Developing therapeutically more efficient Neurturin variants for treatment of Parkinson's disease
In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dop...
Saved in:
Published in | Neurobiology of disease Vol. 96; pp. 335 - 345 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2016
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue.
•We developed new NRTN variants for treatment of PD.•All new NRTN variants are biologically active.•Within the brain two of the new NRTN variants diffuse better than WT NRTN.•These two new NRTN variants are also more stable than WT NRTN.•One of the new NRTN variants is more efficient than GDNF in a rodent model of PD. |
---|---|
AbstractList | In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue.
•We developed new NRTN variants for treatment of PD.•All new NRTN variants are biologically active.•Within the brain two of the new NRTN variants diffuse better than WT NRTN.•These two new NRTN variants are also more stable than WT NRTN.•One of the new NRTN variants is more efficient than GDNF in a rodent model of PD. In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue. Abstract In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homologue GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue. In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue.In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue. |
Author | Piccinini, Elisa Peränen, Johan Airavaara, Mikko Fuchs, Eberhard Kalkkinen, Nisse Penttinen, Anna-Maija Runeberg-Roos, Pia Garea-Rodríguez, Enrique Kuure, Satu Bespalov, Maxim M. Mätlik, Kert Penn, Richard Heikkinen, Hanna Saarma, Mart |
Author_xml | – sequence: 1 givenname: Pia surname: Runeberg-Roos fullname: Runeberg-Roos, Pia email: pia.runeberg@helsinki.fi organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland – sequence: 2 givenname: Elisa orcidid: 0000-0002-3960-2194 surname: Piccinini fullname: Piccinini, Elisa organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland – sequence: 3 givenname: Anna-Maija surname: Penttinen fullname: Penttinen, Anna-Maija organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland – sequence: 4 givenname: Kert surname: Mätlik fullname: Mätlik, Kert organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland – sequence: 5 givenname: Hanna surname: Heikkinen fullname: Heikkinen, Hanna organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland – sequence: 6 givenname: Satu surname: Kuure fullname: Kuure, Satu organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland – sequence: 7 givenname: Maxim M. surname: Bespalov fullname: Bespalov, Maxim M. organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland – sequence: 8 givenname: Johan surname: Peränen fullname: Peränen, Johan organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland – sequence: 9 givenname: Enrique surname: Garea-Rodríguez fullname: Garea-Rodríguez, Enrique organization: Department of Neuroanatomy, Institute for Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany – sequence: 10 givenname: Eberhard surname: Fuchs fullname: Fuchs, Eberhard organization: German Primate Center, Göttingen, Germany – sequence: 11 givenname: Mikko surname: Airavaara fullname: Airavaara, Mikko organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland – sequence: 12 givenname: Nisse surname: Kalkkinen fullname: Kalkkinen, Nisse organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland – sequence: 13 givenname: Richard surname: Penn fullname: Penn, Richard organization: CNS Therapeutics Inc., 332 Minnesota Street, Ste W1750, St. Paul, MN 55101, USA – sequence: 14 givenname: Mart surname: Saarma fullname: Saarma, Mart organization: Institute of Biotechnology, University of Helsinki, PB 56 (Viikinkaari 5D), FIN-00014, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27425888$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl1rFDEUDVKx2-oP8EXmTV92TDKbLwRB6lehqKBC30Imc1OznU22SWZh_70Zt_WhYH1KcjnnXHLOOUFHIQZA6DnBLcGEv163oR9aWq8tFi3G8hFaEKzYUrHu8ggtsOJqqRQnx-gk5zXGhDAlnqBjKlaUSSkXyLyHHYxx68NVU35BMluYirdmHPfNJiZowDlvPYTSfIEplSn50OxM8iaU3LiYmpLAlM0MiK75ZtK1DzmGl7kZfAaT4Sl67MyY4dnteYp-fvzw4-zz8uLrp_OzdxdLy7goSzCYY2WtWkkLA-2xE5Ky-uixkmqwPQjVc1MnkhE7dLS3lIiVo5Ja4ZTpTtH5QXeIZq23yW9M2utovP4ziOlKm1S_NoI2nWOYONVJBSsDXBG66jvHOTGDHBirWq8OWtsUbybIRW98tjCOJkCcsiaSckE7xUSFvriFTv0Ghr-L7yyuAHEA2BRzTuC09cUUH0NJxo-aYD2Hqde6hqnnMDUWuoZZmeQe8078Ic6bAweq1TsPSec5vWqpT2BL9cI_yH57j21HH-Y6XMMe8jpOKdQMNdGZaqy_zwWb-0V4V1XEZRVQ_xb4z_LfswfgIQ |
CitedBy_id | crossref_primary_10_1371_journal_pone_0188239 crossref_primary_10_3390_genes8020063 crossref_primary_10_1111_ejn_14129 crossref_primary_10_1042_BST20200663 crossref_primary_10_3389_fphys_2018_01588 crossref_primary_10_1007_s00441_020_03256_z crossref_primary_10_1002_mds_27943 crossref_primary_10_3233_JPD_202004 crossref_primary_10_1002_ptr_6388 crossref_primary_10_2174_0118715273258646230920074421 crossref_primary_10_3390_nano12132267 crossref_primary_10_1093_protein_gzx007 crossref_primary_10_1126_sciadv_aap8957 crossref_primary_10_2174_1570159X16666180905094123 crossref_primary_10_1074_jbc_RA117_000820 crossref_primary_10_3389_fnins_2022_846681 crossref_primary_10_3389_fnmol_2021_639145 crossref_primary_10_3390_ijms21197108 crossref_primary_10_1038_s41586_018_0087_1 crossref_primary_10_1016_j_tips_2020_09_010 crossref_primary_10_1016_j_ymthe_2024_09_005 crossref_primary_10_1371_journal_pone_0245663 crossref_primary_10_3233_JPD_181331 crossref_primary_10_31857_S0044467724060049 crossref_primary_10_1038_s41380_021_01394_6 crossref_primary_10_3390_ijms21186575 crossref_primary_10_4103_1673_5374_327330 crossref_primary_10_1007_s00441_020_03227_4 crossref_primary_10_4103_1673_5374_358619 crossref_primary_10_1007_s00441_020_03268_9 crossref_primary_10_3389_fnana_2017_00029 crossref_primary_10_1016_j_cmet_2021_09_003 crossref_primary_10_3390_molecules22050713 crossref_primary_10_1177_0963689719840290 |
Cites_doi | 10.1161/01.ATV.9.1.21 10.1074/jbc.M000306200 10.3171/jns.2005.102.2.0216 10.1016/j.jneumeth.2008.08.027 10.1006/exnr.2000.7311 10.3109/07853890.2012.663927 10.1006/exnr.2000.7571 10.1038/384467a0 10.1016/j.jneumeth.2010.10.005 10.1002/(SICI)1520-6408(1999)24:3/4<284::AID-DVG11>3.0.CO;2-X 10.1074/jbc.M004724200 10.1016/S1474-4422(10)70254-4 10.1002/mds.25344 10.1126/science.8493557 10.1093/glycob/cwg046 10.1038/nsb0697-435 10.1523/JNEUROSCI.18-13-04929.1998 10.1002/cne.10689 10.1016/j.expneurol.2006.07.015 10.1111/j.1460-9568.1993.tb00526.x 10.1042/BJ20061747 10.1002/ana.20549 10.1016/j.mce.2006.03.013 10.1523/JNEUROSCI.0833-09.2009 10.1002/mds.23442 10.1002/ana.20737 10.1006/exnr.1999.7127 10.1083/jcb.201009136 10.1016/j.expneurol.2005.03.006 10.1080/07853890701646256 10.1042/BJ20041257 10.1016/S0896-6273(00)80514-0 10.1038/nm850 10.1242/dev.124.20.4077 10.1016/j.neurobiolaging.2012.07.018 10.1074/jbc.M802543200 10.1523/JNEUROSCI.20-12-04686.2000 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.nbd.2016.07.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1095-953X |
EndPage | 345 |
ExternalDocumentID | oai_doaj_org_article_a3f501f9389e4ae69124b3f661ad8d55 27425888 10_1016_j_nbd_2016_07_008 S096999611630167X 1_s2_0_S096999611630167X |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABJNI ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AIEXJ AIGII AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W K-O KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SSH SSN SSZ T5K X7M XPP Z5R ZGI ZMT ZU3 ~G- 0SF 6I. AACTN AFCTW AFKWA AJOXV AMFUW NCXOZ PKN RIG AADPK AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c567t-ea0609cc948ced2b0f782548cb0989dcbe79b6a548851cd32bc2174f282c7f9a3 |
IEDL.DBID | DOA |
ISSN | 0969-9961 1095-953X |
IngestDate | Wed Aug 27 01:21:05 EDT 2025 Thu Jul 10 23:49:18 EDT 2025 Mon Feb 17 04:19:08 EST 2025 Tue Jul 01 03:07:26 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Fri Feb 23 02:30:28 EST 2024 Tue Feb 25 20:00:00 EST 2025 Tue Aug 26 16:32:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | RET Heparan sulfate Parkinson's disease IHC IP SNpc Neurturin pgsA 745 cells WB N1–4 P-TYR OHDA GDNF PD TH GFRα1 NRTN MPTP Heparin NV1–4 GAPDH GFRα2 Growth factor untagged NRTN variants Glial cell line-Derived Neurotrophic Factor Western blotting phosphotyrosine heparin GDNF family receptor α2 hydroxydopamine GDNF family receptor α1 immunoprecipitated V5-tagged NRTN variants N1–4 Rearranged during Transfection (a transmembrane tyrosine kinase receptor) immunohistochemical tyrosine hydroxylase growth factor substantia nigra pars compacta heparan sulfate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine CHO cells deficient in heparan sulfate from ATCC neurturin glyceraldehyde 3-phosphate dehydrogenase |
Language | English |
License | Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-ea0609cc948ced2b0f782548cb0989dcbe79b6a548851cd32bc2174f282c7f9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3960-2194 |
OpenAccessLink | https://doaj.org/article/a3f501f9389e4ae69124b3f661ad8d55 |
PMID | 27425888 |
PQID | 1826723957 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a3f501f9389e4ae69124b3f661ad8d55 proquest_miscellaneous_1826723957 pubmed_primary_27425888 crossref_citationtrail_10_1016_j_nbd_2016_07_008 crossref_primary_10_1016_j_nbd_2016_07_008 elsevier_sciencedirect_doi_10_1016_j_nbd_2016_07_008 elsevier_clinicalkeyesjournals_1_s2_0_S096999611630167X elsevier_clinicalkey_doi_10_1016_j_nbd_2016_07_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of disease |
PublicationTitleAlternate | Neurobiol Dis |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Fjord-Larsen, Johansen, Kusk, Tornøe, Grønborg, Rosenblad, Wahlberg (bb0075) 2005; 195 Gill, Patel, Hotton, O'Sullivan, McCarter, Bunnage, Brooks, Svendsen, Heywood (bb0085) 2003; 9 Kordower, Björklund (bb0115) 2013; 28 Rickard, Mummery, Mulloy, Rider (bb0155) 2003; 13 Hoane, Puri, Xu, Stabila, Zhao, Gulwadi, Phillips, Devaux, Lindner, Tao (bb0100) 2000; 162 Slevin, Gerhardt, Smith, Gash, Kryscio, Young (bb0175) 2005; 102 Virtanen, Yang, Bespalov, Hiltunen, Leppänen, Kalkkinen, Goldman, Saarma, Runeberg-Roos (bb0185) 2005; 387 Cacalano, Fariñas, Wang, Hagler, Forgie, Moore, Armanini, Phillips, Ryan, Reichardt, Hynes, Davies, Rosenthal (bb0045) 1998; 21 Bartus, Herzog, Chu, Wilson, Brown, Siffert, Johnson, Olanow, Mufson, Kordower (bb0030) 2011; 26 Kirik, Rosenblad, Björklund, Mandel (bb0110) 2000; 20 Piccinini, Kalkkinen, Saarma, Runeberg-Roos (bb0145) 2013; 45 Bartus, Baumann, Brown, Kruegel, Ostrove, Herzog (bb0035) 2013; 34 Lang, Gil, Patel, Lozano, Nutt, Penn, Brooks, Hotton, Moro, Heywood, Brodsky, Burchiel, Kelly, Dalvi, Scott, Stacy, Turner, Wooten, Elias, Laws, Dhawan, Stoessl, Matcham, Coffey, Traub (bb0125) 2006; 59 Ai, Markesbery, Zhang, Grondin, Elseberry, Gerhardt, Gash (bb0005) 2003; 461 Runeberg-Roos, Saarma (bb0160) 2007; 39 Sainio, Suvanto, Davies, Wartiovaara, Saarma, Arumäe, Meng, Lindahl, Pachnis, Sariola (bb0165) 1997; 124 Salvatore, Ai, Fischer, Zhang, Grondin, Zhang, Gerhardt, Gash (bb0170) 2006; 202 Voutilainen, Bäck, Pörsti, Toppinen, Lindgren, Lindholm, Peränen, Saarma, Tuominen (bb0190) 2009; 29 Planken, Porokuokka, Hänninen, Tuominen, Andressoo (bb0150) 2010; 194 Horger, Nishimura, Armanini, Wang, Poulsen, Rosenblad, Kirik, Moffat, Simmons, Johnson, Milbrandt, Rosenthal, Björklund, Vandlen, Hynes, Phillips (bb0105) 1998; 18 Marks, Bartus, Siffert, Davis, Lozano, Boulis, Vitek, Stacy, Turner, Verhagen, Bakay, Watts, Guthrie, Jankovic, Simpson, Tagliati, Alterman, Stern, Baltuch, Starr, Larson, Ostrem, Nutt, Kieburtz, Kordower, Olanow (bb0135) 2010; 9 Bespalov, Sidorova, Tumova, Ahonen-Bishopp, Magalhães, Kulesskiy, Paveliev, Rivera, Rauvala, Saarma (bb0040) 2011; 192 Yin, Valles, Fiandaca, Forsayeth, Larson, Starr, Bankiewicz (bb0195) 2009; 176 Bartus, Johnson (bb0020) 2016 Alfano, Vora, Mummery, Mulloy, Rider (bb0010) 2007; 404 Bäckman, Shan, Zhang, Hoffer, Leonard, Troncoso, Vonsatel, Tomac (bb0015) 2006; 252 Davies, Millar, Johnson, Milbrandt (bb0060) 1999; 24 Bartus, Johnson (bb0025) 2016 Cardin, Weintraub (bb0050) 1989; 9 Hamilton, Morrison, Chen, Harvey-White, Pernaute, Phillips, Oldfield, Bankiewicz (bb0095) 2001; 168 Eigenbrot, Gerber (bb0070) 1997; 4 Gash, Zhang, Ai, Grondin, Coffey, Gerhardt (bb0080) 2005; 58 Parkash, Leppänen, Virtanen, Jurvansuu, Bespalov, Sidorova, Runeberg-Roos, Saarma, Goldman (bb0140) 2008; 283 Cik, Masure, Lesage, Van Der Linden, Van Gompel, Pangalos, Gordon, Leysen (bb0055) 2000; 275 Lin, Doherty, Lile, Bektesh, Collins (bb0130) 1993; 260 Delacoux, Fichard, Cogne, Garrone, Ruggiero (bb0065) 2000; 275 Timmusk, Belluardo, Metsis, Persson (bb0180) 1993; 5 Kotzbauer, Lampe, Heuckeroth, Golden, Creedon, Johnson, Milbrandt (bb0120) 1996; 384 Golden, DeMaro, Osborne, Milbrandt, Johnson (bb0090) 1999; 158 Kotzbauer (10.1016/j.nbd.2016.07.008_bb0120) 1996; 384 Marks (10.1016/j.nbd.2016.07.008_bb0135) 2010; 9 Parkash (10.1016/j.nbd.2016.07.008_bb0140) 2008; 283 Sainio (10.1016/j.nbd.2016.07.008_bb0165) 1997; 124 Alfano (10.1016/j.nbd.2016.07.008_bb0010) 2007; 404 Kordower (10.1016/j.nbd.2016.07.008_bb0115) 2013; 28 Cacalano (10.1016/j.nbd.2016.07.008_bb0045) 1998; 21 Horger (10.1016/j.nbd.2016.07.008_bb0105) 1998; 18 Hoane (10.1016/j.nbd.2016.07.008_bb0100) 2000; 162 Gill (10.1016/j.nbd.2016.07.008_bb0085) 2003; 9 Gash (10.1016/j.nbd.2016.07.008_bb0080) 2005; 58 Bespalov (10.1016/j.nbd.2016.07.008_bb0040) 2011; 192 Piccinini (10.1016/j.nbd.2016.07.008_bb0145) 2013; 45 Ai (10.1016/j.nbd.2016.07.008_bb0005) 2003; 461 Salvatore (10.1016/j.nbd.2016.07.008_bb0170) 2006; 202 Planken (10.1016/j.nbd.2016.07.008_bb0150) 2010; 194 Cardin (10.1016/j.nbd.2016.07.008_bb0050) 1989; 9 Eigenbrot (10.1016/j.nbd.2016.07.008_bb0070) 1997; 4 Davies (10.1016/j.nbd.2016.07.008_bb0060) 1999; 24 Kirik (10.1016/j.nbd.2016.07.008_bb0110) 2000; 20 Bartus (10.1016/j.nbd.2016.07.008_bb0025) 2016 Cik (10.1016/j.nbd.2016.07.008_bb0055) 2000; 275 Hamilton (10.1016/j.nbd.2016.07.008_bb0095) 2001; 168 Bartus (10.1016/j.nbd.2016.07.008_bb0035) 2013; 34 Bartus (10.1016/j.nbd.2016.07.008_bb0020) 2016 Bäckman (10.1016/j.nbd.2016.07.008_bb0015) 2006; 252 Rickard (10.1016/j.nbd.2016.07.008_bb0155) 2003; 13 Timmusk (10.1016/j.nbd.2016.07.008_bb0180) 1993; 5 Runeberg-Roos (10.1016/j.nbd.2016.07.008_bb0160) 2007; 39 Lin (10.1016/j.nbd.2016.07.008_bb0130) 1993; 260 Fjord-Larsen (10.1016/j.nbd.2016.07.008_bb0075) 2005; 195 Delacoux (10.1016/j.nbd.2016.07.008_bb0065) 2000; 275 Voutilainen (10.1016/j.nbd.2016.07.008_bb0190) 2009; 29 Bartus (10.1016/j.nbd.2016.07.008_bb0030) 2011; 26 Slevin (10.1016/j.nbd.2016.07.008_bb0175) 2005; 102 Virtanen (10.1016/j.nbd.2016.07.008_bb0185) 2005; 387 Golden (10.1016/j.nbd.2016.07.008_bb0090) 1999; 158 Lang (10.1016/j.nbd.2016.07.008_bb0125) 2006; 59 Yin (10.1016/j.nbd.2016.07.008_bb0195) 2009; 176 |
References_xml | – volume: 24 start-page: 284 year: 1999 end-page: 292 ident: bb0060 article-title: Neurturin: an autocrine regulator of renal collecting duct development publication-title: Dev. Genet. – volume: 39 start-page: 572 year: 2007 end-page: 580 ident: bb0160 article-title: Neurotrophic factor receptor RET: structure, cell biology, inherited diseases publication-title: Ann. Med. – volume: 21 start-page: 53 year: 1998 end-page: 62 ident: bb0045 article-title: GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney publication-title: Neuron – volume: 45 start-page: 66 year: 2013 end-page: 73 ident: bb0145 article-title: Glial cell line-derived neurotrophic factor: characterization of mammalian posttranslational modifications publication-title: Ann. Med. – volume: 9 start-page: 21 year: 1989 end-page: 32 ident: bb0050 article-title: Molecular modeling of protein-glycosaminoglycan interactions publication-title: Arteriosclerosis – volume: 4 start-page: 435 year: 1997 end-page: 438 ident: bb0070 article-title: X-ray structure of glial cell-derived neurotrophic factor at 1.9 publication-title: Nat. Struct. Biol. – volume: 28 start-page: 96 year: 2013 end-page: 109 ident: bb0115 article-title: Trophic factor gene therapy for Parkinson's disease publication-title: Mov. Disord. – volume: 58 start-page: 224 year: 2005 end-page: 233 ident: bb0080 article-title: Trophic factor distribution predicts functional recovery in parkinsonian monkeys publication-title: Ann. Neurol. – volume: 384 start-page: 467 year: 1996 end-page: 470 ident: bb0120 article-title: Neurturin, a relative of glial-cell-line-derived neurotrophic factor publication-title: Nature – volume: 192 start-page: 153 year: 2011 end-page: 169 ident: bb0040 article-title: Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin publication-title: J. Cell Biol. – volume: 461 start-page: 250 year: 2003 end-page: 261 ident: bb0005 article-title: ntraputamenal infusion of GDNF in aged rhesus monkeys: distribution and dopaminergic effects publication-title: J. Comp. Neurol. – volume: 20 start-page: 4686 year: 2000 end-page: 4700 ident: bb0110 article-title: Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson's model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system publication-title: J. Neurosci. – volume: 124 start-page: 4077 year: 1997 end-page: 4087 ident: bb0165 article-title: Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium publication-title: Development – volume: 195 start-page: 49 year: 2005 end-page: 60 ident: bb0075 article-title: Efficient in vivo protection of nigral dopaminergic neurons by lentiviral gene transfer of a modified neurturin construct publication-title: Exp. Neurol. – volume: 387 start-page: 817 year: 2005 end-page: 824 ident: bb0185 article-title: The first cysteine-rich domain of the receptor GFRalpha1 stabilizes the binding of GDNF publication-title: Biochem. J. – volume: 5 start-page: 605 year: 1993 end-page: 613 ident: bb0180 article-title: Widespread and developmentally regulated expression of neurotrophin-4 mRNA in rat brain and peripheral tissues publication-title: Eur. J. Neurosci. – volume: 168 start-page: 155 year: 2001 end-page: 161 ident: bb0095 article-title: Heparin coinfusion during convection-enhanced delivery (CED) increases the distribution of the glial-derived neurotrophic factor (GDNF) ligand family in rat striatum and enhances the pharmacological activity of neurturin publication-title: Exp. Neurol. – volume: 9 start-page: 589 year: 2003 end-page: 595 ident: bb0085 article-title: Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease publication-title: Nat. Med. – volume: 34 start-page: 35 year: 2013 end-page: 61 ident: bb0035 article-title: Advancing neurotrophic factors as treatments for age-related neurodegenerative diseases: developing and demonstrating “clinical proof-of-concept” for AAV-neurturin (CERE-120) in Parkinson's disease publication-title: Neurobiol. Aging – volume: 260 start-page: 1130 year: 1993 end-page: 1132 ident: bb0130 article-title: GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons publication-title: Science – volume: 26 start-page: 27 year: 2011 end-page: 36 ident: bb0030 article-title: Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson's disease and nonhuman primate brains publication-title: Mov. Disord. – volume: 202 start-page: 497 year: 2006 end-page: 505 ident: bb0170 article-title: Point source concentration of GDNF may explain failure of phase II clinical trial publication-title: Exp. Neurol. – volume: 176 start-page: 200 year: 2009 end-page: 205 ident: bb0195 article-title: Striatal volume differences between non-human and human primates publication-title: J. Neurosci. Methods – volume: 283 start-page: 35164 year: 2008 end-page: 35172 ident: bb0140 article-title: The structure of the glial cell line-derived neurotrophic factor-coreceptor complex: insights into RET signaling and heparin binding publication-title: J. Biol. Chem. – volume: 404 start-page: 131 year: 2007 end-page: 140 ident: bb0010 article-title: The major determinant of the heparin binding of glial cell-line-derived neurotrophic factor is near the N-terminus and is dispensable for receptor binding publication-title: Biochem. J. – volume: 59 start-page: 459 year: 2006 end-page: 466 ident: bb0125 article-title: Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease publication-title: Ann. Neurol. – volume: 252 start-page: 160 year: 2006 end-page: 166 ident: bb0015 article-title: Gene expression patterns for GDNF and its receptors in the human putamen affected by Parkinson's disease: a real-time PCR study publication-title: Mol. Cell. Endocrinol. – year: 2016 ident: bb0020 article-title: Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: where have we been and what have we learned? publication-title: Neurobiol. Dis. – volume: 275 start-page: 29377 year: 2000 end-page: 29382 ident: bb0065 article-title: Unraveling the amino acid sequence crucial for heparin binding to collagen V publication-title: J. Biol. Chem. – volume: 18 start-page: 4929 year: 1998 end-page: 4937 ident: bb0105 article-title: Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons publication-title: J. Neurosci. – volume: 194 start-page: 122 year: 2010 end-page: 131 ident: bb0150 article-title: Medium-throughput computer aided micro-island method to assay embryonic dopaminergic neuron cultures in vitro publication-title: J. Neurosci. Methods – volume: 275 start-page: 27505 year: 2000 end-page: 27512 ident: bb0055 article-title: Binding of GDNF and neurturin to human GDNF family receptor α 1 and 2. Influence of cRET and cooperative interactions publication-title: J. Biol. Chem. – volume: 102 start-page: 216 year: 2005 end-page: 222 ident: bb0175 article-title: Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor publication-title: J. Neurosurg. – volume: 162 start-page: 189 year: 2000 end-page: 193 ident: bb0100 article-title: Mammalian-cell-produced neurturin (NTN) is more potent than purified publication-title: Exp. Neurol. – volume: 9 start-page: 1164 year: 2010 end-page: 1172 ident: bb0135 article-title: Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial publication-title: Lancet Neurol. – volume: 13 start-page: 419 year: 2003 end-page: 426 ident: bb0155 article-title: The binding of human glial cell line-derived neurotrophic factor to heparin and heparan sulfate: importance of 2-O-sulfate groups and effect on its interaction with its receptor, GFRalpha1 publication-title: Glycobiology – year: 2016 ident: bb0025 article-title: Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 2: where do we stand and where must we go next? publication-title: Neurobiol. Dis. – volume: 158 start-page: 504 year: 1999 end-page: 528 ident: bb0090 article-title: Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse publication-title: Exp. Neurol. – volume: 29 start-page: 9651 year: 2009 end-page: 9659 ident: bb0190 article-title: Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson's disease publication-title: J. Neurosci. – volume: 9 start-page: 21 year: 1989 ident: 10.1016/j.nbd.2016.07.008_bb0050 article-title: Molecular modeling of protein-glycosaminoglycan interactions publication-title: Arteriosclerosis doi: 10.1161/01.ATV.9.1.21 – volume: 275 start-page: 27505 year: 2000 ident: 10.1016/j.nbd.2016.07.008_bb0055 article-title: Binding of GDNF and neurturin to human GDNF family receptor α 1 and 2. Influence of cRET and cooperative interactions publication-title: J. Biol. Chem. doi: 10.1074/jbc.M000306200 – volume: 102 start-page: 216 year: 2005 ident: 10.1016/j.nbd.2016.07.008_bb0175 article-title: Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor publication-title: J. Neurosurg. doi: 10.3171/jns.2005.102.2.0216 – volume: 176 start-page: 200 year: 2009 ident: 10.1016/j.nbd.2016.07.008_bb0195 article-title: Striatal volume differences between non-human and human primates publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2008.08.027 – volume: 162 start-page: 189 year: 2000 ident: 10.1016/j.nbd.2016.07.008_bb0100 article-title: Mammalian-cell-produced neurturin (NTN) is more potent than purified Escherichia coli-produced NTN publication-title: Exp. Neurol. doi: 10.1006/exnr.2000.7311 – volume: 45 start-page: 66 year: 2013 ident: 10.1016/j.nbd.2016.07.008_bb0145 article-title: Glial cell line-derived neurotrophic factor: characterization of mammalian posttranslational modifications publication-title: Ann. Med. doi: 10.3109/07853890.2012.663927 – volume: 168 start-page: 155 year: 2001 ident: 10.1016/j.nbd.2016.07.008_bb0095 article-title: Heparin coinfusion during convection-enhanced delivery (CED) increases the distribution of the glial-derived neurotrophic factor (GDNF) ligand family in rat striatum and enhances the pharmacological activity of neurturin publication-title: Exp. Neurol. doi: 10.1006/exnr.2000.7571 – volume: 384 start-page: 467 year: 1996 ident: 10.1016/j.nbd.2016.07.008_bb0120 article-title: Neurturin, a relative of glial-cell-line-derived neurotrophic factor publication-title: Nature doi: 10.1038/384467a0 – volume: 194 start-page: 122 year: 2010 ident: 10.1016/j.nbd.2016.07.008_bb0150 article-title: Medium-throughput computer aided micro-island method to assay embryonic dopaminergic neuron cultures in vitro publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.10.005 – volume: 24 start-page: 284 year: 1999 ident: 10.1016/j.nbd.2016.07.008_bb0060 article-title: Neurturin: an autocrine regulator of renal collecting duct development publication-title: Dev. Genet. doi: 10.1002/(SICI)1520-6408(1999)24:3/4<284::AID-DVG11>3.0.CO;2-X – year: 2016 ident: 10.1016/j.nbd.2016.07.008_bb0025 article-title: Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 2: where do we stand and where must we go next? publication-title: Neurobiol. Dis. – volume: 275 start-page: 29377 year: 2000 ident: 10.1016/j.nbd.2016.07.008_bb0065 article-title: Unraveling the amino acid sequence crucial for heparin binding to collagen V publication-title: J. Biol. Chem. doi: 10.1074/jbc.M004724200 – volume: 9 start-page: 1164 year: 2010 ident: 10.1016/j.nbd.2016.07.008_bb0135 article-title: Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(10)70254-4 – volume: 28 start-page: 96 year: 2013 ident: 10.1016/j.nbd.2016.07.008_bb0115 article-title: Trophic factor gene therapy for Parkinson's disease publication-title: Mov. Disord. doi: 10.1002/mds.25344 – volume: 260 start-page: 1130 year: 1993 ident: 10.1016/j.nbd.2016.07.008_bb0130 article-title: GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons publication-title: Science doi: 10.1126/science.8493557 – volume: 13 start-page: 419 year: 2003 ident: 10.1016/j.nbd.2016.07.008_bb0155 article-title: The binding of human glial cell line-derived neurotrophic factor to heparin and heparan sulfate: importance of 2-O-sulfate groups and effect on its interaction with its receptor, GFRalpha1 publication-title: Glycobiology doi: 10.1093/glycob/cwg046 – volume: 4 start-page: 435 year: 1997 ident: 10.1016/j.nbd.2016.07.008_bb0070 article-title: X-ray structure of glial cell-derived neurotrophic factor at 1.9Å resolution and implications for receptor binding publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0697-435 – volume: 18 start-page: 4929 year: 1998 ident: 10.1016/j.nbd.2016.07.008_bb0105 article-title: Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-13-04929.1998 – volume: 461 start-page: 250 year: 2003 ident: 10.1016/j.nbd.2016.07.008_bb0005 article-title: Intraputamenal infusion of GDNF in aged rhesus monkeys: distribution and dopaminergic effects publication-title: J. Comp. Neurol. doi: 10.1002/cne.10689 – year: 2016 ident: 10.1016/j.nbd.2016.07.008_bb0020 article-title: Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: where have we been and what have we learned? publication-title: Neurobiol. Dis. – volume: 202 start-page: 497 year: 2006 ident: 10.1016/j.nbd.2016.07.008_bb0170 article-title: Point source concentration of GDNF may explain failure of phase II clinical trial publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2006.07.015 – volume: 5 start-page: 605 year: 1993 ident: 10.1016/j.nbd.2016.07.008_bb0180 article-title: Widespread and developmentally regulated expression of neurotrophin-4 mRNA in rat brain and peripheral tissues publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.1993.tb00526.x – volume: 404 start-page: 131 year: 2007 ident: 10.1016/j.nbd.2016.07.008_bb0010 article-title: The major determinant of the heparin binding of glial cell-line-derived neurotrophic factor is near the N-terminus and is dispensable for receptor binding publication-title: Biochem. J. doi: 10.1042/BJ20061747 – volume: 58 start-page: 224 year: 2005 ident: 10.1016/j.nbd.2016.07.008_bb0080 article-title: Trophic factor distribution predicts functional recovery in parkinsonian monkeys publication-title: Ann. Neurol. doi: 10.1002/ana.20549 – volume: 252 start-page: 160 year: 2006 ident: 10.1016/j.nbd.2016.07.008_bb0015 article-title: Gene expression patterns for GDNF and its receptors in the human putamen affected by Parkinson's disease: a real-time PCR study publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2006.03.013 – volume: 29 start-page: 9651 year: 2009 ident: 10.1016/j.nbd.2016.07.008_bb0190 article-title: Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0833-09.2009 – volume: 26 start-page: 27 year: 2011 ident: 10.1016/j.nbd.2016.07.008_bb0030 article-title: Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson's disease and nonhuman primate brains publication-title: Mov. Disord. doi: 10.1002/mds.23442 – volume: 59 start-page: 459 year: 2006 ident: 10.1016/j.nbd.2016.07.008_bb0125 article-title: Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease publication-title: Ann. Neurol. doi: 10.1002/ana.20737 – volume: 158 start-page: 504 year: 1999 ident: 10.1016/j.nbd.2016.07.008_bb0090 article-title: Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse publication-title: Exp. Neurol. doi: 10.1006/exnr.1999.7127 – volume: 192 start-page: 153 year: 2011 ident: 10.1016/j.nbd.2016.07.008_bb0040 article-title: Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin publication-title: J. Cell Biol. doi: 10.1083/jcb.201009136 – volume: 195 start-page: 49 year: 2005 ident: 10.1016/j.nbd.2016.07.008_bb0075 article-title: Efficient in vivo protection of nigral dopaminergic neurons by lentiviral gene transfer of a modified neurturin construct publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2005.03.006 – volume: 39 start-page: 572 year: 2007 ident: 10.1016/j.nbd.2016.07.008_bb0160 article-title: Neurotrophic factor receptor RET: structure, cell biology, inherited diseases publication-title: Ann. Med. doi: 10.1080/07853890701646256 – volume: 387 start-page: 817 year: 2005 ident: 10.1016/j.nbd.2016.07.008_bb0185 article-title: The first cysteine-rich domain of the receptor GFRalpha1 stabilizes the binding of GDNF publication-title: Biochem. J. doi: 10.1042/BJ20041257 – volume: 21 start-page: 53 year: 1998 ident: 10.1016/j.nbd.2016.07.008_bb0045 article-title: GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney publication-title: Neuron doi: 10.1016/S0896-6273(00)80514-0 – volume: 9 start-page: 589 year: 2003 ident: 10.1016/j.nbd.2016.07.008_bb0085 article-title: Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease publication-title: Nat. Med. doi: 10.1038/nm850 – volume: 124 start-page: 4077 year: 1997 ident: 10.1016/j.nbd.2016.07.008_bb0165 article-title: Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium publication-title: Development doi: 10.1242/dev.124.20.4077 – volume: 34 start-page: 35 year: 2013 ident: 10.1016/j.nbd.2016.07.008_bb0035 article-title: Advancing neurotrophic factors as treatments for age-related neurodegenerative diseases: developing and demonstrating “clinical proof-of-concept” for AAV-neurturin (CERE-120) in Parkinson's disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2012.07.018 – volume: 283 start-page: 35164 year: 2008 ident: 10.1016/j.nbd.2016.07.008_bb0140 article-title: The structure of the glial cell line-derived neurotrophic factor-coreceptor complex: insights into RET signaling and heparin binding publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802543200 – volume: 20 start-page: 4686 year: 2000 ident: 10.1016/j.nbd.2016.07.008_bb0110 article-title: Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson's model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-12-04686.2000 |
SSID | ssj0011597 |
Score | 2.3699982 |
Snippet | In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the... Abstract In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms,... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 335 |
SubjectTerms | Amphetamine - pharmacology Animals CHO Cells Cricetulus Disease Models, Animal Drug Design GDNF Genetic Variation - genetics GFRα1 GFRα2 Growth factor Heparan sulfate Heparin Humans Macaca fascicularis Male Models, Molecular Neurology Neurturin Neurturin - chemistry Neurturin - genetics Neurturin - metabolism NRTN Oxidopamine - toxicity Parkinson Disease - complications Parkinson Disease - drug therapy Parkinson Disease - etiology Parkinson Disease - metabolism Parkinson's disease Proto-Oncogene Proteins c-ret - genetics Proto-Oncogene Proteins c-ret - metabolism Rats Rats, Wistar RET Stereotyped Behavior - drug effects Sympatholytics - toxicity Tyrosine 3-Monooxygenase - metabolism |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba1QxEA6lD-KLaOvleCMFURCOm5NzSfJYe6EI9UUL-xZylZX1bOluhb74253JyTm0qBX6uCHZLJnZmW8y30wIeRO5EtYrX1bS8bJR3JVWBVkGcBaeecu6dKd7-rk7OWs-zdv5FjkYa2GQVplt_2DTk7XOI7N8mrPzxWL2BcA3ovUKEAVy6edYwd4I1PIPvyaaBwCe9MAKTi5x9pjZTByv3mKz0Gro34kvTF7zTamF_w0X9S8ImlzR8UPyIGNIuj_8zEdkK_Q7ZHe_h_j5xxV9SxOrM12X75B7pzl5vkvM4VQgRa-VXZnl8ooi3ZaG1E4CvBDFlh0bvIenPyGWRqoMBXBLJ1Y6XUWK9dKpdOzdmuY0z2Nydnz09eCkzC8slK7txKYMBmXhnGoknDe3LAqMGKWzTEnlnQ1C2c7ACAAz52tuHYYwEeI0J6Iy9ROy3a_68IxQZSNnEfTB1KEBWCV9J6zrgmeVbwCWFYSNZ6tdbj-Or2As9cgz-65BHBrFoRkmxWVB3k9LzofeG7dN_ogCmyZi2-w0sLr4prPeaFPHllVRAUoLjQmdAnRj6wgYxXjp27YgfBS3HitTwZbCFy1u21n8bVFYZ2uw1pVec830HxpbkGZaeUPp_7fh3qiJGowBZnhMH1aXsBEEi4Jj6rUgTwcVnQ4Ec_KtlPL53TZ9Qe7jp4HJ85Jsby4uwyvAYxv7Ov3hfgPLRzJl priority: 102 providerName: Elsevier |
Title | Developing therapeutically more efficient Neurturin variants for treatment of Parkinson's disease |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S096999611630167X https://www.clinicalkey.es/playcontent/1-s2.0-S096999611630167X https://dx.doi.org/10.1016/j.nbd.2016.07.008 https://www.ncbi.nlm.nih.gov/pubmed/27425888 https://www.proquest.com/docview/1826723957 https://doaj.org/article/a3f501f9389e4ae69124b3f661ad8d55 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC40gngJmvgYE5cWREEY7Xl3H9doWB8Jogb21vQTlHU2uJtALv72VPU8WEGTi6eBYXp6qKqe-qqr6muAZyGXjXHSpZmweVrK3KZGepF6dBaOO8PruKd7dFzPTsoP82q-cdQX1YR19MCd4F7rIlQ8CxIdqy-1ryU6JFMEdCvaCVdF9lL0eUMw1ecP0Ek3Qw4zVnO1hmhBs46pk86S3PBCkaz_D2f0L7AZnc7hXdju0SKbdl95D274dgd2py1Gyj8v2HMW6zfjxvgO3D7q0-S7oN-OrVBso8FKLxYXjAprmY_EEehvGJFzrGnHnZ1j1ExFMQxhLBvrz9kyMOqMjk1iL1asT-jch5PDd98OZml_lkJqq7pZp16T1K2VpbDe5YaHhmJDYQ2XQjprfCNNrfEOQjDritxYClYCRmS2CVIXD2CrXbb-ETBpQs4Dal4XvkQAJVzdGFt7xzNXIgBLgA-yVbYnGqfzLhZqqCj7oVAditShOKW_RQIvxyGnHcvGVQ-_IYWNDxJBdryBZqN6s1HXmU0C-aBuNfSg4l8TX_T9qpmbvw3yq37dr1SmVrni6isGhhRJZoh2qc9jnkA5juyhTQdZrpvw6WCJCpc95XJ065dnOBGGhU1OSdYEHnYmOgqEsu-VEOLx_xDUHtyhD-oqePZha_3rzD9BHLY2E7j56nc2gVvTgy-fPtP1_cfZ8SQuxEvCqDRC |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEvCFqg4WkkBBJSWCebh30shWqBbi-00t4sv4IWLdmqu0Xqhd_OjONErYAicXXsOPJMZr7xvABeNrmsjZMuzYTN00LmNjXSi9SjsnDcGV6FO93pUTU5KT7NytkG7Pe5MBRWGWV_J9ODtI4jo3iao9P5fPQFwTeh9QwRBcXSz27AzQJ_X2pj8PbnEOeBiCd0WKHZKU3vXZshyKs1VC006wp4UovJS8op1PC_oqP-hkGDLjq4C3ciiGR73Xfegw3fbsPOXosG9PcL9oqFsM5wX74Nt6bRe74D-v2QIcUu5V3pxeKCUbwt86GeBKohRjU71nQRz36gMU2xMgzRLRvC0tmyYZQwHXLHXq9Y9PPch5ODD8f7kzS2WEhtWdXr1GsihrWyEHjgueFNTSajsIZLIZ01vpam0jiCyMy6cW4s2TANGmq2bqQeP4DNdtn6XWDSNDlvkCH02BeIq4SramMr73jmCsRlCfD-bJWN9cepDcZC9YFm3xSSQxE5FCevuEjgzbDktCu-cd3kd0SwYSLVzQ4Dy7OvKjKO0uOm5FkjEab5QvtKIrwx4wZBinbClWUCeU9u1aemojDFF82v27n-0yK_iuJgpTK1yhVXv7FsAsWw8grX_2vDFz0nKpQG5OLRrV-e40ZoLdY5-V4TeNix6HAg5JQvhRCP_m_T53B7cjw9VIcfjz4_hi160oX1PIHN9dm5f4rgbG2ehZ_vFx00NYE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+therapeutically+more+efficient+Neurturin+variants+for+treatment+of+Parkinson%27s+disease&rft.jtitle=Neurobiology+of+disease&rft.au=Runeberg-Roos%2C+Pia&rft.au=Piccinini%2C+Elisa&rft.au=Penttinen%2C+Anna-Maija&rft.au=M%C3%A4tlik%2C+Kert&rft.date=2016-12-01&rft.issn=1095-953X&rft.eissn=1095-953X&rft.volume=96&rft.spage=335&rft_id=info:doi/10.1016%2Fj.nbd.2016.07.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-9961&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-9961&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-9961&client=summon |