Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration
We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short-term changes in temperatur...
Saved in:
Published in | Plant, cell and environment Vol. 31; no. 8; pp. 1156 - 1169 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.08.2008
Blackwell Publishing Ltd Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short-term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 °C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10-d cold-shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold-developed leaves. In conjunction with this, transcript levels of the uncoupling protein-encoding gene UCP1 and the external NAD(P)H dehydrogenase-encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non-phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment. |
---|---|
AbstractList | We examined the effect of short‐ and long‐term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in
Arabidopsis thaliana
. The AOP was more sensitive to short‐term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 °C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10‐d cold‐shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or
AOX1a
transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold‐developed leaves. In conjunction with this, transcript levels of the uncoupling protein‐encoding gene
UCP1
and the external NAD(P)H dehydrogenase‐encoding gene
NDB2
exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non‐phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment. We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short-term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 °C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10-d cold-shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold-developed leaves. In conjunction with this, transcript levels of the uncoupling protein-encoding gene UCP1 and the external NAD(P)H dehydrogenase-encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non-phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment. We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short-term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 degrees C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10-d cold-shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold-developed leaves. In conjunction with this, transcript levels of the uncoupling protein-encoding gene UCP1 and the external NAD(P)H dehydrogenase-encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non-phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment.We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short-term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 degrees C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10-d cold-shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold-developed leaves. In conjunction with this, transcript levels of the uncoupling protein-encoding gene UCP1 and the external NAD(P)H dehydrogenase-encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non-phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment. We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short-term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 degrees C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10-d cold-shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold-developed leaves. In conjunction with this, transcript levels of the uncoupling protein-encoding gene UCP1 and the external NAD(P)H dehydrogenase-encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non-phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment. ABSTRACT We examined the effect of short‐ and long‐term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short‐term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 °C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10‐d cold‐shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold‐developed leaves. In conjunction with this, transcript levels of the uncoupling protein‐encoding gene UCP1 and the external NAD(P)H dehydrogenase‐encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non‐phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment. |
Author | WHELAN, JIM ATKIN, OWEN K DAY, DAVID A ARMSTRONG, ANNA F BADGER, MURRAY R BARTHET, MICHELLE M MILLAR, A. HARVEY SMITH, PENELOPE M.C |
Author_xml | – sequence: 1 fullname: ARMSTRONG, ANNA F – sequence: 2 fullname: BADGER, MURRAY R – sequence: 3 fullname: DAY, DAVID A – sequence: 4 fullname: BARTHET, MICHELLE M – sequence: 5 fullname: SMITH, PENELOPE M.C – sequence: 6 fullname: MILLAR, A. HARVEY – sequence: 7 fullname: WHELAN, JIM – sequence: 8 fullname: ATKIN, OWEN K |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20505722$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18507806$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEUhS1URNPCXwBvYDfDtT2exwKkKpSHVAkk6Npy_UgceexgT0Tz7_EkoUhsqDe27v3Ose49F-gsxGAQwgRqUs7bTU1YyysGDdQUoK-B9Azq-ydo8dA4QwsgDVRdN5BzdJHzBqAUuuEZOic9h66HdoHih32Qo1NYrWVYmYxdwNPa4NFNUa1j0MlJj403akqxtJIMeRvTNPMF3QVt0taF4MIKq-g1lkp5N8rJFTpa7I20OJm8delQe46eWumzeXG6L9Htx-sfy8_VzddPX5ZXN5XibQ-VpKQlymjZtrQDpUsV-k5yrYDSBkxjNVeWN2a4s1ZxZkkPUreNtkNrTW_YJXpz9N2m-HNn8iRGl5XxXgYTd1m0Q0PbgZH_gk3XAeNAC_jyBO7uRqPFNpUx01782WUBXp8AmZX0tqxKufzAUeDAOzob9UdOpZhzMvavFYg5XrERc4piTlHM8YpDvOK-SN__I1VuOuy1BOP8YwzeHQ1-OW_2j_5YfFtez6-if3XUWxmFXKUy3-13CoQBDIQVHfsNbL3I4Q |
CODEN | PLCEDV |
CitedBy_id | crossref_primary_10_3389_fpls_2023_1267191 crossref_primary_10_1093_jxb_erw469 crossref_primary_10_1016_j_envexpbot_2013_11_015 crossref_primary_10_1134_S0006297914060030 crossref_primary_10_1134_S1021443722060097 crossref_primary_10_1071_FP13137 crossref_primary_10_1080_07352689_2017_1375836 crossref_primary_10_1104_pp_111_186130 crossref_primary_10_1016_j_mito_2020_05_001 crossref_primary_10_1111_gcb_15609 crossref_primary_10_1016_j_mito_2014_02_007 crossref_primary_10_1111_pce_12544 crossref_primary_10_1007_s11120_013_9807_4 crossref_primary_10_1371_journal_pone_0148013 crossref_primary_10_1134_S1021443711040091 crossref_primary_10_1016_j_jplph_2010_07_012 crossref_primary_10_1093_aob_mcv063 crossref_primary_10_1021_pr3003535 crossref_primary_10_1093_pcp_pcr073 crossref_primary_10_1111_j_1365_3040_2012_02507_x crossref_primary_10_1111_j_1399_3054_2009_01287_x crossref_primary_10_1071_FP08113 crossref_primary_10_1134_S1021443719050066 crossref_primary_10_1093_pcp_pcs107 crossref_primary_10_1007_s00294_010_0320_4 crossref_primary_10_1111_j_1365_3040_2009_01953_x crossref_primary_10_1007_s12038_023_00416_5 crossref_primary_10_1093_gbe_evab113 crossref_primary_10_1093_aob_mcz156 crossref_primary_10_1134_S1021443724606086 crossref_primary_10_1111_ppl_12649 crossref_primary_10_1080_0028825X_2012_759600 crossref_primary_10_1016_j_tplants_2017_11_006 crossref_primary_10_1071_FP13237 crossref_primary_10_32615_bp_2019_002 crossref_primary_10_1111_ppl_12881 crossref_primary_10_1093_jxb_erz160 crossref_primary_10_3390_agronomy11071302 crossref_primary_10_1007_s00018_021_04036_w crossref_primary_10_1093_treephys_tpp104 crossref_primary_10_1093_jxb_eru158 crossref_primary_10_1007_s10863_011_9336_9 crossref_primary_10_1111_j_1469_8137_2010_03343_x crossref_primary_10_3390_plants13162212 crossref_primary_10_1111_j_1365_3040_2010_02134_x crossref_primary_10_1111_nph_14169 crossref_primary_10_1007_s00299_015_1886_6 crossref_primary_10_1111_j_1365_2486_2010_02325_x crossref_primary_10_1111_j_1365_3040_2009_02074_x crossref_primary_10_1111_j_1399_3054_2010_01442_x crossref_primary_10_1111_nph_13479 crossref_primary_10_1016_j_jplph_2017_05_023 crossref_primary_10_1016_j_bbabio_2015_01_005 crossref_primary_10_1111_nph_18077 crossref_primary_10_1093_pcp_pcp090 crossref_primary_10_1093_jxb_eru367 crossref_primary_10_1007_s11120_024_01104_7 crossref_primary_10_3390_plants13030449 crossref_primary_10_1111_j_1365_2486_2012_02797_x crossref_primary_10_1016_j_plaphy_2014_01_019 crossref_primary_10_1093_jpe_rtu016 crossref_primary_10_3390_plants11111520 crossref_primary_10_1111_pce_13706 crossref_primary_10_1016_j_jplph_2023_153943 crossref_primary_10_1111_nph_12083 crossref_primary_10_1111_pce_12345 crossref_primary_10_1111_pce_13155 crossref_primary_10_1111_pce_12460 crossref_primary_10_1111_j_1399_3054_2011_01518_x crossref_primary_10_1111_nph_16964 crossref_primary_10_3389_fpls_2016_00068 crossref_primary_10_1111_nph_13339 crossref_primary_10_1093_aob_mcab117 crossref_primary_10_1111_j_1365_2435_2011_01875_x crossref_primary_10_1111_j_1469_8137_2012_04155_x crossref_primary_10_1111_nph_15509 crossref_primary_10_1016_j_mito_2013_09_001 crossref_primary_10_3390_ijms14046805 crossref_primary_10_1134_S1990747811040040 crossref_primary_10_1093_pcp_pcp144 crossref_primary_10_1093_pcp_pcq112 crossref_primary_10_1371_journal_pone_0056482 crossref_primary_10_1111_j_1399_3054_2011_01471_x crossref_primary_10_1016_j_mito_2020_04_001 crossref_primary_10_1007_s11120_009_9474_7 crossref_primary_10_1111_j_1469_8137_2008_02683_x crossref_primary_10_5194_bg_15_3461_2018 crossref_primary_10_1093_pcp_pct104 crossref_primary_10_1111_nph_15576 crossref_primary_10_1007_s00425_012_1799_3 crossref_primary_10_1111_j_1469_8137_2010_03576_x crossref_primary_10_1016_j_plantsci_2020_110735 crossref_primary_10_3390_ijms19030877 crossref_primary_10_1111_pce_14217 crossref_primary_10_1016_j_chemosphere_2022_133673 crossref_primary_10_1111_j_1469_8137_2010_03557_x crossref_primary_10_1021_ac501086n crossref_primary_10_1111_1442_1984_12047 crossref_primary_10_1007_s12038_024_00446_7 |
Cites_doi | 10.1104/pp.126.4.1619 10.1104/pp.122.1.199 10.1104/pp.105.063743 10.1111/j.1365-3040.2005.01322.x 10.1093/pcp/pch116 10.1071/PP9900517 10.1104/pp.109.3.829 10.1055/s-2003-37974 10.1104/pp.80.2.378 10.1111/j.1399-3054.1993.tb01393.x 10.1104/pp.118.2.599 10.1016/S0014-5793(01)03229-X 10.1104/pp.105.070789 10.1016/S0014-5793(97)01099-5 10.1146/annurev.arplant.55.031903.141720 10.1071/PP9950487 10.1111/j.1399-3054.2006.00823.x 10.1071/FP03176 10.1104/pp.107.3.925 10.2307/1550044 10.1104/pp.105.073015 10.1111/j.1365-3040.1987.tb01612.x 10.1007/978-3-642-68090-8_11 10.1111/j.1399-3054.1983.tb04160.x 10.1006/abbi.1995.1245 10.1111/j.1365-3040.2005.01475.x 10.1073/pnas.96.14.8271 10.1104/pp.103.035659 10.1111/j.1399-3054.1995.tb00844.x 10.1016/S1360-1385(03)00136-5 10.1104/pp.120.3.765 10.1111/j.1399-3054.1983.tb05742.x 10.1071/PP99031 10.1111/j.1399-3054.2006.00796.x 10.1104/pp.113.3.903 10.1104/pp.115.3.1145 10.1016/0014-5793(93)80233-K 10.1006/anbo.1995.1093 10.1016/S0014-5793(98)00634-6 10.1046/j.1469-8137.2000.00683.x 10.1104/pp.105.065565 10.1007/s11103-005-5514-7 10.1104/pp.010326 10.1073/pnas.94.7.3436 10.1074/jbc.M408920200 10.1104/pp.92.3.755 10.1139/b96-039 10.1016/S0005-2728(05)80197-5 10.1071/PP9830237 10.1111/j.1469-8137.2007.02183.x 10.1093/oxfordjournals.aob.a087966 10.1007/s004420050415 10.1111/j.1399-3054.2005.00557.x 10.1093/treephys/23.14.969 10.1104/pp.100.1.115 10.1016/S0378-1119(97)00502-7 10.1104/pp.68.6.1474 10.1007/BF00392616 10.1266/ggs.77.81 10.1104/pp.105.070763 10.1146/annurev.arplant.52.1.561 10.1016/S0005-2728(98)00126-1 10.1016/S1360-1385(97)89948-7 10.1007/s004250100622 10.1046/j.1365-2486.2003.00611.x 10.1038/38156 10.1074/jbc.271.40.25019 10.1104/pp.117.3.1083 10.1006/abbi.1998.0737 10.1104/pp.92.3.761 10.1046/j.1365-3040.2000.00511.x 10.1016/j.bbabio.2006.03.009 10.1104/pp.103.3.845 10.1078/0176-1617-01054 10.2307/2656856 10.1074/jbc.M301075200 |
ContentType | Journal Article |
Copyright | 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd – notice: 2008 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1111/j.1365-3040.2008.01830.x |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 1169 |
ExternalDocumentID | 18507806 20505722 10_1111_j_1365_3040_2008_01830_x PCE1830 US201300913304 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABPTK ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AHBTC AITYG ALVPJ HGLYW OIG AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5680-a2161ceda66270cdc56087a5dc02240e4fd5cf54e9bffc53f180ad64df96fe8e3 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Thu Jul 10 22:13:48 EDT 2025 Thu Jul 10 19:27:40 EDT 2025 Thu Apr 03 07:02:58 EDT 2025 Mon Jul 21 09:15:40 EDT 2025 Tue Jul 01 01:23:13 EDT 2025 Thu Apr 24 23:09:03 EDT 2025 Wed Jan 22 16:22:55 EST 2025 Wed Dec 27 19:05:58 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Cytochrome Temperature Cold Arabidopsis Plant leaf Gene expression uncoupling protein Cruciferae cytochrome oxidase Dicotyledones Angiospermae Spermatophyta Respiration alternative oxidase |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5680-a2161ceda66270cdc56087a5dc02240e4fd5cf54e9bffc53f180ad64df96fe8e3 |
Notes | http://dx.doi.org/10.1111/j.1365-3040.2008.01830.x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-3040.2008.01830.x |
PMID | 18507806 |
PQID | 47703502 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_69426931 proquest_miscellaneous_47703502 pubmed_primary_18507806 pascalfrancis_primary_20505722 crossref_primary_10_1111_j_1365_3040_2008_01830_x crossref_citationtrail_10_1111_j_1365_3040_2008_01830_x wiley_primary_10_1111_j_1365_3040_2008_01830_x_PCE1830 fao_agris_US201300913304 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2008 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: August 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: United States |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2008 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell |
References | 2000b; 23 1997; 113 1997; 115 1993; 329 1990; 17 2000; 87 2002; 510 2004; 161 2005; 139 1995; 76 1991; 1059 1999; 120 1983; 10 1998; 118 1996; 74 1998; 114 1997; 2 1998; 117 2003; 278 2005; 28 1983; 58 1997; 389 1986; 80 1997; 94 2004; 135 2007; 176 2006; 1757 2003; 8 1995; 22 2003; 9 2006; 29 2005; 32 2003; 5 1999; 96 1981 2000; 122 1979; 20 2001; 214 2001; 52 1971; 3 1995; 95 2007; 129 1987; 10 1997; 415 1990b; 92 1992; 100 1993; 88 1999; 26 1995; 318 2004; 45 1989; 177 2002; 77 1953 1981; 68 1994 1998; 335 1992 1993; 103 2001; 126 2004; 55 1997; 203 1990; 65 2004; 279 2000a; 147 2005; 125 1995; 109 2002; 128 1995; 107 2006; 140 1996; 271 1998; 429 1960 1990a; 92 1998; 1366 2003; 23 2005; 58 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 James W.O. (e_1_2_6_40_1) 1953 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 Yoshida S. (e_1_2_6_82_1) 1979; 20 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Azcón‐Bieto J. (e_1_2_6_10_1) 1992 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_61_1 Amthor J.S. (e_1_2_6_2_1) 1994 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 Forward D.F. (e_1_2_6_29_1) 1960 e_1_2_6_23_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 29 start-page: 940 year: 2006 end-page: 949 article-title: Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in leaves publication-title: Plant, Cell & Environment – volume: 177 start-page: 483 year: 1989 end-page: 491 article-title: Differential fractionation of oxygen isotopes by cyanide‐resistant and cyanide‐sensitive respiration in plants publication-title: Planta – volume: 122 start-page: 199 year: 2000 end-page: 204 article-title: The electron partitioning between the cytochrome and alternative respiratory pathways during chilling recovery in two cultivars of maize differing in chilling sensitivity publication-title: Plant Physiology – volume: 95 start-page: 318 year: 1995 end-page: 325 article-title: The alternative respiration pathway in plants. Role and regulation publication-title: Physiologia Plantarum – volume: 94 start-page: 3436 year: 1997 end-page: 3441 article-title: Lack of mitochondrial and nuclear‐encoded subunits of complex I and alteration of the respiratory chain in mitochondrial deletion mutants publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 23 start-page: 15 year: 2000b end-page: 26 article-title: Acclimation of snow gum ( ) leaf respiration to seasonal and diurnal variations in temperature: the importance of changes in the capacity and temperature sensitivity of respiration publication-title: Plant, Cell & Environment – volume: 109 start-page: 829 year: 1995 end-page: 837 article-title: Electron partitioning between the cytochrome and alternative pathways in plant mitochondria publication-title: Plant Physiology – volume: 139 start-page: 466 year: 2005 end-page: 473 article-title: Effects of water stress on respiration in soybean leaves publication-title: Plant Physiology – volume: 140 start-page: 326 year: 2006 end-page: 335 article-title: Pea seed mitochondria are endowed with a remarkable tolerance to extreme physiological temperatures publication-title: Plant Physiology – volume: 107 start-page: 925 year: 1995 end-page: 932 article-title: Developmental regulation of respiratory activity in pea leaves publication-title: Plant Physiology – volume: 58 start-page: 155 year: 1983 end-page: 160 article-title: Regulation of glycolysis and electron transport in roots publication-title: Physiologia Plantarum – volume: 55 start-page: 23 year: 2004 end-page: 39 article-title: Alternative NAD(P)H dehydrogenases of plant mitochondria publication-title: Annual Review of Plant Biology – volume: 92 start-page: 755 year: 1990a end-page: 760 article-title: Respiration and alternative oxidase in corn seedlings during germination at different temperatures publication-title: Plant Physiology – volume: 20 start-page: 1243 year: 1979 end-page: 1250 article-title: Alteration of the respiratory function in chill‐sensitive callus due to low‐temperature stress. I. Involvement of the alternative pathway publication-title: Plant Physiology – volume: 10 start-page: 237 year: 1983 end-page: 245 article-title: Respiratory properties of developing bean and pea leaves publication-title: Australian Journal of Plant Physiology – volume: 120 start-page: 765 year: 1999 end-page: 772 article-title: The effect of growth and measurement temperature on the activity of the alternative respiratory pathway publication-title: Plant Physiology – volume: 335 start-page: 262 year: 1998 end-page: 270 article-title: Activation of the plant alternative oxidase by high reduction levels of the Q‐pool and pyruvate publication-title: Archives of Biochemistry and Biophysics – volume: 147 start-page: 141 year: 2000a end-page: 154 article-title: Response of root respiration to changes in temperature and its relevance to global warming publication-title: New Phytologist – volume: 128 start-page: 212 year: 2002 end-page: 222 article-title: Effect of temperature on rates of alternative and cytochrome pathway respiration and their relationship with the redox poise of the quinone pool publication-title: Plant Physiology – volume: 125 start-page: 171 year: 2005 end-page: 180 article-title: Partitioning of respiratory electrons in the dark in leaves of transgenic tobacco with modified levels of alternative oxidase publication-title: Physiologia Plantarum – volume: 26 start-page: 773 year: 1999 end-page: 780 article-title: Calculation of the oxygen isotope discrimination factor for studying plant respiration publication-title: Australian Journal of Plant Physiology – volume: 76 start-page: 245 year: 1995 end-page: 252 article-title: Acclimation of leaf dark respiration to temperature in alpine and lowland plant species publication-title: Annals of Botany – start-page: 501 year: 1994 end-page: 554 – volume: 3 start-page: 277 year: 1971 end-page: 289 article-title: Metabolic acclimation to temperature in Arctic and alpine ecotypes of publication-title: Arctic and Alpine Research – volume: 1757 start-page: 730 year: 2006 end-page: 741 article-title: Alternative oxidases in Arabidopsis. A comparative analysis of differential expression in the gene family provides new insights into function of non‐phosphorylating bypasses publication-title: Biochim Biophys Acta – Bioenergetics – volume: 139 start-page: 1795 year: 2005 end-page: 1805 article-title: The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature: a study of Arabidopsis transgenic plants publication-title: Plant Physiology – start-page: 234 year: 1960 end-page: 258 – volume: 23 start-page: 969 year: 2003 end-page: 976 article-title: Rapid temperature acclimation of leaf respiration rates in and publication-title: Tree Physiology – volume: 161 start-page: 573 year: 2004 end-page: 579 article-title: Respiratory acclimation in leaves at low temperature publication-title: Journal of Plant Physiology – volume: 58 start-page: 556 year: 1983 end-page: 563 article-title: Respiration for growth, maintenance and ion uptake. An evaluation of concepts, methods, values and their significance publication-title: Physiologia Plantarum – volume: 279 start-page: 51944 year: 2004 end-page: 51952 article-title: Activation and function of mitochondrial uncoupling protein in plants publication-title: Journal of Biological Chemistry – volume: 74 start-page: 317 year: 1996 end-page: 320 article-title: No difference in leaf respiration rates among temperate, subarctic, and arctic species grown under controlled conditions publication-title: Canadian Journal of Botany – volume: 92 start-page: 761 year: 1990b end-page: 766 article-title: Seedling growth, mitochondrial characteristics, and alternative respiratory capacity of corn genotypes differing in cold tolerance publication-title: Plant Physiology – volume: 32 start-page: 87 year: 2005 end-page: 105 article-title: The hot and the cold: unravelling the variable response of plant respiration to temperature publication-title: Functional Plant Biology – volume: 278 start-page: 22298 year: 2003 end-page: 22302 article-title: Superoxide stimulates a proton leak in potato mitochondria that is related to the activity of uncoupling protein publication-title: Journal of Biological Chemistry – volume: 318 start-page: 394 year: 1995 end-page: 400 article-title: Cytochrome and alternative respiratory pathways compete for electrons in the presence of pyruvate in soybean mitochondria publication-title: Archives of Biochemistry and Biophysics – volume: 65 start-page: 533 year: 1990 end-page: 538 article-title: The effects of low growth and measurement temperature on the respiratory properties of five temperate species publication-title: Annals of Botany – volume: 68 start-page: 1474 year: 1981 end-page: 1478 article-title: Temperature effects on the activity of the alternative respiratory pathway in chill‐sensitive publication-title: Plant Physiology – volume: 77 start-page: 81 year: 2002 end-page: 88 article-title: Characterization of two non‐homologous nuclear genes encoding mitochondrial alternative oxidase in common wheat publication-title: Genes Genetics Systems – start-page: 241 year: 1992 end-page: 253 – volume: 176 start-page: 375 year: 2007 end-page: 389 article-title: Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group publication-title: New Phytologist – volume: 8 start-page: 343 year: 2003 end-page: 351 article-title: Thermal acclimation and the dynamic response of plant respiration to temperature publication-title: Trends in Plant Science – volume: 415 start-page: 87 year: 1997 end-page: 90 article-title: Inhibition of the alternative oxidase stimulates H O production in plant mitochondria publication-title: FEBS Letters – volume: 129 start-page: 143 year: 2007 end-page: 151 article-title: Contribution of the cytochrome and alternative pathways to growth respiration and maintenance respiration in publication-title: Physiologia Plantarum – volume: 1059 start-page: 121 year: 1991 end-page: 140 article-title: The regulation and nature of the cyanide resistant alternative oxidase of plant mitochondria publication-title: Biochim Biophys Acta – Bioenergetics – volume: 5 start-page: 2 year: 2003 end-page: 15 article-title: The alternative oxidase: regulation and function publication-title: Plant Biology – volume: 52 start-page: 561 year: 2001 end-page: 591 article-title: Plant mitochondria and oxidative stress. Electron transport, NADPH turnover, and metabolism of reactive oxygen species publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 88 start-page: 712 year: 1993 end-page: 718 article-title: Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? publication-title: Physiologia Plantarum – volume: 129 start-page: 174 year: 2007 end-page: 184 article-title: Temperature‐dependent changes in respiration rates and redox poise of the ubiquinone pool in protoplasts and isolated mitochondria of potato leaves publication-title: Physiologia Plantarum – volume: 2 start-page: 289 year: 1997 end-page: 290 article-title: Alternative solutions to radical problems publication-title: Trends in Plant Science – volume: 1366 start-page: 235 year: 1998 end-page: 255 article-title: Interdependence between chloroplasts and mitochondria in the light and the dark publication-title: Biochimica et Biophysica Acta – Bioenergetics – volume: 17 start-page: 517 year: 1990 end-page: 526 article-title: A comparison of the respiratory p rocesses and growth rates of selected alpine and lowland plant species publication-title: Australian Journal of Plant Physiology – volume: 203 start-page: 121 year: 1997 end-page: 129 article-title: Transcript levels of tandem‐arranged alternative oxidase genes in rice are increased by low temperature publication-title: Gene – volume: 139 start-page: 5 year: 2005 end-page: 17 article-title: Genome‐wide identification and testing of superior reference genes for transcript normalization in Arabidopsis publication-title: Plant Physiology – volume: 80 start-page: 378 year: 1986 end-page: 383 article-title: Alternative respiratory path capacity in plant mitochondria. Effect of growth temperature, the electrochemical gradient, and assay pH publication-title: Plant Physiology – volume: 329 start-page: 259 year: 1993 end-page: 262 article-title: Organic acid activation of the alternative oxidase of plant mitochondria publication-title: FEBS Letters – volume: 58 start-page: 193 year: 2005 end-page: 212 article-title: Stress‐induced co‐expression of alternative respiratory chain components in publication-title: Plant Molecular Biology – volume: 115 start-page: 1145 year: 1997 end-page: 1153 article-title: Substrate kinetics of the plant mitochondrial alternative oxidase and the effects of pyruvate publication-title: Plant Physiology – volume: 28 start-page: 760 year: 2005 end-page: 771 article-title: Response of mitochondria to light intensity in the leaves of sun and shade species publication-title: Plant, Cell & Environment – volume: 510 start-page: 117 year: 2002 end-page: 120 article-title: Uncoupling proteins outside the animal and plant kingdoms: functional and evolutionary aspects publication-title: FEBS Letters – volume: 100 start-page: 115 year: 1992 end-page: 119 article-title: Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco publication-title: Plant Physiology – volume: 114 start-page: 20 year: 1998 end-page: 30 article-title: Root production, turnover and respiration under two grassland types along an altitudinal gradient – influence of temperature and solar radiation publication-title: Oecologia – volume: 10 start-page: 319 year: 1987 end-page: 325 article-title: The relationship between respiration and temperature in leaves of the arctic plant publication-title: Plant, Cell & Environment – volume: 9 start-page: 895 year: 2003 end-page: 910 article-title: Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast‐ and slow‐growing plant species publication-title: Global Change Biology – volume: 87 start-page: 700 year: 2000 end-page: 710 article-title: Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes publication-title: American Journal of Botany – volume: 117 start-page: 1083 year: 1998 end-page: 1093 article-title: Analysis of respiratory chain regulation in roots of soybean seedlings publication-title: Plant Physiology – volume: 271 start-page: 25019 year: 1996 end-page: 25026 article-title: The reaction of the soybean cotyledon mitochondrial cyanide‐resistant oxidase with sulfhydryl reagents suggests that α‐keto acid activation involves the formation of a thiohemiacetal publication-title: Journal of Biological Chemistry – start-page: 277 year: 1981 end-page: 338 – volume: 139 start-page: 1806 year: 2005 end-page: 1820 article-title: Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue publication-title: Plant Physiology – volume: 45 start-page: 1015 year: 2004 end-page: 1022 article-title: Maintenance of growth rate at low temperature in rice and wheat cultivars with a high degree of respiratory homeostasis is associated with a high efficiency of respiratory ATP production publication-title: Plant Cell Physiology – volume: 135 start-page: 549 year: 2004 end-page: 560 article-title: Developmental physiology of cluster‐root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase publication-title: Plant Physiology – volume: 103 start-page: 845 year: 1993 end-page: 854 article-title: Covalent and noncovalent dimers of the cyanide‐resistant alternative oxidase protein in higher plant mitochondria and their relationship to enzyme activity publication-title: Plant Physiology – volume: 429 start-page: 403 year: 1998 end-page: 406 article-title: : an gene encoding a plant uncoupling mitochondrial protein publication-title: FEBS Letters – year: 1953 – volume: 96 start-page: 8271 year: 1999 end-page: 8276 article-title: The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 214 start-page: 295 year: 2001 end-page: 303 article-title: Cold acclimation of results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma publication-title: Planta – volume: 118 start-page: 599 year: 1998 end-page: 607 article-title: The role of the alternative oxidase in stabilizing the in vivo reduction state of the ubiquinone pool and the activation state of the alternative oxidase publication-title: Plant Physiology – volume: 22 start-page: 487 year: 1995 end-page: 496 article-title: Beyond SHAM and cyanide – opportunities for studying the alternative oxidase in plant respiration using oxygen isotope discrimination publication-title: Australian Journal of Plant Physiology – volume: 126 start-page: 1619 year: 2001 end-page: 1629 article-title: The expression of alternative oxidase and uncoupling protein during fruit ripening in mango publication-title: Plant Physiology – volume: 389 start-page: 135 year: 1997 end-page: 136 article-title: A plant cold‐induced uncoupling protein publication-title: Nature – volume: 113 start-page: 903 year: 1997 end-page: 911 article-title: The regulation of electron partitioning between the cytochrome and alternative pathways in soybean cotyledon and root mitochondria publication-title: Plant Physiology – ident: e_1_2_6_20_1 doi: 10.1104/pp.126.4.1619 – ident: e_1_2_6_64_1 doi: 10.1104/pp.122.1.199 – ident: e_1_2_6_23_1 doi: 10.1104/pp.105.063743 – ident: e_1_2_6_58_1 doi: 10.1111/j.1365-3040.2005.01322.x – ident: e_1_2_6_42_1 doi: 10.1093/pcp/pch116 – ident: e_1_2_6_4_1 doi: 10.1071/PP9900517 – ident: e_1_2_6_62_1 doi: 10.1104/pp.109.3.829 – ident: e_1_2_6_54_1 doi: 10.1055/s-2003-37974 – ident: e_1_2_6_25_1 doi: 10.1104/pp.80.2.378 – ident: e_1_2_6_60_1 doi: 10.1111/j.1399-3054.1993.tb01393.x – ident: e_1_2_6_55_1 doi: 10.1104/pp.118.2.599 – ident: e_1_2_6_69_1 doi: 10.1016/S0014-5793(01)03229-X – ident: e_1_2_6_26_1 doi: 10.1104/pp.105.070789 – ident: e_1_2_6_59_1 doi: 10.1016/S0014-5793(97)01099-5 – ident: e_1_2_6_61_1 doi: 10.1146/annurev.arplant.55.031903.141720 – ident: e_1_2_6_66_1 doi: 10.1071/PP9950487 – volume: 20 start-page: 1243 year: 1979 ident: e_1_2_6_82_1 article-title: Alteration of the respiratory function in chill‐sensitive callus due to low‐temperature stress. I. Involvement of the alternative pathway publication-title: Plant Physiology – ident: e_1_2_6_22_1 doi: 10.1111/j.1399-3054.2006.00823.x – ident: e_1_2_6_9_1 doi: 10.1071/FP03176 – ident: e_1_2_6_46_1 doi: 10.1104/pp.107.3.925 – ident: e_1_2_6_13_1 doi: 10.2307/1550044 – ident: e_1_2_6_73_1 doi: 10.1104/pp.105.073015 – ident: e_1_2_6_48_1 doi: 10.1111/j.1365-3040.1987.tb01612.x – ident: e_1_2_6_12_1 doi: 10.1007/978-3-642-68090-8_11 – ident: e_1_2_6_24_1 doi: 10.1111/j.1399-3054.1983.tb04160.x – ident: e_1_2_6_36_1 doi: 10.1006/abbi.1995.1245 – start-page: 501 volume-title: Plant–Environment Interactions year: 1994 ident: e_1_2_6_2_1 – ident: e_1_2_6_3_1 doi: 10.1111/j.1365-3040.2005.01475.x – ident: e_1_2_6_50_1 doi: 10.1073/pnas.96.14.8271 – ident: e_1_2_6_68_1 doi: 10.1104/pp.103.035659 – ident: e_1_2_6_80_1 doi: 10.1111/j.1399-3054.1995.tb00844.x – ident: e_1_2_6_5_1 doi: 10.1016/S1360-1385(03)00136-5 – ident: e_1_2_6_30_1 doi: 10.1104/pp.120.3.765 – ident: e_1_2_6_44_1 doi: 10.1111/j.1399-3054.1983.tb05742.x – ident: e_1_2_6_34_1 doi: 10.1071/PP99031 – ident: e_1_2_6_28_1 doi: 10.1111/j.1399-3054.2006.00796.x – volume-title: Plant Respiration year: 1953 ident: e_1_2_6_40_1 – ident: e_1_2_6_63_1 doi: 10.1104/pp.113.3.903 – ident: e_1_2_6_37_1 doi: 10.1104/pp.115.3.1145 – ident: e_1_2_6_52_1 doi: 10.1016/0014-5793(93)80233-K – ident: e_1_2_6_45_1 doi: 10.1006/anbo.1995.1093 – ident: e_1_2_6_49_1 doi: 10.1016/S0014-5793(98)00634-6 – ident: e_1_2_6_6_1 doi: 10.1046/j.1469-8137.2000.00683.x – ident: e_1_2_6_65_1 doi: 10.1104/pp.105.065565 – ident: e_1_2_6_16_1 doi: 10.1007/s11103-005-5514-7 – ident: e_1_2_6_8_1 doi: 10.1104/pp.010326 – ident: e_1_2_6_31_1 doi: 10.1073/pnas.94.7.3436 – ident: e_1_2_6_70_1 doi: 10.1074/jbc.M408920200 – ident: e_1_2_6_71_1 doi: 10.1104/pp.92.3.755 – ident: e_1_2_6_18_1 doi: 10.1139/b96-039 – ident: e_1_2_6_56_1 doi: 10.1016/S0005-2728(05)80197-5 – ident: e_1_2_6_11_1 doi: 10.1071/PP9830237 – ident: e_1_2_6_15_1 doi: 10.1111/j.1469-8137.2007.02183.x – start-page: 241 volume-title: Trends in Photosynthesis Research year: 1992 ident: e_1_2_6_10_1 – ident: e_1_2_6_19_1 doi: 10.1093/oxfordjournals.aob.a087966 – ident: e_1_2_6_27_1 doi: 10.1007/s004420050415 – ident: e_1_2_6_32_1 doi: 10.1111/j.1399-3054.2005.00557.x – ident: e_1_2_6_14_1 doi: 10.1093/treephys/23.14.969 – ident: e_1_2_6_79_1 doi: 10.1104/pp.100.1.115 – ident: e_1_2_6_39_1 doi: 10.1016/S0378-1119(97)00502-7 – ident: e_1_2_6_41_1 doi: 10.1104/pp.68.6.1474 – ident: e_1_2_6_33_1 doi: 10.1007/BF00392616 – ident: e_1_2_6_74_1 doi: 10.1266/ggs.77.81 – ident: e_1_2_6_78_1 doi: 10.1104/pp.105.070763 – ident: e_1_2_6_57_1 doi: 10.1146/annurev.arplant.52.1.561 – ident: e_1_2_6_38_1 doi: 10.1016/S0005-2728(98)00126-1 – ident: e_1_2_6_51_1 doi: 10.1016/S1360-1385(97)89948-7 – ident: e_1_2_6_67_1 doi: 10.1007/s004250100622 – ident: e_1_2_6_47_1 doi: 10.1046/j.1365-2486.2003.00611.x – ident: e_1_2_6_43_1 doi: 10.1038/38156 – ident: e_1_2_6_77_1 doi: 10.1074/jbc.271.40.25019 – ident: e_1_2_6_53_1 doi: 10.1104/pp.117.3.1083 – start-page: 234 volume-title: Encyclopedia of Plant Physiology year: 1960 ident: e_1_2_6_29_1 – ident: e_1_2_6_35_1 doi: 10.1006/abbi.1998.0737 – ident: e_1_2_6_72_1 doi: 10.1104/pp.92.3.761 – ident: e_1_2_6_7_1 doi: 10.1046/j.1365-3040.2000.00511.x – ident: e_1_2_6_17_1 doi: 10.1016/j.bbabio.2006.03.009 – ident: e_1_2_6_76_1 doi: 10.1104/pp.103.3.845 – ident: e_1_2_6_75_1 doi: 10.1078/0176-1617-01054 – ident: e_1_2_6_81_1 doi: 10.2307/2656856 – ident: e_1_2_6_21_1 doi: 10.1074/jbc.M301075200 |
SSID | ssj0001479 |
Score | 2.2782953 |
Snippet | We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and... ABSTRACT We examined the effect of short‐ and long‐term changes in temperature on gene expression, protein abundance, and the activity of the alternative... We examined the effect of short‐ and long‐term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and... |
SourceID | proquest pubmed pascalfrancis crossref wiley fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1156 |
SubjectTerms | acclimation Acclimatization alternative oxidase Arabidopsis Arabidopsis - cytology Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biological and medical sciences Cell Respiration cold Cold Temperature cytochrome oxidase cytochrome-c oxidase cytology electron transfer Electron Transport electron transport chain Electron Transport Complex IV Electron Transport Complex IV - metabolism enzymology exposure duration Fundamental and applied biological sciences. Psychology gene expression gene expression regulation Gene Expression Regulation, Plant genes genetics leaf development leaves long term effects Metabolism Mitochondria Mitochondria - metabolism Mitochondrial Proteins Oxidoreductases Oxidoreductases - metabolism Oxygen Isotopes Photosynthesis, respiration. Anabolism, catabolism Plant Leaves Plant Leaves - cytology Plant Leaves - enzymology Plant Leaves - metabolism Plant physiology and development Plant Proteins proteins RNA, Messenger RNA, Messenger - genetics RNA, Messenger - metabolism Temperature uncoupling protein |
Title | Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-3040.2008.01830.x https://www.ncbi.nlm.nih.gov/pubmed/18507806 https://www.proquest.com/docview/47703502 https://www.proquest.com/docview/69426931 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BBRIXKOXR0FJ84JpVno59bEurCgmEgJV6sxw_0KrbpNqHRPn1nYmTLUEVqhC3VdaO1s6M83n9zfcBvM9yrRFn6DhzoowLLizZvBSxKaXADbSsZafd-ekzP5sWH8_L857_RLUwQR9i84cbZUa3XlOC63o5TnJiaOF2POkpkRidyYTwJH1B-OjrrZJUWgTZPWIzVpVMx6SeO280elM99Lol3qRe4tT54HlxFygdY9zuJXX6DC6G4QVuysVkvaon5tcfyo__Z_zb8LTHsuwwBN9zeOCaHXgc3C2vd-DRUYvI8_oFtB-C7T0LVcZLNmsY4k52iasJrr6NpSRggyEPWw1669Qem1KZ2-Jq1nkrMYxby7Qx81mouWStZ3OnPVv0nAG89hKmpyffj8_i3ugBQ4KLJNYZ4k7jrCY1-sRYvJqISpfWdIjDFd6WxpeFk7X3psx9KhJteWG95N4Jl7-CraZt3C4wifA3I8GivC4Li09auFQaoU3OZY1gK4JqeKjK9CroZMYxV7_thnBeFc1r79FJ86p-RpBuel4FJZB79NnFuFH6By7Yavoto2NiEmLFhhEcjIJpc8-MvAWrLIvg3RBdClOeznF049r1UhVVRefBf2nBJVUo52kEr0NY3v5igRsAkfAIeBdc9x6K-nJ8Qp_e_GvHPXgSuDZEntyHrdVi7d4ioFvVB12q3gD22jgJ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC0lAQQXlhCIWZI-wNEj724fOEAm0YQsQpCRcjPtXtCIiR3NIjL8Gr_Cx1DlticYRShCyoGbZXVbbVdVV5X71SuAV0EoBMYZwg00j90o4YravESujDOOCXRWZDV359FxMhhG70_j0xX40dbCWH6I5Q83sox6vyYDpx_SXSsniBbm416DiUT19HoXDcLyQC--Yf42fbPfR2G_DoK93ZOdgdu0GMDFJNxzRYARj9RKEA-6JxXe9XgqYiVrX6cjo2Jp4khnhTEyDo3PPaGSSJksMZrrEJ-7CreooTgR9_c_XnJX-ZEl-iP8ZJpmfhdGdOXKO75x1YiKkJpiisIytsvGVWFwN6qu3eLeA_jZflCLhvnam8-Knvz-B9fkf_rFH8L9Jlxnb619PYIVXa7DHdvAc7EOt99VGFwvHkPVX5TibCSZLaSeslHJMLRmZ7hhooMpFdk5a3sOsVlLKU_jcShV8k3OR3X7KIamqZiQcjyyZaWsMmyshWGTBhaB9zZgeCOv_QTWyqrUm8AyjPAD4mQKizhSqFpc-5nkQoZJVmA86UDaalEuG6J36jcyzn9L-FCOOcmxaUNKcswvHPCXM88t2ck15myioubiC_qkfPgpoJNw4prFgQ5sdbR3-cyA2iemQeDAdqvOOe5qdFQlSl3Np3mUpnTk_ZcRSUZF2KHvwFNrB5cr5pjjcC9xIKm1-dqvkn_Y2aWrZ_86cRvuDk6ODvPD_eOD53DPQosIK_oC1maTuX6J8eus2Kr3CQafb9pMfgHj_Zgi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB615SEuPEqh5tHuAY6J_PbugQM0jVoKVQVE6s2s94EiUjvKQzT8NP4Kf4YZr50SVKEKqQdulrVrrT0zOzPeb74BeBFGUmKcITuh4UknTrmmNi9xRyWCYwItClFzd74_Tg8G8dvT5HQNfrS1MI4fYvnDjSyj3q_JwMfarho5IbQwHfcbSCRqp989bwCWR2bxDdO36avDHsr6ZRj29z_tHXSaDgO4lpT7HRliwKOMlkSD7iuNd32eyUSr2tWZ2OpE2SQ2orBWJZENuC91GmsrUmu4ifC563AjTn1BbSN6Hy6oq4LY8fwRfDLLRLCKIrp05Suucd3KioCacoqysq7JxmVR8GpQXXvF_j342X5PB4b52p3Piq76_gfV5P_5we_D3SZYZ6-ddT2ANVNuwi3XvnOxCTffVBhaLx5C1VuU8myomCujnrJhyTCwZme4XaJ7KTVZOWs7DrFZSyhP43Eo1fFNxsO6eRRDw9RMKjUauqJSVlk2MtKySQOKwHtbMLiW134EG2VVmm1gAuP7kBiZoiKJNWoWN4FQXKooFQVGkx5krRLlqqF5p24jo_y3dA_lmJMcmyakJMf83INgOXPsqE6uMGcb9TSXX9Aj5YOPIZ2DE9MsDvRgZ0V5l88MqXliFoYe7LbanOOeRgdVsjTVfJrHWUYH3n8ZkQoqwY4CDx47M7hYMccMh_upB2mtzFd-lfxkb5-unvzrxF24fdLr5-8Oj4-ewh2HKyKg6DPYmE3m5jkGr7Nip94lGHy-biv5BV9vltE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+changes+in+the+mitochondrial+electron+transport+chain+underpinning+cold+acclimation+of+leaf+respiration&rft.jtitle=Plant%2C+cell+and+environment&rft.au=ARMSTRONG%2C+ANNA+F.&rft.au=BADGER%2C+MURRAY+R.&rft.au=DAY%2C+DAVID+A.&rft.au=BARTHET%2C+MICHELLE+M.&rft.date=2008-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=31&rft.issue=8&rft.spage=1156&rft.epage=1169&rft_id=info:doi/10.1111%2Fj.1365-3040.2008.01830.x&rft.externalDBID=10.1111%252Fj.1365-3040.2008.01830.x&rft.externalDocID=PCE1830 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |