Revisiting correlation-based functional connectivity and its relationship with structural connectivity
Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from between functional time series, and more recently from or their unnormalized version encoded in the matrix. The latter FC metrics yiel...
Saved in:
Published in | Network neuroscience (Cambridge, Mass.) Vol. 4; no. 4; pp. 1235 - 1251 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
One Rogers Street, Cambridge, MA 02142-1209, USA
MIT Press
2020
MIT Press Journals, The The MIT Press |
Subjects | |
Online Access | Get full text |
ISSN | 2472-1751 2472-1751 |
DOI | 10.1162/netn_a_00166 |
Cover
Loading…
Abstract | Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from
between functional time series, and more recently from
or their unnormalized version encoded in the
matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture ‘direct’ statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections. |
---|---|
AbstractList | Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from correlations between functional time series, and more recently from partial correlations or their unnormalized version encoded in the precision matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture ‘direct’ statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections. Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from correlations between functional time series, and more recently from partial correlations or their unnormalized version encoded in the precision matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture 'direct' statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections.Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from correlations between functional time series, and more recently from partial correlations or their unnormalized version encoded in the precision matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture 'direct' statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections. AbstractPatterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from correlations between functional time series, and more recently from partial correlations or their unnormalized version encoded in the precision matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture ‘direct’ statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections. Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from correlations between functional time series, and more recently from partial correlations or their unnormalized version encoded in the precision matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture ‘direct’ statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections. Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from between functional time series, and more recently from or their unnormalized version encoded in the matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture ‘direct’ statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections. |
Author | Matta, Vincenzo Van De Ville, Dimitri Liégeois, Raphael Sayed, Ali H. Santos, Augusto |
Author_xml | – sequence: 1 givenname: Raphael orcidid: 0000-0003-3985-3898 surname: Liégeois fullname: Liégeois, Raphael email: raphael.liegeois@epfl.ch organization: Department of Radiology and Medical Informatics, University of Geneva, Switzerland – sequence: 2 givenname: Augusto surname: Santos fullname: Santos, Augusto – sequence: 3 givenname: Vincenzo surname: Matta fullname: Matta, Vincenzo organization: Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, Italy – sequence: 4 givenname: Dimitri surname: Van De Ville fullname: Van De Ville, Dimitri organization: Department of Radiology and Medical Informatics, University of Geneva, Switzerland – sequence: 5 givenname: Ali H. surname: Sayed fullname: Sayed, Ali H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33409438$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstvEzEQxi1UREvpjTNaiUsPLPi1Xu-FClU8KlVCQnC2HHucONrYwfYGlb8ep2mrNConP-b3fZ7xzEt0FGIAhF4T_J4QQT8EKEFphTER4hk6obynLek7crS3P0ZnOS8xxpRQgrl8gY4Z43jgTJ4g9wM2Pvviw7wxMSUYdfExtDOdwTZuCmZ71GMNhgD1sPHlptHBNr7k5h7PC79u_viyaHJJkylTOlC8Qs-dHjOc3a2n6NeXzz8vv7XX379eXX66bk0n-tJao61wQkuYGSeYdJaygVrpemIEyBmWjgggM9obLCmVnFFJBgmDENRRa9gputr52qiXap38SqcbFbVXtxcxzZVOxZsRlGbMSpCMOM05MWSwztmhM45irYntqtfHndd6mq3AGgillvXI9HEk-IWax43qe0kEHqrB-Z1Bir8nyEWtfDYwjjpAnLKqHRKkFiBpRd8eoMs4pfrvlZID5gJ3glXqzX5GD6nct7MC73aASTHnBO4BIVhtB0btD0zF6QFufLltaK3Hj_8TXexEK7-X5RbZcM8Vq1BPFa3TVsUKS_XXrw8dzp9wePKxfxt06m8 |
CitedBy_id | crossref_primary_10_1016_j_physa_2024_130225 crossref_primary_10_1103_PhysRevE_108_024313 crossref_primary_10_1002_hbm_25592 crossref_primary_10_1016_j_neuroimage_2022_119321 crossref_primary_10_1016_j_neuroimage_2022_118970 crossref_primary_10_1126_sciadv_abj0751 crossref_primary_10_1109_TIT_2022_3211078 crossref_primary_10_3390_e24081148 crossref_primary_10_1162_netn_a_00226 crossref_primary_10_1162_netn_a_00325 crossref_primary_10_1038_s41598_023_49746_2 crossref_primary_10_1038_s41467_021_25184_4 crossref_primary_10_1007_s11055_023_01437_1 crossref_primary_10_1016_j_sigpro_2025_109995 crossref_primary_10_1038_s42003_024_06669_6 crossref_primary_10_1162_imag_a_00381 crossref_primary_10_1038_s41583_022_00601_9 crossref_primary_10_1111_ejn_16678 crossref_primary_10_1002_hbm_26614 crossref_primary_10_1038_s41467_023_42053_4 crossref_primary_10_1038_s42003_024_07160_y crossref_primary_10_1097_AUD_0000000000001564 crossref_primary_10_1002_hbm_26155 crossref_primary_10_1002_hbm_26296 crossref_primary_10_3389_fnins_2023_1214687 crossref_primary_10_3389_fnins_2025_1499629 crossref_primary_10_1371_journal_pcbi_1012099 crossref_primary_10_1016_j_neuroimage_2023_119975 crossref_primary_10_3389_fnins_2023_1194630 crossref_primary_10_1162_netn_a_00314 crossref_primary_10_1016_j_jhydrol_2025_132896 crossref_primary_10_1002_hbm_26251 crossref_primary_10_1109_JSEN_2022_3156152 crossref_primary_10_1038_s42003_025_07876_5 crossref_primary_10_1038_s41598_022_14397_2 crossref_primary_10_3389_fnins_2022_969510 crossref_primary_10_3389_fnins_2022_810111 crossref_primary_10_1038_s41583_024_00846_6 crossref_primary_10_1016_j_yhbeh_2022_105138 crossref_primary_10_3389_fnins_2022_975305 crossref_primary_10_1038_s41598_023_42533_z crossref_primary_10_1109_OJSP_2022_3189315 crossref_primary_10_1093_braincomms_fcad245 crossref_primary_10_1371_journal_pcbi_1012507 |
Cites_doi | 10.1016/j.neuroimage.2008.05.059 10.3389/fnins.2014.00258 10.1016/j.neuroimage.2010.01.099 10.1016/j.neuroimage.2019.02.062 10.1073/pnas.1315529111 10.1093/cercor/bhw089 10.1103/PhysRevE.90.012707 10.1016/j.neuroimage.2008.04.262 10.1016/j.tics.2013.09.016 10.1089/brain.2015.0382 10.3389/fncom.2012.00068 10.1126/sciadv.aat7854 10.1371/journal.pcbi.1000092 10.1016/j.neuroimage.2010.06.041 10.1371/journal.pcbi.1005025 10.1038/s41467-019-12765-7 10.1016/j.neuron.2011.09.006 10.1111/j.2517-6161.1979.tb01052.x 10.1016/j.neuroimage.2015.07.039 10.1038/nrn2575 10.1093/biostatistics/kxm045 10.1523/JNEUROSCI.5062-08.2009 10.1109/TSP.2013.2238935 10.1137/1.9780898719246 10.1088/1751-8113/47/34/343001 10.1523/JNEUROSCI.2964-08.2008 10.1038/nrn2961 10.1038/s41467-019-10317-7 10.1002/mrm.1910340409 10.1016/j.neuroimage.2017.01.003 10.1523/JNEUROSCI.5068-13.2014 10.1007/BF02546511 10.1073/pnas.0704320104 10.1152/jn.00338.2011 10.1089/brain.2016.0462 10.1073/pnas.1608282113 10.1016/j.neuroimage.2016.09.008 10.1162/netn_a_00054 10.1523/JNEUROSCI.2523-11.2012 10.1038/ncomms10340 10.1038/s41598-018-33586-6 10.1093/cercor/10.2.127 10.1016/j.neuroimage.2014.11.001 10.1016/j.neuroimage.2018.02.016 10.1016/j.neuroimage.2015.02.001 10.1016/j.neuroimage.2013.05.039 10.1214/ss/1177013815 10.1371/journal.pcbi.1004762 10.1007/s00429-015-1083-y 10.1016/j.neuroimage.2013.10.046 10.1016/j.neuroimage.2003.10.006 10.1016/j.neuroimage.2017.09.012 10.1016/j.neuroimage.2005.12.057 10.1103/PhysRev.36.823 10.1016/j.neuroimage.2020.116604 10.1038/ncomms9414 10.1016/B978-0-444-53839-0.00017-X 10.1016/j.neuroimage.2010.01.071 10.1016/j.neuroimage.2019.03.019 10.1016/j.neuroimage.2010.08.063 10.1002/hbm.23870 10.1016/j.neuroimage.2011.11.054 10.1109/MSP.2012.2235192 10.1016/j.neuroimage.2012.11.049 10.1007/978-3-642-22092-0_25 10.1089/brain.2011.0008 10.1073/pnas.0811168106 10.1103/PhysRevE.85.011912 10.1038/nrn.2017.149 10.1371/journal.pone.0002148 10.1109/CDC.2015.7402835 10.1109/JPROC.2018.2798928 10.7554/eLife.28927 10.1038/nature18933 10.1016/j.media.2019.03.001 10.1587/nolta.9.166 10.1002/hbm.20737 10.1089/brain.2013.0142 10.3389/fnins.2010.00200 10.1109/ISBI.2012.6235549 10.1038/nn.4497 10.1016/j.neuroimage.2013.05.041 |
ContentType | Journal Article |
Copyright | 2020 Massachusetts Institute of Technology. 2020. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Massachusetts Institute of Technology 2020 Massachusetts Institute of Technology |
Copyright_xml | – notice: 2020 Massachusetts Institute of Technology. – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Massachusetts Institute of Technology 2020 Massachusetts Institute of Technology |
DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- LK8 M7P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1162/netn_a_00166 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Biological Sciences ProQuest Biological Science Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2472-1751 |
EndPage | 1251 |
ExternalDocumentID | oai_doaj_org_article_a33d8e831fa441c19dffd95cf20aa1d5 PMC7781609 33409438 10_1162_netn_a_00166 netn_a_00166.pdf |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 20CH21 174081 |
GroupedDBID | 53G AAFWJ ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBS GROUPED_DOAJ HYE MCG OK1 RMI RPM AAYXX AFKRA ARAPS BBNVY BENPR BGLVJ BHPHI CCPQU CITATION EJD HCIFZ JMNJE K7- M7P MINIK M~E PGMZT PHGZM PHGZT PIMPY NPM 8FE 8FG 8FH ABUWG AZQEC DWQXO GNUQQ JQ2 LK8 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c567t-dcad6f6a8ebcf638fd2392d8f71c6e8b08f16e1b27c082284328198e9662f2dc3 |
IEDL.DBID | BENPR |
ISSN | 2472-1751 |
IngestDate | Wed Aug 27 01:31:08 EDT 2025 Thu Aug 21 18:18:28 EDT 2025 Thu Jul 10 22:59:09 EDT 2025 Sun Jul 13 04:54:10 EDT 2025 Thu Jan 02 22:58:03 EST 2025 Tue Jul 01 03:20:39 EDT 2025 Thu Apr 24 22:55:51 EDT 2025 Tue Mar 01 17:17:34 EST 2022 Sun Jul 17 10:31:08 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Functional connectivity fMRI Precision matrix Structural connectivity Multimodal modeling Partial correlation |
Language | English |
License | 2020 Massachusetts Institute of Technology. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-dcad6f6a8ebcf638fd2392d8f71c6e8b08f16e1b27c082284328198e9662f2dc3 |
Notes | December, 2020 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Handling Editor: Bratislav Misic |
ORCID | 0000-0003-3985-3898 |
OpenAccessLink | https://www.proquest.com/docview/2890460563?pq-origsite=%requestingapplication% |
PMID | 33409438 |
PQID | 2890460563 |
PQPubID | 6535871 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7781609 crossref_citationtrail_10_1162_netn_a_00166 mit_journals_netnv4i4_301672_2021_11_08_zip_netn_a_00166 mit_journals_10_1162_netn_a_00166 doaj_primary_oai_doaj_org_article_a33d8e831fa441c19dffd95cf20aa1d5 pubmed_primary_33409438 crossref_primary_10_1162_netn_a_00166 proquest_miscellaneous_2476128182 proquest_journals_2890460563 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | One Rogers Street, Cambridge, MA 02142-1209, USA |
PublicationPlace_xml | – name: One Rogers Street, Cambridge, MA 02142-1209, USA – name: United States – name: Cambridge – name: One Rogers Street, Cambridge, MA 02142-1209USAjournals-info@mit.edu |
PublicationTitle | Network neuroscience (Cambridge, Mass.) |
PublicationTitleAlternate | Netw Neurosci |
PublicationYear | 2020 |
Publisher | MIT Press MIT Press Journals, The The MIT Press |
Publisher_xml | – name: MIT Press – name: MIT Press Journals, The – name: The MIT Press |
References | bib72 bib73 bib70 bib71 bib36 bib37 Koller D. (bib42) 2009 bib34 bib78 bib35 bib79 bib32 bib76 bib33 MacKay D. (bib89) 2006 bib77 bib30 bib74 bib31 bib29 bib27 bib28 bib40 bib84 Stoica P. (bib75) 2005 bib82 bib80 bib47 bib48 bib45 bib46 bib43 bib87 bib44 bib88 bib41 bib85 bib86 bib9 bib7 bib8 bib5 bib6 bib3 bib38 bib4 bib39 bib1 bib2 Varoquaux G. (bib81) 2010 bib50 bib51 Chai B. (bib12) 2009 bib14 bib58 bib15 bib59 bib56 bib13 bib57 Whittaker J. (bib83) 2009 bib10 bib54 bib11 bib52 bib53 Montanari A. (bib55) 2009 bib49 bib61 bib62 bib60 bib25 bib69 bib26 bib23 bib67 bib24 bib68 bib21 bib65 bib22 bib66 bib63 bib20 bib64 bib18 bib19 bib16 bib17 |
References_xml | – ident: bib27 doi: 10.1016/j.neuroimage.2008.05.059 – ident: bib21 doi: 10.3389/fnins.2014.00258 – ident: bib50 doi: 10.1016/j.neuroimage.2010.01.099 – volume-title: Gaussian process basics year: 2006 ident: bib89 – ident: bib13 doi: 10.1016/j.neuroimage.2019.02.062 – ident: bib33 doi: 10.1073/pnas.1315529111 – ident: bib54 doi: 10.1093/cercor/bhw089 – ident: bib63 doi: 10.1103/PhysRevE.90.012707 – ident: bib74 doi: 10.1016/j.neuroimage.2008.04.262 – start-page: 2334 volume-title: Advances in Neural Iformation Processing Systems 23 year: 2010 ident: bib81 – ident: bib71 doi: 10.1016/j.tics.2013.09.016 – ident: bib40 doi: 10.1089/brain.2015.0382 – ident: bib20 doi: 10.3389/fncom.2012.00068 – ident: bib82 doi: 10.1126/sciadv.aat7854 – ident: bib18 doi: 10.1371/journal.pcbi.1000092 – ident: bib88 doi: 10.1016/j.neuroimage.2010.06.041 – ident: bib26 doi: 10.1371/journal.pcbi.1005025 – ident: bib60 doi: 10.1038/s41467-019-12765-7 – ident: bib59 doi: 10.1016/j.neuron.2011.09.006 – ident: bib15 doi: 10.1111/j.2517-6161.1979.tb01052.x – ident: bib7 doi: 10.1016/j.neuroimage.2015.07.039 – ident: bib10 doi: 10.1038/nrn2575 – volume-title: Probabilistic graphical models: Principles and techniques year: 2009 ident: bib42 – ident: bib28 doi: 10.1093/biostatistics/kxm045 – ident: bib9 doi: 10.1523/JNEUROSCI.5062-08.2009 – ident: bib65 doi: 10.1109/TSP.2013.2238935 – ident: bib8 doi: 10.1137/1.9780898719246 – ident: bib76 doi: 10.1088/1751-8113/47/34/343001 – ident: bib78 doi: 10.1523/JNEUROSCI.2964-08.2008 – ident: bib17 doi: 10.1038/nrn2961 – ident: bib45 doi: 10.1038/s41467-019-10317-7 – volume-title: Graphical models in applied multivariate statistics year: 2009 ident: bib83 – ident: bib5 doi: 10.1002/mrm.1910340409 – ident: bib34 doi: 10.1016/j.neuroimage.2017.01.003 – ident: bib19 doi: 10.1523/JNEUROSCI.5068-13.2014 – ident: bib84 doi: 10.1007/BF02546511 – ident: bib23 doi: 10.1073/pnas.0704320104 – start-page: 1303 volume-title: Advances in neural information processing systems 22 year: 2009 ident: bib55 – ident: bib87 doi: 10.1152/jn.00338.2011 – ident: bib2 doi: 10.1089/brain.2016.0462 – ident: bib49 doi: 10.1073/pnas.1608282113 – ident: bib48 doi: 10.1016/j.neuroimage.2016.09.008 – ident: bib36 doi: 10.1162/netn_a_00054 – ident: bib16 doi: 10.1523/JNEUROSCI.2523-11.2012 – ident: bib3 doi: 10.1038/ncomms10340 – ident: bib73 doi: 10.1038/s41598-018-33586-6 – ident: bib72 doi: 10.1093/cercor/10.2.127 – ident: bib37 doi: 10.1016/j.neuroimage.2014.11.001 – ident: bib1 doi: 10.1016/j.neuroimage.2018.02.016 – ident: bib52 doi: 10.1016/j.neuroimage.2015.02.001 – start-page: 270 volume-title: Advances in neural information processing systems year: 2009 ident: bib12 – ident: bib69 doi: 10.1016/j.neuroimage.2013.05.039 – ident: bib24 doi: 10.1214/ss/1177013815 – ident: bib31 doi: 10.1371/journal.pcbi.1004762 – ident: bib47 doi: 10.1007/s00429-015-1083-y – ident: bib86 doi: 10.1016/j.neuroimage.2013.10.046 – ident: bib14 doi: 10.1016/j.neuroimage.2003.10.006 – ident: bib44 doi: 10.1016/j.neuroimage.2017.09.012 – ident: bib51 doi: 10.1016/j.neuroimage.2005.12.057 – ident: bib77 doi: 10.1103/PhysRev.36.823 – ident: bib58 doi: 10.1016/j.neuroimage.2020.116604 – ident: bib35 doi: 10.1038/ncomms9414 – ident: bib56 doi: 10.1016/B978-0-444-53839-0.00017-X – ident: bib39 doi: 10.1016/j.neuroimage.2010.01.071 – ident: bib11 doi: 10.1016/j.neuroimage.2019.03.019 – ident: bib70 doi: 10.1016/j.neuroimage.2010.08.063 – ident: bib43 doi: 10.1002/hbm.23870 – ident: bib64 doi: 10.1016/j.neuroimage.2011.11.054 – ident: bib67 doi: 10.1109/MSP.2012.2235192 – ident: bib68 doi: 10.1016/j.neuroimage.2012.11.049 – ident: bib22 doi: 10.1007/978-3-642-22092-0_25 – ident: bib29 doi: 10.1089/brain.2011.0008 – ident: bib38 doi: 10.1073/pnas.0811168106 – ident: bib62 doi: 10.1103/PhysRevE.85.011912 – ident: bib4 doi: 10.1038/nrn.2017.149 – ident: bib25 doi: 10.1371/journal.pone.0002148 – ident: bib46 doi: 10.1109/CDC.2015.7402835 – volume-title: Spectral analysis of signals year: 2005 ident: bib75 – ident: bib41 doi: 10.1109/JPROC.2018.2798928 – ident: bib66 doi: 10.7554/eLife.28927 – ident: bib32 doi: 10.1038/nature18933 – ident: bib61 doi: 10.1016/j.media.2019.03.001 – ident: bib57 doi: 10.1587/nolta.9.166 – ident: bib79 doi: 10.1002/hbm.20737 – ident: bib85 doi: 10.1089/brain.2013.0142 – ident: bib53 doi: 10.3389/fnins.2010.00200 – ident: bib30 doi: 10.1109/ISBI.2012.6235549 – ident: bib6 doi: 10.1038/nn.4497 – ident: bib80 doi: 10.1016/j.neuroimage.2013.05.041 |
SSID | ssj0002121048 |
Score | 2.401101 |
Snippet | Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been... AbstractPatterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been... |
SourceID | doaj pubmedcentral proquest pubmed crossref mit |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1235 |
SubjectTerms | Brain Correlation fMRI Functional anatomy Functional connectivity Informatics Medical imaging Multimodal modeling Neural networks Neuroimaging Neurosciences Partial correlation Precision matrix Structural connectivity Structure-function relationships Time series |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA-lp16KYm1Xa4mgJ1m6m-wms0crliLoQSz0FvKJC7ot9NWDf70zyb7Xt8XixetmstmdTDKZj_yGsTed9hJS0LWKQdSdam0Nvbc1PnJKSiespbvDn7-oi8vu01V_tVXqi3LCCjxwYdyplTJABNkmi5rbt0NIKQy9T6Kxtg0ZvRR13pYxRXuwIFysDtaZ7kqcoqE_GUspXBkQ8V4HZah-1Cw_x9XfTpkPkyW3tM_5E7Y_Hxv5-_K5T9lOnJ6x9DVfDafEZe6pykbJa6tJMwVOGqs4-rARd1Nf6kRwOwU-rm75mpzStTi5Y3nBkiUcjkWPA3Z5_vHbh4t6rptQ-17pVR28DSopC9H5pGgqBJ6CAiTdehXBNZBaFVsntCe8d-gkRdMgouUjkghePme70_UUjxgH5VKQIjiPZpX0lGA1iN5a79SA724q9m7NSeNnUHGqbfHDZONCCbPN94q93VDfFDCNR-jOaFI2NASBnR-gYJhZMMy_BKNir3FKzbwkbx8ZCBY01ParGzsj6XaGMAIFCXuZBszv8eZB1-O1rNz3p6gtBZqVxNE3zbhgKQpjp3h9hzSdVhS-BFGxwyJamx-VksxtCRXTC6FbcGLZMo3fMyi41tCqZnjxP1j3ku0JcitkT9Mx20Xpi6_w7LVyJ3mZ_QEpHzM- priority: 102 providerName: Directory of Open Access Journals |
Title | Revisiting correlation-based functional connectivity and its relationship with structural connectivity |
URI | https://direct.mit.edu/netn/article/doi/10.1162/netn_a_00166 https://www.ncbi.nlm.nih.gov/pubmed/33409438 https://www.proquest.com/docview/2890460563 https://www.proquest.com/docview/2476128182 https://pubmed.ncbi.nlm.nih.gov/PMC7781609 https://doaj.org/article/a33d8e831fa441c19dffd95cf20aa1d5 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe-GCQLwCZRUkOCGriZ3Ys6eqRV0qJCpUUak3y_EDIpXstrtw4Nczk9c2FeVqj_Owx56nv2HsXaGdhOg1V8ELXqjcciid5dhUKSkrYS3dHf5ypk4vis-X5WXvcFv3aZXDmdge1H7pyEd-QAExiuEpebi65lQ1iqKrfQmNHbaHRzCg8bV3fHL29Xz0sgjCxypgyHhX4gAN_sZYSuVqgRG3sqiF7EcJ87Pe_EvbvJs0eUsKLR6zR736mB516_2EPQjNUxbP2yvilMCcOqq20eW3cZJQPiXJ1Tn8sBNPVdfVi0ht49N6s04HckrbSsktm3aYsoTHMRnxjF0sTr59POV9_QTuSqU33DvrVVQWQuWioiURqA15iDp3KkCVQcxVyCuhHeG-QyEpqgYBLSARhXfyOdttlk14yVJQVfRS-MqheSUdJVrNRWmtq9Qcn50l7MMwk8b14OJU4-LKtEaGEub2vCfs_Ui96kA17qE7pkUZaQgKu21Y3nw3_c4yVkoPAWQeLap2-Gk-Rj8vXRSZtbkvE_YWl9T0W3N9z4tgQkN9v4u6MJJuaQgjkJFwlMnA_KlXd4buD7yyHb9lVnz72I0bl6IxtgnLX0hTaEVhTBAJe9Gx1vijUpLZLSFhesJ0k5mY9jT1jxYcXGvIVTZ_9f_Pes0eCnIctL6kfbaLfBXeoHa1qWZsBxafZv1GmrU-ir-kbyzY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtUw0CrlABcEYgsUMBI9oaiJ7TjOASG2xytdDqiVejOOF4gEeQ9eAMFH8Y3MZHtNRbn1Go8Tx559xjOEPBG55Sq4PJbesVjI1MQqsyaGR6XkvGTG4N3hg0M5PxbvTrKTDfJnuAuDaZUDT2wZtVtY9JHvYEAMY3iSP19-jbFrFEZXhxYaHVrs-V8_wWRbPdt9Dee7zdjszdGredx3FYhtJvMmdtY4GaRRvrRB4kIZ6AhOhTy10qsyUSGVPi1ZbrEauhIcY03Kg13AAnOWw3svkcuC8wIpSs3ejj4dhtW4hBry6yXbqX1Ta4OJY20ZxrXkaxsEgDz7UjX_0m3Ppmieknmz6-Rar6zSFx123SAbvr5Jwvv2QjqmS1OLvT26bLoY5aGjKCc79yIMAg-3XXcKampHq2ZFB3BMEqPoBKZdBVus_jGZcYscX8i-3iab9aL2dwlVsgyOM1daMOa4xbSugmXG2FIW8O4kIk-HndS2L2WOHTU-69akkUyf3veIbI_Qy66ExzlwL_FQRhgsvN0-WHz7qHs61oZzp7ziaTCgSMLSXAiuyGxgiTGpyyLyGI5U94xgdc6H1AQGx36ISmiOd0KYZoBIMEsnSv-ulmembg24sp6_Jg34-jgMbAJjP6b2i-8AI3KJQVPFInKnQ63xRzlHI5-riOQTpJvsxHSkrj61pcjzXKUyKe79f1mPyJX50cG-3t893LtPrjJ0WbRerC2yCTjmH4Be15QPW2Ki5MNFU-9fKydm4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+correlation-based+functional+connectivity+and+its+relationship+with+structural+connectivity&rft.jtitle=Network+neuroscience+%28Cambridge%2C+Mass.%29&rft.au=Li%C3%A9geois%2C+Raphael&rft.au=Santos%2C+Augusto&rft.au=Matta%2C+Vincenzo&rft.au=Van+De+Ville%2C+Dimitri&rft.date=2020&rft.pub=MIT+Press+Journals%2C+The&rft.eissn=2472-1751&rft.volume=4&rft.issue=4&rft.spage=1235&rft_id=info:doi/10.1162%2Fnetn_a_00166 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2472-1751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2472-1751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2472-1751&client=summon |