Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration

We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short-term changes in temperatur...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 31; no. 8; pp. 1156 - 1169
Main Authors ARMSTRONG, ANNA F, BADGER, MURRAY R, DAY, DAVID A, BARTHET, MICHELLE M, SMITH, PENELOPE M.C, MILLAR, A. HARVEY, WHELAN, JIM, ATKIN, OWEN K
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.08.2008
Blackwell Publishing Ltd
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short-term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 °C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10-d cold-shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold-developed leaves. In conjunction with this, transcript levels of the uncoupling protein-encoding gene UCP1 and the external NAD(P)H dehydrogenase-encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non-phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment.
AbstractList We examined the effect of short‐ and long‐term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana . The AOP was more sensitive to short‐term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 °C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10‐d cold‐shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold‐developed leaves. In conjunction with this, transcript levels of the uncoupling protein‐encoding gene UCP1 and the external NAD(P)H dehydrogenase‐encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non‐phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment.
We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short-term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 °C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10-d cold-shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold-developed leaves. In conjunction with this, transcript levels of the uncoupling protein-encoding gene UCP1 and the external NAD(P)H dehydrogenase-encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non-phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment.
We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short-term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 degrees C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10-d cold-shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold-developed leaves. In conjunction with this, transcript levels of the uncoupling protein-encoding gene UCP1 and the external NAD(P)H dehydrogenase-encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non-phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment.We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short-term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 degrees C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10-d cold-shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold-developed leaves. In conjunction with this, transcript levels of the uncoupling protein-encoding gene UCP1 and the external NAD(P)H dehydrogenase-encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non-phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment.
We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short-term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 degrees C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10-d cold-shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold-developed leaves. In conjunction with this, transcript levels of the uncoupling protein-encoding gene UCP1 and the external NAD(P)H dehydrogenase-encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non-phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment.
ABSTRACT We examined the effect of short‐ and long‐term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short‐term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 °C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10‐d cold‐shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold‐developed leaves. In conjunction with this, transcript levels of the uncoupling protein‐encoding gene UCP1 and the external NAD(P)H dehydrogenase‐encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non‐phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment.
Author WHELAN, JIM
ATKIN, OWEN K
DAY, DAVID A
ARMSTRONG, ANNA F
BADGER, MURRAY R
BARTHET, MICHELLE M
MILLAR, A. HARVEY
SMITH, PENELOPE M.C
Author_xml – sequence: 1
  fullname: ARMSTRONG, ANNA F
– sequence: 2
  fullname: BADGER, MURRAY R
– sequence: 3
  fullname: DAY, DAVID A
– sequence: 4
  fullname: BARTHET, MICHELLE M
– sequence: 5
  fullname: SMITH, PENELOPE M.C
– sequence: 6
  fullname: MILLAR, A. HARVEY
– sequence: 7
  fullname: WHELAN, JIM
– sequence: 8
  fullname: ATKIN, OWEN K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20505722$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18507806$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhS1URNPCXwBvYDfDtT2exwKkKpSHVAkk6Npy_UgceexgT0Tz7_EkoUhsqDe27v3Ose49F-gsxGAQwgRqUs7bTU1YyysGDdQUoK-B9Azq-ydo8dA4QwsgDVRdN5BzdJHzBqAUuuEZOic9h66HdoHih32Qo1NYrWVYmYxdwNPa4NFNUa1j0MlJj403akqxtJIMeRvTNPMF3QVt0taF4MIKq-g1lkp5N8rJFTpa7I20OJm8delQe46eWumzeXG6L9Htx-sfy8_VzddPX5ZXN5XibQ-VpKQlymjZtrQDpUsV-k5yrYDSBkxjNVeWN2a4s1ZxZkkPUreNtkNrTW_YJXpz9N2m-HNn8iRGl5XxXgYTd1m0Q0PbgZH_gk3XAeNAC_jyBO7uRqPFNpUx01782WUBXp8AmZX0tqxKufzAUeDAOzob9UdOpZhzMvavFYg5XrERc4piTlHM8YpDvOK-SN__I1VuOuy1BOP8YwzeHQ1-OW_2j_5YfFtez6-if3XUWxmFXKUy3-13CoQBDIQVHfsNbL3I4Q
CODEN PLCEDV
CitedBy_id crossref_primary_10_3389_fpls_2023_1267191
crossref_primary_10_1093_jxb_erw469
crossref_primary_10_1016_j_envexpbot_2013_11_015
crossref_primary_10_1134_S0006297914060030
crossref_primary_10_1134_S1021443722060097
crossref_primary_10_1071_FP13137
crossref_primary_10_1080_07352689_2017_1375836
crossref_primary_10_1104_pp_111_186130
crossref_primary_10_1016_j_mito_2020_05_001
crossref_primary_10_1111_gcb_15609
crossref_primary_10_1016_j_mito_2014_02_007
crossref_primary_10_1111_pce_12544
crossref_primary_10_1007_s11120_013_9807_4
crossref_primary_10_1371_journal_pone_0148013
crossref_primary_10_1134_S1021443711040091
crossref_primary_10_1016_j_jplph_2010_07_012
crossref_primary_10_1093_aob_mcv063
crossref_primary_10_1021_pr3003535
crossref_primary_10_1093_pcp_pcr073
crossref_primary_10_1111_j_1365_3040_2012_02507_x
crossref_primary_10_1111_j_1399_3054_2009_01287_x
crossref_primary_10_1071_FP08113
crossref_primary_10_1134_S1021443719050066
crossref_primary_10_1093_pcp_pcs107
crossref_primary_10_1007_s00294_010_0320_4
crossref_primary_10_1111_j_1365_3040_2009_01953_x
crossref_primary_10_1007_s12038_023_00416_5
crossref_primary_10_1093_gbe_evab113
crossref_primary_10_1093_aob_mcz156
crossref_primary_10_1134_S1021443724606086
crossref_primary_10_1111_ppl_12649
crossref_primary_10_1080_0028825X_2012_759600
crossref_primary_10_1016_j_tplants_2017_11_006
crossref_primary_10_1071_FP13237
crossref_primary_10_32615_bp_2019_002
crossref_primary_10_1111_ppl_12881
crossref_primary_10_1093_jxb_erz160
crossref_primary_10_3390_agronomy11071302
crossref_primary_10_1007_s00018_021_04036_w
crossref_primary_10_1093_treephys_tpp104
crossref_primary_10_1093_jxb_eru158
crossref_primary_10_1007_s10863_011_9336_9
crossref_primary_10_1111_j_1469_8137_2010_03343_x
crossref_primary_10_3390_plants13162212
crossref_primary_10_1111_j_1365_3040_2010_02134_x
crossref_primary_10_1111_nph_14169
crossref_primary_10_1007_s00299_015_1886_6
crossref_primary_10_1111_j_1365_2486_2010_02325_x
crossref_primary_10_1111_j_1365_3040_2009_02074_x
crossref_primary_10_1111_j_1399_3054_2010_01442_x
crossref_primary_10_1111_nph_13479
crossref_primary_10_1016_j_jplph_2017_05_023
crossref_primary_10_1016_j_bbabio_2015_01_005
crossref_primary_10_1111_nph_18077
crossref_primary_10_1093_pcp_pcp090
crossref_primary_10_1093_jxb_eru367
crossref_primary_10_1007_s11120_024_01104_7
crossref_primary_10_3390_plants13030449
crossref_primary_10_1111_j_1365_2486_2012_02797_x
crossref_primary_10_1016_j_plaphy_2014_01_019
crossref_primary_10_1093_jpe_rtu016
crossref_primary_10_3390_plants11111520
crossref_primary_10_1111_pce_13706
crossref_primary_10_1016_j_jplph_2023_153943
crossref_primary_10_1111_nph_12083
crossref_primary_10_1111_pce_12345
crossref_primary_10_1111_pce_13155
crossref_primary_10_1111_pce_12460
crossref_primary_10_1111_j_1399_3054_2011_01518_x
crossref_primary_10_1111_nph_16964
crossref_primary_10_3389_fpls_2016_00068
crossref_primary_10_1111_nph_13339
crossref_primary_10_1093_aob_mcab117
crossref_primary_10_1111_j_1365_2435_2011_01875_x
crossref_primary_10_1111_j_1469_8137_2012_04155_x
crossref_primary_10_1111_nph_15509
crossref_primary_10_1016_j_mito_2013_09_001
crossref_primary_10_3390_ijms14046805
crossref_primary_10_1134_S1990747811040040
crossref_primary_10_1093_pcp_pcp144
crossref_primary_10_1093_pcp_pcq112
crossref_primary_10_1371_journal_pone_0056482
crossref_primary_10_1111_j_1399_3054_2011_01471_x
crossref_primary_10_1016_j_mito_2020_04_001
crossref_primary_10_1007_s11120_009_9474_7
crossref_primary_10_1111_j_1469_8137_2008_02683_x
crossref_primary_10_5194_bg_15_3461_2018
crossref_primary_10_1093_pcp_pct104
crossref_primary_10_1111_nph_15576
crossref_primary_10_1007_s00425_012_1799_3
crossref_primary_10_1111_j_1469_8137_2010_03576_x
crossref_primary_10_1016_j_plantsci_2020_110735
crossref_primary_10_3390_ijms19030877
crossref_primary_10_1111_pce_14217
crossref_primary_10_1016_j_chemosphere_2022_133673
crossref_primary_10_1111_j_1469_8137_2010_03557_x
crossref_primary_10_1021_ac501086n
crossref_primary_10_1111_1442_1984_12047
crossref_primary_10_1007_s12038_024_00446_7
Cites_doi 10.1104/pp.126.4.1619
10.1104/pp.122.1.199
10.1104/pp.105.063743
10.1111/j.1365-3040.2005.01322.x
10.1093/pcp/pch116
10.1071/PP9900517
10.1104/pp.109.3.829
10.1055/s-2003-37974
10.1104/pp.80.2.378
10.1111/j.1399-3054.1993.tb01393.x
10.1104/pp.118.2.599
10.1016/S0014-5793(01)03229-X
10.1104/pp.105.070789
10.1016/S0014-5793(97)01099-5
10.1146/annurev.arplant.55.031903.141720
10.1071/PP9950487
10.1111/j.1399-3054.2006.00823.x
10.1071/FP03176
10.1104/pp.107.3.925
10.2307/1550044
10.1104/pp.105.073015
10.1111/j.1365-3040.1987.tb01612.x
10.1007/978-3-642-68090-8_11
10.1111/j.1399-3054.1983.tb04160.x
10.1006/abbi.1995.1245
10.1111/j.1365-3040.2005.01475.x
10.1073/pnas.96.14.8271
10.1104/pp.103.035659
10.1111/j.1399-3054.1995.tb00844.x
10.1016/S1360-1385(03)00136-5
10.1104/pp.120.3.765
10.1111/j.1399-3054.1983.tb05742.x
10.1071/PP99031
10.1111/j.1399-3054.2006.00796.x
10.1104/pp.113.3.903
10.1104/pp.115.3.1145
10.1016/0014-5793(93)80233-K
10.1006/anbo.1995.1093
10.1016/S0014-5793(98)00634-6
10.1046/j.1469-8137.2000.00683.x
10.1104/pp.105.065565
10.1007/s11103-005-5514-7
10.1104/pp.010326
10.1073/pnas.94.7.3436
10.1074/jbc.M408920200
10.1104/pp.92.3.755
10.1139/b96-039
10.1016/S0005-2728(05)80197-5
10.1071/PP9830237
10.1111/j.1469-8137.2007.02183.x
10.1093/oxfordjournals.aob.a087966
10.1007/s004420050415
10.1111/j.1399-3054.2005.00557.x
10.1093/treephys/23.14.969
10.1104/pp.100.1.115
10.1016/S0378-1119(97)00502-7
10.1104/pp.68.6.1474
10.1007/BF00392616
10.1266/ggs.77.81
10.1104/pp.105.070763
10.1146/annurev.arplant.52.1.561
10.1016/S0005-2728(98)00126-1
10.1016/S1360-1385(97)89948-7
10.1007/s004250100622
10.1046/j.1365-2486.2003.00611.x
10.1038/38156
10.1074/jbc.271.40.25019
10.1104/pp.117.3.1083
10.1006/abbi.1998.0737
10.1104/pp.92.3.761
10.1046/j.1365-3040.2000.00511.x
10.1016/j.bbabio.2006.03.009
10.1104/pp.103.3.845
10.1078/0176-1617-01054
10.2307/2656856
10.1074/jbc.M301075200
ContentType Journal Article
Copyright 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd
2008 INIST-CNRS
Copyright_xml – notice: 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd
– notice: 2008 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
DOI 10.1111/j.1365-3040.2008.01830.x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef
AGRICOLA
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 1169
ExternalDocumentID 18507806
20505722
10_1111_j_1365_3040_2008_01830_x
PCE1830
US201300913304
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABPTK
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AHBTC
AITYG
ALVPJ
HGLYW
OIG
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
ID FETCH-LOGICAL-c5680-a2161ceda66270cdc56087a5dc02240e4fd5cf54e9bffc53f180ad64df96fe8e3
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Thu Jul 10 22:13:48 EDT 2025
Thu Jul 10 19:27:40 EDT 2025
Thu Apr 03 07:02:58 EDT 2025
Mon Jul 21 09:15:40 EDT 2025
Tue Jul 01 01:23:13 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
Wed Jan 22 16:22:55 EST 2025
Wed Dec 27 19:05:58 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Cytochrome
Temperature
Cold
Arabidopsis
Plant leaf
Gene expression
uncoupling protein
Cruciferae
cytochrome oxidase
Dicotyledones
Angiospermae
Spermatophyta
Respiration
alternative oxidase
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5680-a2161ceda66270cdc56087a5dc02240e4fd5cf54e9bffc53f180ad64df96fe8e3
Notes http://dx.doi.org/10.1111/j.1365-3040.2008.01830.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-3040.2008.01830.x
PMID 18507806
PQID 47703502
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_69426931
proquest_miscellaneous_47703502
pubmed_primary_18507806
pascalfrancis_primary_20505722
crossref_primary_10_1111_j_1365_3040_2008_01830_x
crossref_citationtrail_10_1111_j_1365_3040_2008_01830_x
wiley_primary_10_1111_j_1365_3040_2008_01830_x_PCE1830
fao_agris_US201300913304
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2008
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: August 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: United States
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2008
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell
References 2000b; 23
1997; 113
1997; 115
1993; 329
1990; 17
2000; 87
2002; 510
2004; 161
2005; 139
1995; 76
1991; 1059
1999; 120
1983; 10
1998; 118
1996; 74
1998; 114
1997; 2
1998; 117
2003; 278
2005; 28
1983; 58
1997; 389
1986; 80
1997; 94
2004; 135
2007; 176
2006; 1757
2003; 8
1995; 22
2003; 9
2006; 29
2005; 32
2003; 5
1999; 96
1981
2000; 122
1979; 20
2001; 214
2001; 52
1971; 3
1995; 95
2007; 129
1987; 10
1997; 415
1990b; 92
1992; 100
1993; 88
1999; 26
1995; 318
2004; 45
1989; 177
2002; 77
1953
1981; 68
1994
1998; 335
1992
1993; 103
2001; 126
2004; 55
1997; 203
1990; 65
2004; 279
2000a; 147
2005; 125
1995; 109
2002; 128
1995; 107
2006; 140
1996; 271
1998; 429
1960
1990a; 92
1998; 1366
2003; 23
2005; 58
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
James W.O. (e_1_2_6_40_1) 1953
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
Yoshida S. (e_1_2_6_82_1) 1979; 20
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Azcón‐Bieto J. (e_1_2_6_10_1) 1992
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_61_1
Amthor J.S. (e_1_2_6_2_1) 1994
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
Forward D.F. (e_1_2_6_29_1) 1960
e_1_2_6_23_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 29
  start-page: 940
  year: 2006
  end-page: 949
  article-title: Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in leaves
  publication-title: Plant, Cell & Environment
– volume: 177
  start-page: 483
  year: 1989
  end-page: 491
  article-title: Differential fractionation of oxygen isotopes by cyanide‐resistant and cyanide‐sensitive respiration in plants
  publication-title: Planta
– volume: 122
  start-page: 199
  year: 2000
  end-page: 204
  article-title: The electron partitioning between the cytochrome and alternative respiratory pathways during chilling recovery in two cultivars of maize differing in chilling sensitivity
  publication-title: Plant Physiology
– volume: 95
  start-page: 318
  year: 1995
  end-page: 325
  article-title: The alternative respiration pathway in plants. Role and regulation
  publication-title: Physiologia Plantarum
– volume: 94
  start-page: 3436
  year: 1997
  end-page: 3441
  article-title: Lack of mitochondrial and nuclear‐encoded subunits of complex I and alteration of the respiratory chain in mitochondrial deletion mutants
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 23
  start-page: 15
  year: 2000b
  end-page: 26
  article-title: Acclimation of snow gum ( ) leaf respiration to seasonal and diurnal variations in temperature: the importance of changes in the capacity and temperature sensitivity of respiration
  publication-title: Plant, Cell & Environment
– volume: 109
  start-page: 829
  year: 1995
  end-page: 837
  article-title: Electron partitioning between the cytochrome and alternative pathways in plant mitochondria
  publication-title: Plant Physiology
– volume: 139
  start-page: 466
  year: 2005
  end-page: 473
  article-title: Effects of water stress on respiration in soybean leaves
  publication-title: Plant Physiology
– volume: 140
  start-page: 326
  year: 2006
  end-page: 335
  article-title: Pea seed mitochondria are endowed with a remarkable tolerance to extreme physiological temperatures
  publication-title: Plant Physiology
– volume: 107
  start-page: 925
  year: 1995
  end-page: 932
  article-title: Developmental regulation of respiratory activity in pea leaves
  publication-title: Plant Physiology
– volume: 58
  start-page: 155
  year: 1983
  end-page: 160
  article-title: Regulation of glycolysis and electron transport in roots
  publication-title: Physiologia Plantarum
– volume: 55
  start-page: 23
  year: 2004
  end-page: 39
  article-title: Alternative NAD(P)H dehydrogenases of plant mitochondria
  publication-title: Annual Review of Plant Biology
– volume: 92
  start-page: 755
  year: 1990a
  end-page: 760
  article-title: Respiration and alternative oxidase in corn seedlings during germination at different temperatures
  publication-title: Plant Physiology
– volume: 20
  start-page: 1243
  year: 1979
  end-page: 1250
  article-title: Alteration of the respiratory function in chill‐sensitive callus due to low‐temperature stress. I. Involvement of the alternative pathway
  publication-title: Plant Physiology
– volume: 10
  start-page: 237
  year: 1983
  end-page: 245
  article-title: Respiratory properties of developing bean and pea leaves
  publication-title: Australian Journal of Plant Physiology
– volume: 120
  start-page: 765
  year: 1999
  end-page: 772
  article-title: The effect of growth and measurement temperature on the activity of the alternative respiratory pathway
  publication-title: Plant Physiology
– volume: 335
  start-page: 262
  year: 1998
  end-page: 270
  article-title: Activation of the plant alternative oxidase by high reduction levels of the Q‐pool and pyruvate
  publication-title: Archives of Biochemistry and Biophysics
– volume: 147
  start-page: 141
  year: 2000a
  end-page: 154
  article-title: Response of root respiration to changes in temperature and its relevance to global warming
  publication-title: New Phytologist
– volume: 128
  start-page: 212
  year: 2002
  end-page: 222
  article-title: Effect of temperature on rates of alternative and cytochrome pathway respiration and their relationship with the redox poise of the quinone pool
  publication-title: Plant Physiology
– volume: 125
  start-page: 171
  year: 2005
  end-page: 180
  article-title: Partitioning of respiratory electrons in the dark in leaves of transgenic tobacco with modified levels of alternative oxidase
  publication-title: Physiologia Plantarum
– volume: 26
  start-page: 773
  year: 1999
  end-page: 780
  article-title: Calculation of the oxygen isotope discrimination factor for studying plant respiration
  publication-title: Australian Journal of Plant Physiology
– volume: 76
  start-page: 245
  year: 1995
  end-page: 252
  article-title: Acclimation of leaf dark respiration to temperature in alpine and lowland plant species
  publication-title: Annals of Botany
– start-page: 501
  year: 1994
  end-page: 554
– volume: 3
  start-page: 277
  year: 1971
  end-page: 289
  article-title: Metabolic acclimation to temperature in Arctic and alpine ecotypes of
  publication-title: Arctic and Alpine Research
– volume: 1757
  start-page: 730
  year: 2006
  end-page: 741
  article-title: Alternative oxidases in Arabidopsis. A comparative analysis of differential expression in the gene family provides new insights into function of non‐phosphorylating bypasses
  publication-title: Biochim Biophys Acta – Bioenergetics
– volume: 139
  start-page: 1795
  year: 2005
  end-page: 1805
  article-title: The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature: a study of Arabidopsis transgenic plants
  publication-title: Plant Physiology
– start-page: 234
  year: 1960
  end-page: 258
– volume: 23
  start-page: 969
  year: 2003
  end-page: 976
  article-title: Rapid temperature acclimation of leaf respiration rates in and
  publication-title: Tree Physiology
– volume: 161
  start-page: 573
  year: 2004
  end-page: 579
  article-title: Respiratory acclimation in leaves at low temperature
  publication-title: Journal of Plant Physiology
– volume: 58
  start-page: 556
  year: 1983
  end-page: 563
  article-title: Respiration for growth, maintenance and ion uptake. An evaluation of concepts, methods, values and their significance
  publication-title: Physiologia Plantarum
– volume: 279
  start-page: 51944
  year: 2004
  end-page: 51952
  article-title: Activation and function of mitochondrial uncoupling protein in plants
  publication-title: Journal of Biological Chemistry
– volume: 74
  start-page: 317
  year: 1996
  end-page: 320
  article-title: No difference in leaf respiration rates among temperate, subarctic, and arctic species grown under controlled conditions
  publication-title: Canadian Journal of Botany
– volume: 92
  start-page: 761
  year: 1990b
  end-page: 766
  article-title: Seedling growth, mitochondrial characteristics, and alternative respiratory capacity of corn genotypes differing in cold tolerance
  publication-title: Plant Physiology
– volume: 32
  start-page: 87
  year: 2005
  end-page: 105
  article-title: The hot and the cold: unravelling the variable response of plant respiration to temperature
  publication-title: Functional Plant Biology
– volume: 278
  start-page: 22298
  year: 2003
  end-page: 22302
  article-title: Superoxide stimulates a proton leak in potato mitochondria that is related to the activity of uncoupling protein
  publication-title: Journal of Biological Chemistry
– volume: 318
  start-page: 394
  year: 1995
  end-page: 400
  article-title: Cytochrome and alternative respiratory pathways compete for electrons in the presence of pyruvate in soybean mitochondria
  publication-title: Archives of Biochemistry and Biophysics
– volume: 65
  start-page: 533
  year: 1990
  end-page: 538
  article-title: The effects of low growth and measurement temperature on the respiratory properties of five temperate species
  publication-title: Annals of Botany
– volume: 68
  start-page: 1474
  year: 1981
  end-page: 1478
  article-title: Temperature effects on the activity of the alternative respiratory pathway in chill‐sensitive
  publication-title: Plant Physiology
– volume: 77
  start-page: 81
  year: 2002
  end-page: 88
  article-title: Characterization of two non‐homologous nuclear genes encoding mitochondrial alternative oxidase in common wheat
  publication-title: Genes Genetics Systems
– start-page: 241
  year: 1992
  end-page: 253
– volume: 176
  start-page: 375
  year: 2007
  end-page: 389
  article-title: Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group
  publication-title: New Phytologist
– volume: 8
  start-page: 343
  year: 2003
  end-page: 351
  article-title: Thermal acclimation and the dynamic response of plant respiration to temperature
  publication-title: Trends in Plant Science
– volume: 415
  start-page: 87
  year: 1997
  end-page: 90
  article-title: Inhibition of the alternative oxidase stimulates H O production in plant mitochondria
  publication-title: FEBS Letters
– volume: 129
  start-page: 143
  year: 2007
  end-page: 151
  article-title: Contribution of the cytochrome and alternative pathways to growth respiration and maintenance respiration in
  publication-title: Physiologia Plantarum
– volume: 1059
  start-page: 121
  year: 1991
  end-page: 140
  article-title: The regulation and nature of the cyanide resistant alternative oxidase of plant mitochondria
  publication-title: Biochim Biophys Acta – Bioenergetics
– volume: 5
  start-page: 2
  year: 2003
  end-page: 15
  article-title: The alternative oxidase: regulation and function
  publication-title: Plant Biology
– volume: 52
  start-page: 561
  year: 2001
  end-page: 591
  article-title: Plant mitochondria and oxidative stress. Electron transport, NADPH turnover, and metabolism of reactive oxygen species
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 88
  start-page: 712
  year: 1993
  end-page: 718
  article-title: Does the alternative pathway ameliorate chilling injury in sensitive plant tissues?
  publication-title: Physiologia Plantarum
– volume: 129
  start-page: 174
  year: 2007
  end-page: 184
  article-title: Temperature‐dependent changes in respiration rates and redox poise of the ubiquinone pool in protoplasts and isolated mitochondria of potato leaves
  publication-title: Physiologia Plantarum
– volume: 2
  start-page: 289
  year: 1997
  end-page: 290
  article-title: Alternative solutions to radical problems
  publication-title: Trends in Plant Science
– volume: 1366
  start-page: 235
  year: 1998
  end-page: 255
  article-title: Interdependence between chloroplasts and mitochondria in the light and the dark
  publication-title: Biochimica et Biophysica Acta – Bioenergetics
– volume: 17
  start-page: 517
  year: 1990
  end-page: 526
  article-title: A comparison of the respiratory p rocesses and growth rates of selected alpine and lowland plant species
  publication-title: Australian Journal of Plant Physiology
– volume: 203
  start-page: 121
  year: 1997
  end-page: 129
  article-title: Transcript levels of tandem‐arranged alternative oxidase genes in rice are increased by low temperature
  publication-title: Gene
– volume: 139
  start-page: 5
  year: 2005
  end-page: 17
  article-title: Genome‐wide identification and testing of superior reference genes for transcript normalization in Arabidopsis
  publication-title: Plant Physiology
– volume: 80
  start-page: 378
  year: 1986
  end-page: 383
  article-title: Alternative respiratory path capacity in plant mitochondria. Effect of growth temperature, the electrochemical gradient, and assay pH
  publication-title: Plant Physiology
– volume: 329
  start-page: 259
  year: 1993
  end-page: 262
  article-title: Organic acid activation of the alternative oxidase of plant mitochondria
  publication-title: FEBS Letters
– volume: 58
  start-page: 193
  year: 2005
  end-page: 212
  article-title: Stress‐induced co‐expression of alternative respiratory chain components in
  publication-title: Plant Molecular Biology
– volume: 115
  start-page: 1145
  year: 1997
  end-page: 1153
  article-title: Substrate kinetics of the plant mitochondrial alternative oxidase and the effects of pyruvate
  publication-title: Plant Physiology
– volume: 28
  start-page: 760
  year: 2005
  end-page: 771
  article-title: Response of mitochondria to light intensity in the leaves of sun and shade species
  publication-title: Plant, Cell & Environment
– volume: 510
  start-page: 117
  year: 2002
  end-page: 120
  article-title: Uncoupling proteins outside the animal and plant kingdoms: functional and evolutionary aspects
  publication-title: FEBS Letters
– volume: 100
  start-page: 115
  year: 1992
  end-page: 119
  article-title: Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco
  publication-title: Plant Physiology
– volume: 114
  start-page: 20
  year: 1998
  end-page: 30
  article-title: Root production, turnover and respiration under two grassland types along an altitudinal gradient – influence of temperature and solar radiation
  publication-title: Oecologia
– volume: 10
  start-page: 319
  year: 1987
  end-page: 325
  article-title: The relationship between respiration and temperature in leaves of the arctic plant
  publication-title: Plant, Cell & Environment
– volume: 9
  start-page: 895
  year: 2003
  end-page: 910
  article-title: Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast‐ and slow‐growing plant species
  publication-title: Global Change Biology
– volume: 87
  start-page: 700
  year: 2000
  end-page: 710
  article-title: Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes
  publication-title: American Journal of Botany
– volume: 117
  start-page: 1083
  year: 1998
  end-page: 1093
  article-title: Analysis of respiratory chain regulation in roots of soybean seedlings
  publication-title: Plant Physiology
– volume: 271
  start-page: 25019
  year: 1996
  end-page: 25026
  article-title: The reaction of the soybean cotyledon mitochondrial cyanide‐resistant oxidase with sulfhydryl reagents suggests that α‐keto acid activation involves the formation of a thiohemiacetal
  publication-title: Journal of Biological Chemistry
– start-page: 277
  year: 1981
  end-page: 338
– volume: 139
  start-page: 1806
  year: 2005
  end-page: 1820
  article-title: Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue
  publication-title: Plant Physiology
– volume: 45
  start-page: 1015
  year: 2004
  end-page: 1022
  article-title: Maintenance of growth rate at low temperature in rice and wheat cultivars with a high degree of respiratory homeostasis is associated with a high efficiency of respiratory ATP production
  publication-title: Plant Cell Physiology
– volume: 135
  start-page: 549
  year: 2004
  end-page: 560
  article-title: Developmental physiology of cluster‐root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase
  publication-title: Plant Physiology
– volume: 103
  start-page: 845
  year: 1993
  end-page: 854
  article-title: Covalent and noncovalent dimers of the cyanide‐resistant alternative oxidase protein in higher plant mitochondria and their relationship to enzyme activity
  publication-title: Plant Physiology
– volume: 429
  start-page: 403
  year: 1998
  end-page: 406
  article-title: : an gene encoding a plant uncoupling mitochondrial protein
  publication-title: FEBS Letters
– year: 1953
– volume: 96
  start-page: 8271
  year: 1999
  end-page: 8276
  article-title: The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 214
  start-page: 295
  year: 2001
  end-page: 303
  article-title: Cold acclimation of results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma
  publication-title: Planta
– volume: 118
  start-page: 599
  year: 1998
  end-page: 607
  article-title: The role of the alternative oxidase in stabilizing the in vivo reduction state of the ubiquinone pool and the activation state of the alternative oxidase
  publication-title: Plant Physiology
– volume: 22
  start-page: 487
  year: 1995
  end-page: 496
  article-title: Beyond SHAM and cyanide – opportunities for studying the alternative oxidase in plant respiration using oxygen isotope discrimination
  publication-title: Australian Journal of Plant Physiology
– volume: 126
  start-page: 1619
  year: 2001
  end-page: 1629
  article-title: The expression of alternative oxidase and uncoupling protein during fruit ripening in mango
  publication-title: Plant Physiology
– volume: 389
  start-page: 135
  year: 1997
  end-page: 136
  article-title: A plant cold‐induced uncoupling protein
  publication-title: Nature
– volume: 113
  start-page: 903
  year: 1997
  end-page: 911
  article-title: The regulation of electron partitioning between the cytochrome and alternative pathways in soybean cotyledon and root mitochondria
  publication-title: Plant Physiology
– ident: e_1_2_6_20_1
  doi: 10.1104/pp.126.4.1619
– ident: e_1_2_6_64_1
  doi: 10.1104/pp.122.1.199
– ident: e_1_2_6_23_1
  doi: 10.1104/pp.105.063743
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1365-3040.2005.01322.x
– ident: e_1_2_6_42_1
  doi: 10.1093/pcp/pch116
– ident: e_1_2_6_4_1
  doi: 10.1071/PP9900517
– ident: e_1_2_6_62_1
  doi: 10.1104/pp.109.3.829
– ident: e_1_2_6_54_1
  doi: 10.1055/s-2003-37974
– ident: e_1_2_6_25_1
  doi: 10.1104/pp.80.2.378
– ident: e_1_2_6_60_1
  doi: 10.1111/j.1399-3054.1993.tb01393.x
– ident: e_1_2_6_55_1
  doi: 10.1104/pp.118.2.599
– ident: e_1_2_6_69_1
  doi: 10.1016/S0014-5793(01)03229-X
– ident: e_1_2_6_26_1
  doi: 10.1104/pp.105.070789
– ident: e_1_2_6_59_1
  doi: 10.1016/S0014-5793(97)01099-5
– ident: e_1_2_6_61_1
  doi: 10.1146/annurev.arplant.55.031903.141720
– ident: e_1_2_6_66_1
  doi: 10.1071/PP9950487
– volume: 20
  start-page: 1243
  year: 1979
  ident: e_1_2_6_82_1
  article-title: Alteration of the respiratory function in chill‐sensitive callus due to low‐temperature stress. I. Involvement of the alternative pathway
  publication-title: Plant Physiology
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1399-3054.2006.00823.x
– ident: e_1_2_6_9_1
  doi: 10.1071/FP03176
– ident: e_1_2_6_46_1
  doi: 10.1104/pp.107.3.925
– ident: e_1_2_6_13_1
  doi: 10.2307/1550044
– ident: e_1_2_6_73_1
  doi: 10.1104/pp.105.073015
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1365-3040.1987.tb01612.x
– ident: e_1_2_6_12_1
  doi: 10.1007/978-3-642-68090-8_11
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1399-3054.1983.tb04160.x
– ident: e_1_2_6_36_1
  doi: 10.1006/abbi.1995.1245
– start-page: 501
  volume-title: Plant–Environment Interactions
  year: 1994
  ident: e_1_2_6_2_1
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1365-3040.2005.01475.x
– ident: e_1_2_6_50_1
  doi: 10.1073/pnas.96.14.8271
– ident: e_1_2_6_68_1
  doi: 10.1104/pp.103.035659
– ident: e_1_2_6_80_1
  doi: 10.1111/j.1399-3054.1995.tb00844.x
– ident: e_1_2_6_5_1
  doi: 10.1016/S1360-1385(03)00136-5
– ident: e_1_2_6_30_1
  doi: 10.1104/pp.120.3.765
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1399-3054.1983.tb05742.x
– ident: e_1_2_6_34_1
  doi: 10.1071/PP99031
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1399-3054.2006.00796.x
– volume-title: Plant Respiration
  year: 1953
  ident: e_1_2_6_40_1
– ident: e_1_2_6_63_1
  doi: 10.1104/pp.113.3.903
– ident: e_1_2_6_37_1
  doi: 10.1104/pp.115.3.1145
– ident: e_1_2_6_52_1
  doi: 10.1016/0014-5793(93)80233-K
– ident: e_1_2_6_45_1
  doi: 10.1006/anbo.1995.1093
– ident: e_1_2_6_49_1
  doi: 10.1016/S0014-5793(98)00634-6
– ident: e_1_2_6_6_1
  doi: 10.1046/j.1469-8137.2000.00683.x
– ident: e_1_2_6_65_1
  doi: 10.1104/pp.105.065565
– ident: e_1_2_6_16_1
  doi: 10.1007/s11103-005-5514-7
– ident: e_1_2_6_8_1
  doi: 10.1104/pp.010326
– ident: e_1_2_6_31_1
  doi: 10.1073/pnas.94.7.3436
– ident: e_1_2_6_70_1
  doi: 10.1074/jbc.M408920200
– ident: e_1_2_6_71_1
  doi: 10.1104/pp.92.3.755
– ident: e_1_2_6_18_1
  doi: 10.1139/b96-039
– ident: e_1_2_6_56_1
  doi: 10.1016/S0005-2728(05)80197-5
– ident: e_1_2_6_11_1
  doi: 10.1071/PP9830237
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1469-8137.2007.02183.x
– start-page: 241
  volume-title: Trends in Photosynthesis Research
  year: 1992
  ident: e_1_2_6_10_1
– ident: e_1_2_6_19_1
  doi: 10.1093/oxfordjournals.aob.a087966
– ident: e_1_2_6_27_1
  doi: 10.1007/s004420050415
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1399-3054.2005.00557.x
– ident: e_1_2_6_14_1
  doi: 10.1093/treephys/23.14.969
– ident: e_1_2_6_79_1
  doi: 10.1104/pp.100.1.115
– ident: e_1_2_6_39_1
  doi: 10.1016/S0378-1119(97)00502-7
– ident: e_1_2_6_41_1
  doi: 10.1104/pp.68.6.1474
– ident: e_1_2_6_33_1
  doi: 10.1007/BF00392616
– ident: e_1_2_6_74_1
  doi: 10.1266/ggs.77.81
– ident: e_1_2_6_78_1
  doi: 10.1104/pp.105.070763
– ident: e_1_2_6_57_1
  doi: 10.1146/annurev.arplant.52.1.561
– ident: e_1_2_6_38_1
  doi: 10.1016/S0005-2728(98)00126-1
– ident: e_1_2_6_51_1
  doi: 10.1016/S1360-1385(97)89948-7
– ident: e_1_2_6_67_1
  doi: 10.1007/s004250100622
– ident: e_1_2_6_47_1
  doi: 10.1046/j.1365-2486.2003.00611.x
– ident: e_1_2_6_43_1
  doi: 10.1038/38156
– ident: e_1_2_6_77_1
  doi: 10.1074/jbc.271.40.25019
– ident: e_1_2_6_53_1
  doi: 10.1104/pp.117.3.1083
– start-page: 234
  volume-title: Encyclopedia of Plant Physiology
  year: 1960
  ident: e_1_2_6_29_1
– ident: e_1_2_6_35_1
  doi: 10.1006/abbi.1998.0737
– ident: e_1_2_6_72_1
  doi: 10.1104/pp.92.3.761
– ident: e_1_2_6_7_1
  doi: 10.1046/j.1365-3040.2000.00511.x
– ident: e_1_2_6_17_1
  doi: 10.1016/j.bbabio.2006.03.009
– ident: e_1_2_6_76_1
  doi: 10.1104/pp.103.3.845
– ident: e_1_2_6_75_1
  doi: 10.1078/0176-1617-01054
– ident: e_1_2_6_81_1
  doi: 10.2307/2656856
– ident: e_1_2_6_21_1
  doi: 10.1074/jbc.M301075200
SSID ssj0001479
Score 2.2782953
Snippet We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and...
ABSTRACT We examined the effect of short‐ and long‐term changes in temperature on gene expression, protein abundance, and the activity of the alternative...
We examined the effect of short‐ and long‐term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1156
SubjectTerms acclimation
Acclimatization
alternative oxidase
Arabidopsis
Arabidopsis - cytology
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biological and medical sciences
Cell Respiration
cold
Cold Temperature
cytochrome oxidase
cytochrome-c oxidase
cytology
electron transfer
Electron Transport
electron transport chain
Electron Transport Complex IV
Electron Transport Complex IV - metabolism
enzymology
exposure duration
Fundamental and applied biological sciences. Psychology
gene expression
gene expression regulation
Gene Expression Regulation, Plant
genes
genetics
leaf development
leaves
long term effects
Metabolism
Mitochondria
Mitochondria - metabolism
Mitochondrial Proteins
Oxidoreductases
Oxidoreductases - metabolism
Oxygen Isotopes
Photosynthesis, respiration. Anabolism, catabolism
Plant Leaves
Plant Leaves - cytology
Plant Leaves - enzymology
Plant Leaves - metabolism
Plant physiology and development
Plant Proteins
proteins
RNA, Messenger
RNA, Messenger - genetics
RNA, Messenger - metabolism
Temperature
uncoupling protein
Title Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-3040.2008.01830.x
https://www.ncbi.nlm.nih.gov/pubmed/18507806
https://www.proquest.com/docview/47703502
https://www.proquest.com/docview/69426931
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BBRIXKOXR0FJ84JpVno59bEurCgmEgJV6sxw_0KrbpNqHRPn1nYmTLUEVqhC3VdaO1s6M83n9zfcBvM9yrRFn6DhzoowLLizZvBSxKaXADbSsZafd-ekzP5sWH8_L857_RLUwQR9i84cbZUa3XlOC63o5TnJiaOF2POkpkRidyYTwJH1B-OjrrZJUWgTZPWIzVpVMx6SeO280elM99Lol3qRe4tT54HlxFygdY9zuJXX6DC6G4QVuysVkvaon5tcfyo__Z_zb8LTHsuwwBN9zeOCaHXgc3C2vd-DRUYvI8_oFtB-C7T0LVcZLNmsY4k52iasJrr6NpSRggyEPWw1669Qem1KZ2-Jq1nkrMYxby7Qx81mouWStZ3OnPVv0nAG89hKmpyffj8_i3ugBQ4KLJNYZ4k7jrCY1-sRYvJqISpfWdIjDFd6WxpeFk7X3psx9KhJteWG95N4Jl7-CraZt3C4wifA3I8GivC4Li09auFQaoU3OZY1gK4JqeKjK9CroZMYxV7_thnBeFc1r79FJ86p-RpBuel4FJZB79NnFuFH6By7Yavoto2NiEmLFhhEcjIJpc8-MvAWrLIvg3RBdClOeznF049r1UhVVRefBf2nBJVUo52kEr0NY3v5igRsAkfAIeBdc9x6K-nJ8Qp_e_GvHPXgSuDZEntyHrdVi7d4ioFvVB12q3gD22jgJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC0lAQQXlhCIWZI-wNEj724fOEAm0YQsQpCRcjPtXtCIiR3NIjL8Gr_Cx1DlticYRShCyoGbZXVbbVdVV5X71SuAV0EoBMYZwg00j90o4YravESujDOOCXRWZDV359FxMhhG70_j0xX40dbCWH6I5Q83sox6vyYDpx_SXSsniBbm416DiUT19HoXDcLyQC--Yf42fbPfR2G_DoK93ZOdgdu0GMDFJNxzRYARj9RKEA-6JxXe9XgqYiVrX6cjo2Jp4khnhTEyDo3PPaGSSJksMZrrEJ-7CreooTgR9_c_XnJX-ZEl-iP8ZJpmfhdGdOXKO75x1YiKkJpiisIytsvGVWFwN6qu3eLeA_jZflCLhvnam8-Knvz-B9fkf_rFH8L9Jlxnb619PYIVXa7DHdvAc7EOt99VGFwvHkPVX5TibCSZLaSeslHJMLRmZ7hhooMpFdk5a3sOsVlLKU_jcShV8k3OR3X7KIamqZiQcjyyZaWsMmyshWGTBhaB9zZgeCOv_QTWyqrUm8AyjPAD4mQKizhSqFpc-5nkQoZJVmA86UDaalEuG6J36jcyzn9L-FCOOcmxaUNKcswvHPCXM88t2ck15myioubiC_qkfPgpoJNw4prFgQ5sdbR3-cyA2iemQeDAdqvOOe5qdFQlSl3Np3mUpnTk_ZcRSUZF2KHvwFNrB5cr5pjjcC9xIKm1-dqvkn_Y2aWrZ_86cRvuDk6ODvPD_eOD53DPQosIK_oC1maTuX6J8eus2Kr3CQafb9pMfgHj_Zgi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB615SEuPEqh5tHuAY6J_PbugQM0jVoKVQVE6s2s94EiUjvKQzT8NP4Kf4YZr50SVKEKqQdulrVrrT0zOzPeb74BeBFGUmKcITuh4UknTrmmNi9xRyWCYwItClFzd74_Tg8G8dvT5HQNfrS1MI4fYvnDjSyj3q_JwMfarho5IbQwHfcbSCRqp989bwCWR2bxDdO36avDHsr6ZRj29z_tHXSaDgO4lpT7HRliwKOMlkSD7iuNd32eyUSr2tWZ2OpE2SQ2orBWJZENuC91GmsrUmu4ifC563AjTn1BbSN6Hy6oq4LY8fwRfDLLRLCKIrp05Suucd3KioCacoqysq7JxmVR8GpQXXvF_j342X5PB4b52p3Piq76_gfV5P_5we_D3SZYZ6-ddT2ANVNuwi3XvnOxCTffVBhaLx5C1VuU8myomCujnrJhyTCwZme4XaJ7KTVZOWs7DrFZSyhP43Eo1fFNxsO6eRRDw9RMKjUauqJSVlk2MtKySQOKwHtbMLiW134EG2VVmm1gAuP7kBiZoiKJNWoWN4FQXKooFQVGkx5krRLlqqF5p24jo_y3dA_lmJMcmyakJMf83INgOXPsqE6uMGcb9TSXX9Aj5YOPIZ2DE9MsDvRgZ0V5l88MqXliFoYe7LbanOOeRgdVsjTVfJrHWUYH3n8ZkQoqwY4CDx47M7hYMccMh_upB2mtzFd-lfxkb5-unvzrxF24fdLr5-8Oj4-ewh2HKyKg6DPYmE3m5jkGr7Nip94lGHy-biv5BV9vltE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+changes+in+the+mitochondrial+electron+transport+chain+underpinning+cold+acclimation+of+leaf+respiration&rft.jtitle=Plant%2C+cell+and+environment&rft.au=ARMSTRONG%2C+ANNA+F.&rft.au=BADGER%2C+MURRAY+R.&rft.au=DAY%2C+DAVID+A.&rft.au=BARTHET%2C+MICHELLE+M.&rft.date=2008-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=31&rft.issue=8&rft.spage=1156&rft.epage=1169&rft_id=info:doi/10.1111%2Fj.1365-3040.2008.01830.x&rft.externalDBID=10.1111%252Fj.1365-3040.2008.01830.x&rft.externalDocID=PCE1830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon