High-energy and low-cost membrane-free chlorine flow battery

Grid-scale energy storage is essential for reliable electricity transmission and renewable energy integration. Redox flow batteries (RFB) provide affordable and scalable solutions for stationary energy storage. However, most of the current RFB chemistries are based on expensive transition metal ions...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 1281 - 8
Main Authors Hou, Singyuk, Chen, Long, Fan, Xiulin, Fan, Xiaotong, Ji, Xiao, Wang, Boyu, Cui, Chunyu, Chen, Ji, Yang, Chongyin, Wang, Wei, Li, Chunzhong, Wang, Chunsheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.03.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Grid-scale energy storage is essential for reliable electricity transmission and renewable energy integration. Redox flow batteries (RFB) provide affordable and scalable solutions for stationary energy storage. However, most of the current RFB chemistries are based on expensive transition metal ions or synthetic organics. Here, we report a reversible chlorine redox flow battery starting from the electrolysis of aqueous NaCl electrolyte and the as-produced Cl 2 is extracted and stored in the carbon tetrachloride (CCl 4 ) or mineral spirit flow. The immiscibility between the CCl 4 or mineral spirit and NaCl electrolyte enables a membrane-free design with an energy efficiency of >91% at 10 mA/cm 2 and an energy density of 125.7 Wh/L. The chlorine flow battery can meet the stringent price and reliability target for stationary energy storage with the inherently low-cost active materials (~$5/kWh) and the highly reversible Cl 2 /Cl − redox reaction. Flow batteries provide promising solutions for stationary energy storage but most of the systems are based on expensive metal ions or synthetic organics. Here, the authors show a chlorine flow battery capitalizing the electrolysis of saltwater where the redox reaction is stabilized by the saltwater-immiscible organic flow.
AbstractList Abstract Grid-scale energy storage is essential for reliable electricity transmission and renewable energy integration. Redox flow batteries (RFB) provide affordable and scalable solutions for stationary energy storage. However, most of the current RFB chemistries are based on expensive transition metal ions or synthetic organics. Here, we report a reversible chlorine redox flow battery starting from the electrolysis of aqueous NaCl electrolyte and the as-produced Cl 2 is extracted and stored in the carbon tetrachloride (CCl 4 ) or mineral spirit flow. The immiscibility between the CCl 4 or mineral spirit and NaCl electrolyte enables a membrane-free design with an energy efficiency of >91% at 10 mA/cm 2 and an energy density of 125.7 Wh/L. The chlorine flow battery can meet the stringent price and reliability target for stationary energy storage with the inherently low-cost active materials (~$5/kWh) and the highly reversible Cl 2 /Cl − redox reaction.
Grid-scale energy storage is essential for reliable electricity transmission and renewable energy integration. Redox flow batteries (RFB) provide affordable and scalable solutions for stationary energy storage. However, most of the current RFB chemistries are based on expensive transition metal ions or synthetic organics. Here, we report a reversible chlorine redox flow battery starting from the electrolysis of aqueous NaCl electrolyte and the as-produced Cl is extracted and stored in the carbon tetrachloride (CCl ) or mineral spirit flow. The immiscibility between the CCl or mineral spirit and NaCl electrolyte enables a membrane-free design with an energy efficiency of >91% at 10 mA/cm and an energy density of 125.7 Wh/L. The chlorine flow battery can meet the stringent price and reliability target for stationary energy storage with the inherently low-cost active materials (~$5/kWh) and the highly reversible Cl /Cl redox reaction.
Flow batteries provide promising solutions for stationary energy storage but most of the systems are based on expensive metal ions or synthetic organics. Here, the authors show a chlorine flow battery capitalizing the electrolysis of saltwater where the redox reaction is stabilized by the saltwater-immiscible organic flow.
Grid-scale energy storage is essential for reliable electricity transmission and renewable energy integration. Redox flow batteries (RFB) provide affordable and scalable solutions for stationary energy storage. However, most of the current RFB chemistries are based on expensive transition metal ions or synthetic organics. Here, we report a reversible chlorine redox flow battery starting from the electrolysis of aqueous NaCl electrolyte and the as-produced Cl 2 is extracted and stored in the carbon tetrachloride (CCl 4 ) or mineral spirit flow. The immiscibility between the CCl 4 or mineral spirit and NaCl electrolyte enables a membrane-free design with an energy efficiency of >91% at 10 mA/cm 2 and an energy density of 125.7 Wh/L. The chlorine flow battery can meet the stringent price and reliability target for stationary energy storage with the inherently low-cost active materials (~$5/kWh) and the highly reversible Cl 2 /Cl − redox reaction.
Grid-scale energy storage is essential for reliable electricity transmission and renewable energy integration. Redox flow batteries (RFB) provide affordable and scalable solutions for stationary energy storage. However, most of the current RFB chemistries are based on expensive transition metal ions or synthetic organics. Here, we report a reversible chlorine redox flow battery starting from the electrolysis of aqueous NaCl electrolyte and the as-produced Cl 2 is extracted and stored in the carbon tetrachloride (CCl 4 ) or mineral spirit flow. The immiscibility between the CCl 4 or mineral spirit and NaCl electrolyte enables a membrane-free design with an energy efficiency of >91% at 10 mA/cm 2 and an energy density of 125.7 Wh/L. The chlorine flow battery can meet the stringent price and reliability target for stationary energy storage with the inherently low-cost active materials (~$5/kWh) and the highly reversible Cl 2 /Cl − redox reaction. Flow batteries provide promising solutions for stationary energy storage but most of the systems are based on expensive metal ions or synthetic organics. Here, the authors show a chlorine flow battery capitalizing the electrolysis of saltwater where the redox reaction is stabilized by the saltwater-immiscible organic flow.
Grid-scale energy storage is essential for reliable electricity transmission and renewable energy integration. Redox flow batteries (RFB) provide affordable and scalable solutions for stationary energy storage. However, most of the current RFB chemistries are based on expensive transition metal ions or synthetic organics. Here, we report a reversible chlorine redox flow battery starting from the electrolysis of aqueous NaCl electrolyte and the as-produced Cl2 is extracted and stored in the carbon tetrachloride (CCl4) or mineral spirit flow. The immiscibility between the CCl4 or mineral spirit and NaCl electrolyte enables a membrane-free design with an energy efficiency of >91% at 10 mA/cm2 and an energy density of 125.7 Wh/L. The chlorine flow battery can meet the stringent price and reliability target for stationary energy storage with the inherently low-cost active materials (~$5/kWh) and the highly reversible Cl2/Cl- redox reaction.Grid-scale energy storage is essential for reliable electricity transmission and renewable energy integration. Redox flow batteries (RFB) provide affordable and scalable solutions for stationary energy storage. However, most of the current RFB chemistries are based on expensive transition metal ions or synthetic organics. Here, we report a reversible chlorine redox flow battery starting from the electrolysis of aqueous NaCl electrolyte and the as-produced Cl2 is extracted and stored in the carbon tetrachloride (CCl4) or mineral spirit flow. The immiscibility between the CCl4 or mineral spirit and NaCl electrolyte enables a membrane-free design with an energy efficiency of >91% at 10 mA/cm2 and an energy density of 125.7 Wh/L. The chlorine flow battery can meet the stringent price and reliability target for stationary energy storage with the inherently low-cost active materials (~$5/kWh) and the highly reversible Cl2/Cl- redox reaction.
Grid-scale energy storage is essential for reliable electricity transmission and renewable energy integration. Redox flow batteries (RFB) provide affordable and scalable solutions for stationary energy storage. However, most of the current RFB chemistries are based on expensive transition metal ions or synthetic organics. Here, we report a reversible chlorine redox flow battery starting from the electrolysis of aqueous NaCl electrolyte and the as-produced Cl2 is extracted and stored in the carbon tetrachloride (CCl4) or mineral spirit flow. The immiscibility between the CCl4 or mineral spirit and NaCl electrolyte enables a membrane-free design with an energy efficiency of >91% at 10 mA/cm2 and an energy density of 125.7 Wh/L. The chlorine flow battery can meet the stringent price and reliability target for stationary energy storage with the inherently low-cost active materials (~$5/kWh) and the highly reversible Cl2/Cl− redox reaction.Flow batteries provide promising solutions for stationary energy storage but most of the systems are based on expensive metal ions or synthetic organics. Here, the authors show a chlorine flow battery capitalizing the electrolysis of saltwater where the redox reaction is stabilized by the saltwater-immiscible organic flow.
ArticleNumber 1281
Author Wang, Chunsheng
Li, Chunzhong
Chen, Ji
Hou, Singyuk
Wang, Wei
Ji, Xiao
Yang, Chongyin
Chen, Long
Cui, Chunyu
Fan, Xiaotong
Fan, Xiulin
Wang, Boyu
Author_xml – sequence: 1
  givenname: Singyuk
  orcidid: 0000-0002-6444-7632
  surname: Hou
  fullname: Hou, Singyuk
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 2
  givenname: Long
  orcidid: 0000-0001-8391-9706
  surname: Chen
  fullname: Chen, Long
  email: longchen@ecust.edu.cn
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland, Department of Chemical Engineering, East China University of Science and Technology
– sequence: 3
  givenname: Xiulin
  surname: Fan
  fullname: Fan, Xiulin
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 4
  givenname: Xiaotong
  surname: Fan
  fullname: Fan, Xiaotong
  organization: School of Materials Science and Engineering, East China University of Science and Technology
– sequence: 5
  givenname: Xiao
  orcidid: 0000-0002-7043-5945
  surname: Ji
  fullname: Ji, Xiao
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 6
  givenname: Boyu
  surname: Wang
  fullname: Wang, Boyu
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 7
  givenname: Chunyu
  surname: Cui
  fullname: Cui, Chunyu
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 8
  givenname: Ji
  surname: Chen
  fullname: Chen, Ji
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 9
  givenname: Chongyin
  orcidid: 0000-0002-7127-3087
  surname: Yang
  fullname: Yang, Chongyin
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 10
  givenname: Wei
  orcidid: 0000-0002-5453-4695
  surname: Wang
  fullname: Wang, Wei
  organization: Energy & Environment Directorate, Pacific Northwest National Laboratory
– sequence: 11
  givenname: Chunzhong
  orcidid: 0000-0001-7897-5850
  surname: Li
  fullname: Li, Chunzhong
  organization: Department of Chemical Engineering, East China University of Science and Technology
– sequence: 12
  givenname: Chunsheng
  orcidid: 0000-0002-8626-6381
  surname: Wang
  fullname: Wang, Chunsheng
  email: cswang@umd.edu
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35277493$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1854384$$D View this record in Osti.gov
BookMark eNp9kstu1DAUhiNUREvpC7BAEWzYBHxLbEsICVWFVqrEBtaW4xxnPErsYntK5-3rmZTSdlFvbNnf_5-Lz-vqwAcPVfUWo08YUfE5Mcw63iBCGiKEQM3Ni-qIIIYbzAk9eHA-rE5SWqOyqMSCsVfVIW0J50zSo-rLuRtXDXiI47bWfqin8LcxIeV6hrmP2kNjI0BtVlOIzkNtC1D3OmeI2zfVS6unBCd3-3H1-_vZr9Pz5vLnj4vTb5eNaTueG2slIz0iXGjUYjDQEWmptEYPQOlABiIQ5cIOBgvcItlpy2wnbccosRxJelxdLL5D0Gt1Fd2s41YF7dT-IsRR6ZidmUBpK4nBzBigwAbdagBtRImhe4M7C8Xr6-J1telnGAz4HPX0yPTxi3crNYZrJSTmuMPF4P1iUJrkVDIug1mZ4D2YrLBoGRWsQB_vosTwZwMpq9klA9NUGho2SZGOCk6wpDv0wxN0HTbRl37uKcwplqhQ7x6mfZ_vv58sAFkAE0NKEew9gpHaTYxaJkaViVH7iVE3RSSeiEo5OruwK91Nz0vpIk0ljh8h_k_7GdUtX7DVdA
CitedBy_id crossref_primary_10_1016_j_ceramint_2023_06_308
crossref_primary_10_1002_batt_202300451
crossref_primary_10_1016_j_apmate_2025_100278
crossref_primary_10_1016_j_ensm_2023_01_033
crossref_primary_10_1016_j_electacta_2024_145426
crossref_primary_10_1021_jacs_3c09819
crossref_primary_10_1002_adma_202309330
crossref_primary_10_1016_j_applthermaleng_2025_125762
crossref_primary_10_1039_D3CS00771E
crossref_primary_10_1002_aenm_202500621
crossref_primary_10_1002_ange_202215342
crossref_primary_10_1039_D3EE01677C
crossref_primary_10_1021_jacs_4c10106
crossref_primary_10_1039_D3SC04545E
crossref_primary_10_1016_j_ijhydene_2024_05_049
crossref_primary_10_1016_j_nanoen_2023_108364
crossref_primary_10_1021_acsenergylett_2c02757
crossref_primary_10_1002_smll_202310978
crossref_primary_10_1016_j_jechem_2023_08_055
crossref_primary_10_1021_acsami_2c22554
crossref_primary_10_1002_anie_202310168
crossref_primary_10_1038_s41570_024_00597_z
crossref_primary_10_1021_jacs_4c08145
crossref_primary_10_1002_advs_202307780
crossref_primary_10_1134_S1023193522110088
crossref_primary_10_1002_smll_202412242
crossref_primary_10_1002_adfm_202415607
crossref_primary_10_1016_j_ensm_2024_103232
crossref_primary_10_1021_acsenergylett_3c01802
crossref_primary_10_1021_acs_organomet_3c00470
crossref_primary_10_3390_pr12071461
crossref_primary_10_1002_anie_202409071
crossref_primary_10_1002_ange_202310168
crossref_primary_10_1016_j_coelec_2022_101188
crossref_primary_10_1039_D3EY00231D
crossref_primary_10_1039_D4CS00202D
crossref_primary_10_1016_j_ijrefrig_2024_10_023
crossref_primary_10_1002_cssc_202401678
crossref_primary_10_1002_smtd_202201553
crossref_primary_10_1039_D4EE01015A
crossref_primary_10_1002_anie_202305695
crossref_primary_10_1039_D4TA05108D
crossref_primary_10_1002_ange_202409071
crossref_primary_10_1080_17518253_2024_2302834
crossref_primary_10_1002_advs_202305061
crossref_primary_10_3390_en15197397
crossref_primary_10_1016_j_apsusc_2023_157350
crossref_primary_10_1039_D2CS00765G
crossref_primary_10_1002_sus2_196
crossref_primary_10_1016_j_ensm_2025_104097
crossref_primary_10_1007_s11706_024_0681_0
crossref_primary_10_1039_D2NR07291B
crossref_primary_10_1016_j_jpowsour_2024_235754
crossref_primary_10_1021_acsaem_3c00646
crossref_primary_10_3866_PKU_WHXB202310024
crossref_primary_10_1016_j_jpowsour_2023_233477
crossref_primary_10_1002_anie_202215342
crossref_primary_10_59717_j_xinn_energy_2024_100040
crossref_primary_10_1002_ange_202305695
crossref_primary_10_1038_s41467_024_52830_4
crossref_primary_10_1093_nsr_nwaf029
Cites_doi 10.1021/cr020738u
10.1149/1.2095685
10.1149/2.F06103if
10.1007/BF00610944
10.1038/s41563-019-0536-8
10.1002/aenm.201100008
10.1149/2.071208jes
10.1039/c2ra21342g
10.1021/ie048797g
10.1021/acsenergylett.7b00650
10.1149/1.2131403
10.1149/1.3599565
10.1021/je00040a017
10.1016/j.apenergy.2014.05.034
10.1016/j.jpowsour.2009.08.041
10.1002/aenm.201100152
10.1016/0013-4686(77)80045-5
10.1016/j.jpowsour.2006.02.095
10.1016/0378-7753(88)80081-8
10.1016/j.snb.2020.128925
10.1021/cr100290v
10.1002/anie.201406112
10.1016/j.joule.2018.07.005
10.1002/admi.201500309
10.1149/1.2401670
10.1149/1.2096508
10.1126/science.aab3033
10.1002/cssc.202000454
10.1039/C4CP00896K
10.1073/pnas.71.9.3321
10.1021/ed068p950
10.1149/1.2404432
10.1039/C4EE02158D
10.1016/0008-6223(70)90073-4
10.1021/jacs.8b13295
10.1126/science.1212741
10.1021/ja01589a011
10.1016/j.jct.2019.02.020
10.1016/j.jphotochemrev.2017.11.002
10.1038/nature15746
10.1007/s10800-011-0335-7
10.1021/acs.chemrev.5b00389
10.1039/C9TA03212F
10.1021/cr500720t
10.1021/bk-2020-1364.ch001
10.1021/acsenergylett.9b01423
10.1149/1.2133094
10.1016/j.cej.2019.123985
10.1016/j.jpowsour.2020.228004
10.1149/1.2129646
10.1073/pnas.0904101106
10.1021/ja01680a007
10.1021/acs.chemmater.7b04220
10.1016/0013-4686(79)85027-6
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OTOTI
5PM
DOA
DOI 10.1038/s41467-022-28880-x
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

CrossRef

MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_af92c14cce3e4da5aeeac8d2dabc16fe
PMC8917161
1854384
35277493
10_1038_s41467_022_28880_x
Genre Journal Article
GrantInformation_xml – fundername: U.S. Department of Energy (DOE)
  grantid: DEAR000389
  funderid: https://doi.org/10.13039/100000015
– fundername: U.S. Department of Energy (DOE)
  grantid: DEAR000389
– fundername: ;
  grantid: DEAR000389
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
AAPBV
AAYJO
ADQMX
AEDAW
OTOTI
ZA5
5PM
PUEGO
ID FETCH-LOGICAL-c567t-ff942b0278a051ece629f39fcade33d2d280378fdc1815096af4f69f6432f7093
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:25:44 EDT 2025
Thu Aug 21 14:20:29 EDT 2025
Fri May 19 00:44:37 EDT 2023
Fri Jul 11 02:54:40 EDT 2025
Wed Aug 13 07:38:28 EDT 2025
Mon Jul 21 05:34:05 EDT 2025
Tue Jul 01 04:17:46 EDT 2025
Thu Apr 24 23:10:01 EDT 2025
Fri Feb 21 02:38:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-ff942b0278a051ece629f39fcade33d2d280378fdc1815096af4f69f6432f7093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
DEAR000389
USDOE
ORCID 0000-0002-7043-5945
0000-0002-7127-3087
0000-0002-8626-6381
0000-0001-8391-9706
0000-0001-7897-5850
0000-0002-6444-7632
0000-0002-5453-4695
0000000270435945
0000000254534695
0000000264447632
0000000183919706
0000000178975850
0000000271273087
0000000286266381
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-28880-x
PMID 35277493
PQID 2638173190
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_af92c14cce3e4da5aeeac8d2dabc16fe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8917161
osti_scitechconnect_1854384
proquest_miscellaneous_2638721934
proquest_journals_2638173190
pubmed_primary_35277493
crossref_primary_10_1038_s41467_022_28880_x
crossref_citationtrail_10_1038_s41467_022_28880_x
springer_journals_10_1038_s41467_022_28880_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-11
PublicationDateYYYYMMDD 2022-03-11
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United Kingdom
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Skyllas-Kazacos, Chakrabarti, Hajimolana, Mjalli, Saleem (CR16) 2011; 158
Janssen, Starmans, Visser, Barendrecht (CR24) 1977; 22
Kim, Jorne (CR32) 1980; 127
Karlsson, Cornell (CR43) 2016; 116
Vitagliano, Lyons (CR53) 1956; 78
Leung (CR7) 2012; 2
Kim, Jorne (CR30) 1978; 125
Yang (CR1) 2011; 111
Tang, Sandall (CR54) 1985; 30
Soloveichik (CR6) 2015; 115
Ponce de Leon, Frias-Ferrer, Gonzalez-Garcia, Szanto, Walsh (CR5) 2006; 29
Nguyen, Savinell (CR45) 2010; 19
Exner, Anton, Jacob, Over (CR41) 2014; 53
Hamelet (CR22) 2012; 159
Ansari, Qurashi, Nazeeruddin (CR2) 2018; 35
Duduta (CR21) 2011; 1
CR8
Wei (CR18) 2017; 2
Schwan (CR11) 2020; 13
Hine, Yasuda (CR23) 1974; 121
Ulaganathan (CR17) 2016; 3
Denton, Harrison, Knowles (CR40) 1979; 24
Kumar (CR65) 2021; 327
Hildebrand, Lamoreaux (CR55) 1974; 71
Young (CR37) 1983; 12
Chai, Lashgari, Jiang (CR10) 2020; 1364
Janoschka (CR20) 2015; 527
Song, Li, Yan, Tang (CR51) 2020; 456
Scott (CR60) 1991; 68
CR57
Li (CR39) 2019; 134
Lu, McElroy, Kiviluoma (CR3) 2009; 106
Sun, Chen, Zhang, Han, Luo (CR50) 2010; 3
CR52
Holleck (CR34) 1972; 119
Kim, Jorne (CR29) 1977; 124
Goulet (CR13) 2019; 141
Hooley (CR36) 1970; 8
Zeradjanin, Menzel, Schuhmann, Strasser (CR42) 2014; 16
Aaron, Tang, Papandrew, Zawodzinski (CR56) 2011; 41
Darling, Gallagher, Kowalski, Ha, Brushett (CR19) 2014; 7
Tan (CR9) 2020; 19
Gifford, Palmisano (CR35) 1988; 135
Agarwal, Florian, Goldsmith, Singh (CR25) 2019; 4
Arora, Zhang (CR44) 2004; 104
Lewis (CR48) 1925; 47
Wang (CR59) 2019; 7
CR28
CR27
CR26
Hofmann (CR14) 2018; 30
Cathro (CR58) 1988; 23
Jorne, Kim, Kralik (CR31) 1979; 9
Dunn, Kamath, Tarascon (CR4) 2011; 334
Xu, Zhao, Zhang (CR49) 2014; 130
Kwabi (CR15) 2018; 2
CR64
Li (CR38) 2011; 1
CR63
Lee, Park, Kwon (CR12) 2020; 386
CR62
CR61
Lin (CR46) 2015; 349
Bosse, Bart (CR47) 2005; 44
Thomas (CR33) 1989; 136
B Dunn (28880_CR4) 2011; 334
D Bosse (28880_CR47) 2005; 44
M Skyllas-Kazacos (28880_CR16) 2011; 158
M Duduta (28880_CR21) 2011; 1
T Janoschka (28880_CR20) 2015; 527
JT Kim (28880_CR29) 1977; 124
X Li (28880_CR39) 2019; 134
Z Yang (28880_CR1) 2011; 111
C Ponce de Leon (28880_CR5) 2006; 29
JD Hofmann (28880_CR14) 2018; 30
R Tan (28880_CR9) 2020; 19
Q Xu (28880_CR49) 2014; 130
P Leung (28880_CR7) 2012; 2
K Lin (28880_CR46) 2015; 349
DA Denton (28880_CR40) 1979; 24
CL Young (28880_CR37) 1983; 12
MIH Ansari (28880_CR2) 2018; 35
T Nguyen (28880_CR45) 2010; 19
A Tang (28880_CR54) 1985; 30
DL Thomas (28880_CR33) 1989; 136
P Arora (28880_CR44) 2004; 104
X Wei (28880_CR18) 2017; 2
JT Kim (28880_CR30) 1978; 125
KS Exner (28880_CR41) 2014; 53
AR Zeradjanin (28880_CR42) 2014; 16
KJ Cathro (28880_CR58) 1988; 23
JR Lewis (28880_CR48) 1925; 47
JH Hildebrand (28880_CR55) 1974; 71
28880_CR8
28880_CR64
DG Kwabi (28880_CR15) 2018; 2
28880_CR62
S Hamelet (28880_CR22) 2012; 159
28880_CR63
LJJ Janssen (28880_CR24) 1977; 22
H Wang (28880_CR59) 2019; 7
RM Darling (28880_CR19) 2014; 7
PR Gifford (28880_CR35) 1988; 135
28880_CR28
Y Song (28880_CR51) 2020; 456
28880_CR26
28880_CR27
W Lee (28880_CR12) 2020; 386
J Chai (28880_CR10) 2020; 1364
TM Scott (28880_CR60) 1991; 68
M Ulaganathan (28880_CR17) 2016; 3
M-A Goulet (28880_CR13) 2019; 141
H Agarwal (28880_CR25) 2019; 4
28880_CR61
J Jorne (28880_CR31) 1979; 9
D Aaron (28880_CR56) 2011; 41
S Kumar (28880_CR65) 2021; 327
28880_CR52
28880_CR57
JG Hooley (28880_CR36) 1970; 8
JT Kim (28880_CR32) 1980; 127
S Schwan (28880_CR11) 2020; 13
C Sun (28880_CR50) 2010; 3
L Li (28880_CR38) 2011; 1
GL Soloveichik (28880_CR6) 2015; 115
V Vitagliano (28880_CR53) 1956; 78
GL Holleck (28880_CR34) 1972; 119
RKB Karlsson (28880_CR43) 2016; 116
X Lu (28880_CR3) 2009; 106
F Hine (28880_CR23) 1974; 121
References_xml – volume: 104
  start-page: 4419
  year: 2004
  end-page: 4462
  ident: CR44
  article-title: Battery separators
  publication-title: Chem. Rev.
  doi: 10.1021/cr020738u
– volume: 135
  start-page: 650
  year: 1988
  ident: CR35
  article-title: An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2095685
– volume: 19
  start-page: 54
  year: 2010
  end-page: 56
  ident: CR45
  article-title: Flow batteries
  publication-title: Electrochem. Soc. Interface
  doi: 10.1149/2.F06103if
– volume: 9
  start-page: 573
  year: 1979
  end-page: 579
  ident: CR31
  article-title: The zinc-chlorine battery: half-cell overpotential measurements
  publication-title: J. Appl. Electrochem
  doi: 10.1007/BF00610944
– volume: 19
  start-page: 195
  year: 2020
  end-page: 202
  ident: CR9
  article-title: Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0536-8
– volume: 1
  start-page: 394
  year: 2011
  end-page: 400
  ident: CR38
  article-title: A stable vanadium redox-flow battery with high energy density for large-scale energy storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100008
– volume: 159
  start-page: A1360
  year: 2012
  end-page: A1367
  ident: CR22
  article-title: Non-aqueous Li-based redox flow batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.071208jes
– volume: 12
  start-page: 333
  year: 1983
  end-page: 445
  ident: CR37
  article-title: Sulfur dioxide. Chlorine, fluorine and chlorine oxides
  publication-title: Sol. Data Ser.
– ident: CR61
– volume: 2
  start-page: 10125
  year: 2012
  end-page: 10156
  ident: CR7
  article-title: Progress in redox flow batteries, remaining challenges and their applications in energy storage
  publication-title: RSC Adv.
  doi: 10.1039/c2ra21342g
– ident: CR8
– volume: 44
  start-page: 8428
  year: 2005
  end-page: 8435
  ident: CR47
  article-title: Viscosity calculations on the basis of Eyring’s absolute reaction rate theory and COSMOSPACE
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie048797g
– volume: 2
  start-page: 2187
  year: 2017
  end-page: 2204
  ident: CR18
  article-title: Materials and systems for organic redox flow batteries: status and challenges
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00650
– volume: 125
  start-page: 89
  year: 1978
  end-page: 94
  ident: CR30
  article-title: Mass transfer of dissolved chlorine to a rotating-zinc hemisphere in ZnCI solution
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2131403
– volume: 158
  start-page: R55
  year: 2011
  ident: CR16
  article-title: Progress in flow battery research and development
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3599565
– volume: 30
  start-page: 189
  year: 1985
  end-page: 191
  ident: CR54
  article-title: Diffusion coefficient of chlorine in water at 25–60 °C
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je00040a017
– volume: 130
  start-page: 139
  year: 2014
  end-page: 147
  ident: CR49
  article-title: Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.05.034
– volume: 3
  start-page: 890
  year: 2010
  end-page: 897
  ident: CR50
  article-title: Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.08.041
– volume: 1
  start-page: 511
  year: 2011
  end-page: 516
  ident: CR21
  article-title: Semi-solid lithium rechargeable flow battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100152
– ident: CR57
– volume: 22
  start-page: 1093
  year: 1977
  end-page: 1100
  ident: CR24
  article-title: Mechanism of the chlorine evolution on a ruthenium oxide/titanium oxide electrode and on a ruthenium electrode
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(77)80045-5
– volume: 29
  start-page: 716
  year: 2006
  end-page: 732
  ident: CR5
  article-title: Redox flow cells for energy conversion
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.02.095
– volume: 23
  start-page: 365
  year: 1988
  end-page: 363
  ident: CR58
  article-title: Performance of zinc/bromine cells having a propionitrile electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(88)80081-8
– volume: 327
  start-page: 128925
  year: 2021
  ident: CR65
  article-title: Room temperature highly sensitive chlorine sensor based on reduced graphene oxide anchored with substituted copper phthalocyanine
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128925
– ident: CR64
– volume: 111
  start-page: 3577
  year: 2011
  end-page: 3613
  ident: CR1
  article-title: Electrochemical energy storage for green grid
  publication-title: Chem. Rev.
  doi: 10.1021/cr100290v
– ident: CR26
– volume: 53
  start-page: 11032
  year: 2014
  end-page: 11035
  ident: CR41
  article-title: Controlling selectivity in the chlorine evolution reaction over RuO -based catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201406112
– volume: 2
  start-page: 1894
  year: 2018
  end-page: 1906
  ident: CR15
  article-title: Alkaline quinone flow battery with long lifetime at pH 12
  publication-title: Joule
  doi: 10.1016/j.joule.2018.07.005
– volume: 3
  start-page: 1500309
  year: 2016
  ident: CR17
  article-title: Recent advancements in all-vanadium redox flow
  publication-title: Batteries. Adv. Mater. Inter.
  doi: 10.1002/admi.201500309
– volume: 121
  start-page: 1289
  year: 1974
  ident: CR23
  article-title: Studies on the Moor of the chlorine electrode process
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2401670
– volume: 136
  start-page: 3553
  year: 1989
  ident: CR33
  article-title: A LiAl/Cl battery with a four-component alkali-metal chloride electrolyte
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2096508
– volume: 349
  start-page: 1529
  year: 2015
  end-page: 1532
  ident: CR46
  article-title: Alkaline quinone flow battery
  publication-title: Science
  doi: 10.1126/science.aab3033
– volume: 13
  start-page: 5480
  year: 2020
  end-page: 5488
  ident: CR11
  article-title: Substituent pattern effects on the redox potentials of quinone-based active materials for aqueous redox flow batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202000454
– volume: 16
  start-page: 13741
  year: 2014
  end-page: 13747
  ident: CR42
  article-title: On the faradaic selectivity and the role of surface inhomogeneity during the chlorine evolution reaction on ternary Ti–Ru–Ir mixed metal oxide electrocatalysts
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00896K
– volume: 71
  start-page: 3321
  year: 1974
  end-page: 3324
  ident: CR55
  article-title: Diffusivity of gases in liquids
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.71.9.3321
– volume: 68
  start-page: 950
  year: 1991
  ident: CR60
  article-title: The suitability of mineral oil as a halogen extraction solvent
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed068p950
– volume: 119
  start-page: 1158
  year: 1972
  ident: CR34
  article-title: The reduction of chlorine on carbon in AlCl -KCl-NaCl melts
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2404432
– volume: 7
  start-page: 3459
  year: 2014
  end-page: 3477
  ident: CR19
  article-title: Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02158D
– ident: CR63
– ident: CR27
– volume: 8
  start-page: 333
  year: 1970
  end-page: 339
  ident: CR36
  article-title: A search for intercalation in the graphite-chlorine system
  publication-title: Carbon
  doi: 10.1016/0008-6223(70)90073-4
– volume: 141
  start-page: 8014
  year: 2019
  end-page: 8019
  ident: CR13
  article-title: Extending the lifetime of organic flow batteries via redox state management
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13295
– volume: 334
  start-page: 928
  year: 2011
  end-page: 935
  ident: CR4
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 78
  start-page: 1549
  year: 1956
  end-page: 1552
  ident: CR53
  article-title: Diffusion coefficients for aqueous solutions of sodium chloride and barium chloride
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01589a011
– volume: 134
  start-page: 69
  year: 2019
  end-page: 75
  ident: CR39
  article-title: Investigation of electrolytes of the vanadium redox flow battery (VII): Prediction of the viscosity of mixed electrolyte solution (VOSO  + H SO  + H O) based on Eyring’s theory
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2019.02.020
– volume: 35
  start-page: 1
  year: 2018
  end-page: 24
  ident: CR2
  article-title: Frontiers, opportunities, and challenges in perovskite solar cells: a critical review
  publication-title: J. Photochem. Photobiol. C.
  doi: 10.1016/j.jphotochemrev.2017.11.002
– volume: 527
  start-page: 78
  year: 2015
  end-page: 81
  ident: CR20
  article-title: An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials
  publication-title: Nature
  doi: 10.1038/nature15746
– volume: 41
  start-page: 1175
  year: 2011
  ident: CR56
  article-title: Polarization curve analysis of all-vanadium redox flow batteries
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-011-0335-7
– volume: 116
  start-page: 2982
  year: 2016
  end-page: 3028
  ident: CR43
  article-title: Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00389
– volume: 7
  start-page: 13050
  year: 2019
  end-page: 13059
  ident: CR59
  article-title: Novel aqueous Li (or Na )/Br hybrid-ion battery with super high areal capacity and energy density
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C9TA03212F
– volume: 115
  start-page: 11533
  year: 2015
  end-page: 11558
  ident: CR6
  article-title: Flow batteries: current status and trends
  publication-title: Chem. Rev.
  doi: 10.1021/cr500720t
– volume: 1364
  start-page: 1
  year: 2020
  end-page: 47
  ident: CR10
  article-title: Electroactive materials for next-generation redox flow batteries: from inorganic to organic
  publication-title: ACS Symp . Seriers
  doi: 10.1021/bk-2020-1364.ch001
– volume: 4
  start-page: 2368
  year: 2019
  end-page: 2377
  ident: CR25
  article-title: V /V redox kinetics on glassy carbon in acidic electrolytes for vanadium redox flow batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01423
– ident: CR52
– volume: 124
  start-page: 1473
  year: 1977
  end-page: 1477
  ident: CR29
  article-title: The kinetics of a chlorine graphite electrode in the zinc-chlorine battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2133094
– volume: 386
  start-page: 123985
  year: 2020
  ident: CR12
  article-title: Alkaline aqueous organic redox flow batteries of high energy and power densities using mixed naphthoquinone derivatives
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.cej.2019.123985
– volume: 456
  start-page: 228004
  year: 2020
  ident: CR51
  article-title: Unraveling the viscosity impact on volumetric transfer in redox flow batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228004
– volume: 127
  start-page: 8
  year: 1980
  end-page: 15
  ident: CR32
  article-title: The kinetics and mass transfer of zinc electrode in acidic zinc-chloride solution
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2129646
– volume: 106
  start-page: 10933
  year: 2009
  end-page: 10938
  ident: CR3
  article-title: Global potential for wind-generated electricity
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0904101106
– volume: 47
  start-page: 626
  year: 1925
  end-page: 640
  ident: CR48
  article-title: The viscosity of liquids containging dissolved gases
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01680a007
– volume: 30
  start-page: 762
  year: 2018
  end-page: 774
  ident: CR14
  article-title: Quest for organic active materials for redox flow batteries: 2,3-Diaza-anthraquinones and their electrochemical properties
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b04220
– ident: CR28
– ident: CR62
– volume: 24
  start-page: 521
  year: 1979
  end-page: 527
  ident: CR40
  article-title: Chlorine evolution and reduction on RuO /TiO electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(79)85027-6
– volume: 7
  start-page: 13050
  year: 2019
  ident: 28880_CR59
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C9TA03212F
– volume: 127
  start-page: 8
  year: 1980
  ident: 28880_CR32
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2129646
– volume: 456
  start-page: 228004
  year: 2020
  ident: 28880_CR51
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228004
– ident: 28880_CR62
– ident: 28880_CR8
– volume: 23
  start-page: 365
  year: 1988
  ident: 28880_CR58
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(88)80081-8
– volume: 68
  start-page: 950
  year: 1991
  ident: 28880_CR60
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed068p950
– volume: 2
  start-page: 10125
  year: 2012
  ident: 28880_CR7
  publication-title: RSC Adv.
  doi: 10.1039/c2ra21342g
– volume: 327
  start-page: 128925
  year: 2021
  ident: 28880_CR65
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128925
– volume: 3
  start-page: 890
  year: 2010
  ident: 28880_CR50
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.08.041
– volume: 106
  start-page: 10933
  year: 2009
  ident: 28880_CR3
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0904101106
– volume: 159
  start-page: A1360
  year: 2012
  ident: 28880_CR22
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.071208jes
– volume: 4
  start-page: 2368
  year: 2019
  ident: 28880_CR25
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01423
– volume: 158
  start-page: R55
  year: 2011
  ident: 28880_CR16
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3599565
– volume: 134
  start-page: 69
  year: 2019
  ident: 28880_CR39
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2019.02.020
– volume: 130
  start-page: 139
  year: 2014
  ident: 28880_CR49
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.05.034
– ident: 28880_CR28
– volume: 125
  start-page: 89
  year: 1978
  ident: 28880_CR30
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2131403
– volume: 71
  start-page: 3321
  year: 1974
  ident: 28880_CR55
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.71.9.3321
– volume: 141
  start-page: 8014
  year: 2019
  ident: 28880_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13295
– volume: 35
  start-page: 1
  year: 2018
  ident: 28880_CR2
  publication-title: J. Photochem. Photobiol. C.
  doi: 10.1016/j.jphotochemrev.2017.11.002
– volume: 111
  start-page: 3577
  year: 2011
  ident: 28880_CR1
  publication-title: Chem. Rev.
  doi: 10.1021/cr100290v
– volume: 3
  start-page: 1500309
  year: 2016
  ident: 28880_CR17
  publication-title: Batteries. Adv. Mater. Inter.
  doi: 10.1002/admi.201500309
– ident: 28880_CR61
– volume: 119
  start-page: 1158
  year: 1972
  ident: 28880_CR34
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2404432
– volume: 124
  start-page: 1473
  year: 1977
  ident: 28880_CR29
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2133094
– volume: 386
  start-page: 123985
  year: 2020
  ident: 28880_CR12
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.cej.2019.123985
– volume: 1
  start-page: 394
  year: 2011
  ident: 28880_CR38
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100008
– volume: 9
  start-page: 573
  year: 1979
  ident: 28880_CR31
  publication-title: J. Appl. Electrochem
  doi: 10.1007/BF00610944
– ident: 28880_CR27
– volume: 24
  start-page: 521
  year: 1979
  ident: 28880_CR40
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(79)85027-6
– volume: 13
  start-page: 5480
  year: 2020
  ident: 28880_CR11
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202000454
– volume: 47
  start-page: 626
  year: 1925
  ident: 28880_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01680a007
– volume: 16
  start-page: 13741
  year: 2014
  ident: 28880_CR42
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00896K
– volume: 1364
  start-page: 1
  year: 2020
  ident: 28880_CR10
  publication-title: ACS Symp . Seriers
  doi: 10.1021/bk-2020-1364.ch001
– volume: 44
  start-page: 8428
  year: 2005
  ident: 28880_CR47
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie048797g
– volume: 136
  start-page: 3553
  year: 1989
  ident: 28880_CR33
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2096508
– volume: 8
  start-page: 333
  year: 1970
  ident: 28880_CR36
  publication-title: Carbon
  doi: 10.1016/0008-6223(70)90073-4
– ident: 28880_CR64
– volume: 527
  start-page: 78
  year: 2015
  ident: 28880_CR20
  publication-title: Nature
  doi: 10.1038/nature15746
– volume: 30
  start-page: 762
  year: 2018
  ident: 28880_CR14
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b04220
– volume: 53
  start-page: 11032
  year: 2014
  ident: 28880_CR41
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201406112
– volume: 2
  start-page: 2187
  year: 2017
  ident: 28880_CR18
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00650
– volume: 135
  start-page: 650
  year: 1988
  ident: 28880_CR35
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2095685
– volume: 30
  start-page: 189
  year: 1985
  ident: 28880_CR54
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je00040a017
– ident: 28880_CR26
– volume: 7
  start-page: 3459
  year: 2014
  ident: 28880_CR19
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02158D
– volume: 116
  start-page: 2982
  year: 2016
  ident: 28880_CR43
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00389
– volume: 1
  start-page: 511
  year: 2011
  ident: 28880_CR21
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100152
– volume: 115
  start-page: 11533
  year: 2015
  ident: 28880_CR6
  publication-title: Chem. Rev.
  doi: 10.1021/cr500720t
– volume: 12
  start-page: 333
  year: 1983
  ident: 28880_CR37
  publication-title: Sol. Data Ser.
– ident: 28880_CR63
– volume: 121
  start-page: 1289
  year: 1974
  ident: 28880_CR23
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2401670
– ident: 28880_CR57
– volume: 334
  start-page: 928
  year: 2011
  ident: 28880_CR4
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 41
  start-page: 1175
  year: 2011
  ident: 28880_CR56
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-011-0335-7
– volume: 2
  start-page: 1894
  year: 2018
  ident: 28880_CR15
  publication-title: Joule
  doi: 10.1016/j.joule.2018.07.005
– volume: 29
  start-page: 716
  year: 2006
  ident: 28880_CR5
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.02.095
– ident: 28880_CR52
– volume: 22
  start-page: 1093
  year: 1977
  ident: 28880_CR24
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(77)80045-5
– volume: 104
  start-page: 4419
  year: 2004
  ident: 28880_CR44
  publication-title: Chem. Rev.
  doi: 10.1021/cr020738u
– volume: 19
  start-page: 195
  year: 2020
  ident: 28880_CR9
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0536-8
– volume: 78
  start-page: 1549
  year: 1956
  ident: 28880_CR53
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01589a011
– volume: 19
  start-page: 54
  year: 2010
  ident: 28880_CR45
  publication-title: Electrochem. Soc. Interface
  doi: 10.1149/2.F06103if
– volume: 349
  start-page: 1529
  year: 2015
  ident: 28880_CR46
  publication-title: Science
  doi: 10.1126/science.aab3033
SSID ssj0000391844
Score 2.594987
Snippet Grid-scale energy storage is essential for reliable electricity transmission and renewable energy integration. Redox flow batteries (RFB) provide affordable...
Abstract Grid-scale energy storage is essential for reliable electricity transmission and renewable energy integration. Redox flow batteries (RFB) provide...
Flow batteries provide promising solutions for stationary energy storage but most of the systems are based on expensive metal ions or synthetic organics. Here,...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1281
SubjectTerms 140/133
147/135
639/166/4073/4071
639/4077/4079/891
Carbon tetrachloride
Chlorine
Electric power transmission
Electrolysis
Electrolytes
Energy efficiency
Energy storage
Flow
Flux density
Humanities and Social Sciences
Immiscibility
Low cost
Membranes
Metal ions
Miscibility
multidisciplinary
Rechargeable batteries
Redox reactions
Renewable energy
Saline water
Science
Science (multidisciplinary)
Sodium chloride
Storage batteries
Transition metals
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEB5EEHyR1qpN_UEE33QxyW5-LPhiiyKCPin4tmx2Z7GguaIn1f_emU3u9NS2L32647LJJbMzs9-wX74B2GlkW0tfO0FQ3gpVll60GFC0Hhv6otsqsgnPzquTS3V6VV69avXFnLBeHrg33L4NunC5cg4lKm9Li5QqGl9427q8CsjZl9a8V8VUzMFSU-mihrdkMtns36uYE5i8XlDVl4nHmZUoCvbTx4gC6yOw-Z4z-WbjNK5Hx59gaQCS6WH_AJ9hDrtlWOhbSz59gQMmcAiMb_altvPpzei3cPS_6S3eUoXcoQh3iKm7jhQ8TAMNSNuotvm0ApfHRxc_TsTQKUG4sqrHIgStipY3ES0FGTqsCh2kDkyxl5KMxT2o6iZ4Rws6C77YoEKlA8GRItSZlqsw3406_AqpqnxWBlkjATEqTbxleR3CKQSzPLrSJ5BPrGbcICPO3SxuTNzOlo3pLW3I0iZa2jwmsDs951cvovHX0d95MqYjWQA7_kBuYQa3MP9yiwTWeSoN4QgWw3XMGnJjQ-hEyUYlsDGZYTPE7L0pKlYrpJSUJbA9PUzRxlsoNC2jh34M1cxa0iXWeoeY3idBWcLSWiZQz7jKzIPMHul-XkdF70azalGewN7EqV5u68-G-vY_DLUOiwUHBVMU8w2YH9894CbhrHG7FUPqGdG4JuE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7alEIvpe86L1zorRWxLdmWoFCakm0otKcGchO2NGoCiZ3ubmjy7zMjex22j5x2WWt3rXloPmnG3wC81bKtpa-dICjfCFWWXrQYULQeNb0xbRWrCb99rw6P1Nfj8ng8cFuMZZWrNTEu1L53fEa-V1TMJUcGk328-CW4axRnV8cWGvfhQU6Rhku69OzLdMbC7OdaqfFZmUzqvYWKKwOXsBe098vE1Vo8irT99NKTe_0Lcv5dOflH-jRGpdkTeDzCyfTToP-ncA-7Z_BwaDB5_Rw-cBmHwPh8X9p0Pj3rfwtH_5ue4zntkzsUYY6YupNYiIdpoAFpGzk3r1_A0ezgx-dDMfZLEK6s6qUIwaii5VRiQ66GDqvCBGkCF9pL6QvPnahqHbyjsM60L01QoTKBQEkR6szIl7DR9R2-hlRVPiuDrJHgGG1QfMMkO4RWCGx5dKVPIF9JzbqRTJx7WpzZmNSW2g6StiRpGyVtrxJ4N33nYqDSuHP0PitjGsk02PGDfv7Tjl5lm2AKlyvnUKLyTdkgxRFNM21al1cBE9hiVVpCE0yJ67h2yC0tYRQltUpge6VhO3ruwt7aWQJvpsvkc5xIIbX0l8MY2jkbST_xajCI6T4J0BKiNjKBes1U1iayfqU7PYm83towd1GewPuVUd3e1v8FtXn3LLbgUcHmziWI-TZsLOeXuEM4atnuRme5ATNpGwE
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9UwFD6MDcEX0fmrbkoF3zTYNmmbgC9XcYwL80UHewttcuKErR13d-j-e89Jf8jVOdhTS3vapifnNF-aL18A3mjZ1tLXThCUb4QqSy9aDChaj5p2TFtFNuHRl-rwWC1PypMtKKa5MJG0HyUt42d6Yoe9v1QxpZl7XlCnLROEG3dYqp1ie2exWH5dzn9WWPNcKzXOkMmkvuHijVYoivXTpqekuglo_suX_GvQNLZFBw_hwQgi08VQ7Eewhd0u3BuWlbx-DB-YvCEwzupLm86nZ_1P4ei56TmeU--4QxFWiKk7jfQ7TAMZpG1U2rx-AscHn799OhTjKgnClVW9FiEYVbQ8gNhQgqHDqjBBmsD0eil94Xn9qVoH76gxZ7GXJqhQmUBQpAh1ZuRT2O76Dp9DqiqflUHWSCCMuiW-YWkdwigEsTy60ieQT16zbpQQ55UszmwcypbaDp625GkbPW1_JfB2vuZiENC41fojV8ZsyeLX8UC_-m7HYLBNMIXLlXMoUfmmbJBaD01v2rQurwImsMdVaQlDsBCuY8aQW1tCJkpqlcD-VMN2zNdLW1SsVEifoyyB1_NpyjQePqFq6a8GG-ovG0m3eDYExFxOgrGEo41MoN4IlY0X2TzT_TiNat7asGJRnsC7Kaj-FOv_jnpxN_M9uF9w-DMRMd-H7fXqCl8Smlq3r8b0-Q0cVhq8
  priority: 102
  providerName: Springer Nature
Title High-energy and low-cost membrane-free chlorine flow battery
URI https://link.springer.com/article/10.1038/s41467-022-28880-x
https://www.ncbi.nlm.nih.gov/pubmed/35277493
https://www.proquest.com/docview/2638173190
https://www.proquest.com/docview/2638721934
https://www.osti.gov/biblio/1854384
https://pubmed.ncbi.nlm.nih.gov/PMC8917161
https://doaj.org/article/af92c14cce3e4da5aeeac8d2dabc16fe
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTaC9IL4JG1WQeANDEztxLIFQV61MlTYhoFLfrMQfDKlLoevE-t9z5yRFhcIDL0mUOF_nu9zv4vPvAJ4XvJLcSsMQypdMZJlllfOOVdYVuKGqPGQTnp7lJxMxnmbTHejKHbUCvNwa2lE9qcli9ur6--odGvzbZsp48fpSBHOnvPQUA7o-Q0y5h55JUkWD0xbuhy8zVxjQiHbuzPZT9-EWYhIERYpvuKrA6I-rOVreNjT6Z1LlbyOrwWGN7sDtFmnGg0Y17sKOq-_Bzab25Oo-vKEMD-bC1L-4rG08m_9gBu8bX7gLDKFrx_zCudichxw9F3tsEFeBjnP1ACaj48_DE9aWUmAmy-WSea9EWtEoY4lW6IzLU-W58pSDz7lNLRWpkoW3Bj0-McKUXvhcecQrqZd9xR_Cbj2v3WOIRW77mefSIVLD2MWWxL-DQAZxmHUmsxEkndS0aXnGqdzFTIfxbl7oRugaha6D0PV1BC_W53xrWDb-2fqIOmPdkhiyw4754otuDU6XXqUmEcY47oQts9KhiynwTcvKJLl3ERxQV2oEGsSWayityCw1whfBCxHBYdfDutNJneZEZ4jfrH4Ez9aH0RxpjAW7ZX7VtMGgWnG8xKNGIdbP2elVBHJDVTZeZPNI_fU8UH4XimiNkghedkr167H-Lqgn_32jA9hPySgocTE5hN3l4so9RfS1rHpwQ04lLovR-x7sDQbjT2NcHx2fffiIe4f5sBf-a_SC6f0E46Iymw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxEB5VRQheEDdLCywSPIHV7Np7SSDEFVJ6PLVS38yuPaZI7W5JUrX5U_xGZrxHFY6-9SlR1knW4_HMNzvjbwBe5LLKpM2MIChfCpUkVlToUFQWc3pTVKmvJtzZTSf76utBcrACv_qzMFxW2dtEb6htY_gZ-UacMpccKczo3clPwV2jOLvat9Bo1WILF2cUss3ebn6i9X0Zx-PPex8nousqIEySZnPhXKHiihNuJSkkGkzjwsnCcTm6lDa23K8py5015PyYHKV0yqWFI9cdu8yTL5HJv6YkeXI-mT7-MjzTYbb1XKnubM5I5hsz5S0Rl8zHFGuOxPmS__NtAuiloe38L4j7d6XmH-la7wXHt-FWB1_D962-3YEVrO_C9bah5eIevOGyEYH-PGFY1jY8as6Eof8Nj_GY4vIahZsihubQF_5h6GhAWHmOz8V92L8SST6A1bqp8RGEKrWjxMkMCf5RQGRLJvUhdETgzqJJbABRLzVtOvJy7qFxpH0SXea6lbQmSWsvaX0ewKvhOyctdceloz_wYgwjmXbbf9BMv-tuF-vSFbGJlDEoUdkyKZH8Vk4zLSsTpQ4DWOOl1IRemILXcK2SmWvCRErmKoD1foV1Zylm-kKvA3g-XKY9zokbWpbmtB1DkXoh6Scetgox3CcBaELwhQwgW1KVpYksX6l_HHoe8bxgrqQogNe9Ul3c1v8F9fjyWTyDG5O9nW29vbm7tQY3Y1Z9Ln-M1mF1Pj3FJ4Th5tVTv3FC-HbVO_U3O-5Xgw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqUBcEG9MCxgJTrBK4l2_JBCitFFLIaoQlXrb2ruzFKm1S5KqzV_j1zGztlOFR289JYo3iXceO994Z78BeJnJMpU2NYKgfCFUHFtRokNRWszoTV4mvprwyzjZ3lefDuKDFfjVnYXhsspuTfQLta0NPyPvRwlzyZHBDPquLYvY2xy9P_0puIMU77R27TQaE9nF-Tmlb9N3O5uk61dRNNr69nFbtB0GhImTdCacy1VU8uZbQcaJBpModzJ3XJoupY0s925KM2cNBUImSimccknuKIxHLvVETLT8r6acFfVgdWNrvPd18YSHudczpdqTOgOZ9afKr0tcQB9R5jkQF0vR0DcNoJeanPtfgPfvus0_Nm99TBzdgdstmA0_NNZ3F1awugc3mvaW8_vwlotIBPrThWFR2fC4PheG_jc8wRPK0isUboIYmiNfBoihowFh6Rk_5w9g_1pk-RB6VV3hYwhVYgexkykSGKT0yBZM8UNYiaCeRRPbAIad1LRpqcy5o8ax9lvqMtONpDVJWntJ64sAXi--c9oQeVw5eoOVsRjJJNz-g3ryXbc-rQuXR2aojEGJyhZxgRTFMpppUZph4jCANValJizDhLyGK5fMTBNCUjJTAax3GtbtujHVl1YewIvFZfJ43sYhtdRnzRjK23NJP_GoMYjFfRKcJjyfywDSJVNZmsjylerHkWcVz3JmThoG8KYzqsvb-r-gnlw9i-dwk7xUf94Z767BrYgtn2shh-vQm03O8CkBuln5rPWcEA6v21l_AxvFXRU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-energy+and+low-cost+membrane-free+chlorine+flow+battery&rft.jtitle=Nature+communications&rft.au=Hou%2C+Singyuk&rft.au=Chen%2C+Long&rft.au=Fan%2C+Xiulin&rft.au=Fan%2C+Xiaotong&rft.date=2022-03-11&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft_id=info:doi/10.1038%2Fs41467-022-28880-x&rft_id=info%3Apmid%2F35277493&rft.externalDocID=PMC8917161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon