Revisiting correlation-based functional connectivity and its relationship with structural connectivity

Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from between functional time series, and more recently from or their unnormalized version encoded in the matrix. The latter FC metrics yiel...

Full description

Saved in:
Bibliographic Details
Published inNetwork neuroscience (Cambridge, Mass.) Vol. 4; no. 4; pp. 1235 - 1251
Main Authors Liégeois, Raphael, Santos, Augusto, Matta, Vincenzo, Van De Ville, Dimitri, Sayed, Ali H.
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 2020
MIT Press Journals, The
The MIT Press
Subjects
Online AccessGet full text
ISSN2472-1751
2472-1751
DOI10.1162/netn_a_00166

Cover

Loading…
Abstract Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from between functional time series, and more recently from or their unnormalized version encoded in the matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture ‘direct’ statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections.
AbstractList Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from correlations between functional time series, and more recently from partial correlations or their unnormalized version encoded in the precision matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture ‘direct’ statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections.
Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from correlations between functional time series, and more recently from partial correlations or their unnormalized version encoded in the precision matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture 'direct' statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections.Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from correlations between functional time series, and more recently from partial correlations or their unnormalized version encoded in the precision matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture 'direct' statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections.
AbstractPatterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from correlations between functional time series, and more recently from partial correlations or their unnormalized version encoded in the precision matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture ‘direct’ statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections.
Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from correlations between functional time series, and more recently from partial correlations or their unnormalized version encoded in the precision matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture ‘direct’ statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections.
Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from between functional time series, and more recently from or their unnormalized version encoded in the matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture ‘direct’ statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections.
Author Matta, Vincenzo
Van De Ville, Dimitri
Liégeois, Raphael
Sayed, Ali H.
Santos, Augusto
Author_xml – sequence: 1
  givenname: Raphael
  orcidid: 0000-0003-3985-3898
  surname: Liégeois
  fullname: Liégeois, Raphael
  email: raphael.liegeois@epfl.ch
  organization: Department of Radiology and Medical Informatics, University of Geneva, Switzerland
– sequence: 2
  givenname: Augusto
  surname: Santos
  fullname: Santos, Augusto
– sequence: 3
  givenname: Vincenzo
  surname: Matta
  fullname: Matta, Vincenzo
  organization: Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, Italy
– sequence: 4
  givenname: Dimitri
  surname: Van De Ville
  fullname: Van De Ville, Dimitri
  organization: Department of Radiology and Medical Informatics, University of Geneva, Switzerland
– sequence: 5
  givenname: Ali H.
  surname: Sayed
  fullname: Sayed, Ali H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33409438$$D View this record in MEDLINE/PubMed
BookMark eNp1kstvEzEQxi1UREvpjTNaiUsPLPi1Xu-FClU8KlVCQnC2HHucONrYwfYGlb8ep2mrNConP-b3fZ7xzEt0FGIAhF4T_J4QQT8EKEFphTER4hk6obynLek7crS3P0ZnOS8xxpRQgrl8gY4Z43jgTJ4g9wM2Pvviw7wxMSUYdfExtDOdwTZuCmZ71GMNhgD1sPHlptHBNr7k5h7PC79u_viyaHJJkylTOlC8Qs-dHjOc3a2n6NeXzz8vv7XX379eXX66bk0n-tJao61wQkuYGSeYdJaygVrpemIEyBmWjgggM9obLCmVnFFJBgmDENRRa9gputr52qiXap38SqcbFbVXtxcxzZVOxZsRlGbMSpCMOM05MWSwztmhM45irYntqtfHndd6mq3AGgillvXI9HEk-IWax43qe0kEHqrB-Z1Bir8nyEWtfDYwjjpAnLKqHRKkFiBpRd8eoMs4pfrvlZID5gJ3glXqzX5GD6nct7MC73aASTHnBO4BIVhtB0btD0zF6QFufLltaK3Hj_8TXexEK7-X5RbZcM8Vq1BPFa3TVsUKS_XXrw8dzp9wePKxfxt06m8
CitedBy_id crossref_primary_10_1016_j_physa_2024_130225
crossref_primary_10_1103_PhysRevE_108_024313
crossref_primary_10_1002_hbm_25592
crossref_primary_10_1016_j_neuroimage_2022_119321
crossref_primary_10_1016_j_neuroimage_2022_118970
crossref_primary_10_1126_sciadv_abj0751
crossref_primary_10_1109_TIT_2022_3211078
crossref_primary_10_3390_e24081148
crossref_primary_10_1162_netn_a_00226
crossref_primary_10_1162_netn_a_00325
crossref_primary_10_1038_s41598_023_49746_2
crossref_primary_10_1038_s41467_021_25184_4
crossref_primary_10_1007_s11055_023_01437_1
crossref_primary_10_1016_j_sigpro_2025_109995
crossref_primary_10_1038_s42003_024_06669_6
crossref_primary_10_1162_imag_a_00381
crossref_primary_10_1038_s41583_022_00601_9
crossref_primary_10_1111_ejn_16678
crossref_primary_10_1002_hbm_26614
crossref_primary_10_1038_s41467_023_42053_4
crossref_primary_10_1038_s42003_024_07160_y
crossref_primary_10_1097_AUD_0000000000001564
crossref_primary_10_1002_hbm_26155
crossref_primary_10_1002_hbm_26296
crossref_primary_10_3389_fnins_2023_1214687
crossref_primary_10_3389_fnins_2025_1499629
crossref_primary_10_1371_journal_pcbi_1012099
crossref_primary_10_1016_j_neuroimage_2023_119975
crossref_primary_10_3389_fnins_2023_1194630
crossref_primary_10_1162_netn_a_00314
crossref_primary_10_1016_j_jhydrol_2025_132896
crossref_primary_10_1002_hbm_26251
crossref_primary_10_1109_JSEN_2022_3156152
crossref_primary_10_1038_s42003_025_07876_5
crossref_primary_10_1038_s41598_022_14397_2
crossref_primary_10_3389_fnins_2022_969510
crossref_primary_10_3389_fnins_2022_810111
crossref_primary_10_1038_s41583_024_00846_6
crossref_primary_10_1016_j_yhbeh_2022_105138
crossref_primary_10_3389_fnins_2022_975305
crossref_primary_10_1038_s41598_023_42533_z
crossref_primary_10_1109_OJSP_2022_3189315
crossref_primary_10_1093_braincomms_fcad245
crossref_primary_10_1371_journal_pcbi_1012507
Cites_doi 10.1016/j.neuroimage.2008.05.059
10.3389/fnins.2014.00258
10.1016/j.neuroimage.2010.01.099
10.1016/j.neuroimage.2019.02.062
10.1073/pnas.1315529111
10.1093/cercor/bhw089
10.1103/PhysRevE.90.012707
10.1016/j.neuroimage.2008.04.262
10.1016/j.tics.2013.09.016
10.1089/brain.2015.0382
10.3389/fncom.2012.00068
10.1126/sciadv.aat7854
10.1371/journal.pcbi.1000092
10.1016/j.neuroimage.2010.06.041
10.1371/journal.pcbi.1005025
10.1038/s41467-019-12765-7
10.1016/j.neuron.2011.09.006
10.1111/j.2517-6161.1979.tb01052.x
10.1016/j.neuroimage.2015.07.039
10.1038/nrn2575
10.1093/biostatistics/kxm045
10.1523/JNEUROSCI.5062-08.2009
10.1109/TSP.2013.2238935
10.1137/1.9780898719246
10.1088/1751-8113/47/34/343001
10.1523/JNEUROSCI.2964-08.2008
10.1038/nrn2961
10.1038/s41467-019-10317-7
10.1002/mrm.1910340409
10.1016/j.neuroimage.2017.01.003
10.1523/JNEUROSCI.5068-13.2014
10.1007/BF02546511
10.1073/pnas.0704320104
10.1152/jn.00338.2011
10.1089/brain.2016.0462
10.1073/pnas.1608282113
10.1016/j.neuroimage.2016.09.008
10.1162/netn_a_00054
10.1523/JNEUROSCI.2523-11.2012
10.1038/ncomms10340
10.1038/s41598-018-33586-6
10.1093/cercor/10.2.127
10.1016/j.neuroimage.2014.11.001
10.1016/j.neuroimage.2018.02.016
10.1016/j.neuroimage.2015.02.001
10.1016/j.neuroimage.2013.05.039
10.1214/ss/1177013815
10.1371/journal.pcbi.1004762
10.1007/s00429-015-1083-y
10.1016/j.neuroimage.2013.10.046
10.1016/j.neuroimage.2003.10.006
10.1016/j.neuroimage.2017.09.012
10.1016/j.neuroimage.2005.12.057
10.1103/PhysRev.36.823
10.1016/j.neuroimage.2020.116604
10.1038/ncomms9414
10.1016/B978-0-444-53839-0.00017-X
10.1016/j.neuroimage.2010.01.071
10.1016/j.neuroimage.2019.03.019
10.1016/j.neuroimage.2010.08.063
10.1002/hbm.23870
10.1016/j.neuroimage.2011.11.054
10.1109/MSP.2012.2235192
10.1016/j.neuroimage.2012.11.049
10.1007/978-3-642-22092-0_25
10.1089/brain.2011.0008
10.1073/pnas.0811168106
10.1103/PhysRevE.85.011912
10.1038/nrn.2017.149
10.1371/journal.pone.0002148
10.1109/CDC.2015.7402835
10.1109/JPROC.2018.2798928
10.7554/eLife.28927
10.1038/nature18933
10.1016/j.media.2019.03.001
10.1587/nolta.9.166
10.1002/hbm.20737
10.1089/brain.2013.0142
10.3389/fnins.2010.00200
10.1109/ISBI.2012.6235549
10.1038/nn.4497
10.1016/j.neuroimage.2013.05.041
ContentType Journal Article
Copyright 2020 Massachusetts Institute of Technology.
2020. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Massachusetts Institute of Technology 2020 Massachusetts Institute of Technology
Copyright_xml – notice: 2020 Massachusetts Institute of Technology.
– notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Massachusetts Institute of Technology 2020 Massachusetts Institute of Technology
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
LK8
M7P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1162/netn_a_00166
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Biological Sciences
ProQuest Biological Science Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

CrossRef


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2472-1751
EndPage 1251
ExternalDocumentID oai_doaj_org_article_a33d8e831fa441c19dffd95cf20aa1d5
PMC7781609
33409438
10_1162_netn_a_00166
netn_a_00166.pdf
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 20CH21 174081
GroupedDBID 53G
AAFWJ
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
GROUPED_DOAJ
HYE
MCG
OK1
RMI
RPM
AAYXX
AFKRA
ARAPS
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
EJD
HCIFZ
JMNJE
K7-
M7P
MINIK
M~E
PGMZT
PHGZM
PHGZT
PIMPY
NPM
8FE
8FG
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
LK8
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c567t-dcad6f6a8ebcf638fd2392d8f71c6e8b08f16e1b27c082284328198e9662f2dc3
IEDL.DBID BENPR
ISSN 2472-1751
IngestDate Wed Aug 27 01:31:08 EDT 2025
Thu Aug 21 18:18:28 EDT 2025
Thu Jul 10 22:59:09 EDT 2025
Sun Jul 13 04:54:10 EDT 2025
Thu Jan 02 22:58:03 EST 2025
Tue Jul 01 03:20:39 EDT 2025
Thu Apr 24 22:55:51 EDT 2025
Tue Mar 01 17:17:34 EST 2022
Sun Jul 17 10:31:08 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Functional connectivity
fMRI
Precision matrix
Structural connectivity
Multimodal modeling
Partial correlation
Language English
License 2020 Massachusetts Institute of Technology.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-dcad6f6a8ebcf638fd2392d8f71c6e8b08f16e1b27c082284328198e9662f2dc3
Notes December, 2020
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Handling Editor: Bratislav Misic
ORCID 0000-0003-3985-3898
OpenAccessLink https://www.proquest.com/docview/2890460563?pq-origsite=%requestingapplication%
PMID 33409438
PQID 2890460563
PQPubID 6535871
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7781609
crossref_citationtrail_10_1162_netn_a_00166
mit_journals_netnv4i4_301672_2021_11_08_zip_netn_a_00166
mit_journals_10_1162_netn_a_00166
doaj_primary_oai_doaj_org_article_a33d8e831fa441c19dffd95cf20aa1d5
pubmed_primary_33409438
crossref_primary_10_1162_netn_a_00166
proquest_miscellaneous_2476128182
proquest_journals_2890460563
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: United States
– name: Cambridge
– name: One Rogers Street, Cambridge, MA 02142-1209USAjournals-info@mit.edu
PublicationTitle Network neuroscience (Cambridge, Mass.)
PublicationTitleAlternate Netw Neurosci
PublicationYear 2020
Publisher MIT Press
MIT Press Journals, The
The MIT Press
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
– name: The MIT Press
References bib72
bib73
bib70
bib71
bib36
bib37
Koller D. (bib42) 2009
bib34
bib78
bib35
bib79
bib32
bib76
bib33
MacKay D. (bib89) 2006
bib77
bib30
bib74
bib31
bib29
bib27
bib28
bib40
bib84
Stoica P. (bib75) 2005
bib82
bib80
bib47
bib48
bib45
bib46
bib43
bib87
bib44
bib88
bib41
bib85
bib86
bib9
bib7
bib8
bib5
bib6
bib3
bib38
bib4
bib39
bib1
bib2
Varoquaux G. (bib81) 2010
bib50
bib51
Chai B. (bib12) 2009
bib14
bib58
bib15
bib59
bib56
bib13
bib57
Whittaker J. (bib83) 2009
bib10
bib54
bib11
bib52
bib53
Montanari A. (bib55) 2009
bib49
bib61
bib62
bib60
bib25
bib69
bib26
bib23
bib67
bib24
bib68
bib21
bib65
bib22
bib66
bib63
bib20
bib64
bib18
bib19
bib16
bib17
References_xml – ident: bib27
  doi: 10.1016/j.neuroimage.2008.05.059
– ident: bib21
  doi: 10.3389/fnins.2014.00258
– ident: bib50
  doi: 10.1016/j.neuroimage.2010.01.099
– volume-title: Gaussian process basics
  year: 2006
  ident: bib89
– ident: bib13
  doi: 10.1016/j.neuroimage.2019.02.062
– ident: bib33
  doi: 10.1073/pnas.1315529111
– ident: bib54
  doi: 10.1093/cercor/bhw089
– ident: bib63
  doi: 10.1103/PhysRevE.90.012707
– ident: bib74
  doi: 10.1016/j.neuroimage.2008.04.262
– start-page: 2334
  volume-title: Advances in Neural Iformation Processing Systems 23
  year: 2010
  ident: bib81
– ident: bib71
  doi: 10.1016/j.tics.2013.09.016
– ident: bib40
  doi: 10.1089/brain.2015.0382
– ident: bib20
  doi: 10.3389/fncom.2012.00068
– ident: bib82
  doi: 10.1126/sciadv.aat7854
– ident: bib18
  doi: 10.1371/journal.pcbi.1000092
– ident: bib88
  doi: 10.1016/j.neuroimage.2010.06.041
– ident: bib26
  doi: 10.1371/journal.pcbi.1005025
– ident: bib60
  doi: 10.1038/s41467-019-12765-7
– ident: bib59
  doi: 10.1016/j.neuron.2011.09.006
– ident: bib15
  doi: 10.1111/j.2517-6161.1979.tb01052.x
– ident: bib7
  doi: 10.1016/j.neuroimage.2015.07.039
– ident: bib10
  doi: 10.1038/nrn2575
– volume-title: Probabilistic graphical models: Principles and techniques
  year: 2009
  ident: bib42
– ident: bib28
  doi: 10.1093/biostatistics/kxm045
– ident: bib9
  doi: 10.1523/JNEUROSCI.5062-08.2009
– ident: bib65
  doi: 10.1109/TSP.2013.2238935
– ident: bib8
  doi: 10.1137/1.9780898719246
– ident: bib76
  doi: 10.1088/1751-8113/47/34/343001
– ident: bib78
  doi: 10.1523/JNEUROSCI.2964-08.2008
– ident: bib17
  doi: 10.1038/nrn2961
– ident: bib45
  doi: 10.1038/s41467-019-10317-7
– volume-title: Graphical models in applied multivariate statistics
  year: 2009
  ident: bib83
– ident: bib5
  doi: 10.1002/mrm.1910340409
– ident: bib34
  doi: 10.1016/j.neuroimage.2017.01.003
– ident: bib19
  doi: 10.1523/JNEUROSCI.5068-13.2014
– ident: bib84
  doi: 10.1007/BF02546511
– ident: bib23
  doi: 10.1073/pnas.0704320104
– start-page: 1303
  volume-title: Advances in neural information processing systems 22
  year: 2009
  ident: bib55
– ident: bib87
  doi: 10.1152/jn.00338.2011
– ident: bib2
  doi: 10.1089/brain.2016.0462
– ident: bib49
  doi: 10.1073/pnas.1608282113
– ident: bib48
  doi: 10.1016/j.neuroimage.2016.09.008
– ident: bib36
  doi: 10.1162/netn_a_00054
– ident: bib16
  doi: 10.1523/JNEUROSCI.2523-11.2012
– ident: bib3
  doi: 10.1038/ncomms10340
– ident: bib73
  doi: 10.1038/s41598-018-33586-6
– ident: bib72
  doi: 10.1093/cercor/10.2.127
– ident: bib37
  doi: 10.1016/j.neuroimage.2014.11.001
– ident: bib1
  doi: 10.1016/j.neuroimage.2018.02.016
– ident: bib52
  doi: 10.1016/j.neuroimage.2015.02.001
– start-page: 270
  volume-title: Advances in neural information processing systems
  year: 2009
  ident: bib12
– ident: bib69
  doi: 10.1016/j.neuroimage.2013.05.039
– ident: bib24
  doi: 10.1214/ss/1177013815
– ident: bib31
  doi: 10.1371/journal.pcbi.1004762
– ident: bib47
  doi: 10.1007/s00429-015-1083-y
– ident: bib86
  doi: 10.1016/j.neuroimage.2013.10.046
– ident: bib14
  doi: 10.1016/j.neuroimage.2003.10.006
– ident: bib44
  doi: 10.1016/j.neuroimage.2017.09.012
– ident: bib51
  doi: 10.1016/j.neuroimage.2005.12.057
– ident: bib77
  doi: 10.1103/PhysRev.36.823
– ident: bib58
  doi: 10.1016/j.neuroimage.2020.116604
– ident: bib35
  doi: 10.1038/ncomms9414
– ident: bib56
  doi: 10.1016/B978-0-444-53839-0.00017-X
– ident: bib39
  doi: 10.1016/j.neuroimage.2010.01.071
– ident: bib11
  doi: 10.1016/j.neuroimage.2019.03.019
– ident: bib70
  doi: 10.1016/j.neuroimage.2010.08.063
– ident: bib43
  doi: 10.1002/hbm.23870
– ident: bib64
  doi: 10.1016/j.neuroimage.2011.11.054
– ident: bib67
  doi: 10.1109/MSP.2012.2235192
– ident: bib68
  doi: 10.1016/j.neuroimage.2012.11.049
– ident: bib22
  doi: 10.1007/978-3-642-22092-0_25
– ident: bib29
  doi: 10.1089/brain.2011.0008
– ident: bib38
  doi: 10.1073/pnas.0811168106
– ident: bib62
  doi: 10.1103/PhysRevE.85.011912
– ident: bib4
  doi: 10.1038/nrn.2017.149
– ident: bib25
  doi: 10.1371/journal.pone.0002148
– ident: bib46
  doi: 10.1109/CDC.2015.7402835
– volume-title: Spectral analysis of signals
  year: 2005
  ident: bib75
– ident: bib41
  doi: 10.1109/JPROC.2018.2798928
– ident: bib66
  doi: 10.7554/eLife.28927
– ident: bib32
  doi: 10.1038/nature18933
– ident: bib61
  doi: 10.1016/j.media.2019.03.001
– ident: bib57
  doi: 10.1587/nolta.9.166
– ident: bib79
  doi: 10.1002/hbm.20737
– ident: bib85
  doi: 10.1089/brain.2013.0142
– ident: bib53
  doi: 10.3389/fnins.2010.00200
– ident: bib30
  doi: 10.1109/ISBI.2012.6235549
– ident: bib6
  doi: 10.1038/nn.4497
– ident: bib80
  doi: 10.1016/j.neuroimage.2013.05.041
SSID ssj0002121048
Score 2.401101
Snippet Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been...
AbstractPatterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
mit
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1235
SubjectTerms Brain
Correlation
fMRI
Functional anatomy
Functional connectivity
Informatics
Medical imaging
Multimodal modeling
Neural networks
Neuroimaging
Neurosciences
Partial correlation
Precision matrix
Structural connectivity
Structure-function relationships
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA-lp16KYm1Xa4mgJ1m6m-wms0crliLoQSz0FvKJC7ot9NWDf70zyb7Xt8XixetmstmdTDKZj_yGsTed9hJS0LWKQdSdam0Nvbc1PnJKSiespbvDn7-oi8vu01V_tVXqi3LCCjxwYdyplTJABNkmi5rbt0NIKQy9T6Kxtg0ZvRR13pYxRXuwIFysDtaZ7kqcoqE_GUspXBkQ8V4HZah-1Cw_x9XfTpkPkyW3tM_5E7Y_Hxv5-_K5T9lOnJ6x9DVfDafEZe6pykbJa6tJMwVOGqs4-rARd1Nf6kRwOwU-rm75mpzStTi5Y3nBkiUcjkWPA3Z5_vHbh4t6rptQ-17pVR28DSopC9H5pGgqBJ6CAiTdehXBNZBaFVsntCe8d-gkRdMgouUjkghePme70_UUjxgH5VKQIjiPZpX0lGA1iN5a79SA724q9m7NSeNnUHGqbfHDZONCCbPN94q93VDfFDCNR-jOaFI2NASBnR-gYJhZMMy_BKNir3FKzbwkbx8ZCBY01ParGzsj6XaGMAIFCXuZBszv8eZB1-O1rNz3p6gtBZqVxNE3zbhgKQpjp3h9hzSdVhS-BFGxwyJamx-VksxtCRXTC6FbcGLZMo3fMyi41tCqZnjxP1j3ku0JcitkT9Mx20Xpi6_w7LVyJ3mZ_QEpHzM-
  priority: 102
  providerName: Directory of Open Access Journals
Title Revisiting correlation-based functional connectivity and its relationship with structural connectivity
URI https://direct.mit.edu/netn/article/doi/10.1162/netn_a_00166
https://www.ncbi.nlm.nih.gov/pubmed/33409438
https://www.proquest.com/docview/2890460563
https://www.proquest.com/docview/2476128182
https://pubmed.ncbi.nlm.nih.gov/PMC7781609
https://doaj.org/article/a33d8e831fa441c19dffd95cf20aa1d5
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe-GCQLwCZRUkOCGriZ3Ys6eqRV0qJCpUUak3y_EDIpXstrtw4Nczk9c2FeVqj_Owx56nv2HsXaGdhOg1V8ELXqjcciid5dhUKSkrYS3dHf5ypk4vis-X5WXvcFv3aZXDmdge1H7pyEd-QAExiuEpebi65lQ1iqKrfQmNHbaHRzCg8bV3fHL29Xz0sgjCxypgyHhX4gAN_sZYSuVqgRG3sqiF7EcJ87Pe_EvbvJs0eUsKLR6zR736mB516_2EPQjNUxbP2yvilMCcOqq20eW3cZJQPiXJ1Tn8sBNPVdfVi0ht49N6s04HckrbSsktm3aYsoTHMRnxjF0sTr59POV9_QTuSqU33DvrVVQWQuWioiURqA15iDp3KkCVQcxVyCuhHeG-QyEpqgYBLSARhXfyOdttlk14yVJQVfRS-MqheSUdJVrNRWmtq9Qcn50l7MMwk8b14OJU4-LKtEaGEub2vCfs_Ui96kA17qE7pkUZaQgKu21Y3nw3_c4yVkoPAWQeLap2-Gk-Rj8vXRSZtbkvE_YWl9T0W3N9z4tgQkN9v4u6MJJuaQgjkJFwlMnA_KlXd4buD7yyHb9lVnz72I0bl6IxtgnLX0hTaEVhTBAJe9Gx1vijUpLZLSFhesJ0k5mY9jT1jxYcXGvIVTZ_9f_Pes0eCnIctL6kfbaLfBXeoHa1qWZsBxafZv1GmrU-ir-kbyzY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtUw0CrlABcEYgsUMBI9oaiJ7TjOASG2xytdDqiVejOOF4gEeQ9eAMFH8Y3MZHtNRbn1Go8Tx559xjOEPBG55Sq4PJbesVjI1MQqsyaGR6XkvGTG4N3hg0M5PxbvTrKTDfJnuAuDaZUDT2wZtVtY9JHvYEAMY3iSP19-jbFrFEZXhxYaHVrs-V8_wWRbPdt9Dee7zdjszdGredx3FYhtJvMmdtY4GaRRvrRB4kIZ6AhOhTy10qsyUSGVPi1ZbrEauhIcY03Kg13AAnOWw3svkcuC8wIpSs3ejj4dhtW4hBry6yXbqX1Ta4OJY20ZxrXkaxsEgDz7UjX_0m3Ppmieknmz6-Rar6zSFx123SAbvr5Jwvv2QjqmS1OLvT26bLoY5aGjKCc79yIMAg-3XXcKampHq2ZFB3BMEqPoBKZdBVus_jGZcYscX8i-3iab9aL2dwlVsgyOM1daMOa4xbSugmXG2FIW8O4kIk-HndS2L2WOHTU-69akkUyf3veIbI_Qy66ExzlwL_FQRhgsvN0-WHz7qHs61oZzp7ziaTCgSMLSXAiuyGxgiTGpyyLyGI5U94xgdc6H1AQGx36ISmiOd0KYZoBIMEsnSv-ulmembg24sp6_Jg34-jgMbAJjP6b2i-8AI3KJQVPFInKnQ63xRzlHI5-riOQTpJvsxHSkrj61pcjzXKUyKe79f1mPyJX50cG-3t893LtPrjJ0WbRerC2yCTjmH4Be15QPW2Ki5MNFU-9fKydm4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+correlation-based+functional+connectivity+and+its+relationship+with+structural+connectivity&rft.jtitle=Network+neuroscience+%28Cambridge%2C+Mass.%29&rft.au=Li%C3%A9geois%2C+Raphael&rft.au=Santos%2C+Augusto&rft.au=Matta%2C+Vincenzo&rft.au=Van+De+Ville%2C+Dimitri&rft.date=2020&rft.pub=MIT+Press+Journals%2C+The&rft.eissn=2472-1751&rft.volume=4&rft.issue=4&rft.spage=1235&rft_id=info:doi/10.1162%2Fnetn_a_00166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2472-1751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2472-1751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2472-1751&client=summon