Formation of a High Conductivity Fuel Cell Electrolyte by Pressing Diphenylsiloxane-Based Inorganic-Organic Hybrid Particles

An inorganic–organic nanohybrid particle with a two‐dimensional chain structure, diphenylsiloxane‐silica (Ph2SiO–SiO2), was prepared by sol–gel process using diphenyldiethoxysilane (DPDES) and tetraethoxysilane (TEOS), and a high proton conducting polymer of poly(2‐acrylamido‐2‐methyl‐1‐propane sulf...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 92; no. s1; pp. S185 - S188
Main Authors Daiko, Yusuke, Sakakibara, Saki, Sakamoto, Hisatoshi, Katagiri, Kiyofumi, Muto, Hiroyuki, Sakai, Mototsugu, Matsuda, Atsunori
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.01.2009
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An inorganic–organic nanohybrid particle with a two‐dimensional chain structure, diphenylsiloxane‐silica (Ph2SiO–SiO2), was prepared by sol–gel process using diphenyldiethoxysilane (DPDES) and tetraethoxysilane (TEOS), and a high proton conducting polymer of poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) (PAMPS) was deposited on the Ph2SiO–SiO2 particles via layer‐by‐layer assembly. A flexible sheet‐like electrolyte was successfully obtained from the resulting PAMPS‐deposited particles by pressing. The proton conductivity of the sheet prepared using unmodified Ph2SiO–SiO2 particles was lower than 10−9 S/cm at 80°C. On the other hand, the PAMPS‐deposited samples showed proton conductivities ∼7 orders of magnitude higher than those of the sample prepared using unmodified particles, and their conductivity reached about 1 × 10−2 S/cm at 80°C and 80% relative humidity. This is ascribed to the PAMPS layer being concentrated at the particle interfaces, which percolated throughout the monolithic sample.
AbstractList An inorganic–organic nanohybrid particle with a two‐dimensional chain structure, diphenylsiloxane‐silica (Ph 2 SiO–SiO 2 ), was prepared by sol–gel process using diphenyldiethoxysilane (DPDES) and tetraethoxysilane (TEOS), and a high proton conducting polymer of poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) (PAMPS) was deposited on the Ph 2 SiO–SiO 2 particles via layer‐by‐layer assembly. A flexible sheet‐like electrolyte was successfully obtained from the resulting PAMPS‐deposited particles by pressing. The proton conductivity of the sheet prepared using unmodified Ph 2 SiO–SiO 2 particles was lower than 10 −9 S/cm at 80°C. On the other hand, the PAMPS‐deposited samples showed proton conductivities ∼7 orders of magnitude higher than those of the sample prepared using unmodified particles, and their conductivity reached about 1 × 10 −2 S/cm at 80°C and 80% relative humidity. This is ascribed to the PAMPS layer being concentrated at the particle interfaces, which percolated throughout the monolithic sample.
An inorganic–organic nanohybrid particle with a two‐dimensional chain structure, diphenylsiloxane‐silica (Ph2SiO–SiO2), was prepared by sol–gel process using diphenyldiethoxysilane (DPDES) and tetraethoxysilane (TEOS), and a high proton conducting polymer of poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) (PAMPS) was deposited on the Ph2SiO–SiO2 particles via layer‐by‐layer assembly. A flexible sheet‐like electrolyte was successfully obtained from the resulting PAMPS‐deposited particles by pressing. The proton conductivity of the sheet prepared using unmodified Ph2SiO–SiO2 particles was lower than 10−9 S/cm at 80°C. On the other hand, the PAMPS‐deposited samples showed proton conductivities ∼7 orders of magnitude higher than those of the sample prepared using unmodified particles, and their conductivity reached about 1 × 10−2 S/cm at 80°C and 80% relative humidity. This is ascribed to the PAMPS layer being concentrated at the particle interfaces, which percolated throughout the monolithic sample.
An inorganic-organic nanohybrid particle with a two-dimensional chain structure, diphenylsiloxane-silica (Ph2SiO-SiO2), was prepared by sol-gel process using diphenyldiethoxysilane (DPDES) and tetraethoxysilane (TEOS), and a high proton conducting polymer of poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS) was deposited on the Ph2SiO-SiO2 particles via layer-by-layer assembly. A flexible sheet-like electrolyte was successfully obtained from the resulting PAMPS-deposited particles by pressing. The proton conductivity of the sheet prepared using unmodified Ph2SiO-SiO2 particles was lower than 10-9 S/cm at 80{degrees}C. On the other hand, the PAMPS-deposited samples showed proton conductivities ~7 orders of magnitude higher than those of the sample prepared using unmodified particles, and their conductivity reached about 1 x 10-2 S/cm at 80{degrees}C and 80% relative humidity. This is ascribed to the PAMPS layer being concentrated at the particle interfaces, which percolated throughout the monolithic sample.
An inorganic-organic nanohybrid particle with a two-dimensional chain structure, diphenylsiloxane-silica (...-...), was prepared by sol-gel process using diphenyldiethoxysilane (DPDES) and tetraethoxysilane (TEOS), and a high proton conducting polymer of poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS) was deposited on the ...-... particles via layer-by-layer assembly. A flexible sheet-like electrolyte was successfully obtained from the resulting PAMPS-deposited particles by pressing. The proton conductivity of the sheet prepared using unmodified Ph2SiO-SiO2 particles was lower than 10... S/cm at 80...C. On the other hand, the PAMPS-deposited samples showed proton conductivities 7 orders of magnitude higher than those of the sample prepared using unmodified particles, and their conductivity reached about 1 x 10... S/cm at 80...C and 80% relative humidity. This is ascribed to the PAMPS layer being concentrated at the particle interfaces, which percolated throughout the monolithic sample. (ProQuest: ... denotes formulae/symbols omitted.)
Author Sakakibara, Saki
Muto, Hiroyuki
Sakamoto, Hisatoshi
Sakai, Mototsugu
Daiko, Yusuke
Matsuda, Atsunori
Katagiri, Kiyofumi
Author_xml – sequence: 1
  givenname: Yusuke
  surname: Daiko
  fullname: Daiko, Yusuke
  organization: Department of Materials Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
– sequence: 2
  givenname: Saki
  surname: Sakakibara
  fullname: Sakakibara, Saki
  organization: Department of Materials Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
– sequence: 3
  givenname: Hisatoshi
  surname: Sakamoto
  fullname: Sakamoto, Hisatoshi
  organization: Department of Materials Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
– sequence: 4
  givenname: Kiyofumi
  surname: Katagiri
  fullname: Katagiri, Kiyofumi
  organization: Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603,Japan
– sequence: 5
  givenname: Hiroyuki
  surname: Muto
  fullname: Muto, Hiroyuki
  organization: Department of Materials Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
– sequence: 6
  givenname: Mototsugu
  surname: Sakai
  fullname: Sakai, Mototsugu
  organization: Department of Materials Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
– sequence: 7
  givenname: Atsunori
  surname: Matsuda
  fullname: Matsuda, Atsunori
  email: matsuda@tutms.tut.ac.jp
  organization: Department of Materials Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
BookMark eNqNkUtv1DAUhS1UJKaF_2CxYJfgR-IkK1TCPFoNbRdAl5bjOFMPHntqJzCR-PF1GtQFK7y5vvI5n67PPQdn1lkFAMQoxfF83Kc4z3FCKsxSglCZIsIylJ5egcXLwxlYIIRIUpQEvQHnIexji6syW4A_K-cPotfOQtdBATd69wBrZ9tB9vqX7ke4GpSBtTIGLo2SvXdm7BVsRnjnVQja7uAXfXxQdjRBG3cSViWfRVAtvLLO74TVMrmdK9yMjdctvBO-19Ko8Ba87oQJ6t3fegG-r5bf6k2yvV1f1ZfbROasRImUqER53nZYqZbSrJEVEmWXCUUawmjJKiSbDrEOs6IiJctoo2TedAVpkGAM0QvwYeYevXscVOj5QQcZvxSHdUPglE7JFSQK3_8j3LvB2zgbJ7ioMMI5jaJyFknvQvCq40evD8KPHCM-7YTv-RQ9n6LnE5k_74SfovXTbP2tjRr_28evL-vl8z0SkpmgQ69OLwThf3JW0CLn9zdrTtc_bvLt_Yp_pU_s66Sx
CODEN JACTAW
CitedBy_id crossref_primary_10_1039_c2cs35048c
crossref_primary_10_2109_jcersj2_119_845
crossref_primary_10_1016_j_jpowsour_2012_03_006
crossref_primary_10_1016_j_ssi_2009_02_017
crossref_primary_10_3390_ma11050846
crossref_primary_10_1016_j_jpowsour_2010_10_036
crossref_primary_10_4028_www_scientific_net_AMR_496_109
crossref_primary_10_1016_j_jpowsour_2010_01_021
Cites_doi 10.1002/fuce.200400050
10.1016/S0167-2738(02)00746-4
10.1016/j.ssi.2006.03.053
10.1016/0167-2738(94)00228-K
10.1021/jp022347p
10.1149/1.2885101
10.1021/ja01168a090
10.1002/1521-4095(200009)12:18<1370::AID-ADMA1370>3.0.CO;2-1
10.1038/35073536
10.1016/j.ssi.2007.02.001
10.1016/S0376-7388(00)00633-5
10.1016/j.ssi.2007.01.021
10.1557/JMR.2005.0151
10.1039/b700410a
ContentType Journal Article
Copyright 2008 The American Ceramic Society
Copyright American Ceramic Society Jan 2009
Copyright_xml – notice: 2008 The American Ceramic Society
– notice: Copyright American Ceramic Society Jan 2009
DBID BSCLL
AAYXX
CITATION
7QQ
7SR
8FD
JG9
DOI 10.1111/j.1551-2916.2008.02640.x
DatabaseName Istex
CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList CrossRef

Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1551-2916
EndPage S188
ExternalDocumentID 1630033411
10_1111_j_1551_2916_2008_02640_x
JACE02640
ark_67375_WNG_3GVN5LWF_M
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDBF
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AHEFC
AI.
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
G8K
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PK8
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AITYG
HGLYW
OIG
WTY
AAYXX
CITATION
7QQ
7SR
8FD
ADMHG
JG9
ID FETCH-LOGICAL-c5680-cc08055df1eed334bc90a8f4ae2b2638690cbf06f167928643bec5bf72b0a6603
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Sat Aug 17 03:00:24 EDT 2024
Thu Oct 10 16:05:31 EDT 2024
Fri Aug 23 00:37:40 EDT 2024
Sat Aug 24 00:50:42 EDT 2024
Wed Jan 17 05:09:16 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue s1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5680-cc08055df1eed334bc90a8f4ae2b2638690cbf06f167928643bec5bf72b0a6603
Notes ArticleID:JACE02640
istex:EBA4D1CEBAB914A1080B546885CA6CF68B744CFA
ark:/67375/WNG-3GVN5LWF-M
Presented at the 10th International Conference on Ceramic Processing Science, May 25–28, 2008, Inuyama, Japan.
This work has been supported by New Energy and Industrial Technology Development Organization (NEDO) project “Development of Technology for Next‐Generation Fuel Cells.”
M. Hickner—contributing editor
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1551-2916.2008.02640.x
PQID 217910153
PQPubID 41752
PageCount 4
ParticipantIDs proquest_miscellaneous_33200872
proquest_journals_217910153
crossref_primary_10_1111_j_1551_2916_2008_02640_x
wiley_primary_10_1111_j_1551_2916_2008_02640_x_JACE02640
istex_primary_ark_67375_WNG_3GVN5LWF_M
PublicationCentury 2000
PublicationDate 2009-01
January 2009
2009-01-00
20090101
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2009
Publisher Blackwell Publishing Inc
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley Subscription Services, Inc
References A. Noda, M. A. B. H. Susan, K. Kudo, S. Mitsushima, K. Hayamizu, and M. Watanabe, "Brønsted Acid-Base Ionic Liquid as Proton-Conducting Nonaqueous Electrolytes," J. Phys. Chem. B, 107, 4024-33 (2003).
Y. Daiko, H. Sakamoto, K. Katagiri, H. Muto, M. Sakai, and A. Matsuda, "Deposition of Ultrathin Nafion Layers on Sol-Gel-Derived Phenylsilsesquioxane Particles Via Layer-By-Layer Assembly," J. Electrochem. Soc., 155, B479-82 (2008).
H. Masai, M. Takahashi, Y. Tokuda, and T. Yoko, "Gel-Melting Method for Preparation of Organically Modified Siloxane Low-Melting Glasses," J. Mater. Res., 20, 1234-41 (2005).
A. Matsuda, T. Kikuchi, K. Katagiri, H. Muto, and M. Sakai, "Structure and Proton Conductivity of Mechanochemically Treated 50CsHSO4·50CsH2PO4," Solid State Ionics, 177, 2421-4 (2006).
K. Ariga, J. P. Hill, and Q. Ji, "Layer-by-Layer Assembly as a Versatile Bottom-up Nanofabrication Technique for Exploratory Research and Realistic Application," Phys. Chem. Chem. Phys., 9, 2319-40 (2007).
S. M. Haile, D. A. Boysen, C. R. I. Chisholm, and R. B. Merle, "Solid Acids as Fuel Cell Electrolytes," Nature, 410, 910-3 (2001).
Y. Daiko, K. Katagiri, K. Ogura, M. Sakai, and A. Matsuda, "Preparation and Characterization of Surface-Sulfonated Phenylsilsesquioxane-Methylsilsesquioxane Particles," Solid State Ionics, 178, 601-5 (2007).
M. Nogami, H. Matsushita, Y. Goto, and T. Kasuga, "A Sol-Gel-Derived Glass as a Fuel Cell Electrolyte," Adv. Mater., 12, 1370-2 (2000).
J. Otomo, N. Minagawa, C. Wen, K. Eguchi, and H. Takahashi, "Proton Conduction of CsH2PO4 and its Composite with Silica in Dry and Humid Atmospheres," Solid State Ionics, 156, 357-69 (2003).
Y. Daiko, K. Katagiri, K. Shimoike, M. Sakai, and A. Matsuda, "Structures and Electrical Properties of Core-Shell Composite Electrolytes with Multi-Heterointerfaces," Solid State Ionics, 178, 621-5 (2007).
J. Gao, D. Lee, Y. Yang, S. Holdcroft, and B. J. Friske, "Self-Assembly of Surface-Charged Latex Nanoparticles: A New Route to the Creation of Continuous Channels for Ion Conduction," Macromolecules, 38, 5854-6 (2005).
J. Healy, C. Hayden, T. Xie, K. Olson, R. Waldo, M. Brundage, H. Gasteiger, and J. Abbott, "Aspects of the Chemical Degradation of PFSA Ionomers Used in PEM Fuel Cells," Fuel Cells, 5, 302-8 (2005).
R. Aelion, A. Loebel, and F. Eirich, "Hydrolysis of Ethyl Silicate," J. Am. Chem. Soc., 72, 5705-12 (1950).
D. J. Jones and J. Rozière, "Recent Advances in the Functionalisation of Polybenzimidazole and Polyetherketone for Fuel Cell Applications," J. Memb. Sci., 185, 41-58 (2001).
T. Norby, M. Friesel, and B. E. Mellander, "Proton and Deuteron Conductivity in CsHSO4 and CsDSO4 by In Situ Isotopic Exchange," Solid State Ionics, 77, 105-10 (1995).
2001; 410
2007; 178
2003; 107
2001; 185
2000; 12
1995; 77
1950; 72
2005; 5
2007; 9
2005; 20
2003
2005; 38
2008; 155
2003; 156
2006; 177
e_1_2_5_13_2
e_1_2_5_16_2
e_1_2_5_8_2
e_1_2_5_15_2
e_1_2_5_7_2
e_1_2_5_6_2
e_1_2_5_12_2
e_1_2_5_4_2
Gao J. (e_1_2_5_9_2) 2005; 38
e_1_2_5_3_2
e_1_2_5_2_2
Joanny J. F. (e_1_2_5_14_2) 2003
e_1_2_5_17_2
Daiko Y. (e_1_2_5_10_2) 2007; 178
Daiko Y. (e_1_2_5_11_2) 2007; 178
Matsuda A. (e_1_2_5_5_2) 2006; 177
References_xml – volume: 177
  start-page: 2421
  year: 2006
  end-page: 4
  article-title: Structure and Proton Conductivity of Mechanochemically Treated 50CsHSO ·50CsH PO
  publication-title: Solid State Ionics
– volume: 178
  start-page: 601
  year: 2007
  end-page: 5
  article-title: Preparation and Characterization of Surface‐Sulfonated Phenylsilsesquioxane‐Methylsilsesquioxane Particles
  publication-title: Solid State Ionics
– volume: 38
  start-page: 5854
  year: 2005
  end-page: 6
  article-title: Self‐Assembly of Surface‐Charged Latex Nanoparticles
  publication-title: A New Route to the Creation of Continuous Channels for Ion Conduction
– volume: 77
  start-page: 105
  year: 1995
  end-page: 10
  article-title: Proton and Deuteron Conductivity in CsHSO and CsDSO by Isotopic Exchange
  publication-title: Solid State Ionics
– start-page: 87
  year: 2003
  end-page: 97
– volume: 5
  start-page: 302
  year: 2005
  end-page: 8
  article-title: Aspects of the Chemical Degradation of PFSA Ionomers Used in PEM Fuel Cells
  publication-title: Fuel Cells
– volume: 178
  start-page: 621
  year: 2007
  end-page: 5
  article-title: Structures and Electrical Properties of Core‐Shell Composite Electrolytes with Multi‐Heterointerfaces
  publication-title: Solid State Ionics
– volume: 20
  start-page: 1234
  year: 2005
  end-page: 41
  article-title: Gel‐Melting Method for Preparation of Organically Modified Siloxane Low‐Melting Glasses
  publication-title: J. Mater. Res.
– volume: 156
  start-page: 357
  year: 2003
  end-page: 69
  article-title: Proton Conduction of CsH PO and its Composite with Silica in Dry and Humid Atmospheres
  publication-title: Solid State Ionics
– volume: 9
  start-page: 2319
  year: 2007
  end-page: 40
  article-title: Layer‐by‐Layer Assembly as a Versatile Bottom‐up Nanofabrication Technique for Exploratory Research and Realistic Application
  publication-title: Phys. Chem. Chem. Phys.
– volume: 410
  start-page: 910
  year: 2001
  end-page: 3
  article-title: Solid Acids as Fuel Cell Electrolytes
  publication-title: Nature
– volume: 107
  start-page: 4024
  year: 2003
  end-page: 33
  article-title: Brønsted Acid‐Base Ionic Liquid as Proton‐Conducting Nonaqueous Electrolytes
  publication-title: J. Phys. Chem. B
– volume: 12
  start-page: 1370
  year: 2000
  end-page: 2
  article-title: A Sol‐Gel‐Derived Glass as a Fuel Cell Electrolyte
  publication-title: Adv. Mater.
– volume: 72
  start-page: 5705
  year: 1950
  end-page: 12
  article-title: Hydrolysis of Ethyl Silicate
  publication-title: J. Am. Chem. Soc.
– volume: 185
  start-page: 41
  year: 2001
  end-page: 58
  article-title: Recent Advances in the Functionalisation of Polybenzimidazole and Polyetherketone for Fuel Cell Applications
  publication-title: J. Memb. Sci.
– volume: 155
  start-page: B479
  year: 2008
  end-page: 82
  article-title: Deposition of Ultrathin Nafion Layers on Sol–Gel‐Derived Phenylsilsesquioxane Particles Via Layer‐By‐Layer Assembly
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_5_15_2
  doi: 10.1002/fuce.200400050
– ident: e_1_2_5_4_2
  doi: 10.1016/S0167-2738(02)00746-4
– volume: 177
  start-page: 2421
  year: 2006
  ident: e_1_2_5_5_2
  article-title: Structure and Proton Conductivity of Mechanochemically Treated 50CsHSO4·50CsH2PO4
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2006.03.053
  contributor:
    fullname: Matsuda A.
– volume: 38
  start-page: 5854
  year: 2005
  ident: e_1_2_5_9_2
  article-title: Self‐Assembly of Surface‐Charged Latex Nanoparticles
  publication-title: A New Route to the Creation of Continuous Channels for Ion Conduction
  contributor:
    fullname: Gao J.
– ident: e_1_2_5_3_2
  doi: 10.1016/0167-2738(94)00228-K
– ident: e_1_2_5_8_2
  doi: 10.1021/jp022347p
– ident: e_1_2_5_12_2
  doi: 10.1149/1.2885101
– ident: e_1_2_5_16_2
  doi: 10.1021/ja01168a090
– ident: e_1_2_5_7_2
  doi: 10.1002/1521-4095(200009)12:18<1370::AID-ADMA1370>3.0.CO;2-1
– ident: e_1_2_5_2_2
  doi: 10.1038/35073536
– volume: 178
  start-page: 621
  year: 2007
  ident: e_1_2_5_11_2
  article-title: Structures and Electrical Properties of Core‐Shell Composite Electrolytes with Multi‐Heterointerfaces
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2007.02.001
  contributor:
    fullname: Daiko Y.
– ident: e_1_2_5_6_2
  doi: 10.1016/S0376-7388(00)00633-5
– volume: 178
  start-page: 601
  year: 2007
  ident: e_1_2_5_10_2
  article-title: Preparation and Characterization of Surface‐Sulfonated Phenylsilsesquioxane‐Methylsilsesquioxane Particles
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2007.01.021
  contributor:
    fullname: Daiko Y.
– ident: e_1_2_5_17_2
  doi: 10.1557/JMR.2005.0151
– start-page: 87
  volume-title: Multilayer Thin Films. Sequential Assembly of Nanocomposite Materials
  year: 2003
  ident: e_1_2_5_14_2
  contributor:
    fullname: Joanny J. F.
– ident: e_1_2_5_13_2
  doi: 10.1039/b700410a
SSID ssj0001984
Score 1.9933066
Snippet An inorganic–organic nanohybrid particle with a two‐dimensional chain structure, diphenylsiloxane‐silica (Ph2SiO–SiO2), was prepared by sol–gel process using...
An inorganic–organic nanohybrid particle with a two‐dimensional chain structure, diphenylsiloxane‐silica (Ph 2 SiO–SiO 2 ), was prepared by sol–gel process...
An inorganic-organic nanohybrid particle with a two-dimensional chain structure, diphenylsiloxane-silica (...-...), was prepared by sol-gel process using...
An inorganic-organic nanohybrid particle with a two-dimensional chain structure, diphenylsiloxane-silica (Ph2SiO-SiO2), was prepared by sol-gel process using...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage S185
SubjectTerms Ceramics
Conductivity
Electrolytes
Fuel cells
Protons
Silica
Title Formation of a High Conductivity Fuel Cell Electrolyte by Pressing Diphenylsiloxane-Based Inorganic-Organic Hybrid Particles
URI https://api.istex.fr/ark:/67375/WNG-3GVN5LWF-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1551-2916.2008.02640.x
https://www.proquest.com/docview/217910153
https://search.proquest.com/docview/33200872
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQcoEDb0RZHj4gbqlSJ06c425ptqzYCiH2cbNsx5GqRgnaNFLLqT9hJf7h_hJm4qS0iANC3Bo1D2cy4_lsf_6GkHdKRywRXHgZy7iHK3vQD_LIYwqaHeeaiXZC_2wWTc_D0yt-1fGfcC-M04fYTrhhZLT9NQa40vV-kEO29xjgm44SCbndHyKeRF09xEdffilJwdg67JEwSsTtk3r-eKO9THUXjb7ag6G7YLbNRulDsujfw5FQFsNmqYfm-28Sj__nRR-RBx1opUfOyx6TO7Z8Qu7vSBnC0cW8btw59VOySfs9kbTKqaLIJqHjqkRx2bZaBU0bW9CxLQo6cYV4ivXSUr2mLScEbkk_zJF-ti7qeVGtVGlvNzfHkHIz-rF0pajM7eaH20pq6HSNO8_o557n94ycp5Ov46nX1XrwDI-E7xlUPOc8y0eQtIMg1CbxlchDZZlm0EfAIN7o3I9yXDZiAnAUOB_Xecy0r6LID56Tg7Iq7QtChY1FEiVC5cyEBj48S7IkHtmQjXIc3g7IqP-u8puT9JA7QyGwtURbdwU60dZyNSDvWwfYXqCuF0iJi7m8nJ3I4ORixj9dpvJsQA57D5Fdb1BLhhqwgLuCAXm7_RfCGNdmwH5VU8sgwMfF0DjR-sJft0yeHo0n7e-X_37pIbnnVslwaukVOVheN_Y1gK2lftOG0U-TFxvg
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQ7gE48I8oC6wPiFuq1IkT57h0m-0ubYXQ_t0sO3GkaqMEbRqp5dRHQOIN90mYiZPSIg4IcUuUOLHHM57P9vgbQt4rHbBIcOGkLOUO7uzBOMgDhymodphpJpoF_eksGF_4Z9f8uk0HhGdhLD_EZsENLaMZr9HAcUF618rB3TsMAE4bEwnO3e0DoNwH6-dopcdffnFJweza77AwksTthvX88Us7vmofxb7cAaLbcLbxR_FjknctsWEoN_16ofvJt99IHv9TU5-QRy1upUdW0Z6Se6Z4Rh5usRnC3eW8qu071XOyjrtjkbTMqKIYUEKHZYH8sk3CChrXJqdDk-d0ZHPx5KuFoXpFm7AQ-CQ9nmME2iqv5nm5VIW5W3__CF43paeFzUaV3K1_2NOkCR2v8PAZ_dyF-r0gF_HofDh22nQPTsID4ToJkp5znmYD8Nue5-skcpXIfGWYZjBMwDw-0ZkbZLhzxARAKdA_rrOQaVcFgeu9JHtFWZhXhAoTiiiIhMpY4ifQ8yxKo3BgfDbIcIbbI4OuY-VXy-oht2ZDIGuJsm5zdKKs5bJHPjQasCmgbm8wKi7k8mp2Ir2TyxmfXMVy2iMHnYrIdkCoJEMaWIBeXo8cbp6CJeP2DMivrCvpefi7EConGmX465rJs6PhqLl-_e9FD8n98fl0Iiens08H5IHdNMOVpjdkb3Fbm7eAvRb6XWNTPwFhxyAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5KAqU9NH0SN02zh9KbjLzSSqtjaltx0sSE0jxui1baBWMhhcgCOyf_hEL_YX5JZvRw7NBDKb1J6LU7mtn5Znf2G0K-RMpjgeDCSljCLVzZg3GQexaLoNm-UUxUE_pnY2904Z5c8-sm_wn3wtT8EKsJN7SMarxGA79JzKaRg7e3GOCbJiUSfLvdBTy57XoOw0Bs8OORSgqCa7eFwsgRt5nV88c3bbiqbZT6fAOHrqPZyh2FO2TadqTOQpl2y5nqxndPOB7_T09fk1cNaqWHtZq9Ic909pa8XOMyhLPLSVHW9xTvyDJsN0XS3NCIYjoJ7ecZsstW5SpoWOqU9nWa0mFdiSddzDRVC1olhcAr6WCC-WeLtJik-TzK9P3y1zfwuQk9zupaVPH98ne9lzSmowVuPaPnbaLfe3IRDn_2R1ZT7MGKuSdsK0bKc84T0wOv7TiuigM7EsaNNFMMBgmI4mNlbM_guhETAKRA-7gyPlN25Hm284FsZXmmdwkV2heBF4jIsNiN4cezIAn8nnZZz2B82yG99r_Km5rTQ67FQiBribJuKnSirOW8Q75WCrB6ILqdYk6cz-XV-Eg6R5djfnoVyrMO2Ws1RDbDQSEZksAC8HI65GB1FewYF2dAfnlZSMfBz_nQOFHpwl-3TJ4c9ofV8cd_f_SAPD8fhPL0ePx9j7yoV8xwmukT2ZrdlnofgNdMfa4s6gHaOR6v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+a+High+Conductivity+Fuel+Cell+Electrolyte+by+Pressing+Diphenylsiloxane%E2%80%90Based+Inorganic%E2%80%93Organic+Hybrid+Particles&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Daiko%2C+Yusuke&rft.au=Sakakibara%2C+Saki&rft.au=Sakamoto%2C+Hisatoshi&rft.au=Katagiri%2C+Kiyofumi&rft.date=2009-01-01&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=92&rft.issue=s1&rft_id=info:doi/10.1111%2Fj.1551-2916.2008.02640.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1551_2916_2008_02640_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon