MutL traps MutS at a DNA mismatch

DNA mismatch repair (MMR) identifies and corrects errors made during replication. In all organisms except those expressing MutH, interactions between a DNA mismatch, MutS, MutL, and the replication processivity factor (β-clamp or PCNA) activate the latent MutL endonuclease to nick the error-containi...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 35; pp. 10914 - 10919
Main Authors Qiu, Ruoyi, Sakato, Miho, Sacho, Elizabeth J., Wilkins, Hunter, Zhang, Xingdong, Modrich, Paul, Hingorani, Manju M., Erie, Dorothy A., Weninger, Keith R.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 01.09.2015
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA mismatch repair (MMR) identifies and corrects errors made during replication. In all organisms except those expressing MutH, interactions between a DNA mismatch, MutS, MutL, and the replication processivity factor (β-clamp or PCNA) activate the latent MutL endonuclease to nick the error-containing daughter strand. This nick provides an entry point for downstream repair proteins. Despite the well-established significance of strand-specific nicking in MMR, the mechanism(s) by which MutS and MutL assemble on mismatch DNA to allow the subsequent activation of MutL’s endonuclease activity by β-clamp/PCNA remains elusive. In both prokaryotes and eukaryotes, MutS homologs undergo conformational changes to a mobile clamp state that can move away from the mismatch. However, the function of this MutS mobile clamp is unknown. Furthermore, whether the interaction with MutL leads to a mobile MutS–MutL complex or a mismatch-localized complex is hotly debated. We used single molecule FRET to determine thatThermus aquaticusMutL traps MutS at a DNA mismatch after recognition but before its conversion to a sliding clamp. Rather than a clamp, a conformationally dynamic protein assembly typically containing more MutL than MutS is formed at the mismatch. This complex provides a local marker where interaction with β-clamp/PCNA could distinguish parent/daughter strand identity. Our finding that MutL fundamentally changes MutS actions following mismatch detection reframes current thinking on MMR signaling processes critical for genomic stability.
AbstractList DNA mismatch repair is the process by which errors generated during DNA replication are corrected. Mutations in the proteins that initiate mismatch repair, MutS and MutL, are associated with greater than 80% of hereditary nonpolyposis colorectal cancer (HNPCC) and many sporadic cancers. The assembly of MutS and MutL at a mismatch is an essential step for initiating repair; however, the nature of these interactions is poorly understood. Here, we have discovered that MutL fundamentally changes the properties of mismatch-bound MutS by preventing it from sliding away from the mismatch, which it normally does when isolated. This finding suggests a mechanism for localizing the activity of repair proteins near the mismatch. DNA mismatch repair (MMR) identifies and corrects errors made during replication. In all organisms except those expressing MutH, interactions between a DNA mismatch, MutS, MutL, and the replication processivity factor (β-clamp or PCNA) activate the latent MutL endonuclease to nick the error-containing daughter strand. This nick provides an entry point for downstream repair proteins. Despite the well-established significance of strand-specific nicking in MMR, the mechanism(s) by which MutS and MutL assemble on mismatch DNA to allow the subsequent activation of MutL’s endonuclease activity by β-clamp/PCNA remains elusive. In both prokaryotes and eukaryotes, MutS homologs undergo conformational changes to a mobile clamp state that can move away from the mismatch. However, the function of this MutS mobile clamp is unknown. Furthermore, whether the interaction with MutL leads to a mobile MutS–MutL complex or a mismatch-localized complex is hotly debated. We used single molecule FRET to determine that Thermus aquaticus MutL traps MutS at a DNA mismatch after recognition but before its conversion to a sliding clamp. Rather than a clamp, a conformationally dynamic protein assembly typically containing more MutL than MutS is formed at the mismatch. This complex provides a local marker where interaction with β-clamp/PCNA could distinguish parent/daughter strand identity. Our finding that MutL fundamentally changes MutS actions following mismatch detection reframes current thinking on MMR signaling processes critical for genomic stability.
DNA mismatch repair (MMR) identifies and corrects errors made during replication. In all organisms except those expressing MutH, interactions between a DNA mismatch, MutS, MutL, and the replication processivity factor ( beta -clamp or PCNA) activate the latent MutL endonuclease to nick the error-containing daughter strand. This nick provides an entry point for downstream repair proteins. Despite the well-established significance of strand-specific nicking in MMR, the mechanism(s) by which MutS and MutL assemble on mismatch DNA to allow the subsequent activation of MutL's endonuclease activity by beta -clamp/PCNA remains elusive. In both prokaryotes and eukaryotes, MutS homologs undergo conformational changes to a mobile clamp state that can move away from the mismatch. However, the function of this MutS mobile clamp is unknown. Furthermore, whether the interaction with MutL leads to a mobile MutS-MutL complex or a mismatch-localized complex is hotly debated. We used single molecule FRET to determine that Thermus aquaticus MutL traps MutS at a DNA mismatch after recognition but before its conversion to a sliding clamp. Rather than a clamp, a conformationally dynamic protein assembly typically containing more MutL than MutS is formed at the mismatch. This complex provides a local marker where interaction with beta -clamp/PCNA could distinguish parent/daughter strand identity. Our finding that MutL fundamentally changes MutS actions following mismatch detection reframes current thinking on MMR signaling processes critical for genomic stability.
DNA mismatch repair (MMR) identifies and corrects errors made during replication. In all organisms except those expressing MutH, interactions between a DNA mismatch, MutS, MutL, and the replication processivity factor (β-clamp or PCNA) activate the latent MutL endonuclease to nick the error-containing daughter strand. This nick provides an entry point for downstream repair proteins. Despite the well-established significance of strand-specific nicking in MMR, the mechanism(s) by which MutS and MutL assemble on mismatch DNA to allow the subsequent activation of MutL's endonuclease activity by β-clamp/PCNA remains elusive. In both prokaryotes and eukaryotes, MutS homologs undergo conformational changes to a mobile clamp state that can move away from the mismatch. However, the function of this MutS mobile clamp is unknown. Furthermore, whether the interaction with MutL leads to a mobile MutS-MutL complex or a mismatch-localized complex is hotly debated. We used single molecule FRET to determine that Thermus aquaticus MutL traps MutS at a DNA mismatch after recognition but before its conversion to a sliding clamp. Rather than a clamp, a conformationally dynamic protein assembly typically containing more MutL than MutS is formed at the mismatch. This complex provides a local marker where interaction with β-clamp/PCNA could distinguish parent/daughter strand identity. Our finding that MutL fundamentally changes MutS actions following mismatch detection reframes current thinking on MMR signaling processes critical for genomic stability.
DNA mismatch repair (MMR) identifies and corrects errors made during replication. In all organisms except those expressing MutH, interactions between a DNA mismatch, MutS, MutL, and the replication processivity factor (β-clamp or PCNA) activate the latent MutL endonuclease to nick the error-containing daughter strand. This nick provides an entry point for downstream repair proteins. Despite the well-established significance of strand-specific nicking in MMR, the mechanism(s) by which MutS and MutL assemble on mismatch DNA to allow the subsequent activation of MutL’s endonuclease activity by β-clamp/PCNA remains elusive. In both prokaryotes and eukaryotes, MutS homologs undergo conformational changes to a mobile clamp state that can move away from the mismatch. However, the function of this MutS mobile clamp is unknown. Furthermore, whether the interaction with MutL leads to a mobile MutS–MutL complex or a mismatch-localized complex is hotly debated. We used single molecule FRET to determine thatThermus aquaticusMutL traps MutS at a DNA mismatch after recognition but before its conversion to a sliding clamp. Rather than a clamp, a conformationally dynamic protein assembly typically containing more MutL than MutS is formed at the mismatch. This complex provides a local marker where interaction with β-clamp/PCNA could distinguish parent/daughter strand identity. Our finding that MutL fundamentally changes MutS actions following mismatch detection reframes current thinking on MMR signaling processes critical for genomic stability.
Significance DNA mismatch repair is the process by which errors generated during DNA replication are corrected. Mutations in the proteins that initiate mismatch repair, MutS and MutL, are associated with greater than 80% of hereditary nonpolyposis colorectal cancer (HNPCC) and many sporadic cancers. The assembly of MutS and MutL at a mismatch is an essential step for initiating repair; however, the nature of these interactions is poorly understood. Here, we have discovered that MutL fundamentally changes the properties of mismatch-bound MutS by preventing it from sliding away from the mismatch, which it normally does when isolated. This finding suggests a mechanism for localizing the activity of repair proteins near the mismatch. DNA mismatch repair (MMR) identifies and corrects errors made during replication. In all organisms except those expressing MutH, interactions between a DNA mismatch, MutS, MutL, and the replication processivity factor (β-clamp or PCNA) activate the latent MutL endonuclease to nick the error-containing daughter strand. This nick provides an entry point for downstream repair proteins. Despite the well-established significance of strand-specific nicking in MMR, the mechanism(s) by which MutS and MutL assemble on mismatch DNA to allow the subsequent activation of MutL’s endonuclease activity by β-clamp/PCNA remains elusive. In both prokaryotes and eukaryotes, MutS homologs undergo conformational changes to a mobile clamp state that can move away from the mismatch. However, the function of this MutS mobile clamp is unknown. Furthermore, whether the interaction with MutL leads to a mobile MutS–MutL complex or a mismatch-localized complex is hotly debated. We used single molecule FRET to determine that Thermus aquaticus MutL traps MutS at a DNA mismatch after recognition but before its conversion to a sliding clamp. Rather than a clamp, a conformationally dynamic protein assembly typically containing more MutL than MutS is formed at the mismatch. This complex provides a local marker where interaction with β-clamp/PCNA could distinguish parent/daughter strand identity. Our finding that MutL fundamentally changes MutS actions following mismatch detection reframes current thinking on MMR signaling processes critical for genomic stability.
Author Zhang, Xingdong
Qiu, Ruoyi
Wilkins, Hunter
Erie, Dorothy A.
Sacho, Elizabeth J.
Weninger, Keith R.
Hingorani, Manju M.
Sakato, Miho
Modrich, Paul
Author_xml – sequence: 1
  givenname: Ruoyi
  surname: Qiu
  fullname: Qiu, Ruoyi
  organization: Department of Physics, North Carolina State University, Raleigh, NC 27695
– sequence: 2
  givenname: Miho
  surname: Sakato
  fullname: Sakato, Miho
  organization: Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459
– sequence: 3
  givenname: Elizabeth J.
  surname: Sacho
  fullname: Sacho, Elizabeth J.
  organization: Department of Physics, North Carolina State University, Raleigh, NC 27695
– sequence: 4
  givenname: Hunter
  surname: Wilkins
  fullname: Wilkins, Hunter
  organization: Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
– sequence: 5
  givenname: Xingdong
  surname: Zhang
  fullname: Zhang, Xingdong
  organization: Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
– sequence: 6
  givenname: Paul
  surname: Modrich
  fullname: Modrich, Paul
  organization: Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710
– sequence: 7
  givenname: Manju M.
  surname: Hingorani
  fullname: Hingorani, Manju M.
  organization: Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459
– sequence: 8
  givenname: Dorothy A.
  surname: Erie
  fullname: Erie, Dorothy A.
  organization: Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
– sequence: 9
  givenname: Keith R.
  surname: Weninger
  fullname: Weninger, Keith R.
  organization: Department of Physics, North Carolina State University, Raleigh, NC 27695
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26283381$$D View this record in MEDLINE/PubMed
BookMark eNqNkbtPwzAQhy0EgvKYmUBBLCxp7_yMFyTEWyowALPluA60apMSJ0j89zhqKY-JyZb83c93922T9bIqPSH7CH0ExQbz0oY-ChBSCES6RnoIGlPJNayTHgBVacYp3yLbIUwAQIsMNskWlTRjLMMeObprm2HS1HYeknh9TGyT2OTi_iyZjcPMNu51l2wUdhr83vLcIc9Xl0_nN-nw4fr2_GyYOiFVk3rwwArQPM8Yx1wopy0W1kk9AqsUL6RWuSqYk2ApSJlLhTl1oFzh8xFVbIecLnLnbT7zI-fL2NXUzOvxzNYfprJj8_ulHL-al-rdcCEzmtEYcLIMqKu31ofGxBGcn05t6as2GFRUSZUpUP9AQTNNNWJEj_-gk6qty7iJSGHcNpOy-3uwoFxdhVD7YtU3gulMmc6U-TYVKw5_jrviv9REIFkCXeUqDqlhwnSWeUQOFsgkNFX9I4JLHgH2CWJWoeI
CitedBy_id crossref_primary_10_1134_S1068162021020205
crossref_primary_10_1021_acs_chemrestox_8b00179
crossref_primary_10_1093_nar_gkad418
crossref_primary_10_1038_s41467_022_33479_3
crossref_primary_10_1016_j_dnarep_2015_11_012
crossref_primary_10_3390_cells10061535
crossref_primary_10_1016_j_jmb_2018_05_039
crossref_primary_10_1093_nar_gky1168
crossref_primary_10_1016_j_dnarep_2018_06_002
crossref_primary_10_1093_nar_gkz834
crossref_primary_10_1093_nar_gky865
crossref_primary_10_3390_cells11030521
crossref_primary_10_1073_pnas_1918517117
crossref_primary_10_7554_eLife_15155
crossref_primary_10_1038_nature20562
crossref_primary_10_1073_pnas_1918519117
crossref_primary_10_1128_MMBR_00008_20
crossref_primary_10_1016_j_dnarep_2015_11_014
crossref_primary_10_1016_j_dnarep_2015_11_013
crossref_primary_10_1128_mSphere_00433_21
crossref_primary_10_1038_s41467_024_48784_2
crossref_primary_10_1016_j_dnarep_2015_11_017
crossref_primary_10_1002_em_22087
crossref_primary_10_1021_acsinfecdis_9b00220
crossref_primary_10_1002_bip_22843
crossref_primary_10_1002_path_4948
crossref_primary_10_1038_s41594_021_00577_7
crossref_primary_10_1016_j_lfs_2022_120852
crossref_primary_10_1038_s41422_021_00468_y
crossref_primary_10_1093_nar_gkw411
crossref_primary_10_1093_nar_gkad096
crossref_primary_10_1016_j_jbc_2022_102505
crossref_primary_10_1007_s42764_022_00094_x
crossref_primary_10_1038_s41467_019_08769_y
crossref_primary_10_1146_annurev_biophys_070816_034106
crossref_primary_10_1016_j_semcdb_2017_06_028
crossref_primary_10_1021_acs_jpcb_6b11976
crossref_primary_10_1016_j_dnarep_2021_103161
crossref_primary_10_1038_s41594_021_00713_3
crossref_primary_10_1073_pnas_1523748113
Cites_doi 10.1016/S1046-2023(02)00308-0
10.1016/j.bpj.2010.04.049
10.1016/j.canlet.2006.08.008
10.1093/nar/gkr1298
10.1002/humu.22168
10.1074/jbc.275.3.2080
10.1074/jbc.273.15.9202
10.1074/jbc.M114.552190
10.1016/j.jmb.2006.11.092
10.1016/S0021-9258(19)85043-3
10.1016/j.molcel.2010.06.027
10.1146/annurev.bi.56.070187.002251
10.1016/j.cell.2006.05.039
10.1038/nsmb.2009
10.1016/j.mad.2008.02.012
10.1038/emboj.2012.95
10.1016/j.dnarep.2010.10.003
10.1074/jbc.273.16.9837
10.1021/bi049010t
10.1073/pnas.1308595110
10.7554/eLife.06744.021
10.1007/s10689-013-9635-x
10.1073/pnas.1311325110
10.1016/S1097-2765(03)00219-3
10.1021/bi901871u
10.1074/jbc.M109.054528
10.1016/j.dnarep.2014.03.007
10.1021/cr0404794
10.1016/j.cell.2011.10.025
10.1074/jbc.M202282200
10.1146/annurev.biochem.74.082803.133243
10.1074/jbc.M407545200
10.1016/S1097-2765(00)80316-0
10.1073/pnas.2433654100
10.1074/jbc.M103148200
10.1016/j.jmb.2013.08.011
10.1073/pnas.1211364109
10.1021/bi401429b
10.1074/jbc.M707617200
10.1126/science.1084398
10.1073/pnas.1010662107
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Sep 1, 2015
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Sep 1, 2015
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1505655112
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Nucleic Acids Abstracts
MEDLINE
Virology and AIDS Abstracts

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate MutL traps MutS at a DNA mismatch
EISSN 1091-6490
EndPage 10919
ExternalDocumentID 3803900611
10_1073_pnas_1505655112
26283381
112_35_10914
26464091
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM045190
– fundername: NIGMS NIH HHS
  grantid: GM080294
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: GM109832
– fundername: NIGMS NIH HHS
  grantid: R01 GM109832
– fundername: NIGMS NIH HHS
  grantid: R01 GM080294
– fundername: NIGMS NIH HHS
  grantid: R01 GM079480
– fundername: NIGMS NIH HHS
  grantid: GM079480
– fundername: NIGMS NIH HHS
  grantid: R01 GM045190
– fundername: HHS | National Institutes of Health (NIH)
  grantid: GM079480
– fundername: Howard Hughes Medical Institute (HHMI)
  grantid: none
– fundername: American Cancer Society (ACS)
  grantid: RSG-10-048
– fundername: National Science Foundation (NSF)
  grantid: MCB 1022203
– fundername: HHS | National Institutes of Health (NIH)
  grantid: GM080294
– fundername: HHS | National Institutes of Health (NIH)
  grantid: GM045190
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
DZ
F20
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
.GJ
3O-
692
6TJ
AAYJJ
AAYXX
ACKIV
AS~
CITATION
HGD
HQ3
HTVGU
MVM
NEJ
NHB
P-O
VOH
WHG
ZCG
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ADQXQ
5PM
ID FETCH-LOGICAL-c567t-e0e03f094b8341b57c9a1fac69d0a774f697b7f3c60a2066b671b2c07cfebd273
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:13:15 EDT 2024
Sat Aug 17 01:46:51 EDT 2024
Fri Aug 16 05:39:50 EDT 2024
Thu Oct 10 18:35:00 EDT 2024
Fri Aug 23 01:52:09 EDT 2024
Sat Sep 28 08:04:54 EDT 2024
Wed Nov 11 00:29:36 EST 2020
Fri Feb 02 08:16:18 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords FRET
MutS
MutL
DNA mismatch repair
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-e0e03f094b8341b57c9a1fac69d0a774f697b7f3c60a2066b671b2c07cfebd273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by John A. Tainer, Scripps Research Institute, La Jolla, CA, and accepted by the Editorial Board July 21, 2015 (received for review March 20, 2015)
Author contributions: R.Q., M.M.H., D.A.E., and K.R.W. designed research; R.Q., M.S., E.J.S., H.W., and D.A.E. performed research; R.Q., M.S., H.W., X.Z., P.M., M.M.H., and K.R.W. contributed new reagents/analytic tools; R.Q., M.S., E.J.S., M.M.H., D.A.E., and K.R.W. analyzed data; and P.M., M.M.H., D.A.E., and K.R.W. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/112/35/10914.full.pdf
PMID 26283381
PQID 1711093662
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1709392911
crossref_primary_10_1073_pnas_1505655112
jstor_primary_26464091
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4568282
pubmed_primary_26283381
pnas_primary_112_35_10914
proquest_miscellaneous_1727678707
proquest_journals_1711093662
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 22118461 - Cell. 2011 Nov 23;147(5):1040-53
16873062 - Cell. 2006 Jul 28;126(2):297-308
19783657 - J Biol Chem. 2009 Nov 20;284(47):32782-91
21050827 - DNA Repair (Amst). 2011 Jan 2;10(1):87-93
17029773 - Cancer Lett. 2007 May 8;249(2):148-56
20643053 - Biophys J. 2010 Jul 21;99(2):360-6
18406444 - Mech Ageing Dev. 2008 Jul-Aug;129(7-8):391-407
15952900 - Annu Rev Biochem. 2005;74:681-710
20713735 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16066-71
24101514 - Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17308-13
20603082 - Mol Cell. 2010 Jul 9;39(1):145-51
23572416 - Fam Cancer. 2013 Jun;12(2):159-68
12606223 - Methods. 2003 Feb;29(2):175-87
12887908 - Mol Cell. 2003 Jul;12(1):233-46
26163658 - Elife. 2015;4:e06744
11371566 - J Biol Chem. 2001 Jul 27;276(30):28291-9
23973435 - J Mol Biol. 2013 Nov 15;425(22):4192-205
9545323 - J Biol Chem. 1998 Apr 17;273(16):9837-41
10636912 - J Biol Chem. 2000 Jan 21;275(3):2080-6
22505031 - EMBO J. 2012 May 30;31(11):2528-40
3304141 - Annu Rev Biochem. 1987;56:435-66
17951253 - J Biol Chem. 2007 Dec 21;282(51):37181-90
22241777 - Nucleic Acids Res. 2012 May;40(9):3929-38
10078208 - Mol Cell. 1999 Feb;3(2):255-61
16464007 - Chem Rev. 2006 Feb;106(2):302-23
22833534 - Hum Mutat. 2012 Dec;33(12):1617-25
11986324 - J Biol Chem. 2002 Jul 12;277(28):25545-53
23840062 - Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12277-82
20180598 - Biochemistry. 2010 Apr 13;49(14):3174-90
23012240 - Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):E3074-83
24746644 - DNA Repair (Amst). 2014 Aug;20:71-81
12791999 - Science. 2003 Jun 27;300(5628):2061-5
21278758 - Nat Struct Mol Biol. 2011 Mar;18(3):379-85
14634210 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14822-7
15811858 - J Biol Chem. 2005 Jun 10;280(23):22245-57
9535911 - J Biol Chem. 1998 Apr 10;273(15):9202-7
15476405 - Biochemistry. 2004 Oct 19;43(41):13115-28
2536011 - J Biol Chem. 1989 Jan 15;264(2):1000-4
24550389 - J Biol Chem. 2014 Mar 28;289(13):9352-64
24588663 - Biochemistry. 2014 Apr 1;53(12):2043-52
17207499 - J Mol Biol. 2007 Mar 2;366(4):1087-98
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_40_2
  doi: 10.1016/S1046-2023(02)00308-0
– ident: e_1_3_3_26_2
  doi: 10.1016/j.bpj.2010.04.049
– ident: e_1_3_3_13_2
  doi: 10.1016/j.canlet.2006.08.008
– ident: e_1_3_3_22_2
  doi: 10.1093/nar/gkr1298
– ident: e_1_3_3_2_2
  doi: 10.1002/humu.22168
– ident: e_1_3_3_19_2
  doi: 10.1074/jbc.275.3.2080
– ident: e_1_3_3_35_2
  doi: 10.1074/jbc.273.15.9202
– ident: e_1_3_3_23_2
  doi: 10.1074/jbc.M114.552190
– ident: e_1_3_3_38_2
  doi: 10.1016/j.jmb.2006.11.092
– ident: e_1_3_3_3_2
  doi: 10.1016/S0021-9258(19)85043-3
– ident: e_1_3_3_14_2
  doi: 10.1016/j.molcel.2010.06.027
– ident: e_1_3_3_7_2
  doi: 10.1146/annurev.bi.56.070187.002251
– ident: e_1_3_3_9_2
  doi: 10.1016/j.cell.2006.05.039
– ident: e_1_3_3_20_2
  doi: 10.1038/nsmb.2009
– ident: e_1_3_3_8_2
  doi: 10.1016/j.mad.2008.02.012
– ident: e_1_3_3_21_2
  doi: 10.1038/emboj.2012.95
– ident: e_1_3_3_36_2
  doi: 10.1016/j.dnarep.2010.10.003
– ident: e_1_3_3_4_2
  doi: 10.1074/jbc.273.16.9837
– ident: e_1_3_3_29_2
  doi: 10.1021/bi049010t
– ident: e_1_3_3_31_2
  doi: 10.1073/pnas.1308595110
– ident: e_1_3_3_41_2
  doi: 10.7554/eLife.06744.021
– ident: e_1_3_3_1_2
  doi: 10.1007/s10689-013-9635-x
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.1311325110
– ident: e_1_3_3_24_2
  doi: 10.1016/S1097-2765(03)00219-3
– ident: e_1_3_3_37_2
  doi: 10.1021/bi901871u
– ident: e_1_3_3_34_2
  doi: 10.1074/jbc.M109.054528
– ident: e_1_3_3_5_2
  doi: 10.1016/j.dnarep.2014.03.007
– ident: e_1_3_3_6_2
  doi: 10.1021/cr0404794
– ident: e_1_3_3_18_2
  doi: 10.1016/j.cell.2011.10.025
– ident: e_1_3_3_30_2
  doi: 10.1074/jbc.M202282200
– ident: e_1_3_3_15_2
  doi: 10.1146/annurev.biochem.74.082803.133243
– ident: e_1_3_3_39_2
  doi: 10.1074/jbc.M407545200
– ident: e_1_3_3_17_2
  doi: 10.1016/S1097-2765(00)80316-0
– ident: e_1_3_3_33_2
  doi: 10.1073/pnas.2433654100
– ident: e_1_3_3_25_2
  doi: 10.1074/jbc.M103148200
– ident: e_1_3_3_28_2
  doi: 10.1016/j.jmb.2013.08.011
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.1211364109
– ident: e_1_3_3_32_2
  doi: 10.1021/bi401429b
– ident: e_1_3_3_11_2
  doi: 10.1074/jbc.M707617200
– ident: e_1_3_3_27_2
  doi: 10.1126/science.1084398
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.1010662107
SSID ssj0009580
Score 2.4443483
Snippet DNA mismatch repair (MMR) identifies and corrects errors made during replication. In all organisms except those expressing MutH, interactions between a DNA...
Significance DNA mismatch repair is the process by which errors generated during DNA replication are corrected. Mutations in the proteins that initiate...
DNA mismatch repair is the process by which errors generated during DNA replication are corrected. Mutations in the proteins that initiate mismatch repair,...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 10914
SubjectTerms Bacterial Proteins - genetics
Base Pair Mismatch
Biological Sciences
DNA repair
Eukaryotes
Genes, Bacterial
Prokaryotes
Proteins
Thermus - genetics
Thermus aquaticus
Title MutL traps MutS at a DNA mismatch
URI https://www.jstor.org/stable/26464091
http://www.pnas.org/content/112/35/10914.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26283381
https://www.proquest.com/docview/1711093662
https://search.proquest.com/docview/1709392911
https://search.proquest.com/docview/1727678707
https://pubmed.ncbi.nlm.nih.gov/PMC4568282
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50T17Et_VFBA966G7TNEn3KOoi4oqggreSpAkKbl3c7v930peuiAdvhUyGMpPk-9JMvgKcGMYkcyYOjch5iHgbh4omNsRl0AmbCqm5vzs8vhPXT8nNM39eAt7ehamK9o1-7Rdvk37x-lLVVk4nZtDWiQ3uxxcI-rhRiAfLsCwZa7fondJuWt87iXH5TeKk1fORbDAt1KxPPeZzzzO8ELBAeGUpXUClujDRq52i_W_M82cB5TdEGq3BakMlyXn9yuuwZIsNWG8m64ycNorSZ5twPJ6XtwR9TGcEHx-IKokil3fnBLOMlNW8bMHT6Orx4jps_o0QGi5kGdrIRszh3kyniEOaSzNU1CkjhnmkkNI5MZRaOmZEpLxiuxaS6thE0jirc-Qs29Ar3gu7CyRXzvjPGqnFaOXGoE-ROC0NpyKyKg3gtI1NNq0lMLLq6FqyzEco-4poANtV7Do7pFsCd5A0gKAy7frTOGPcH3_TJICDNsJZM4HQp_RSqEwI9HncNWNQ_HmGKuz73NugBdI7Sv-yiaXwi5IMYKdO2reXq5MfgFxIZ2fgpbcXW3BEVhLczQjc-3fPfVhB6sXrarUD6JUfc3uI9KbURx5c-FE1qD8BS2H1cg
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoALtEBLoAVX4lAOycZ2bGePVUu1wO4KiRb1FtmOrVbQdMVmL_x6xvlqt0JIcIvkseV4xjNv4vELwDvLueLestjKUsQYb1msaeZidINeulwqI8Ld4dlcTs6zTxfiYgNEfxemKdq35iqpflwn1dVlU1u5uLajvk5s9GV2jEEfEwU2egAPcb8y0SfpA9du3t48YeiAM5b1jD6KjxaVXiY0RH0RkEagApYYYHlO1-JSW5oY-E5R_k_Y834J5Z2YdPoUvvVv05aifE9WtUnsr3tEj__8ulvwpEOp5Kht3oYNVz2D7c4PLMlhR1b9_jkczFb1lODkFkuCj1-JrokmJ_MjggaEaNhevoDz0w9nx5O4--1CbIVUdexSl3KPaZ_JMcQZoexYU6-tHJepRrTo5VgZ5bmVqQ5k8EYqaphNlfXOlAiHdmCzuqncSyCl9jZ8MckdqqG0FseUmTfKCipTp_MIDvtFLxYtu0bRnIorXoSlL25VFcFOo5RBDpGcxOSURhA1okN_ygouwsk6zSLY61VXdHsTx1SBZZVLiWMeDM24KOGoRFfuZhVkUAKRI6V_k2FKBn-nIthtreHO5FqrikCt2ckgEFi911tQ-w27d6ftV__d8y08mpzNpsX04_zza3iMCE-0RXF7sFn_XLl9RFG1edPsmd-0HxaU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXaIGWQAuuxKEc8nAc29lj1XZVoLuqBJUqLpHt2GoFTSM2e-HXM86ruxXi0Fskjy3bM575HI8_A3w0jEnmTBoaUfIQ420aKprZEN2gEzYXUnN_d3g2F6cX2ZdLfrny1FebtG_0dVT9uomq66s2t7K-MfGQJxafz44w6ONGIY3r0sWP4Qmu2VQOG_WRbzfvbp-k6ISzNBtYfSSL60otIuojP_dow9MBCwyyLKdrsalLT_Scpyj_L_x5P41yJS5NX8CPYURdOsrPaNnoyPy5R_b4oCFvwvMerZLDTmQLHtnqJWz1_mBBDnrS6k-vYH-2bM4IdrBeEPz8RlRDFDmeHxI0JETF5uo1XExPvh-dhv3zC6HhQjahTWzCHG7_dI6hTnNpJoo6ZcSkTBSiRicmUkvHjEiUJ4XXQlKdmkQaZ3WJsGgbNqrbyr4BUipn_J-T3KIqSmOwTZE5LQ2nIrEqD-BgmPii7lg2ivZ0XLLCT39xp64AtlvFjHKI6ARuUmkAQSs61qdpwbg_YadZALuD-op-jWKb0rOtMiGwzf2xGCfFH5moyt4uvQxKIIKk9H8yqRTe78kAdjqLWOlcZ1kByDVbGQU8u_d6CVpAy_Lda_ztg2t-gKfnx9Pi7PP86zt4hkCPd7lxu7DR_F7aPQRTjX7fLpu_l0QZFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MutL+traps+MutS+at+a+DNA+mismatch&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Qiu%2C+Ruoyi&rft.au=Sakato%2C+Miho&rft.au=Sacho%2C+Elizabeth+J.&rft.au=Wilkins%2C+Hunter&rft.date=2015-09-01&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=35&rft.spage=10914&rft.epage=10919&rft_id=info:doi/10.1073%2Fpnas.1505655112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1505655112
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F35.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F35.cover.gif