Developing therapeutically more efficient Neurturin variants for treatment of Parkinson's disease

In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dop...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of disease Vol. 96; pp. 335 - 345
Main Authors Runeberg-Roos, Pia, Piccinini, Elisa, Penttinen, Anna-Maija, Mätlik, Kert, Heikkinen, Hanna, Kuure, Satu, Bespalov, Maxim M., Peränen, Johan, Garea-Rodríguez, Enrique, Fuchs, Eberhard, Airavaara, Mikko, Kalkkinen, Nisse, Penn, Richard, Saarma, Mart
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2016
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue. •We developed new NRTN variants for treatment of PD.•All new NRTN variants are biologically active.•Within the brain two of the new NRTN variants diffuse better than WT NRTN.•These two new NRTN variants are also more stable than WT NRTN.•One of the new NRTN variants is more efficient than GDNF in a rodent model of PD.
AbstractList In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue. •We developed new NRTN variants for treatment of PD.•All new NRTN variants are biologically active.•Within the brain two of the new NRTN variants diffuse better than WT NRTN.•These two new NRTN variants are also more stable than WT NRTN.•One of the new NRTN variants is more efficient than GDNF in a rodent model of PD.
In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue.
Abstract In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homologue GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue.
In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue.In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue.
Author Piccinini, Elisa
Peränen, Johan
Airavaara, Mikko
Fuchs, Eberhard
Kalkkinen, Nisse
Penttinen, Anna-Maija
Runeberg-Roos, Pia
Garea-Rodríguez, Enrique
Kuure, Satu
Bespalov, Maxim M.
Mätlik, Kert
Penn, Richard
Heikkinen, Hanna
Saarma, Mart
Author_xml – sequence: 1
  givenname: Pia
  surname: Runeberg-Roos
  fullname: Runeberg-Roos, Pia
  email: pia.runeberg@helsinki.fi
  organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland
– sequence: 2
  givenname: Elisa
  orcidid: 0000-0002-3960-2194
  surname: Piccinini
  fullname: Piccinini, Elisa
  organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland
– sequence: 3
  givenname: Anna-Maija
  surname: Penttinen
  fullname: Penttinen, Anna-Maija
  organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland
– sequence: 4
  givenname: Kert
  surname: Mätlik
  fullname: Mätlik, Kert
  organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland
– sequence: 5
  givenname: Hanna
  surname: Heikkinen
  fullname: Heikkinen, Hanna
  organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland
– sequence: 6
  givenname: Satu
  surname: Kuure
  fullname: Kuure, Satu
  organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland
– sequence: 7
  givenname: Maxim M.
  surname: Bespalov
  fullname: Bespalov, Maxim M.
  organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland
– sequence: 8
  givenname: Johan
  surname: Peränen
  fullname: Peränen, Johan
  organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland
– sequence: 9
  givenname: Enrique
  surname: Garea-Rodríguez
  fullname: Garea-Rodríguez, Enrique
  organization: Department of Neuroanatomy, Institute for Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
– sequence: 10
  givenname: Eberhard
  surname: Fuchs
  fullname: Fuchs, Eberhard
  organization: German Primate Center, Göttingen, Germany
– sequence: 11
  givenname: Mikko
  surname: Airavaara
  fullname: Airavaara, Mikko
  organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland
– sequence: 12
  givenname: Nisse
  surname: Kalkkinen
  fullname: Kalkkinen, Nisse
  organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland
– sequence: 13
  givenname: Richard
  surname: Penn
  fullname: Penn, Richard
  organization: CNS Therapeutics Inc., 332 Minnesota Street, Ste W1750, St. Paul, MN 55101, USA
– sequence: 14
  givenname: Mart
  surname: Saarma
  fullname: Saarma, Mart
  organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27425888$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1rFDEUDVKx2-oP8EXmTV92TDKbLwRB6lehqKBC30Imc1OznU22SWZh_70Zt_WhYH1KcjnnXHLOOUFHIQZA6DnBLcGEv163oR9aWq8tFi3G8hFaEKzYUrHu8ggtsOJqqRQnx-gk5zXGhDAlnqBjKlaUSSkXyLyHHYxx68NVU35BMluYirdmHPfNJiZowDlvPYTSfIEplSn50OxM8iaU3LiYmpLAlM0MiK75ZtK1DzmGl7kZfAaT4Sl67MyY4dnteYp-fvzw4-zz8uLrp_OzdxdLy7goSzCYY2WtWkkLA-2xE5Ky-uixkmqwPQjVc1MnkhE7dLS3lIiVo5Ja4ZTpTtH5QXeIZq23yW9M2utovP4ziOlKm1S_NoI2nWOYONVJBSsDXBG66jvHOTGDHBirWq8OWtsUbybIRW98tjCOJkCcsiaSckE7xUSFvriFTv0Ghr-L7yyuAHEA2BRzTuC09cUUH0NJxo-aYD2Hqde6hqnnMDUWuoZZmeQe8078Ic6bAweq1TsPSec5vWqpT2BL9cI_yH57j21HH-Y6XMMe8jpOKdQMNdGZaqy_zwWb-0V4V1XEZRVQ_xb4z_LfswfgIQ
CitedBy_id crossref_primary_10_1371_journal_pone_0188239
crossref_primary_10_3390_genes8020063
crossref_primary_10_1111_ejn_14129
crossref_primary_10_1042_BST20200663
crossref_primary_10_3389_fphys_2018_01588
crossref_primary_10_1007_s00441_020_03256_z
crossref_primary_10_1002_mds_27943
crossref_primary_10_3233_JPD_202004
crossref_primary_10_1002_ptr_6388
crossref_primary_10_2174_0118715273258646230920074421
crossref_primary_10_3390_nano12132267
crossref_primary_10_1093_protein_gzx007
crossref_primary_10_1126_sciadv_aap8957
crossref_primary_10_2174_1570159X16666180905094123
crossref_primary_10_1074_jbc_RA117_000820
crossref_primary_10_3389_fnins_2022_846681
crossref_primary_10_3389_fnmol_2021_639145
crossref_primary_10_3390_ijms21197108
crossref_primary_10_1038_s41586_018_0087_1
crossref_primary_10_1016_j_tips_2020_09_010
crossref_primary_10_1016_j_ymthe_2024_09_005
crossref_primary_10_1371_journal_pone_0245663
crossref_primary_10_3233_JPD_181331
crossref_primary_10_31857_S0044467724060049
crossref_primary_10_1038_s41380_021_01394_6
crossref_primary_10_3390_ijms21186575
crossref_primary_10_4103_1673_5374_327330
crossref_primary_10_1007_s00441_020_03227_4
crossref_primary_10_4103_1673_5374_358619
crossref_primary_10_1007_s00441_020_03268_9
crossref_primary_10_3389_fnana_2017_00029
crossref_primary_10_1016_j_cmet_2021_09_003
crossref_primary_10_3390_molecules22050713
crossref_primary_10_1177_0963689719840290
Cites_doi 10.1161/01.ATV.9.1.21
10.1074/jbc.M000306200
10.3171/jns.2005.102.2.0216
10.1016/j.jneumeth.2008.08.027
10.1006/exnr.2000.7311
10.3109/07853890.2012.663927
10.1006/exnr.2000.7571
10.1038/384467a0
10.1016/j.jneumeth.2010.10.005
10.1002/(SICI)1520-6408(1999)24:3/4<284::AID-DVG11>3.0.CO;2-X
10.1074/jbc.M004724200
10.1016/S1474-4422(10)70254-4
10.1002/mds.25344
10.1126/science.8493557
10.1093/glycob/cwg046
10.1038/nsb0697-435
10.1523/JNEUROSCI.18-13-04929.1998
10.1002/cne.10689
10.1016/j.expneurol.2006.07.015
10.1111/j.1460-9568.1993.tb00526.x
10.1042/BJ20061747
10.1002/ana.20549
10.1016/j.mce.2006.03.013
10.1523/JNEUROSCI.0833-09.2009
10.1002/mds.23442
10.1002/ana.20737
10.1006/exnr.1999.7127
10.1083/jcb.201009136
10.1016/j.expneurol.2005.03.006
10.1080/07853890701646256
10.1042/BJ20041257
10.1016/S0896-6273(00)80514-0
10.1038/nm850
10.1242/dev.124.20.4077
10.1016/j.neurobiolaging.2012.07.018
10.1074/jbc.M802543200
10.1523/JNEUROSCI.20-12-04686.2000
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.nbd.2016.07.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList



MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1095-953X
EndPage 345
ExternalDocumentID oai_doaj_org_article_a3f501f9389e4ae69124b3f661ad8d55
27425888
10_1016_j_nbd_2016_07_008
S096999611630167X
1_s2_0_S096999611630167X
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
K-O
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SSH
SSN
SSZ
T5K
X7M
XPP
Z5R
ZGI
ZMT
ZU3
~G-
0SF
6I.
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
NCXOZ
PKN
RIG
AADPK
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c567t-ea0609cc948ced2b0f782548cb0989dcbe79b6a548851cd32bc2174f282c7f9a3
IEDL.DBID DOA
ISSN 0969-9961
1095-953X
IngestDate Wed Aug 27 01:21:05 EDT 2025
Thu Jul 10 23:49:18 EDT 2025
Mon Feb 17 04:19:08 EST 2025
Tue Jul 01 03:07:26 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Fri Feb 23 02:30:28 EST 2024
Tue Feb 25 20:00:00 EST 2025
Tue Aug 26 16:32:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords RET
Heparan sulfate
Parkinson's disease
IHC
IP
SNpc
Neurturin
pgsA 745 cells
WB
N1–4
P-TYR
OHDA
GDNF
PD
TH
GFRα1
NRTN
MPTP
Heparin
NV1–4
GAPDH
GFRα2
Growth factor
untagged NRTN variants
Glial cell line-Derived Neurotrophic Factor
Western blotting
phosphotyrosine
heparin
GDNF family receptor α2
hydroxydopamine
GDNF family receptor α1
immunoprecipitated
V5-tagged NRTN variants N1–4
Rearranged during Transfection (a transmembrane tyrosine kinase receptor)
immunohistochemical
tyrosine hydroxylase
growth factor
substantia nigra pars compacta
heparan sulfate
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
CHO cells deficient in heparan sulfate from ATCC
neurturin
glyceraldehyde 3-phosphate dehydrogenase
Language English
License Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-ea0609cc948ced2b0f782548cb0989dcbe79b6a548851cd32bc2174f282c7f9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3960-2194
OpenAccessLink https://doaj.org/article/a3f501f9389e4ae69124b3f661ad8d55
PMID 27425888
PQID 1826723957
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_a3f501f9389e4ae69124b3f661ad8d55
proquest_miscellaneous_1826723957
pubmed_primary_27425888
crossref_citationtrail_10_1016_j_nbd_2016_07_008
crossref_primary_10_1016_j_nbd_2016_07_008
elsevier_sciencedirect_doi_10_1016_j_nbd_2016_07_008
elsevier_clinicalkeyesjournals_1_s2_0_S096999611630167X
elsevier_clinicalkey_doi_10_1016_j_nbd_2016_07_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurobiology of disease
PublicationTitleAlternate Neurobiol Dis
PublicationYear 2016
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Fjord-Larsen, Johansen, Kusk, Tornøe, Grønborg, Rosenblad, Wahlberg (bb0075) 2005; 195
Gill, Patel, Hotton, O'Sullivan, McCarter, Bunnage, Brooks, Svendsen, Heywood (bb0085) 2003; 9
Kordower, Björklund (bb0115) 2013; 28
Rickard, Mummery, Mulloy, Rider (bb0155) 2003; 13
Hoane, Puri, Xu, Stabila, Zhao, Gulwadi, Phillips, Devaux, Lindner, Tao (bb0100) 2000; 162
Slevin, Gerhardt, Smith, Gash, Kryscio, Young (bb0175) 2005; 102
Virtanen, Yang, Bespalov, Hiltunen, Leppänen, Kalkkinen, Goldman, Saarma, Runeberg-Roos (bb0185) 2005; 387
Cacalano, Fariñas, Wang, Hagler, Forgie, Moore, Armanini, Phillips, Ryan, Reichardt, Hynes, Davies, Rosenthal (bb0045) 1998; 21
Bartus, Herzog, Chu, Wilson, Brown, Siffert, Johnson, Olanow, Mufson, Kordower (bb0030) 2011; 26
Kirik, Rosenblad, Björklund, Mandel (bb0110) 2000; 20
Piccinini, Kalkkinen, Saarma, Runeberg-Roos (bb0145) 2013; 45
Bartus, Baumann, Brown, Kruegel, Ostrove, Herzog (bb0035) 2013; 34
Lang, Gil, Patel, Lozano, Nutt, Penn, Brooks, Hotton, Moro, Heywood, Brodsky, Burchiel, Kelly, Dalvi, Scott, Stacy, Turner, Wooten, Elias, Laws, Dhawan, Stoessl, Matcham, Coffey, Traub (bb0125) 2006; 59
Ai, Markesbery, Zhang, Grondin, Elseberry, Gerhardt, Gash (bb0005) 2003; 461
Runeberg-Roos, Saarma (bb0160) 2007; 39
Sainio, Suvanto, Davies, Wartiovaara, Saarma, Arumäe, Meng, Lindahl, Pachnis, Sariola (bb0165) 1997; 124
Salvatore, Ai, Fischer, Zhang, Grondin, Zhang, Gerhardt, Gash (bb0170) 2006; 202
Voutilainen, Bäck, Pörsti, Toppinen, Lindgren, Lindholm, Peränen, Saarma, Tuominen (bb0190) 2009; 29
Planken, Porokuokka, Hänninen, Tuominen, Andressoo (bb0150) 2010; 194
Horger, Nishimura, Armanini, Wang, Poulsen, Rosenblad, Kirik, Moffat, Simmons, Johnson, Milbrandt, Rosenthal, Björklund, Vandlen, Hynes, Phillips (bb0105) 1998; 18
Marks, Bartus, Siffert, Davis, Lozano, Boulis, Vitek, Stacy, Turner, Verhagen, Bakay, Watts, Guthrie, Jankovic, Simpson, Tagliati, Alterman, Stern, Baltuch, Starr, Larson, Ostrem, Nutt, Kieburtz, Kordower, Olanow (bb0135) 2010; 9
Bespalov, Sidorova, Tumova, Ahonen-Bishopp, Magalhães, Kulesskiy, Paveliev, Rivera, Rauvala, Saarma (bb0040) 2011; 192
Yin, Valles, Fiandaca, Forsayeth, Larson, Starr, Bankiewicz (bb0195) 2009; 176
Bartus, Johnson (bb0020) 2016
Alfano, Vora, Mummery, Mulloy, Rider (bb0010) 2007; 404
Bäckman, Shan, Zhang, Hoffer, Leonard, Troncoso, Vonsatel, Tomac (bb0015) 2006; 252
Davies, Millar, Johnson, Milbrandt (bb0060) 1999; 24
Bartus, Johnson (bb0025) 2016
Cardin, Weintraub (bb0050) 1989; 9
Hamilton, Morrison, Chen, Harvey-White, Pernaute, Phillips, Oldfield, Bankiewicz (bb0095) 2001; 168
Eigenbrot, Gerber (bb0070) 1997; 4
Gash, Zhang, Ai, Grondin, Coffey, Gerhardt (bb0080) 2005; 58
Parkash, Leppänen, Virtanen, Jurvansuu, Bespalov, Sidorova, Runeberg-Roos, Saarma, Goldman (bb0140) 2008; 283
Cik, Masure, Lesage, Van Der Linden, Van Gompel, Pangalos, Gordon, Leysen (bb0055) 2000; 275
Lin, Doherty, Lile, Bektesh, Collins (bb0130) 1993; 260
Delacoux, Fichard, Cogne, Garrone, Ruggiero (bb0065) 2000; 275
Timmusk, Belluardo, Metsis, Persson (bb0180) 1993; 5
Kotzbauer, Lampe, Heuckeroth, Golden, Creedon, Johnson, Milbrandt (bb0120) 1996; 384
Golden, DeMaro, Osborne, Milbrandt, Johnson (bb0090) 1999; 158
Kotzbauer (10.1016/j.nbd.2016.07.008_bb0120) 1996; 384
Marks (10.1016/j.nbd.2016.07.008_bb0135) 2010; 9
Parkash (10.1016/j.nbd.2016.07.008_bb0140) 2008; 283
Sainio (10.1016/j.nbd.2016.07.008_bb0165) 1997; 124
Alfano (10.1016/j.nbd.2016.07.008_bb0010) 2007; 404
Kordower (10.1016/j.nbd.2016.07.008_bb0115) 2013; 28
Cacalano (10.1016/j.nbd.2016.07.008_bb0045) 1998; 21
Horger (10.1016/j.nbd.2016.07.008_bb0105) 1998; 18
Hoane (10.1016/j.nbd.2016.07.008_bb0100) 2000; 162
Gill (10.1016/j.nbd.2016.07.008_bb0085) 2003; 9
Gash (10.1016/j.nbd.2016.07.008_bb0080) 2005; 58
Bespalov (10.1016/j.nbd.2016.07.008_bb0040) 2011; 192
Piccinini (10.1016/j.nbd.2016.07.008_bb0145) 2013; 45
Ai (10.1016/j.nbd.2016.07.008_bb0005) 2003; 461
Salvatore (10.1016/j.nbd.2016.07.008_bb0170) 2006; 202
Planken (10.1016/j.nbd.2016.07.008_bb0150) 2010; 194
Cardin (10.1016/j.nbd.2016.07.008_bb0050) 1989; 9
Eigenbrot (10.1016/j.nbd.2016.07.008_bb0070) 1997; 4
Davies (10.1016/j.nbd.2016.07.008_bb0060) 1999; 24
Kirik (10.1016/j.nbd.2016.07.008_bb0110) 2000; 20
Bartus (10.1016/j.nbd.2016.07.008_bb0025) 2016
Cik (10.1016/j.nbd.2016.07.008_bb0055) 2000; 275
Hamilton (10.1016/j.nbd.2016.07.008_bb0095) 2001; 168
Bartus (10.1016/j.nbd.2016.07.008_bb0035) 2013; 34
Bartus (10.1016/j.nbd.2016.07.008_bb0020) 2016
Bäckman (10.1016/j.nbd.2016.07.008_bb0015) 2006; 252
Rickard (10.1016/j.nbd.2016.07.008_bb0155) 2003; 13
Timmusk (10.1016/j.nbd.2016.07.008_bb0180) 1993; 5
Runeberg-Roos (10.1016/j.nbd.2016.07.008_bb0160) 2007; 39
Lin (10.1016/j.nbd.2016.07.008_bb0130) 1993; 260
Fjord-Larsen (10.1016/j.nbd.2016.07.008_bb0075) 2005; 195
Delacoux (10.1016/j.nbd.2016.07.008_bb0065) 2000; 275
Voutilainen (10.1016/j.nbd.2016.07.008_bb0190) 2009; 29
Bartus (10.1016/j.nbd.2016.07.008_bb0030) 2011; 26
Slevin (10.1016/j.nbd.2016.07.008_bb0175) 2005; 102
Virtanen (10.1016/j.nbd.2016.07.008_bb0185) 2005; 387
Golden (10.1016/j.nbd.2016.07.008_bb0090) 1999; 158
Lang (10.1016/j.nbd.2016.07.008_bb0125) 2006; 59
Yin (10.1016/j.nbd.2016.07.008_bb0195) 2009; 176
References_xml – volume: 24
  start-page: 284
  year: 1999
  end-page: 292
  ident: bb0060
  article-title: Neurturin: an autocrine regulator of renal collecting duct development
  publication-title: Dev. Genet.
– volume: 39
  start-page: 572
  year: 2007
  end-page: 580
  ident: bb0160
  article-title: Neurotrophic factor receptor RET: structure, cell biology, inherited diseases
  publication-title: Ann. Med.
– volume: 21
  start-page: 53
  year: 1998
  end-page: 62
  ident: bb0045
  article-title: GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney
  publication-title: Neuron
– volume: 45
  start-page: 66
  year: 2013
  end-page: 73
  ident: bb0145
  article-title: Glial cell line-derived neurotrophic factor: characterization of mammalian posttranslational modifications
  publication-title: Ann. Med.
– volume: 9
  start-page: 21
  year: 1989
  end-page: 32
  ident: bb0050
  article-title: Molecular modeling of protein-glycosaminoglycan interactions
  publication-title: Arteriosclerosis
– volume: 4
  start-page: 435
  year: 1997
  end-page: 438
  ident: bb0070
  article-title: X-ray structure of glial cell-derived neurotrophic factor at 1.9
  publication-title: Nat. Struct. Biol.
– volume: 28
  start-page: 96
  year: 2013
  end-page: 109
  ident: bb0115
  article-title: Trophic factor gene therapy for Parkinson's disease
  publication-title: Mov. Disord.
– volume: 58
  start-page: 224
  year: 2005
  end-page: 233
  ident: bb0080
  article-title: Trophic factor distribution predicts functional recovery in parkinsonian monkeys
  publication-title: Ann. Neurol.
– volume: 384
  start-page: 467
  year: 1996
  end-page: 470
  ident: bb0120
  article-title: Neurturin, a relative of glial-cell-line-derived neurotrophic factor
  publication-title: Nature
– volume: 192
  start-page: 153
  year: 2011
  end-page: 169
  ident: bb0040
  article-title: Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin
  publication-title: J. Cell Biol.
– volume: 461
  start-page: 250
  year: 2003
  end-page: 261
  ident: bb0005
  article-title: ntraputamenal infusion of GDNF in aged rhesus monkeys: distribution and dopaminergic effects
  publication-title: J. Comp. Neurol.
– volume: 20
  start-page: 4686
  year: 2000
  end-page: 4700
  ident: bb0110
  article-title: Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson's model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system
  publication-title: J. Neurosci.
– volume: 124
  start-page: 4077
  year: 1997
  end-page: 4087
  ident: bb0165
  article-title: Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium
  publication-title: Development
– volume: 195
  start-page: 49
  year: 2005
  end-page: 60
  ident: bb0075
  article-title: Efficient in vivo protection of nigral dopaminergic neurons by lentiviral gene transfer of a modified neurturin construct
  publication-title: Exp. Neurol.
– volume: 387
  start-page: 817
  year: 2005
  end-page: 824
  ident: bb0185
  article-title: The first cysteine-rich domain of the receptor GFRalpha1 stabilizes the binding of GDNF
  publication-title: Biochem. J.
– volume: 5
  start-page: 605
  year: 1993
  end-page: 613
  ident: bb0180
  article-title: Widespread and developmentally regulated expression of neurotrophin-4 mRNA in rat brain and peripheral tissues
  publication-title: Eur. J. Neurosci.
– volume: 168
  start-page: 155
  year: 2001
  end-page: 161
  ident: bb0095
  article-title: Heparin coinfusion during convection-enhanced delivery (CED) increases the distribution of the glial-derived neurotrophic factor (GDNF) ligand family in rat striatum and enhances the pharmacological activity of neurturin
  publication-title: Exp. Neurol.
– volume: 9
  start-page: 589
  year: 2003
  end-page: 595
  ident: bb0085
  article-title: Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease
  publication-title: Nat. Med.
– volume: 34
  start-page: 35
  year: 2013
  end-page: 61
  ident: bb0035
  article-title: Advancing neurotrophic factors as treatments for age-related neurodegenerative diseases: developing and demonstrating “clinical proof-of-concept” for AAV-neurturin (CERE-120) in Parkinson's disease
  publication-title: Neurobiol. Aging
– volume: 260
  start-page: 1130
  year: 1993
  end-page: 1132
  ident: bb0130
  article-title: GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons
  publication-title: Science
– volume: 26
  start-page: 27
  year: 2011
  end-page: 36
  ident: bb0030
  article-title: Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson's disease and nonhuman primate brains
  publication-title: Mov. Disord.
– volume: 202
  start-page: 497
  year: 2006
  end-page: 505
  ident: bb0170
  article-title: Point source concentration of GDNF may explain failure of phase II clinical trial
  publication-title: Exp. Neurol.
– volume: 176
  start-page: 200
  year: 2009
  end-page: 205
  ident: bb0195
  article-title: Striatal volume differences between non-human and human primates
  publication-title: J. Neurosci. Methods
– volume: 283
  start-page: 35164
  year: 2008
  end-page: 35172
  ident: bb0140
  article-title: The structure of the glial cell line-derived neurotrophic factor-coreceptor complex: insights into RET signaling and heparin binding
  publication-title: J. Biol. Chem.
– volume: 404
  start-page: 131
  year: 2007
  end-page: 140
  ident: bb0010
  article-title: The major determinant of the heparin binding of glial cell-line-derived neurotrophic factor is near the N-terminus and is dispensable for receptor binding
  publication-title: Biochem. J.
– volume: 59
  start-page: 459
  year: 2006
  end-page: 466
  ident: bb0125
  article-title: Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease
  publication-title: Ann. Neurol.
– volume: 252
  start-page: 160
  year: 2006
  end-page: 166
  ident: bb0015
  article-title: Gene expression patterns for GDNF and its receptors in the human putamen affected by Parkinson's disease: a real-time PCR study
  publication-title: Mol. Cell. Endocrinol.
– year: 2016
  ident: bb0020
  article-title: Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: where have we been and what have we learned?
  publication-title: Neurobiol. Dis.
– volume: 275
  start-page: 29377
  year: 2000
  end-page: 29382
  ident: bb0065
  article-title: Unraveling the amino acid sequence crucial for heparin binding to collagen V
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 4929
  year: 1998
  end-page: 4937
  ident: bb0105
  article-title: Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons
  publication-title: J. Neurosci.
– volume: 194
  start-page: 122
  year: 2010
  end-page: 131
  ident: bb0150
  article-title: Medium-throughput computer aided micro-island method to assay embryonic dopaminergic neuron cultures in vitro
  publication-title: J. Neurosci. Methods
– volume: 275
  start-page: 27505
  year: 2000
  end-page: 27512
  ident: bb0055
  article-title: Binding of GDNF and neurturin to human GDNF family receptor α 1 and 2. Influence of cRET and cooperative interactions
  publication-title: J. Biol. Chem.
– volume: 102
  start-page: 216
  year: 2005
  end-page: 222
  ident: bb0175
  article-title: Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor
  publication-title: J. Neurosurg.
– volume: 162
  start-page: 189
  year: 2000
  end-page: 193
  ident: bb0100
  article-title: Mammalian-cell-produced neurturin (NTN) is more potent than purified
  publication-title: Exp. Neurol.
– volume: 9
  start-page: 1164
  year: 2010
  end-page: 1172
  ident: bb0135
  article-title: Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial
  publication-title: Lancet Neurol.
– volume: 13
  start-page: 419
  year: 2003
  end-page: 426
  ident: bb0155
  article-title: The binding of human glial cell line-derived neurotrophic factor to heparin and heparan sulfate: importance of 2-O-sulfate groups and effect on its interaction with its receptor, GFRalpha1
  publication-title: Glycobiology
– year: 2016
  ident: bb0025
  article-title: Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 2: where do we stand and where must we go next?
  publication-title: Neurobiol. Dis.
– volume: 158
  start-page: 504
  year: 1999
  end-page: 528
  ident: bb0090
  article-title: Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse
  publication-title: Exp. Neurol.
– volume: 29
  start-page: 9651
  year: 2009
  end-page: 9659
  ident: bb0190
  article-title: Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson's disease
  publication-title: J. Neurosci.
– volume: 9
  start-page: 21
  year: 1989
  ident: 10.1016/j.nbd.2016.07.008_bb0050
  article-title: Molecular modeling of protein-glycosaminoglycan interactions
  publication-title: Arteriosclerosis
  doi: 10.1161/01.ATV.9.1.21
– volume: 275
  start-page: 27505
  year: 2000
  ident: 10.1016/j.nbd.2016.07.008_bb0055
  article-title: Binding of GDNF and neurturin to human GDNF family receptor α 1 and 2. Influence of cRET and cooperative interactions
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M000306200
– volume: 102
  start-page: 216
  year: 2005
  ident: 10.1016/j.nbd.2016.07.008_bb0175
  article-title: Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.2005.102.2.0216
– volume: 176
  start-page: 200
  year: 2009
  ident: 10.1016/j.nbd.2016.07.008_bb0195
  article-title: Striatal volume differences between non-human and human primates
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2008.08.027
– volume: 162
  start-page: 189
  year: 2000
  ident: 10.1016/j.nbd.2016.07.008_bb0100
  article-title: Mammalian-cell-produced neurturin (NTN) is more potent than purified Escherichia coli-produced NTN
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.2000.7311
– volume: 45
  start-page: 66
  year: 2013
  ident: 10.1016/j.nbd.2016.07.008_bb0145
  article-title: Glial cell line-derived neurotrophic factor: characterization of mammalian posttranslational modifications
  publication-title: Ann. Med.
  doi: 10.3109/07853890.2012.663927
– volume: 168
  start-page: 155
  year: 2001
  ident: 10.1016/j.nbd.2016.07.008_bb0095
  article-title: Heparin coinfusion during convection-enhanced delivery (CED) increases the distribution of the glial-derived neurotrophic factor (GDNF) ligand family in rat striatum and enhances the pharmacological activity of neurturin
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.2000.7571
– volume: 384
  start-page: 467
  year: 1996
  ident: 10.1016/j.nbd.2016.07.008_bb0120
  article-title: Neurturin, a relative of glial-cell-line-derived neurotrophic factor
  publication-title: Nature
  doi: 10.1038/384467a0
– volume: 194
  start-page: 122
  year: 2010
  ident: 10.1016/j.nbd.2016.07.008_bb0150
  article-title: Medium-throughput computer aided micro-island method to assay embryonic dopaminergic neuron cultures in vitro
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.10.005
– volume: 24
  start-page: 284
  year: 1999
  ident: 10.1016/j.nbd.2016.07.008_bb0060
  article-title: Neurturin: an autocrine regulator of renal collecting duct development
  publication-title: Dev. Genet.
  doi: 10.1002/(SICI)1520-6408(1999)24:3/4<284::AID-DVG11>3.0.CO;2-X
– year: 2016
  ident: 10.1016/j.nbd.2016.07.008_bb0025
  article-title: Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 2: where do we stand and where must we go next?
  publication-title: Neurobiol. Dis.
– volume: 275
  start-page: 29377
  year: 2000
  ident: 10.1016/j.nbd.2016.07.008_bb0065
  article-title: Unraveling the amino acid sequence crucial for heparin binding to collagen V
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M004724200
– volume: 9
  start-page: 1164
  year: 2010
  ident: 10.1016/j.nbd.2016.07.008_bb0135
  article-title: Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(10)70254-4
– volume: 28
  start-page: 96
  year: 2013
  ident: 10.1016/j.nbd.2016.07.008_bb0115
  article-title: Trophic factor gene therapy for Parkinson's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.25344
– volume: 260
  start-page: 1130
  year: 1993
  ident: 10.1016/j.nbd.2016.07.008_bb0130
  article-title: GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons
  publication-title: Science
  doi: 10.1126/science.8493557
– volume: 13
  start-page: 419
  year: 2003
  ident: 10.1016/j.nbd.2016.07.008_bb0155
  article-title: The binding of human glial cell line-derived neurotrophic factor to heparin and heparan sulfate: importance of 2-O-sulfate groups and effect on its interaction with its receptor, GFRalpha1
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwg046
– volume: 4
  start-page: 435
  year: 1997
  ident: 10.1016/j.nbd.2016.07.008_bb0070
  article-title: X-ray structure of glial cell-derived neurotrophic factor at 1.9Å resolution and implications for receptor binding
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb0697-435
– volume: 18
  start-page: 4929
  year: 1998
  ident: 10.1016/j.nbd.2016.07.008_bb0105
  article-title: Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-13-04929.1998
– volume: 461
  start-page: 250
  year: 2003
  ident: 10.1016/j.nbd.2016.07.008_bb0005
  article-title: Intraputamenal infusion of GDNF in aged rhesus monkeys: distribution and dopaminergic effects
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.10689
– year: 2016
  ident: 10.1016/j.nbd.2016.07.008_bb0020
  article-title: Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: where have we been and what have we learned?
  publication-title: Neurobiol. Dis.
– volume: 202
  start-page: 497
  year: 2006
  ident: 10.1016/j.nbd.2016.07.008_bb0170
  article-title: Point source concentration of GDNF may explain failure of phase II clinical trial
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2006.07.015
– volume: 5
  start-page: 605
  year: 1993
  ident: 10.1016/j.nbd.2016.07.008_bb0180
  article-title: Widespread and developmentally regulated expression of neurotrophin-4 mRNA in rat brain and peripheral tissues
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.1993.tb00526.x
– volume: 404
  start-page: 131
  year: 2007
  ident: 10.1016/j.nbd.2016.07.008_bb0010
  article-title: The major determinant of the heparin binding of glial cell-line-derived neurotrophic factor is near the N-terminus and is dispensable for receptor binding
  publication-title: Biochem. J.
  doi: 10.1042/BJ20061747
– volume: 58
  start-page: 224
  year: 2005
  ident: 10.1016/j.nbd.2016.07.008_bb0080
  article-title: Trophic factor distribution predicts functional recovery in parkinsonian monkeys
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20549
– volume: 252
  start-page: 160
  year: 2006
  ident: 10.1016/j.nbd.2016.07.008_bb0015
  article-title: Gene expression patterns for GDNF and its receptors in the human putamen affected by Parkinson's disease: a real-time PCR study
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2006.03.013
– volume: 29
  start-page: 9651
  year: 2009
  ident: 10.1016/j.nbd.2016.07.008_bb0190
  article-title: Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0833-09.2009
– volume: 26
  start-page: 27
  year: 2011
  ident: 10.1016/j.nbd.2016.07.008_bb0030
  article-title: Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson's disease and nonhuman primate brains
  publication-title: Mov. Disord.
  doi: 10.1002/mds.23442
– volume: 59
  start-page: 459
  year: 2006
  ident: 10.1016/j.nbd.2016.07.008_bb0125
  article-title: Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20737
– volume: 158
  start-page: 504
  year: 1999
  ident: 10.1016/j.nbd.2016.07.008_bb0090
  article-title: Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.1999.7127
– volume: 192
  start-page: 153
  year: 2011
  ident: 10.1016/j.nbd.2016.07.008_bb0040
  article-title: Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201009136
– volume: 195
  start-page: 49
  year: 2005
  ident: 10.1016/j.nbd.2016.07.008_bb0075
  article-title: Efficient in vivo protection of nigral dopaminergic neurons by lentiviral gene transfer of a modified neurturin construct
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2005.03.006
– volume: 39
  start-page: 572
  year: 2007
  ident: 10.1016/j.nbd.2016.07.008_bb0160
  article-title: Neurotrophic factor receptor RET: structure, cell biology, inherited diseases
  publication-title: Ann. Med.
  doi: 10.1080/07853890701646256
– volume: 387
  start-page: 817
  year: 2005
  ident: 10.1016/j.nbd.2016.07.008_bb0185
  article-title: The first cysteine-rich domain of the receptor GFRalpha1 stabilizes the binding of GDNF
  publication-title: Biochem. J.
  doi: 10.1042/BJ20041257
– volume: 21
  start-page: 53
  year: 1998
  ident: 10.1016/j.nbd.2016.07.008_bb0045
  article-title: GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80514-0
– volume: 9
  start-page: 589
  year: 2003
  ident: 10.1016/j.nbd.2016.07.008_bb0085
  article-title: Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease
  publication-title: Nat. Med.
  doi: 10.1038/nm850
– volume: 124
  start-page: 4077
  year: 1997
  ident: 10.1016/j.nbd.2016.07.008_bb0165
  article-title: Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium
  publication-title: Development
  doi: 10.1242/dev.124.20.4077
– volume: 34
  start-page: 35
  year: 2013
  ident: 10.1016/j.nbd.2016.07.008_bb0035
  article-title: Advancing neurotrophic factors as treatments for age-related neurodegenerative diseases: developing and demonstrating “clinical proof-of-concept” for AAV-neurturin (CERE-120) in Parkinson's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2012.07.018
– volume: 283
  start-page: 35164
  year: 2008
  ident: 10.1016/j.nbd.2016.07.008_bb0140
  article-title: The structure of the glial cell line-derived neurotrophic factor-coreceptor complex: insights into RET signaling and heparin binding
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M802543200
– volume: 20
  start-page: 4686
  year: 2000
  ident: 10.1016/j.nbd.2016.07.008_bb0110
  article-title: Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson's model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-12-04686.2000
SSID ssj0011597
Score 2.3699982
Snippet In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the...
Abstract In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms,...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 335
SubjectTerms Amphetamine - pharmacology
Animals
CHO Cells
Cricetulus
Disease Models, Animal
Drug Design
GDNF
Genetic Variation - genetics
GFRα1
GFRα2
Growth factor
Heparan sulfate
Heparin
Humans
Macaca fascicularis
Male
Models, Molecular
Neurology
Neurturin
Neurturin - chemistry
Neurturin - genetics
Neurturin - metabolism
NRTN
Oxidopamine - toxicity
Parkinson Disease - complications
Parkinson Disease - drug therapy
Parkinson Disease - etiology
Parkinson Disease - metabolism
Parkinson's disease
Proto-Oncogene Proteins c-ret - genetics
Proto-Oncogene Proteins c-ret - metabolism
Rats
Rats, Wistar
RET
Stereotyped Behavior - drug effects
Sympatholytics - toxicity
Tyrosine 3-Monooxygenase - metabolism
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba1QxEA6lD-KLaOvleCMFURCOm5NzSfJYe6EI9UUL-xZylZX1bOluhb74253JyTm0qBX6uCHZLJnZmW8y30wIeRO5EtYrX1bS8bJR3JVWBVkGcBaeecu6dKd7-rk7OWs-zdv5FjkYa2GQVplt_2DTk7XOI7N8mrPzxWL2BcA3ovUKEAVy6edYwd4I1PIPvyaaBwCe9MAKTi5x9pjZTByv3mKz0Gro34kvTF7zTamF_w0X9S8ImlzR8UPyIGNIuj_8zEdkK_Q7ZHe_h_j5xxV9SxOrM12X75B7pzl5vkvM4VQgRa-VXZnl8ooi3ZaG1E4CvBDFlh0bvIenPyGWRqoMBXBLJ1Y6XUWK9dKpdOzdmuY0z2Nydnz09eCkzC8slK7txKYMBmXhnGoknDe3LAqMGKWzTEnlnQ1C2c7ACAAz52tuHYYwEeI0J6Iy9ROy3a_68IxQZSNnEfTB1KEBWCV9J6zrgmeVbwCWFYSNZ6tdbj-Or2As9cgz-65BHBrFoRkmxWVB3k9LzofeG7dN_ogCmyZi2-w0sLr4prPeaFPHllVRAUoLjQmdAnRj6wgYxXjp27YgfBS3HitTwZbCFy1u21n8bVFYZ2uw1pVec830HxpbkGZaeUPp_7fh3qiJGowBZnhMH1aXsBEEi4Jj6rUgTwcVnQ4Ec_KtlPL53TZ9Qe7jp4HJ85Jsby4uwyvAYxv7Ov3hfgPLRzJl
  priority: 102
  providerName: Elsevier
Title Developing therapeutically more efficient Neurturin variants for treatment of Parkinson's disease
URI https://www.clinicalkey.com/#!/content/1-s2.0-S096999611630167X
https://www.clinicalkey.es/playcontent/1-s2.0-S096999611630167X
https://dx.doi.org/10.1016/j.nbd.2016.07.008
https://www.ncbi.nlm.nih.gov/pubmed/27425888
https://www.proquest.com/docview/1826723957
https://doaj.org/article/a3f501f9389e4ae69124b3f661ad8d55
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC40gngJmvgYE5cWREEY7Xl3H9doWB8Jogb21vQTlHU2uJtALv72VPU8WEGTi6eBYXp6qKqe-qqr6muAZyGXjXHSpZmweVrK3KZGepF6dBaOO8PruKd7dFzPTsoP82q-cdQX1YR19MCd4F7rIlQ8CxIdqy-1ryU6JFMEdCvaCVdF9lL0eUMw1ecP0Ek3Qw4zVnO1hmhBs46pk86S3PBCkaz_D2f0L7AZnc7hXdju0SKbdl95D274dgd2py1Gyj8v2HMW6zfjxvgO3D7q0-S7oN-OrVBso8FKLxYXjAprmY_EEehvGJFzrGnHnZ1j1ExFMQxhLBvrz9kyMOqMjk1iL1asT-jch5PDd98OZml_lkJqq7pZp16T1K2VpbDe5YaHhmJDYQ2XQjprfCNNrfEOQjDritxYClYCRmS2CVIXD2CrXbb-ETBpQs4Dal4XvkQAJVzdGFt7xzNXIgBLgA-yVbYnGqfzLhZqqCj7oVAditShOKW_RQIvxyGnHcvGVQ-_IYWNDxJBdryBZqN6s1HXmU0C-aBuNfSg4l8TX_T9qpmbvw3yq37dr1SmVrni6isGhhRJZoh2qc9jnkA5juyhTQdZrpvw6WCJCpc95XJ065dnOBGGhU1OSdYEHnYmOgqEsu-VEOLx_xDUHtyhD-oqePZha_3rzD9BHLY2E7j56nc2gVvTgy-fPtP1_cfZ8SQuxEvCqDRC
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEvCFqg4WkkBBJSWCebh30shWqBbi-00t4sv4IWLdmqu0Xqhd_OjONErYAicXXsOPJMZr7xvABeNrmsjZMuzYTN00LmNjXSi9SjsnDcGV6FO93pUTU5KT7NytkG7Pe5MBRWGWV_J9ODtI4jo3iao9P5fPQFwTeh9QwRBcXSz27AzQJ_X2pj8PbnEOeBiCd0WKHZKU3vXZshyKs1VC006wp4UovJS8op1PC_oqP-hkGDLjq4C3ciiGR73Xfegw3fbsPOXosG9PcL9oqFsM5wX74Nt6bRe74D-v2QIcUu5V3pxeKCUbwt86GeBKohRjU71nQRz36gMU2xMgzRLRvC0tmyYZQwHXLHXq9Y9PPch5ODD8f7kzS2WEhtWdXr1GsihrWyEHjgueFNTSajsIZLIZ01vpam0jiCyMy6cW4s2TANGmq2bqQeP4DNdtn6XWDSNDlvkCH02BeIq4SramMr73jmCsRlCfD-bJWN9cepDcZC9YFm3xSSQxE5FCevuEjgzbDktCu-cd3kd0SwYSLVzQ4Dy7OvKjKO0uOm5FkjEab5QvtKIrwx4wZBinbClWUCeU9u1aemojDFF82v27n-0yK_iuJgpTK1yhVXv7FsAsWw8grX_2vDFz0nKpQG5OLRrV-e40ZoLdY5-V4TeNix6HAg5JQvhRCP_m_T53B7cjw9VIcfjz4_hi160oX1PIHN9dm5f4rgbG2ehZ_vFx00NYE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+therapeutically+more+efficient+Neurturin+variants+for+treatment+of+Parkinson%27s+disease&rft.jtitle=Neurobiology+of+disease&rft.au=Runeberg-Roos%2C+Pia&rft.au=Piccinini%2C+Elisa&rft.au=Penttinen%2C+Anna-Maija&rft.au=M%C3%A4tlik%2C+Kert&rft.date=2016-12-01&rft.issn=1095-953X&rft.eissn=1095-953X&rft.volume=96&rft.spage=335&rft_id=info:doi/10.1016%2Fj.nbd.2016.07.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-9961&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-9961&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-9961&client=summon