The brain uses adaptive internal models of scene statistics for sensorimotor estimation and planning

To test the hypothesis that the brain uses adaptive models of object statistics to interpret sensory information, we measured the statistical models used by subjects to estimate object speed when asked to hit a moving object. Subjects’ behavior showed perceptual biases to the mean speed within a sti...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 11; p. 4167
Main Authors Kwon, Oh-Sang, Knill, David C.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 12.03.2013
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1214869110

Cover

Abstract To test the hypothesis that the brain uses adaptive models of object statistics to interpret sensory information, we measured the statistical models used by subjects to estimate object speed when asked to hit a moving object. Subjects’ behavior showed perceptual biases to the mean speed within a stimulus set that accurately adapted to changes in the variance of a stimulus set. More significantly, the results show that the way that stimuli on one trial influence following trials adapts appropriately to changes in trial-to-trial correlations in a stimulus set, although subjects’ estimates of correlations retain erroneous positive biases. Because of uncertainty and noise, the brain should use accurate internal models of the statistics of objects in scenes to interpret sensory signals. Moreover, the brain should adapt its internal models to the statistics within local stimulus contexts. Consider the problem of hitting a baseball. The impoverished nature of the visual information available makes it imperative that batters use knowledge of the temporal statistics and history of previous pitches to accurately estimate pitch speed. Using a laboratory analog of hitting a baseball, we tested the hypothesis that the brain uses adaptive internal models of the statistics of object speeds to plan hand movements to intercept moving objects. We fit Bayesian observer models to subjects’ performance to estimate the statistical environments in which subjects’ performance would be ideal and compared the estimated statistics with the true statistics of stimuli in an experiment. A first experiment showed that subjects accurately estimated and used the variance of object speeds in a stimulus set to time hitting behavior but also showed serial biases that are suboptimal for stimuli that were uncorrelated over time. A second experiment showed that the strength of the serial biases depended on the temporal correlations within a stimulus set, even when the biases were estimated from uncorrelated stimulus pairs subsampled from the larger set. Taken together, the results show that subjects adapted their internal models of the variance and covariance of object speeds within a stimulus set to plan interceptive movements but retained a bias to positive correlations.
AbstractList Because of uncertainty and noise, the brain should use accurate internal models of the statistics of objects in scenes to interpret sensory signals. Moreover, the brain should adapt its internal models to the statistics within local stimulus contexts. Consider the problem of hitting a baseball. The impoverished nature of the visual information available makes it imperative that batters use knowledge of the temporal statistics and history of previous pitches to accurately estimate pitch speed. Using a laboratory analog of hitting a baseball, we tested the hypothesis that the brain uses adaptive internal models of the statistics of object speeds to plan hand movements to intercept moving objects. We fit Bayesian observer models to subjects' performance to estimate the statistical environments in which subjects' performance would be ideal and compared the estimated statistics with the true statistics of stimuli in an experiment. A first experiment showed that subjects accurately estimated and used the variance of object speeds in a stimulus set to time hitting behavior but also showed serial biases that are suboptimal for stimuli that were uncorrelated over time. A second experiment showed that the strength of the serial biases depended on the temporal correlations within a stimulus set, even when the biases were estimated from uncorrelated stimulus pairs subsampled from the larger set. Taken together, the results show that subjects adapted their internal models of the variance and covariance of object speeds within a stimulus set to plan interceptive movements but retained a bias to positive correlations.Because of uncertainty and noise, the brain should use accurate internal models of the statistics of objects in scenes to interpret sensory signals. Moreover, the brain should adapt its internal models to the statistics within local stimulus contexts. Consider the problem of hitting a baseball. The impoverished nature of the visual information available makes it imperative that batters use knowledge of the temporal statistics and history of previous pitches to accurately estimate pitch speed. Using a laboratory analog of hitting a baseball, we tested the hypothesis that the brain uses adaptive internal models of the statistics of object speeds to plan hand movements to intercept moving objects. We fit Bayesian observer models to subjects' performance to estimate the statistical environments in which subjects' performance would be ideal and compared the estimated statistics with the true statistics of stimuli in an experiment. A first experiment showed that subjects accurately estimated and used the variance of object speeds in a stimulus set to time hitting behavior but also showed serial biases that are suboptimal for stimuli that were uncorrelated over time. A second experiment showed that the strength of the serial biases depended on the temporal correlations within a stimulus set, even when the biases were estimated from uncorrelated stimulus pairs subsampled from the larger set. Taken together, the results show that subjects adapted their internal models of the variance and covariance of object speeds within a stimulus set to plan interceptive movements but retained a bias to positive correlations.
Because of uncertainty and noise, the brain should use accurate internal models of the statistics of objects in scenes to interpret sensory signals. Moreover, the brain should adapt its internal models to the statistics within local stimulus contexts. Consider the problem of hitting a baseball. The impoverished nature of the visual information available makes it imperative that batters use knowledge of the temporal statistics and history of previous pitches to accurately estimate pitch speed. Using a laboratory analog of hitting a baseball, we tested the hypothesis that the brain uses adaptive internal models of the statistics of object speeds to plan hand movements to intercept moving objects. We fit Bayesian observer models to subjects' performance to estimate the statistical environments in which subjects' performance would be ideal and compared the estimated statistics with the true statistics of stimuli in an experiment. A first experiment showed that subjects accurately estimated and used the variance of object speeds in a stimulus set to time hitting behavior but also showed serial biases that are suboptimal for stimuli that were uncorrelated over time. A second experiment showed that the strength of the serial biases depended on the temporal correlations within a stimulus set, even when the biases were estimated from uncorrelated stimulus pairs subsampled from the larger set. Taken together, the results show that subjects adapted their internal models of the variance and covariance of object speeds within a stimulus set to plan interceptive movements but retained a bias to positive correlations. [PUBLICATION ABSTRACT]
Because of uncertainty and noise, the brain should use accurate internal models of the statistics of objects in scenes to interpret sensory signals. Moreover, the brain should adapt its internal models to the statistics within local stimulus contexts. Consider the problem of hitting a baseball. The impoverished nature of the visual information available makes it imperative that batters use knowledge of the temporal statistics and history of previous pitches to accurately estimate pitch speed. Using a laboratory analog of hitting a baseball, we tested the hypothesis that the brain uses adaptive internal models of the statistics of object speeds to plan hand movements to intercept moving objects. We fit Bayesian observer models to subjects' performance to estimate the statistical environments in which subjects' performance would be ideal and compared the estimated statistics with the true statistics of stimuli in an experiment. A first experiment showed that subjects accurately estimated and used the variance of object speeds in a stimulus set to time hitting behavior but also showed serial biases that are suboptimal for stimuli that were uncorrelated over time. A second experiment showed that the strength of the serial biases depended on the temporal correlations within a stimulus set, even when the biases were estimated from uncorrelated stimulus pairs subsampled from the larger set. Taken together, the results show that subjects adapted their internal models of the variance and covariance of object speeds within a stimulus set to plan interceptive movements but retained a bias to positive correlations.
To test the hypothesis that the brain uses adaptive models of object statistics to interpret sensory information, we measured the statistical models used by subjects to estimate object speed when asked to hit a moving object. Subjects’ behavior showed perceptual biases to the mean speed within a stimulus set that accurately adapted to changes in the variance of a stimulus set. More significantly, the results show that the way that stimuli on one trial influence following trials adapts appropriately to changes in trial-to-trial correlations in a stimulus set, although subjects’ estimates of correlations retain erroneous positive biases. Because of uncertainty and noise, the brain should use accurate internal models of the statistics of objects in scenes to interpret sensory signals. Moreover, the brain should adapt its internal models to the statistics within local stimulus contexts. Consider the problem of hitting a baseball. The impoverished nature of the visual information available makes it imperative that batters use knowledge of the temporal statistics and history of previous pitches to accurately estimate pitch speed. Using a laboratory analog of hitting a baseball, we tested the hypothesis that the brain uses adaptive internal models of the statistics of object speeds to plan hand movements to intercept moving objects. We fit Bayesian observer models to subjects’ performance to estimate the statistical environments in which subjects’ performance would be ideal and compared the estimated statistics with the true statistics of stimuli in an experiment. A first experiment showed that subjects accurately estimated and used the variance of object speeds in a stimulus set to time hitting behavior but also showed serial biases that are suboptimal for stimuli that were uncorrelated over time. A second experiment showed that the strength of the serial biases depended on the temporal correlations within a stimulus set, even when the biases were estimated from uncorrelated stimulus pairs subsampled from the larger set. Taken together, the results show that subjects adapted their internal models of the variance and covariance of object speeds within a stimulus set to plan interceptive movements but retained a bias to positive correlations.
Author Kwon, Oh-Sang
Knill, David C.
Author_xml – sequence: 1
  givenname: Oh-Sang
  surname: Kwon
  fullname: Kwon, Oh-Sang
– sequence: 2
  givenname: David C.
  surname: Knill
  fullname: Knill, David C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23440185$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLeFMyeQJS5c0s74K8kFCVXlQ6rEpZwtJ3FarxI7xE4l_j3O7naBSoiTZc8z4_edmTNy4oO3hLxGuEAo-eXkTbxAhqJSNSI8IxuEGgslajghGwBWFpVg4pScxbgFgFpW8IKcMi4EYCU3pLu9t7SZjfN0iTZS05kpuQdLnU929magY-jsEGnoaWyttzQmk1xMro20DzON1scwuzGkfLH5fczh4KnxHZ0G473zdy_J894M0b46nOfk-6fr26svxc23z1-vPt4UrVRlKnpp28YYy1hpscyuWC2kUtJUpuKKWygBjBS1Ma3qGqhbFLXolGKNBKu6jp-TD_u609KMtsty02wGPWV5Zv6pg3H674h39_ouPGiuAIQsc4H3hwJz-LFkN3p02fWQfdiwRI0VcGSCS_w_yrEUwJiCjL57gm7DsvZ2RylVYb37--2f4o-qH2eVAbkH2jnEONtety7tmp29uEEj6HUn9LoT-vdO5LzLJ3mPpf-dQQ9S1sCRXnHU1whKZOTNHtnGPPgjI5isOEPJfwEPgc4N
CitedBy_id crossref_primary_10_3758_s13421_021_01221_x
crossref_primary_10_1142_S0219635215500168
crossref_primary_10_1073_pnas_1610706114
crossref_primary_10_1111_desc_12912
crossref_primary_10_1002_hbm_23232
crossref_primary_10_1038_s41598_023_30265_z
crossref_primary_10_1038_s41598_020_62211_8
crossref_primary_10_1371_journal_pone_0100803
crossref_primary_10_1073_pnas_1713316115
crossref_primary_10_1177_2167702621991803
crossref_primary_10_1371_journal_pone_0149402
crossref_primary_10_1523_JNEUROSCI_0380_21_2021
crossref_primary_10_1016_j_neuron_2021_08_025
crossref_primary_10_1038_s41598_018_32504_0
crossref_primary_10_1017_S0140525X19001614
crossref_primary_10_12688_f1000research_11154_1
crossref_primary_10_1523_JNEUROSCI_0852_19_2019
crossref_primary_10_1016_j_cortex_2017_05_017
crossref_primary_10_1080_17470218_2014_989866
crossref_primary_10_1152_jn_00850_2015
crossref_primary_10_3389_fnhum_2020_580581
crossref_primary_10_1093_brain_awaa243
crossref_primary_10_1038_s41598_018_30722_0
crossref_primary_10_1038_s41598_020_62775_5
Cites_doi 10.1037/h0044417
10.1007/s00221-008-1678-0
10.1017/S0140525X00069934
10.1007/s002210000607
10.1016/0042-6989(87)90014-9
10.1016/j.neuron.2009.06.025
10.1037/h0030300
10.1371/journal.pone.0012686
10.1016/j.cogbrainres.2005.08.016
10.1152/jn.01168.2004
10.1038/nn1669
10.1167/8.4.20
10.1167/10.8.2
10.1523/JNEUROSCI.2028-11.2011
10.1038/nn0602-858
10.1016/0010-0285(72)90016-3
10.1037/0096-3445.129.2.220
10.1016/0001-6918(95)98945-Z
10.1016/0042-6989(88)90064-8
10.1167/11.6.14
10.1016/j.visres.2008.12.003
10.1038/nn.2590
10.1523/JNEUROSCI.6525-10.2011
10.3758/BF03193079
10.1152/jn.00066.2009
10.1037/0096-1523.24.3.901
10.1037/0033-295X.102.3.490
10.1016/j.visres.2008.05.023
10.1073/pnas.1001709107
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Mar 12, 2013
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Mar 12, 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1214869110
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts
MEDLINE
CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Statistics
DocumentTitleAlternate Adapting to scene statistics in a visuomotor task
EISSN 1091-6490
EndPage 4167
ExternalDocumentID PMC3600457
2916266841
23440185
10_1073_pnas_1214869110
110_11_E1064
42583215
Genre Clinical Trial
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01EY017939
– fundername: NEI NIH HHS
  grantid: R01 EY017939
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c567t-f5ecbaae227e171212945665a8a8363e0700a549aac6db09c1494d662b50e6dd3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:13:34 EDT 2025
Thu Sep 04 20:25:23 EDT 2025
Fri Sep 05 13:57:58 EDT 2025
Mon Jun 30 08:09:58 EDT 2025
Thu Apr 03 06:58:38 EDT 2025
Tue Jul 01 03:39:38 EDT 2025
Thu Apr 24 23:12:45 EDT 2025
Wed Nov 11 00:30:02 EST 2020
Thu May 29 08:40:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c567t-f5ecbaae227e171212945665a8a8363e0700a549aac6db09c1494d662b50e6dd3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Edited by Wilson S. Geisler, University of Texas, Austin, TX, and approved January 31, 2013 (received for review August 27, 2012)
Author contributions: O.-S.K. and D.C.K. designed research; O.-S.K. performed research; O.-S.K. and D.C.K. analyzed data; and O.-S.K. and D.C.K. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/110/11/E1064.full.pdf
PMID 23440185
PQID 1316681957
PQPubID 42026
PageCount 1
ParticipantIDs pnas_primary_110_11_E1064
crossref_primary_10_1073_pnas_1214869110
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3600457
pubmed_primary_23440185
proquest_miscellaneous_1317402260
crossref_citationtrail_10_1073_pnas_1214869110
jstor_primary_42583215
proquest_miscellaneous_1803124351
proquest_journals_1316681957
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-12
PublicationDateYYYYMMDD 2013-03-12
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Helson H (e_1_3_3_3_2) 1964
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Hollingworth HL (e_1_3_3_1_2) 1910; 7
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_21_2
13481283 - J Exp Psychol. 1957 Nov;54(5):358-68
12021763 - Nat Neurosci. 2002 Jun;5(6):598-604
16383172 - Mem Cognit. 2005 Jul;33(5):840-51
16547513 - Nat Neurosci. 2006 Apr;9(4):578-85
21602554 - J Vis. 2011;11(6). pii: 14. doi: 10.1167/11.6.14
20844766 - PLoS One. 2010;5(9). pii: e12686. doi: 10.1371/journal.pone.0012686
19139868 - Exp Brain Res. 2009 Feb;193(1):137-42
20884577 - J Vis. 2010;10(8):2
21734297 - J Neurosci. 2011 Jul 6;31(27):10050-9
15716368 - J Neurophysiol. 2005 Jul;94(1):395-9
19679079 - Neuron. 2009 Aug 13;63(3):406-17
19126411 - Vision Res. 2009 Mar;49(5):514-23
19812296 - J Neurophysiol. 2009 Dec;102(6):3191-202
3660658 - Vision Res. 1987;27(6):993-1015
11315554 - Exp Brain Res. 2001 Mar;137(2):246-8
20581842 - Nat Neurosci. 2010 Aug;13(8):1020-6
9627424 - J Exp Psychol Hum Percept Perform. 1998 Jun;24(3):901-14
16243495 - Brain Res Cogn Brain Res. 2005 Dec;25(3):688-700
24924045 - Behav Brain Sci. 1992 Sep;15(3):543-58
5545194 - Psychol Rev. 1971 Jan;78(1):71-80
3256150 - Vision Res. 1988;28(12):1323-35
22114288 - J Neurosci. 2011 Nov 23;31(47):17220-9
18484859 - J Vis. 2008;8(4):20.1-19
7572268 - Acta Psychol (Amst). 1995 Sep;89(3):239-60
20805507 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16401-6
18588909 - Vision Res. 2008 Aug;48(18):1884-93
10868335 - J Exp Psychol Gen. 2000 Jun;129(2):220-41
References_xml – ident: e_1_3_3_5_2
  doi: 10.1037/h0044417
– ident: e_1_3_3_6_2
  doi: 10.1007/s00221-008-1678-0
– ident: e_1_3_3_11_2
  doi: 10.1017/S0140525X00069934
– ident: e_1_3_3_14_2
  doi: 10.1007/s002210000607
– ident: e_1_3_3_10_2
  doi: 10.1016/0042-6989(87)90014-9
– ident: e_1_3_3_28_2
  doi: 10.1016/j.neuron.2009.06.025
– volume: 7
  start-page: 461
  year: 1910
  ident: e_1_3_3_1_2
  article-title: The central tendency of judgment
  publication-title: J Philos Psychol Sci Met
– ident: e_1_3_3_19_2
  doi: 10.1037/h0030300
– ident: e_1_3_3_8_2
  doi: 10.1371/journal.pone.0012686
– ident: e_1_3_3_12_2
  doi: 10.1016/j.cogbrainres.2005.08.016
– ident: e_1_3_3_9_2
  doi: 10.1152/jn.01168.2004
– ident: e_1_3_3_17_2
  doi: 10.1038/nn1669
– ident: e_1_3_3_27_2
  doi: 10.1167/8.4.20
– ident: e_1_3_3_31_2
  doi: 10.1167/10.8.2
– ident: e_1_3_3_23_2
  doi: 10.1523/JNEUROSCI.2028-11.2011
– ident: e_1_3_3_29_2
  doi: 10.1038/nn0602-858
– ident: e_1_3_3_25_2
  doi: 10.1016/0010-0285(72)90016-3
– ident: e_1_3_3_2_2
  doi: 10.1037/0096-3445.129.2.220
– ident: e_1_3_3_15_2
  doi: 10.1016/0001-6918(95)98945-Z
– volume-title: Adaptation-Level Theory: An Experimental and Systematic Approach to Behavior
  year: 1964
  ident: e_1_3_3_3_2
– ident: e_1_3_3_18_2
  doi: 10.1016/0042-6989(88)90064-8
– ident: e_1_3_3_30_2
  doi: 10.1167/11.6.14
– ident: e_1_3_3_22_2
  doi: 10.1016/j.visres.2008.12.003
– ident: e_1_3_3_4_2
  doi: 10.1038/nn.2590
– ident: e_1_3_3_7_2
  doi: 10.1523/JNEUROSCI.6525-10.2011
– ident: e_1_3_3_13_2
  doi: 10.3758/BF03193079
– ident: e_1_3_3_20_2
  doi: 10.1152/jn.00066.2009
– ident: e_1_3_3_21_2
  doi: 10.1037/0096-1523.24.3.901
– ident: e_1_3_3_24_2
  doi: 10.1037/0033-295X.102.3.490
– ident: e_1_3_3_16_2
  doi: 10.1016/j.visres.2008.05.023
– ident: e_1_3_3_26_2
  doi: 10.1073/pnas.1001709107
– reference: 21602554 - J Vis. 2011;11(6). pii: 14. doi: 10.1167/11.6.14
– reference: 20844766 - PLoS One. 2010;5(9). pii: e12686. doi: 10.1371/journal.pone.0012686
– reference: 10868335 - J Exp Psychol Gen. 2000 Jun;129(2):220-41
– reference: 20884577 - J Vis. 2010;10(8):2
– reference: 19812296 - J Neurophysiol. 2009 Dec;102(6):3191-202
– reference: 20581842 - Nat Neurosci. 2010 Aug;13(8):1020-6
– reference: 11315554 - Exp Brain Res. 2001 Mar;137(2):246-8
– reference: 16547513 - Nat Neurosci. 2006 Apr;9(4):578-85
– reference: 5545194 - Psychol Rev. 1971 Jan;78(1):71-80
– reference: 22114288 - J Neurosci. 2011 Nov 23;31(47):17220-9
– reference: 19126411 - Vision Res. 2009 Mar;49(5):514-23
– reference: 7572268 - Acta Psychol (Amst). 1995 Sep;89(3):239-60
– reference: 19679079 - Neuron. 2009 Aug 13;63(3):406-17
– reference: 3660658 - Vision Res. 1987;27(6):993-1015
– reference: 24924045 - Behav Brain Sci. 1992 Sep;15(3):543-58
– reference: 15716368 - J Neurophysiol. 2005 Jul;94(1):395-9
– reference: 3256150 - Vision Res. 1988;28(12):1323-35
– reference: 12021763 - Nat Neurosci. 2002 Jun;5(6):598-604
– reference: 20805507 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16401-6
– reference: 19139868 - Exp Brain Res. 2009 Feb;193(1):137-42
– reference: 13481283 - J Exp Psychol. 1957 Nov;54(5):358-68
– reference: 21734297 - J Neurosci. 2011 Jul 6;31(27):10050-9
– reference: 16243495 - Brain Res Cogn Brain Res. 2005 Dec;25(3):688-700
– reference: 16383172 - Mem Cognit. 2005 Jul;33(5):840-51
– reference: 18484859 - J Vis. 2008;8(4):20.1-19
– reference: 18588909 - Vision Res. 2008 Aug;48(18):1884-93
– reference: 9627424 - J Exp Psychol Hum Percept Perform. 1998 Jun;24(3):901-14
SSID ssj0009580
Score 2.2581985
Snippet To test the hypothesis that the brain uses adaptive models of object statistics to interpret sensory information, we measured the statistical models used by...
Because of uncertainty and noise, the brain should use accurate internal models of the statistics of objects in scenes to interpret sensory signals. Moreover,...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4167
SubjectTerms Anticipation, Psychological - physiology
Bayesian analysis
Biological Sciences
Brain
Brain - physiology
Correlation analysis
covariance
Feedback, Sensory - physiology
Female
Human performance
Humans
Male
Models, Neurological
Movement
planning
PNAS Plus
PNAS PLUS: SIGNIFICANCE STATEMENTS
Sensory perception
Signal transduction
Statistics
uncertainty
variance
Title The brain uses adaptive internal models of scene statistics for sensorimotor estimation and planning
URI https://www.jstor.org/stable/42583215
http://www.pnas.org/content/110/11/E1064.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23440185
https://www.proquest.com/docview/1316681957
https://www.proquest.com/docview/1317402260
https://www.proquest.com/docview/1803124351
https://pubmed.ncbi.nlm.nih.gov/PMC3600457
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWAQGMhIPAxVKU3s2MkDD1M1mEArldikvkVO4miTSlotrZD41_jnuLOdHy1jgr1ErWM7qe_r-S65-46Qt0mmS8bU2I8izXwuROknZcJ8rcNQZoEOA47JyWdTcXrBP8-j-WDwqxe1tFlno_znjXkld5EqtIFcMUv2PyTbTgoN8BnkC0eQMBz_WcYZ1ngYbmqN7ExqZSKBruxjvoWtc2OCNZC0CclkMZnBMDNjeGENPuzyGqWFvN_QbvMYLXmAq2bUt15n7W5XN7EF0-Zh4nGXmuL0RT30h7NpV-j4yw_7hv_rpf9NuYmxuXKM2ia8fjgZWUWHBMz1Bxw_nC22n05gpQjmB50ve9tN9NVyCFslt8nUI201MRgyvuC2lmirql0IrMNk0NO8J-Db8t42Dt9tjZQ_9ghox8LGlaqRWoPHInHT9hCz-m4gEzIO_qetKbRDyz07mzCBBrG8R-6HUpoYgU_zoMf4HNv8J_fbGl4pyd7vXBsJqd2FtqwjGyCLrLvQ_yYPaDeQt2cZnT8iD51LQ48tPvfJQFePyX6z_vTIMZu_e0IKACw1gKUIWNoAljaApRawdFlSA1jaAZYCYGkfsLQDLAXA0gawT8nFx5Pzyanvynz4eSTk2i8jnWdKoXLQgYRlCROw6kWkYhUzwTRsSmMV8USpXBTZOMnBqeeFEGEWjbUoCnZA9qplpZ8TWuYl4yIOM_BKeM6LJJFRUMDCagZmKQ89MmqWN80dBz6WYlmkJhZDshSXOu1E45GjdsDK0r_8veuBkVfbD3ZDLAMWecQzXdvxxu9ODWA9cthINXWKBeZkgRD4flt65E17GtQ-vstTlV5uTB_Jwf4W41v6xLBjh-APBR55ZoHS3kQDOI_ILQi1HZB2fvtMdXVp6Ocd7F_ceeRL8qBTFYdkb3290a_AtF9nr81f6Dc4GPo4
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+brain+uses+adaptive+internal+models+of+scene+statistics+for+sensorimotor+estimation+and+planning&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kwon%2C+Oh-Sang&rft.au=Knill%2C+David+C.&rft.series=PNAS+Plus&rft.date=2013-03-12&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=110&rft.issue=11&rft.spage=E1064&rft.epage=E1073&rft_id=info:doi/10.1073%2Fpnas.1214869110&rft_id=info%3Apmid%2F23440185&rft.externalDocID=PMC3600457
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F11.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F11.cover.gif