWVUoZqUSxkmrlIhtX6VF6WDrFasieUJWqmnlNgg1cVI6UQLoTBWXLjasjC3s_XnCcgCuqkPeX_4sbRsOc0yl8VMH9mWmccy0H7MOedPK_g7MHddKvfP_vBUxswnGuvWFPs72NDuSGf-8JzQIbl4qhW7MfK57UqgU-Y3SDnndVoOBotfFVG5agwxS3KFzU90kg_ehATzzDnkaFK5tEOMSUDRLoKVBA9saZAZvXk2g5DRg6T6DpnzwanVDr_VgPBz70rN_EX5F7g5Gw329_zX7_pzcA-zIQ9TcJllZzGr3AvDZIn_prfACMSwzQg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9Nm5h4GTC-CgOMQEggpUsd240RL7DSlY9W1bSyvSDLcRwNFdKpbSTgr-dsp6mGpknwElnxRfLHnf1z7u5ngOdSc51nlkYs6xh8ZCLKcBWMstSdcAtcHgsfbTESgwn7eMpPN-DNKhcm8EM0P9ycZfj12hn4eV7sr0lDz6ofVRu1keMCvMVEnDqd7h2tyaNSzkN4PZeIISVryEnp_vrbC9vRlhvZn5dhzYZI9CKG9ZtQ_wZ8XTU_xJ5M29Uya5vffzE7_m__bsJOjU7J26BOt2DDlrtwLdxX-WsXtoe1J_42nByPeUKGVfDkL8i3knh_ADlwajR_TXp6qd0WSY6sbtg_iS5zMp7PfH7ngiBgJghAyQh3CNKzLlT_Dkz6748PBlF9SUNkuEB0bqTpYiHLGTe5kDoxCHpyl_-q46LQnVgamUtqhOTaCiMlj01Xpnlh8eAVyzy5C5vlrLT3geg4KSwvEHKmkgkba1rEBk_-LKEZwlbZgperuVKmZjB3F2l8V4F7mSo3ZsqPWQueNbLngbfjUqkXfsobET2fuki3Llcno0NFv4gRe3fIFQrurXRC1Ua-UB3BZerYjdIWPG2q0Tydz0WXdlahjCO4c65NeZWMy4ZG6MxacC_oW9MgygRiaJpgS4MCNjWOF7x-NcWSVYikuxSb8spr1RW9VoPJcOJLD_5F-Alsj3t99fnD6NNDuI7AkYWQuT3YXM4r-wjB2TJ77G3wD41NMfo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TP53+Mutations+in+Human+Cancer%3A+Database+Reassessment+and+Prospects+for+the+Next+Decade&rft.jtitle=Human+mutation&rft.au=Leroy%2C+B&rft.au=Anderson%2C+M&rft.au=Soussi%2C+T&rft.date=2014-06-01&rft.issn=1059-7794&rft.volume=35&rft.issue=6&rft.spage=672&rft_id=info:doi/10.1002%2Fhumu.22552&rft.externalDocID=oai_swepub_ki_se_522728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-7794&client=summon