Global mycorrhizal plant distribution linked to terrestrial carbon stocks
Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant–fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hind...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 5077 - 10 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.11.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant–fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hindered by the scarcity of information on mycorrhizal distributions. Here we present global, high-resolution maps of vegetation biomass distribution by dominant mycorrhizal associations. Arbuscular, ectomycorrhizal, and ericoid mycorrhizal vegetation store, respectively, 241 ± 15, 100 ± 17, and 7 ± 1.8 GT carbon in aboveground biomass, whereas non-mycorrhizal vegetation stores 29 ± 5.5 GT carbon. Soil carbon stocks in both topsoil and subsoil are positively related to the community-level biomass fraction of ectomycorrhizal plants, though the strength of this relationship varies across biomes. We show that human-induced transformations of Earth’s ecosystems have reduced ectomycorrhizal vegetation, with potential ramifications to terrestrial carbon stocks. Our work provides a benchmark for spatially explicit and globally quantitative assessments of mycorrhizal impacts on ecosystem functioning and biogeochemical cycling.
Mycorrhizas—mutualistic relationships formed between fungi and most plant species—are functionally linked to soil carbon stocks. Here the authors map the global distribution of mycorrhizal plants and quantify links between mycorrhizal vegetation patterns and terrestrial carbon stocks. |
---|---|
AbstractList | Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant-fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hindered by the scarcity of information on mycorrhizal distributions. Here we present global, high-resolution maps of vegetation biomass distribution by dominant mycorrhizal associations. Arbuscular, ectomycorrhizal, and ericoid mycorrhizal vegetation store, respectively, 241 ± 15, 100 ± 17, and 7 ± 1.8 GT carbon in aboveground biomass, whereas non-mycorrhizal vegetation stores 29 ± 5.5 GT carbon. Soil carbon stocks in both topsoil and subsoil are positively related to the community-level biomass fraction of ectomycorrhizal plants, though the strength of this relationship varies across biomes. We show that human-induced transformations of Earth's ecosystems have reduced ectomycorrhizal vegetation, with potential ramifications to terrestrial carbon stocks. Our work provides a benchmark for spatially explicit and globally quantitative assessments of mycorrhizal impacts on ecosystem functioning and biogeochemical cycling.Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant-fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hindered by the scarcity of information on mycorrhizal distributions. Here we present global, high-resolution maps of vegetation biomass distribution by dominant mycorrhizal associations. Arbuscular, ectomycorrhizal, and ericoid mycorrhizal vegetation store, respectively, 241 ± 15, 100 ± 17, and 7 ± 1.8 GT carbon in aboveground biomass, whereas non-mycorrhizal vegetation stores 29 ± 5.5 GT carbon. Soil carbon stocks in both topsoil and subsoil are positively related to the community-level biomass fraction of ectomycorrhizal plants, though the strength of this relationship varies across biomes. We show that human-induced transformations of Earth's ecosystems have reduced ectomycorrhizal vegetation, with potential ramifications to terrestrial carbon stocks. Our work provides a benchmark for spatially explicit and globally quantitative assessments of mycorrhizal impacts on ecosystem functioning and biogeochemical cycling. Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant–fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hindered by the scarcity of information on mycorrhizal distributions. Here we present global, high-resolution maps of vegetation biomass distribution by dominant mycorrhizal associations. Arbuscular, ectomycorrhizal, and ericoid mycorrhizal vegetation store, respectively, 241 ± 15, 100 ± 17, and 7 ± 1.8 GT carbon in aboveground biomass, whereas non-mycorrhizal vegetation stores 29 ± 5.5 GT carbon. Soil carbon stocks in both topsoil and subsoil are positively related to the community-level biomass fraction of ectomycorrhizal plants, though the strength of this relationship varies across biomes. We show that human-induced transformations of Earth’s ecosystems have reduced ectomycorrhizal vegetation, with potential ramifications to terrestrial carbon stocks. Our work provides a benchmark for spatially explicit and globally quantitative assessments of mycorrhizal impacts on ecosystem functioning and biogeochemical cycling. Mycorrhizas—mutualistic relationships formed between fungi and most plant species—are functionally linked to soil carbon stocks. Here the authors map the global distribution of mycorrhizal plants and quantify links between mycorrhizal vegetation patterns and terrestrial carbon stocks. Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant–fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hindered by the scarcity of information on mycorrhizal distributions. Here we present global, high-resolution maps of vegetation biomass distribution by dominant mycorrhizal associations. Arbuscular, ectomycorrhizal, and ericoid mycorrhizal vegetation store, respectively, 241 ± 15, 100 ± 17, and 7 ± 1.8 GT carbon in aboveground biomass, whereas non-mycorrhizal vegetation stores 29 ± 5.5 GT carbon. Soil carbon stocks in both topsoil and subsoil are positively related to the community-level biomass fraction of ectomycorrhizal plants, though the strength of this relationship varies across biomes. We show that human-induced transformations of Earth’s ecosystems have reduced ectomycorrhizal vegetation, with potential ramifications to terrestrial carbon stocks. Our work provides a benchmark for spatially explicit and globally quantitative assessments of mycorrhizal impacts on ecosystem functioning and biogeochemical cycling. Mycorrhizas—mutualistic relationships formed between fungi and most plant species—are functionally linked to soil carbon stocks. Here the authors map the global distribution of mycorrhizal plants and quantify links between mycorrhizal vegetation patterns and terrestrial carbon stocks. |
ArticleNumber | 5077 |
Author | de Sá, Nuno César Zelfde, Maarten van’t Terrer, César Luke McCormack, M. van Bodegom, Peter M. Fisher, Joshua B. McCallum, Ian Tedersoo, Leho Soudzilovskaia, Nadejda A. Brundrett, Mark C. |
Author_xml | – sequence: 1 givenname: Nadejda A. orcidid: 0000-0003-4659-2585 surname: Soudzilovskaia fullname: Soudzilovskaia, Nadejda A. email: n.a.soudzilovskaia@cml.leidenuniv.nl organization: Institute of Environmental Sciences, Leiden University – sequence: 2 givenname: Peter M. orcidid: 0000-0003-0771-4500 surname: van Bodegom fullname: van Bodegom, Peter M. organization: Institute of Environmental Sciences, Leiden University – sequence: 3 givenname: César orcidid: 0000-0002-5479-3486 surname: Terrer fullname: Terrer, César organization: Institut de Ciència i Tecnologia Ambientals (ICTA) Universitat Autonoma de Barcelona, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory – sequence: 4 givenname: Maarten van’t surname: Zelfde fullname: Zelfde, Maarten van’t organization: Institute of Environmental Sciences, Leiden University – sequence: 5 givenname: Ian surname: McCallum fullname: McCallum, Ian organization: Ecosystems Services and Management Program, International Institute for Applied Systems Analysis – sequence: 6 givenname: M. orcidid: 0000-0002-8300-5215 surname: Luke McCormack fullname: Luke McCormack, M. organization: Center for Tree Science, The Morton Arboretum – sequence: 7 givenname: Joshua B. surname: Fisher fullname: Fisher, Joshua B. organization: Jet Propulsion Laboratory, California Institute of Technology, Joint Institute for Regional Earth System Science and Engineering, University of California – sequence: 8 givenname: Mark C. orcidid: 0000-0002-2501-9037 surname: Brundrett fullname: Brundrett, Mark C. organization: School of Biological Sciences, Faculty of Science, University of Western Australia – sequence: 9 givenname: Nuno César orcidid: 0000-0001-7035-5913 surname: de Sá fullname: de Sá, Nuno César organization: Institute of Environmental Sciences, Leiden University – sequence: 10 givenname: Leho surname: Tedersoo fullname: Tedersoo, Leho organization: Natural History Museum and Institute of Ecology and Earth Sciences, University of Tartu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31700000$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1615894$$D View this record in Osti.gov |
BookMark | eNp9ks1u1DAUhS1URMvQF2CBIth0E_BvnGyQUEXLSJXYwNpynOsZTzP2YDtI5elxmhbaLppF4uR-9_jk-L5GRz54QOgtwR8JZu2nxAlvZI1JVxM23-kLdEIxJzWRlB09WB-j05R2uFysIy3nr9AxI3J-xydofTmGXo_V_saEGLfuT1kfRu1zNbiUo-un7IKvRuevYahyqDLECHOlgEbHvhRTDuY6vUEvrR4TnN49V-jnxdcf59_qq--X6_MvV7URjcz1wKTFYJoWsJZykNAJLQQGzJlupeHWWCJmr4J2Q8fbpsGaGmy17C1tOLAVWi-6Q9A7dYhur-ONCtqp2w8hbpSO2ZkRlBkMYbwbeoYbbi3vuGglaAxW94KWGFfo86J1mPo9DAZ8jnp8JPq44t1WbcJv1bSsJVQUgfeLQEjZqWRcBrM1wXswWZGGiLbjBTq72yWGX1MJT-1dMjCWmCFMSVFGGCvhNF1BPzxBd2GKvuQ5U1R2jDFZqHcPbf_ze3-sBWgXwMSQUgSrijM9n2T5CzcqgtU8RGoZIlXGR90OUdlkheiT1nv1Z5vY0pQK7DcQ_9t-pusv-sHYZQ |
CitedBy_id | crossref_primary_10_1038_s41558_019_0545_2 crossref_primary_10_1073_pnas_2308811121 crossref_primary_10_1007_s00572_021_01063_0 crossref_primary_10_1007_s42729_020_00396_7 crossref_primary_10_3390_f15010064 crossref_primary_10_1016_j_tplants_2022_03_005 crossref_primary_10_1111_1365_2745_13868 crossref_primary_10_3390_agronomy11081531 crossref_primary_10_3390_f15010187 crossref_primary_10_1016_j_soilbio_2021_108417 crossref_primary_10_1007_s11104_023_05925_8 crossref_primary_10_1007_s00572_021_01029_2 crossref_primary_10_1016_j_soilbio_2025_109746 crossref_primary_10_1002_ecy_3688 crossref_primary_10_1016_j_apsoil_2021_104027 crossref_primary_10_1111_pce_15245 crossref_primary_10_3390_agronomy14071446 crossref_primary_10_1134_S1064229323601178 crossref_primary_10_1002_ecy_4015 crossref_primary_10_1007_s00248_021_01721_y crossref_primary_10_1016_j_ufug_2025_128745 crossref_primary_10_1016_j_tree_2022_06_003 crossref_primary_10_1111_1365_2745_14393 crossref_primary_10_1146_annurev_ecolsys_012021_095454 crossref_primary_10_1111_gcb_16659 crossref_primary_10_1111_1758_2229_13253 crossref_primary_10_1111_nph_17572 crossref_primary_10_1016_j_envres_2023_115379 crossref_primary_10_1016_j_jprot_2021_104428 crossref_primary_10_1016_j_cub_2023_02_027 crossref_primary_10_1016_j_apsoil_2024_105778 crossref_primary_10_1016_j_pedobi_2024_150989 crossref_primary_10_1038_s41467_021_27479_y crossref_primary_10_1016_j_ecoinf_2024_102701 crossref_primary_10_7717_peerj_17125 crossref_primary_10_1016_j_cub_2021_11_002 crossref_primary_10_1016_j_soilbio_2021_108385 crossref_primary_10_3389_fmicb_2021_634325 crossref_primary_10_3390_ijms242015349 crossref_primary_10_1146_annurev_arplant_061722_090342 crossref_primary_10_1111_nph_18307 crossref_primary_10_1007_s00572_021_01051_4 crossref_primary_10_2139_ssrn_4011550 crossref_primary_10_21829_abm128_2021_1906 crossref_primary_10_1016_j_tim_2024_06_006 crossref_primary_10_2139_ssrn_4160293 crossref_primary_10_3390_land10090968 crossref_primary_10_1007_s11104_024_07125_4 crossref_primary_10_3390_ijpb15020028 crossref_primary_10_1038_s41559_021_01471_7 crossref_primary_10_1016_j_scitotenv_2022_158809 crossref_primary_10_1016_j_tree_2022_10_003 crossref_primary_10_1016_j_apsoil_2024_105344 crossref_primary_10_1111_1365_2745_13927 crossref_primary_10_1111_nph_16598 crossref_primary_10_1016_j_ejsobi_2023_103494 crossref_primary_10_1016_j_geoderma_2025_117188 crossref_primary_10_1007_s10021_024_00949_2 crossref_primary_10_1007_s42832_020_0070_2 crossref_primary_10_1093_dnares_dsac053 crossref_primary_10_1017_qpb_2021_11 crossref_primary_10_1002_mlf2_12127 crossref_primary_10_1016_j_mtbio_2023_100560 crossref_primary_10_4168_aair_2024_16_6_571 crossref_primary_10_1002_ecy_3260 crossref_primary_10_1111_nph_19748 crossref_primary_10_1126_science_aba1223 crossref_primary_10_1093_femsec_fiad041 crossref_primary_10_1016_j_soilbio_2021_108151 crossref_primary_10_1038_s44358_025_00030_3 crossref_primary_10_1111_nph_18365 crossref_primary_10_1111_ddi_13688 crossref_primary_10_3389_ffgc_2020_00097 crossref_primary_10_1029_2020WR027721 crossref_primary_10_3897_mycokeys_107_125549 crossref_primary_10_1007_s11056_021_09875_w crossref_primary_10_1016_j_fbr_2024_100381 crossref_primary_10_1029_2021GL092764 crossref_primary_10_1016_j_catena_2024_108118 crossref_primary_10_1038_s41561_020_0607_0 crossref_primary_10_1016_j_soilbio_2020_108024 crossref_primary_10_1007_s42729_022_01078_2 crossref_primary_10_1038_s41597_022_01913_2 crossref_primary_10_1093_jpe_rtad021 crossref_primary_10_1016_j_apsoil_2024_105360 crossref_primary_10_1007_s10021_021_00712_x crossref_primary_10_1007_s11104_020_04627_9 crossref_primary_10_1111_nph_17661 crossref_primary_10_1038_s41559_022_01702_5 crossref_primary_10_1111_nph_19723 crossref_primary_10_1111_geb_13236 crossref_primary_10_1038_s41467_021_22459_8 crossref_primary_10_3389_fmicb_2020_01953 crossref_primary_10_1071_CP23252 crossref_primary_10_1111_nph_19560 crossref_primary_10_1111_nph_70012 crossref_primary_10_1038_s43017_023_00456_3 crossref_primary_10_3389_ffgc_2023_1135270 crossref_primary_10_1186_s13717_023_00440_1 crossref_primary_10_1016_j_soilbio_2022_108578 crossref_primary_10_3389_fpls_2021_711720 crossref_primary_10_1016_j_scitotenv_2023_165003 crossref_primary_10_1007_s10123_023_00443_0 crossref_primary_10_1016_j_pedsph_2023_12_015 crossref_primary_10_1111_nph_17547 crossref_primary_10_1007_s00572_024_01156_6 crossref_primary_10_1007_s10668_024_05422_7 crossref_primary_10_1016_j_jenvman_2024_120754 crossref_primary_10_1016_j_envres_2024_120106 crossref_primary_10_1007_s13225_023_00520_9 crossref_primary_10_1093_plcell_koac303 crossref_primary_10_1007_s00253_023_12480_w crossref_primary_10_1016_j_resconrec_2024_107704 crossref_primary_10_1111_pce_14519 crossref_primary_10_1016_j_envres_2025_121459 crossref_primary_10_1038_s41467_023_44172_4 crossref_primary_10_1016_j_pedsph_2024_02_007 crossref_primary_10_1007_s11104_023_06211_3 crossref_primary_10_1111_nph_70087 crossref_primary_10_3389_fspas_2022_797146 crossref_primary_10_1002_ecy_4501 crossref_primary_10_1002_ecy_3259 crossref_primary_10_5194_bg_21_1391_2024 crossref_primary_10_3390_agronomy12071563 crossref_primary_10_3390_agronomy14040743 crossref_primary_10_1038_s42003_023_04722_4 crossref_primary_10_1016_j_tplants_2021_12_009 crossref_primary_10_3389_ffgc_2023_1304897 crossref_primary_10_3389_fpls_2024_1349401 crossref_primary_10_3390_genes11111293 crossref_primary_10_1007_s00253_023_12992_5 crossref_primary_10_1126_sciadv_add4468 crossref_primary_10_1111_nph_19541 crossref_primary_10_1007_s10021_022_00757_6 crossref_primary_10_1016_j_baae_2020_09_009 crossref_primary_10_1016_j_baae_2024_08_003 crossref_primary_10_1038_s41559_023_02298_0 crossref_primary_10_7717_peerj_12701 crossref_primary_10_1016_j_geoderma_2023_116414 crossref_primary_10_1111_nph_16796 crossref_primary_10_3389_ffgc_2020_00043 crossref_primary_10_3389_fmicb_2022_911116 crossref_primary_10_1155_2023_7208341 crossref_primary_10_1038_s41467_022_32671_9 crossref_primary_10_1007_s13199_021_00792_2 crossref_primary_10_1073_pnas_2026733119 crossref_primary_10_1029_2021GL094514 crossref_primary_10_1029_2022MS003204 crossref_primary_10_1016_j_ecofro_2024_12_008 crossref_primary_10_1016_j_soilbio_2023_109124 crossref_primary_10_1111_1365_2745_14250 crossref_primary_10_1038_s42003_022_03341_9 crossref_primary_10_1080_10549811_2024_2447717 crossref_primary_10_3390_f15111982 crossref_primary_10_1038_s41467_023_36888_0 crossref_primary_10_3389_feart_2022_799694 crossref_primary_10_1016_j_rama_2022_05_003 crossref_primary_10_1111_nph_20003 crossref_primary_10_1146_annurev_ecolsys_011720_090819 crossref_primary_10_3390_f14071337 crossref_primary_10_1525_elementa_005 crossref_primary_10_1038_s41586_021_03306_8 crossref_primary_10_1038_s41597_022_01916_z crossref_primary_10_1111_nph_17072 crossref_primary_10_3389_ffgc_2023_1187127 crossref_primary_10_1016_j_baae_2020_10_002 crossref_primary_10_3389_fmicb_2020_598321 crossref_primary_10_1007_s12237_024_01343_w crossref_primary_10_1093_conphys_coaa061 crossref_primary_10_3897_rio_8_e85873 crossref_primary_10_1007_s11104_023_06458_w crossref_primary_10_1126_sciadv_adj8016 crossref_primary_10_1016_j_soilbio_2023_109253 crossref_primary_10_1111_gcb_70105 crossref_primary_10_1111_nph_18207 crossref_primary_10_1002_ecm_1568 |
Cites_doi | 10.1126/science.aai8212 10.1111/nph.13961 10.1111/nph.14206 10.1111/gcb.12113 10.1038/sdata.2017.70 10.1016/j.rse.2017.07.037 10.1007/s10021-014-9806-0 10.1111/1365-2745.12918 10.1111/nph.13447 10.1038/nature12901 10.1139/b04-123 10.1002/2014JG002660 10.1073/pnas.1706103114 10.1016/j.soilbio.2018.02.016 10.1890/07-0823.1 10.1016/j.funeco.2016.05.005 10.3334/ORNLDAAC/1388 10.1126/science.1256688 10.1007/978-3-319-56363-3_19 10.1111/nph.12139 10.1111/gcb.13264 10.1126/science.aab1161 10.1038/nclimate2581 10.1146/annurev-ecolsys-110512-135914 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 10.1126/science.aaf4610 10.1016/j.geoderma.2016.01.034 10.5194/bg-16-457-2019 10.1111/gcb.14132 10.1111/nph.14409 10.5194/gmd-8-2315-2015 10.1038/s41586-019-1128-0 10.1146/annurev-environ-012913-093456 10.1071/AR9870847 10.1198/000313001300339897 10.1038/ngeo2520 10.1126/science.aai8291 10.1007/978-3-319-56363-3_9 10.1111/nph.13648 10.1016/S0065-2504(08)60099-9 10.1007/978-0-387-87458-6 10.1007/978-1-4939-0524-9_3 10.1111/ele.12631 10.1007/BF01972080 10.1111/j.1466-8238.2006.00279.x 10.1007/978-3-642-88533-4_15 10.1016/j.soilbio.2015.06.016 10.1371/journal.pone.0169748 10.1016/j.ppees.2016.06.002 10.1016/j.funeco.2008.10.005 10.1007/s11104-008-9877-9 10.1111/nph.14872 10.1111/gcb.14368 10.1111/j.1466-8238.2010.00540.x 10.1111/brv.12538 10.1007/s00572-005-0033-6 10.1139/b04-060 10.1038/s41558-019-0545-2 10.1007/978-3-319-56363-3_17 10.1111/nph.12221 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
CorporateAuthor_xml | – sequence: 0 name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-019-13019-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Biological Science Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_cdc1349db3064ff494587ea0efab5210 PMC6838125 1615894 31700000 10_1038_s41467_019_13019_2 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research) grantid: vidi grant 016.161.318 funderid: https://doi.org/10.13039/501100003246 – fundername: ; grantid: vidi grant 016.161.318 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM PUEGO |
ID | FETCH-LOGICAL-c567t-d37f0ec68e0a77d7e95a550e043a87c4fcf150003529d948660a2c0fa7bf264e3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:22:51 EDT 2025 Thu Aug 21 18:01:35 EDT 2025 Thu Dec 05 06:24:21 EST 2024 Mon Jul 21 11:30:14 EDT 2025 Wed Aug 13 04:50:23 EDT 2025 Thu Apr 03 07:11:07 EDT 2025 Tue Jul 01 04:08:46 EDT 2025 Thu Apr 24 23:10:30 EDT 2025 Fri Feb 21 02:38:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-d37f0ec68e0a77d7e95a550e043a87c4fcf150003529d948660a2c0fa7bf264e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC52-07NA27344 LLNL-JRNL-795542 USDOE National Nuclear Security Administration (NNSA) |
ORCID | 0000-0002-5479-3486 0000-0001-7035-5913 0000-0003-4659-2585 0000-0002-2501-9037 0000-0003-0771-4500 0000-0002-8300-5215 0000000170355913 0000000346592585 0000000254793486 0000000307714500 0000000283005215 0000000225019037 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-13019-2 |
PMID | 31700000 |
PQID | 2312793337 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cdc1349db3064ff494587ea0efab5210 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6838125 osti_scitechconnect_1615894 proquest_miscellaneous_2313356769 proquest_journals_2312793337 pubmed_primary_31700000 crossref_citationtrail_10_1038_s41467_019_13019_2 crossref_primary_10_1038_s41467_019_13019_2 springer_journals_10_1038_s41467_019_13019_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-07 |
PublicationDateYYYYMMDD | 2019-11-07 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – sequence: 0 name: Nature Publishing Group – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | BrundrettMCDistribution and evolution of mycorrhizal types and other specialised roots in AustraliaEcol. Stud.201723036139410.1007/978-3-319-56363-3_17 PanYBirdseyRAPhillipsOLJacksonRBThe structure, distribution, and biomass of the world’s forestsAnnu. Rev. Ecol., Evolution, Syst.20134459362210.1146/annurev-ecolsys-110512-135914 WurzburgerNBrookshireENJMcCormackMLankauRMycorrhizal fungi as drivers and modulators of terrestrial ecosystem processesNew Phytologist201721399699910.1111/nph.1440928079936 HartleyAJUncertainty in plant functional type distributions and its impact on land surface modelsRemote Sens. Environ.201720371892017RSEnv.203...71H10.1016/j.rse.2017.07.037 ORNL DAAC. Dataset “Bailey Ecoregions of the Continents (Province)”https://doi.org/10.3334/ORNLDAAC/1388 (2017). KarstJMarczakLJonesMDTurkingtonRThe mutualism-parasitism continuum in ectomycorrhizas: a quantitative assessment using meta-analysisEcology2008891032104210.1890/07-0823.118481528 Swaty, R., Michael, H. M., Deckert, R. & Gehring, C. A. Mapping the potential mycorrhizal associations of the conterminous United States of America. Fungal Ecol.24, 139–147 (2016). CotrufoMFFormation of soil organic matter via biochemical and physical pathways of litter mass lossNat. Geosci.201587767792015NatGe...8..776C1:CAS:528:DC%2BC2MXhsFaqtb%2FN10.1038/ngeo2520 PoirierVRoumetCMunsonADThe root of the matter: linking root traits and soil organic matter stabilization processesSoil Biol. Biochem.20181202462591:CAS:528:DC%2BC1cXjsl2rt74%3D10.1016/j.soilbio.2018.02.016 BatjesNHarmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocksGeoderma201626961682016Geode.269...61B1:CAS:528:DC%2BC28XitFChur4%3D10.1016/j.geoderma.2016.01.034 BrundrettMCMycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosisPlant Soil200932037771:CAS:528:DC%2BD1MXmvFGjt7g%3D10.1007/s11104-008-9877-9 PhillipsRPBrzostekEMidgleyMGThe mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forestsNew Phytologist201319941511:CAS:528:DC%2BC3sXosFartLs%3D10.1111/nph.1222123713553 Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Global Change Biol.24, 4544–4553 (2018). Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extentsions in Ecology with R (Springer, 2009). TesteFPPlant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublandsScience20173551731762017Sci...355..173T1:CAS:528:DC%2BC2sXms12itw%3D%3D10.1126/science.aai8291 ESA. CCI Land cover map 2015 (https://www.esa-landcover-cci.org/) (2017). DormannCF(2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution dataGlob. Ecol. Biogeogr.20071612913810.1111/j.1466-8238.2006.00279.x BrzostekERFisherJBPhillipsRPModeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade‐offs and multipath resistance uptake improve predictions of retranslocationJ. Geophys. Res.20141191684169710.1002/2014JG002660 FisherJoshua B.SweeneySeanBrzostekEdward R.EvansTom P.JohnsonDaniel J.MyersJonathan A.BourgNorman A.WolfAmy T.HoweRobert W.PhillipsRichard P.Tree-mycorrhizal associations detected remotely from canopy spectral propertiesGlobal Change Biology2016227259626072016GCBio..22.2596F10.1111/gcb.1326427282323 BrundrettMCMycorrhizas in natural ecosystemsAdv. Ecol. Res.19912117131310.1016/S0065-2504(08)60099-9 CraigMatthew E.TurnerBenjamin L.LiangChaoClayKeithJohnsonDaniel J.PhillipsRichard P.Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matterGlobal Change Biology2018248331733302018GCBio..24.3317C10.1111/gcb.1413229573504 PoulterBPlant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change InitiativeGeosci. Model Dev.20158231523282015GMD.....8.2315P10.5194/gmd-8-2315-2015 BennettJAPlant-soil feedbacks and mycorrhizal type influence temperate forest population dynamicsScience20173551811842017Sci...355..181B1:CAS:528:DC%2BC2sXms12hsg%3D%3D10.1126/science.aai821228082590 TedersooLGlobal diversity and geography of soil fungiScience2014346107810881:CAS:528:DC%2BC2cXhvFKqtb7P10.1126/science.1256688 LinGMcCormackMLMaCGuoDSimilar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forestsNew Phytologist2017213144014511:CAS:528:DC%2BC2sXoslalsA%3D%3D10.1111/nph.1420627678253 Jo, I. et al. Neglecting plant–microbe symbioses leads to underestimation of modeled climate impacts. Sci. Adv. (in the press). ReadDJLeakeJRPerez-MorenoJMycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomesCan. J. Bot.200482124312631:CAS:528:DC%2BD2cXptFGqsb0%3D10.1139/b04-123 FernandezCWKennedyPGRevisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils?New Phytologist2016209138213941:CAS:528:DC%2BC28Xit12mtr0%3D10.1111/nph.1364826365785 AverillCHawkesCVEctomycorrhizal fungi slow soil carbon cyclingEcol. Lett.20161993794710.1111/ele.1263127335203 FisherJBModeling the terrestrial biosphereAnnu. Rev. Environ. Resour.2014399112310.1146/annurev-environ-012913-093456 Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2008). Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019). FAO. Global Forest Resource Assessement (2000). ShiMNeglecting plant–microbe symbioses leads to underestimation of modeled climate impactsBiogeosciences2019164574652019BGeo...16..457S10.5194/bg-16-457-2019 DavisonJGlobal assessment of arbuscular mycorrhizal fungus diversity reveals very low endemismScience20153499709732015Sci...349..970D1:CAS:528:DC%2BC2MXhsVSlsr3O10.1126/science.aab116126315436 OlsonDMTerrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversityBioscience20015193393810.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 SchepaschenkoDA dataset of forest biomass structure for EurasiaSci. Data2017410.1038/sdata.2017.70285099115433390 SteidingerBSClimatic controls of decomposition drive the global biogeography of forest-tree symbiosesNature20195694044082019Natur.569..404S1:CAS:528:DC%2BC1MXpslGlurg%3D10.1038/s41586-019-1128-031092941 HenglTSoilGrids250m: Global gridded soil information based on machine learningPLoS ONE201712e016974810.1371/journal.pone.01697481:CAS:528:DC%2BC2sXhsFGlt7jO282077525313206 ReadDJMycorrhizas in ecosystemsExperientia19914737639110.1007/BF01972080 Bailey, R. G. Ecoregions. The Ecosystem Geography of the Oceans and Continents (Springer New York, 2014). Lamotte, M. in Tropical Ecological Systems 179–222 (Springer, 1975). Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA36, 9575–9580 (2017). TerrerCNitrogen and phosphorus constrain the CO2fertilization of global plant biomassNat. Clim. Change201996846892019NatCC...9..684T1:CAS:528:DC%2BC1MXhsFKju73K10.1038/s41558-019-0545-2 MenzelADistribution patterns of arbuscular mycorrhizal and non-mycorrhizalplant species in GermanyPerspect. Plant Ecol., Evolution Syst.201621788810.1016/j.ppees.2016.06.002 TedersooLBrundrettMCEvolution of ectomycorrhizal symbiosis in plantsEcol. Stud.201723040746710.1007/978-3-319-56363-3_19 TerrerCViccaSHungateBAPhillipsRPPrenticeICMycorrhizal association as a primary control of the CO2 fertilization effectScience201635372742016Sci...353...72T1:CAS:528:DC%2BC28XhtVOgtLrK10.1126/science.aaf461027365447 WangBQiuYLPhylogenetic distribution and evolution of mycorrhizas in land plantsMycorrhiza2006162993631:STN:280:DC%2BD28vit1OltA%3D%3D10.1007/s00572-005-0033-616845554 MbuthiaLWLong term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil qualitySoil Biol. Biochem.20158924341:CAS:528:DC%2BC2MXhtV2hsr3E10.1016/j.soilbio.2015.06.016 ShiZWangFLiuYResponse of soil respiration under different mycorrhizal strategies to precipitation and temperatureJ. Soil Sci. Plant Nutr.201212411420 FAO, OECD. Oilseeds and Oilseed Products. OECD-FAO Agricultural Outlook (OECD Publishing, 2013). HoenigJMHeiseyDMThe abuse of power: the pervasive fallacy of power calculations for data analysisAm. Statistician2001551924184903910.1198/000313001300339897 LeakeJRNetworks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioningCan. J. Bot.2004821016104510.1139/b04-060 AverillCTurnerBLFinziACMycorrhiza-mediated competition between plants and decomposers drives soil carbon storageNature20145055435452014Natur.505..543A1:CAS:528:DC%2BC2cXhtFOls70%3D10.1038/nature1290124402225 Ruiz-BenitoPStand structure and recent climate change constrain stand basal area change in European forests: a comparison across boreal, temperate, and Mediterranean biomesEcosystems2014171439145410.1007/s10021-014-9806-0 NewshamKUpsonRReadDMycorrhizas and dark septate root endophytes in polar regionsFungal Ecol.20092102010.1016/j.funeco.2008.10.005 EkbladAProduction and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilizationNew Phytologist20162118748851:CAS:528:DC%2BC28XhtFegtrnI10.1111/nph.1396127118132 ThompsonJDecline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflowerAust. J. Agric. Res.1987388478671:CAS:528:DyaL2sXmtFKltbk%3D10.1071/AR9870847 SoudzilovskaiaNAQuantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon c NA Soudzilovskaia (13019_CR30) 2015; 208 13019_CR67 FP Teste (13019_CR7) 2017; 355 13019_CR26 V Poirier (13019_CR45) 2018; 120 13019_CR61 C Averill (13019_CR11) 2014; 505 13019_CR65 13019_CR64 BS Steidinger (13019_CR51) 2019; 569 P Ruiz-Benito (13019_CR62) 2014; 17 CF Dormann (13019_CR68) 2007; 16 YY Liu (13019_CR38) 2015; 5 J Thompson (13019_CR40) 1987; 38 César Terrer (13019_CR21) 2017; 217 ER Brzostek (13019_CR17) 2014; 119 MC Brundrett (13019_CR4) 1991; 21 A Ekblad (13019_CR54) 2016; 211 MC Brundrett (13019_CR2) 2009; 320 T Näsholm (13019_CR23) 2013; 198 13019_CR34 13019_CR33 DJ Read (13019_CR3) 1991; 47 CW Fernandez (13019_CR22) 2016; 209 JA Bennett (13019_CR6) 2017; 355 L Tedersoo (13019_CR27) 2014; 346 T Hengl (13019_CR49) 2017; 12 RP Phillips (13019_CR12) 2013; 199 DJ Read (13019_CR14) 2004; 82 Matthew E. Craig (13019_CR16) 2018; 24 A Menzel (13019_CR25) 2016; 21 13019_CR32 NH Batjes (13019_CR50) 2017; 9 B Wang (13019_CR39) 2006; 16 M Shi (13019_CR18) 2019; 16 EC Ellis (13019_CR31) 2010; 19 JB Fisher (13019_CR29) 2014; 39 N Wurzburger (13019_CR9) 2017; 213 J Davison (13019_CR28) 2015; 349 AJ Hartley (13019_CR37) 2017; 203 N Batjes (13019_CR47) 2016; 269 MF Cotrufo (13019_CR43) 2013; 19 B Poulter (13019_CR63) 2015; 8 DM Olson (13019_CR46) 2001; 51 J Karst (13019_CR56) 2008; 89 Y Pan (13019_CR60) 2013; 44 C Terrer (13019_CR13) 2016; 353 13019_CR42 MC Brundrett (13019_CR24) 2017; 230 MF Cotrufo (13019_CR44) 2015; 8 13019_CR1 C Averill (13019_CR20) 2016; 19 K Newsham (13019_CR48) 2009; 2 LW Mbuthia (13019_CR41) 2015; 89 P Kohout (13019_CR58) 2017; 230 Joshua B. Fisher (13019_CR36) 2016; 22 13019_CR57 L Tedersoo (13019_CR59) 2017; 230 13019_CR52 13019_CR10 13019_CR53 C Terrer (13019_CR15) 2019; 9 JM Hoenig (13019_CR66) 2001; 55 G Lin (13019_CR19) 2017; 213 JR Leake (13019_CR5) 2004; 82 K Zhu (13019_CR55) 2018; 106 Z Shi (13019_CR8) 2012; 12 D Schepaschenko (13019_CR35) 2017; 4 |
References_xml | – reference: TedersooLBrundrettMCEvolution of ectomycorrhizal symbiosis in plantsEcol. Stud.201723040746710.1007/978-3-319-56363-3_19 – reference: HenglTSoilGrids250m: Global gridded soil information based on machine learningPLoS ONE201712e016974810.1371/journal.pone.01697481:CAS:528:DC%2BC2sXhsFGlt7jO282077525313206 – reference: KarstJMarczakLJonesMDTurkingtonRThe mutualism-parasitism continuum in ectomycorrhizas: a quantitative assessment using meta-analysisEcology2008891032104210.1890/07-0823.118481528 – reference: ZhuKMcCormackMLLankauRAEganJFWurzburgerNAssociation of ectomycorrhizal trees with high carbon-to-nitrogen ratio soils across temperate forests is driven by smaller nitrogen not larger carbon stocksJ. Ecol.20181065245351:CAS:528:DC%2BC1cXisF2nu7s%3D10.1111/1365-2745.12918 – reference: WangBQiuYLPhylogenetic distribution and evolution of mycorrhizas in land plantsMycorrhiza2006162993631:STN:280:DC%2BD28vit1OltA%3D%3D10.1007/s00572-005-0033-616845554 – reference: PoirierVRoumetCMunsonADThe root of the matter: linking root traits and soil organic matter stabilization processesSoil Biol. Biochem.20181202462591:CAS:528:DC%2BC1cXjsl2rt74%3D10.1016/j.soilbio.2018.02.016 – reference: DavisonJGlobal assessment of arbuscular mycorrhizal fungus diversity reveals very low endemismScience20153499709732015Sci...349..970D1:CAS:528:DC%2BC2MXhsVSlsr3O10.1126/science.aab116126315436 – reference: TesteFPPlant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublandsScience20173551731762017Sci...355..173T1:CAS:528:DC%2BC2sXms12itw%3D%3D10.1126/science.aai8291 – reference: KohoutPBiogeography of ericoid mycorrhizaEcol. Stud.201723017919310.1007/978-3-319-56363-3_9 – reference: Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA36, 9575–9580 (2017). – reference: AverillCHawkesCVEctomycorrhizal fungi slow soil carbon cyclingEcol. Lett.20161993794710.1111/ele.1263127335203 – reference: NäsholmTAre ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests?New Phytologist201319821422110.1111/nph.121391:CAS:528:DC%2BC3sXjtlWntb8%3D23356503 – reference: SchepaschenkoDA dataset of forest biomass structure for EurasiaSci. Data2017410.1038/sdata.2017.70285099115433390 – reference: CotrufoMFFormation of soil organic matter via biochemical and physical pathways of litter mass lossNat. Geosci.201587767792015NatGe...8..776C1:CAS:528:DC%2BC2MXhsFaqtb%2FN10.1038/ngeo2520 – reference: Bailey, R. G. Ecoregions. The Ecosystem Geography of the Oceans and Continents (Springer New York, 2014). – reference: ESA. CCI Land cover map 2015 (https://www.esa-landcover-cci.org/) (2017). – reference: ORNL DAAC. Dataset “Bailey Ecoregions of the Continents (Province)”https://doi.org/10.3334/ORNLDAAC/1388 (2017). – reference: CotrufoMFWallensteinMDBootCMDenefKPaulEThe Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?Glob. Change Biol.2013199889952013GCBio..19..988C10.1111/gcb.12113 – reference: ShiZWangFLiuYResponse of soil respiration under different mycorrhizal strategies to precipitation and temperatureJ. Soil Sci. Plant Nutr.201212411420 – reference: CraigMatthew E.TurnerBenjamin L.LiangChaoClayKeithJohnsonDaniel J.PhillipsRichard P.Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matterGlobal Change Biology2018248331733302018GCBio..24.3317C10.1111/gcb.1413229573504 – reference: FernandezCWKennedyPGRevisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils?New Phytologist2016209138213941:CAS:528:DC%2BC28Xit12mtr0%3D10.1111/nph.1364826365785 – reference: PhillipsRPBrzostekEMidgleyMGThe mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forestsNew Phytologist201319941511:CAS:528:DC%2BC3sXosFartLs%3D10.1111/nph.1222123713553 – reference: Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extentsions in Ecology with R (Springer, 2009). – reference: BrundrettMCMycorrhizas in natural ecosystemsAdv. Ecol. Res.19912117131310.1016/S0065-2504(08)60099-9 – reference: HoenigJMHeiseyDMThe abuse of power: the pervasive fallacy of power calculations for data analysisAm. Statistician2001551924184903910.1198/000313001300339897 – reference: NewshamKUpsonRReadDMycorrhizas and dark septate root endophytes in polar regionsFungal Ecol.20092102010.1016/j.funeco.2008.10.005 – reference: Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Global Change Biol.24, 4544–4553 (2018). – reference: PoulterBPlant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change InitiativeGeosci. Model Dev.20158231523282015GMD.....8.2315P10.5194/gmd-8-2315-2015 – reference: BrundrettMCMycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosisPlant Soil200932037771:CAS:528:DC%2BD1MXmvFGjt7g%3D10.1007/s11104-008-9877-9 – reference: PanYBirdseyRAPhillipsOLJacksonRBThe structure, distribution, and biomass of the world’s forestsAnnu. Rev. Ecol., Evolution, Syst.20134459362210.1146/annurev-ecolsys-110512-135914 – reference: Swaty, R., Michael, H. M., Deckert, R. & Gehring, C. A. Mapping the potential mycorrhizal associations of the conterminous United States of America. Fungal Ecol.24, 139–147 (2016). – reference: MenzelADistribution patterns of arbuscular mycorrhizal and non-mycorrhizalplant species in GermanyPerspect. Plant Ecol., Evolution Syst.201621788810.1016/j.ppees.2016.06.002 – reference: WurzburgerNBrookshireENJMcCormackMLankauRMycorrhizal fungi as drivers and modulators of terrestrial ecosystem processesNew Phytologist201721399699910.1111/nph.1440928079936 – reference: TerrerCésarViccaSaraStockerBenjamin D.HungateBruce A.PhillipsRichard P.ReichPeter B.FinziAdrien C.PrenticeI. ColinEcosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisitionNew Phytologist2017217250752210.1111/nph.148721:CAS:528:DC%2BC1cXit1altQ%3D%3D29105765 – reference: SteidingerBSClimatic controls of decomposition drive the global biogeography of forest-tree symbiosesNature20195694044082019Natur.569..404S1:CAS:528:DC%2BC1MXpslGlurg%3D10.1038/s41586-019-1128-031092941 – reference: FisherJBModeling the terrestrial biosphereAnnu. Rev. Environ. Resour.2014399112310.1146/annurev-environ-012913-093456 – reference: Ruiz-BenitoPStand structure and recent climate change constrain stand basal area change in European forests: a comparison across boreal, temperate, and Mediterranean biomesEcosystems2014171439145410.1007/s10021-014-9806-0 – reference: EllisECGoldewijkKKSiebertSLightmanDRamankuttyNAnthropogenic transformation of the biomes, 1700 to 2000Glob. Ecol. Biogeogr.201019589606 – reference: TerrerCNitrogen and phosphorus constrain the CO2fertilization of global plant biomassNat. Clim. Change201996846892019NatCC...9..684T1:CAS:528:DC%2BC1MXhsFKju73K10.1038/s41558-019-0545-2 – reference: AverillCTurnerBLFinziACMycorrhiza-mediated competition between plants and decomposers drives soil carbon storageNature20145055435452014Natur.505..543A1:CAS:528:DC%2BC2cXhtFOls70%3D10.1038/nature1290124402225 – reference: BatjesNHarmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocksGeoderma201626961682016Geode.269...61B1:CAS:528:DC%2BC28XitFChur4%3D10.1016/j.geoderma.2016.01.034 – reference: HartleyAJUncertainty in plant functional type distributions and its impact on land surface modelsRemote Sens. Environ.201720371892017RSEnv.203...71H10.1016/j.rse.2017.07.037 – reference: LiuYYRecent reversal in loss of global terrestrial biomass. Nature Climate changeNat. Clim. Change201554704742015NatCC...5..470L10.1038/nclimate2581 – reference: DormannCF(2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution dataGlob. Ecol. Biogeogr.20071612913810.1111/j.1466-8238.2006.00279.x – reference: TerrerCViccaSHungateBAPhillipsRPPrenticeICMycorrhizal association as a primary control of the CO2 fertilization effectScience201635372742016Sci...353...72T1:CAS:528:DC%2BC28XhtVOgtLrK10.1126/science.aaf461027365447 – reference: ReadDJLeakeJRPerez-MorenoJMycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomesCan. J. Bot.200482124312631:CAS:528:DC%2BD2cXptFGqsb0%3D10.1139/b04-123 – reference: Lamotte, M. in Tropical Ecological Systems 179–222 (Springer, 1975). – reference: TedersooLGlobal diversity and geography of soil fungiScience2014346107810881:CAS:528:DC%2BC2cXhvFKqtb7P10.1126/science.1256688 – reference: BrzostekERFisherJBPhillipsRPModeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade‐offs and multipath resistance uptake improve predictions of retranslocationJ. Geophys. Res.20141191684169710.1002/2014JG002660 – reference: MbuthiaLWLong term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil qualitySoil Biol. Biochem.20158924341:CAS:528:DC%2BC2MXhtV2hsr3E10.1016/j.soilbio.2015.06.016 – reference: Jo, I. et al. Neglecting plant–microbe symbioses leads to underestimation of modeled climate impacts. Sci. Adv. (in the press). – reference: FisherJoshua B.SweeneySeanBrzostekEdward R.EvansTom P.JohnsonDaniel J.MyersJonathan A.BourgNorman A.WolfAmy T.HoweRobert W.PhillipsRichard P.Tree-mycorrhizal associations detected remotely from canopy spectral propertiesGlobal Change Biology2016227259626072016GCBio..22.2596F10.1111/gcb.1326427282323 – reference: BennettJAPlant-soil feedbacks and mycorrhizal type influence temperate forest population dynamicsScience20173551811842017Sci...355..181B1:CAS:528:DC%2BC2sXms12hsg%3D%3D10.1126/science.aai821228082590 – reference: ShiMNeglecting plant–microbe symbioses leads to underestimation of modeled climate impactsBiogeosciences2019164574652019BGeo...16..457S10.5194/bg-16-457-2019 – reference: ThompsonJDecline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflowerAust. J. Agric. Res.1987388478671:CAS:528:DyaL2sXmtFKltbk%3D10.1071/AR9870847 – reference: FAO. Global Forest Resource Assessement (2000). – reference: BrundrettMCDistribution and evolution of mycorrhizal types and other specialised roots in AustraliaEcol. Stud.201723036139410.1007/978-3-319-56363-3_17 – reference: OlsonDMTerrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversityBioscience20015193393810.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 – reference: ReadDJMycorrhizas in ecosystemsExperientia19914737639110.1007/BF01972080 – reference: FAO, OECD. Oilseeds and Oilseed Products. OECD-FAO Agricultural Outlook (OECD Publishing, 2013). – reference: LeakeJRNetworks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioningCan. J. Bot.2004821016104510.1139/b04-060 – reference: Soudzilovskaia, N. et al. FungalRoot: global online database of plant mycorrhizal associations. Preprint at https://www.biorxiv.org/content/10.1101/717488v1 – reference: EkbladAProduction and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilizationNew Phytologist20162118748851:CAS:528:DC%2BC28XhtFegtrnI10.1111/nph.1396127118132 – reference: Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019). – reference: LinGMcCormackMLMaCGuoDSimilar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forestsNew Phytologist2017213144014511:CAS:528:DC%2BC2sXoslalsA%3D%3D10.1111/nph.1420627678253 – reference: BatjesNHWoSIS: providing standardised soil profile data for the world. Earth System ScienceData20179114 – reference: Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2008). – reference: SoudzilovskaiaNAQuantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cyclingNew Phytologist20152082802931:CAS:528:DC%2BC2MXhsVChsr%2FK10.1111/nph.1344726011828 – volume: 355 start-page: 181 year: 2017 ident: 13019_CR6 publication-title: Science doi: 10.1126/science.aai8212 – volume: 211 start-page: 874 year: 2016 ident: 13019_CR54 publication-title: New Phytologist doi: 10.1111/nph.13961 – volume: 213 start-page: 1440 year: 2017 ident: 13019_CR19 publication-title: New Phytologist doi: 10.1111/nph.14206 – volume: 19 start-page: 988 year: 2013 ident: 13019_CR43 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12113 – ident: 13019_CR1 – volume: 4 year: 2017 ident: 13019_CR35 publication-title: Sci. Data doi: 10.1038/sdata.2017.70 – volume: 203 start-page: 71 year: 2017 ident: 13019_CR37 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.037 – volume: 17 start-page: 1439 year: 2014 ident: 13019_CR62 publication-title: Ecosystems doi: 10.1007/s10021-014-9806-0 – volume: 106 start-page: 524 year: 2018 ident: 13019_CR55 publication-title: J. Ecol. doi: 10.1111/1365-2745.12918 – volume: 208 start-page: 280 year: 2015 ident: 13019_CR30 publication-title: New Phytologist doi: 10.1111/nph.13447 – volume: 505 start-page: 543 year: 2014 ident: 13019_CR11 publication-title: Nature doi: 10.1038/nature12901 – volume: 82 start-page: 1243 year: 2004 ident: 13019_CR14 publication-title: Can. J. Bot. doi: 10.1139/b04-123 – ident: 13019_CR33 – volume: 119 start-page: 1684 year: 2014 ident: 13019_CR17 publication-title: J. Geophys. Res. doi: 10.1002/2014JG002660 – ident: 13019_CR52 doi: 10.1073/pnas.1706103114 – volume: 120 start-page: 246 year: 2018 ident: 13019_CR45 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.02.016 – volume: 89 start-page: 1032 year: 2008 ident: 13019_CR56 publication-title: Ecology doi: 10.1890/07-0823.1 – ident: 13019_CR26 doi: 10.1016/j.funeco.2016.05.005 – ident: 13019_CR57 doi: 10.3334/ORNLDAAC/1388 – volume: 346 start-page: 1078 year: 2014 ident: 13019_CR27 publication-title: Science doi: 10.1126/science.1256688 – volume: 230 start-page: 407 year: 2017 ident: 13019_CR59 publication-title: Ecol. Stud. doi: 10.1007/978-3-319-56363-3_19 – volume: 198 start-page: 214 year: 2013 ident: 13019_CR23 publication-title: New Phytologist doi: 10.1111/nph.12139 – volume: 22 start-page: 2596 issue: 7 year: 2016 ident: 13019_CR36 publication-title: Global Change Biology doi: 10.1111/gcb.13264 – volume: 349 start-page: 970 year: 2015 ident: 13019_CR28 publication-title: Science doi: 10.1126/science.aab1161 – ident: 13019_CR65 – volume: 5 start-page: 470 year: 2015 ident: 13019_CR38 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2581 – volume: 44 start-page: 593 year: 2013 ident: 13019_CR60 publication-title: Annu. Rev. Ecol., Evolution, Syst. doi: 10.1146/annurev-ecolsys-110512-135914 – volume: 51 start-page: 933 year: 2001 ident: 13019_CR46 publication-title: Bioscience doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 – volume: 353 start-page: 72 year: 2016 ident: 13019_CR13 publication-title: Science doi: 10.1126/science.aaf4610 – volume: 269 start-page: 61 year: 2016 ident: 13019_CR47 publication-title: Geoderma doi: 10.1016/j.geoderma.2016.01.034 – volume: 16 start-page: 457 year: 2019 ident: 13019_CR18 publication-title: Biogeosciences doi: 10.5194/bg-16-457-2019 – volume: 24 start-page: 3317 issue: 8 year: 2018 ident: 13019_CR16 publication-title: Global Change Biology doi: 10.1111/gcb.14132 – volume: 213 start-page: 996 year: 2017 ident: 13019_CR9 publication-title: New Phytologist doi: 10.1111/nph.14409 – volume: 8 start-page: 2315 year: 2015 ident: 13019_CR63 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-8-2315-2015 – volume: 569 start-page: 404 year: 2019 ident: 13019_CR51 publication-title: Nature doi: 10.1038/s41586-019-1128-0 – volume: 39 start-page: 91 year: 2014 ident: 13019_CR29 publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev-environ-012913-093456 – ident: 13019_CR34 – volume: 38 start-page: 847 year: 1987 ident: 13019_CR40 publication-title: Aust. J. Agric. Res. doi: 10.1071/AR9870847 – volume: 55 start-page: 19 year: 2001 ident: 13019_CR66 publication-title: Am. Statistician doi: 10.1198/000313001300339897 – volume: 8 start-page: 776 year: 2015 ident: 13019_CR44 publication-title: Nat. Geosci. doi: 10.1038/ngeo2520 – ident: 13019_CR64 – volume: 355 start-page: 173 year: 2017 ident: 13019_CR7 publication-title: Science doi: 10.1126/science.aai8291 – volume: 230 start-page: 179 year: 2017 ident: 13019_CR58 publication-title: Ecol. Stud. doi: 10.1007/978-3-319-56363-3_9 – volume: 209 start-page: 1382 year: 2016 ident: 13019_CR22 publication-title: New Phytologist doi: 10.1111/nph.13648 – volume: 21 start-page: 171 year: 1991 ident: 13019_CR4 publication-title: Adv. Ecol. Res. doi: 10.1016/S0065-2504(08)60099-9 – ident: 13019_CR67 doi: 10.1007/978-0-387-87458-6 – ident: 13019_CR32 doi: 10.1007/978-1-4939-0524-9_3 – volume: 19 start-page: 937 year: 2016 ident: 13019_CR20 publication-title: Ecol. Lett. doi: 10.1111/ele.12631 – volume: 47 start-page: 376 year: 1991 ident: 13019_CR3 publication-title: Experientia doi: 10.1007/BF01972080 – volume: 16 start-page: 129 year: 2007 ident: 13019_CR68 publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/j.1466-8238.2006.00279.x – ident: 13019_CR61 doi: 10.1007/978-3-642-88533-4_15 – volume: 89 start-page: 24 year: 2015 ident: 13019_CR41 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.06.016 – volume: 12 start-page: e0169748 year: 2017 ident: 13019_CR49 publication-title: PLoS ONE doi: 10.1371/journal.pone.0169748 – volume: 21 start-page: 78 year: 2016 ident: 13019_CR25 publication-title: Perspect. Plant Ecol., Evolution Syst. doi: 10.1016/j.ppees.2016.06.002 – volume: 2 start-page: 10 year: 2009 ident: 13019_CR48 publication-title: Fungal Ecol. doi: 10.1016/j.funeco.2008.10.005 – volume: 320 start-page: 37 year: 2009 ident: 13019_CR2 publication-title: Plant Soil doi: 10.1007/s11104-008-9877-9 – ident: 13019_CR42 – volume: 217 start-page: 507 issue: 2 year: 2017 ident: 13019_CR21 publication-title: New Phytologist doi: 10.1111/nph.14872 – ident: 13019_CR53 doi: 10.1111/gcb.14368 – volume: 19 start-page: 589 year: 2010 ident: 13019_CR31 publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/j.1466-8238.2010.00540.x – ident: 13019_CR10 doi: 10.1111/brv.12538 – volume: 12 start-page: 411 year: 2012 ident: 13019_CR8 publication-title: J. Soil Sci. Plant Nutr. – volume: 16 start-page: 299 year: 2006 ident: 13019_CR39 publication-title: Mycorrhiza doi: 10.1007/s00572-005-0033-6 – volume: 82 start-page: 1016 year: 2004 ident: 13019_CR5 publication-title: Can. J. Bot. doi: 10.1139/b04-060 – volume: 9 start-page: 684 year: 2019 ident: 13019_CR15 publication-title: Nat. Clim. Change doi: 10.1038/s41558-019-0545-2 – volume: 230 start-page: 361 year: 2017 ident: 13019_CR24 publication-title: Ecol. Stud. doi: 10.1007/978-3-319-56363-3_17 – volume: 9 start-page: 1 year: 2017 ident: 13019_CR50 publication-title: Data – volume: 199 start-page: 41 year: 2013 ident: 13019_CR12 publication-title: New Phytologist doi: 10.1111/nph.12221 |
SSID | ssj0000391844 |
Score | 2.6505482 |
Snippet | Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant–fungal associations formed by most plant species. Ecosystems dominated by... Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant-fungal associations formed by most plant species. Ecosystems dominated by... Mycorrhizas—mutualistic relationships formed between fungi and most plant species—are functionally linked to soil carbon stocks. Here the authors map the... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5077 |
SubjectTerms | 631/158/2445 631/158/852 704/158/47 704/47/4113 BASIC BIOLOGICAL SCIENCES Biogeochemical cycles Biogeochemistry Biomass Carbon Ecological function Ecosystem Ecosystems Ectomycorrhizas Environmental impact Geographic Mapping Human influences Humanities and Social Sciences multidisciplinary Mycorrhizae Plant species Plants Plants (botany) Science Science (multidisciplinary) Soil - chemistry Subsoils Topsoil Vegetation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KINBLafrpJi0u9NaaaCXZko9JaEgL7amB3IQ0lkho6g27ziH99ZmRvdtsPy_dg3dZacF-GmneMLNvAN74JgQrvKi6hi4ao6pC8ljZ4I0hfzaTuYjm0-fm5FR_PKvP7rT64pqwUR54BG4fO2QFvS4wVU5Jt7q2JnoRkw_kenK0Tj7vTjCVz2DVUuiip3_JCGX3lzqfCcRoKjq26So3PFEW7Ke3OW2s35HNX2smf0qcZn90_BAeTESyPBgfYAfuxf4RbI-tJW8ew4dRzL_8dkPh5eL84jt9vrokGMuOpXKnLlcl529jVw7zkvDlNh1sjyX6RaBB4oX4dfkETo_ffzk6qaa2CRXWjRmqTpkkIjY2CsK7M7GtPcUhUWjlrUGdMM3qnEKUbddq2zTCSxTJm5CIHkX1FLb6eR-fQ4kS21oGjwqjjjIFCuaIAnWSXCv3Ji9gtoLQ4aQpzq0tLl3ObSvrRtgdAe4y7E4W8Hb9m6tRUeOvsw95ZdYzWQ07f0E24iYbcf-ykQJ2eV0dkQpWxkUuIcLBMdm1rS5gb7XcbtrAS0e0V9LRpZQp4PV6mLYe51N8H-fXeY5SNdcIF_BstI71fSrWPaRXAWbDbjYeZHOkvzjP8t6NJRYl6wLerSzsx239GagX_wOoXbgv8w6ZVcLswdawuI4viXQN4VXeX7fdXidw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1oQUHiBlEd24mdEwLEUpDgRKXeLD9pRUmW3fTQ_vrOON5Uy6N7yEZrR3LGM57PntlvCHllWmsVNbTyLVyEC7yy0bhKWSMl-LOapSSar9_ag0Px5ag5ygdu65xWuVkT00LtB4dn5PuAQxjoEufy7fJ3hVWjMLqaS2jcJLdq8DSY0qUWn-YzFmQ_V0Lk_8pQrvbXIq0MgGsqWLzhyrb8UaLth68BzOtfkPPvzMk_wqfJKy3ukbsZTpbvpvm_T26E_gG5PRWYPH9IPk-U_uWvc9hkro5PLuB-eQrCLD0S5uZaVyVGcYMvx6EEKWOxDtTK0pmVhUZAh-7n-hE5XHz8_uGgysUTKte0cqw8l5EG16pAQepehq4xsBsJVHCjpBPRxbpJgUTW-U6otqWGORqNtBFAUuCPyU4_9OEpKR1zXcOscdwFEVi0sKUDIOQZOFisUF6QeiNC7TKzOBa4ONUpws2VnsSuQeA6iV2zgryen1lOvBrX9n6PMzP3RE7s9MOw-qGziWnnHXIteoubqhhFJxolg6EhGgsghRZkF-dVA7RAflyHiURu1Ah5VScKsreZbp3NeK2vlK4gL-dmMECMqpg-DGepD-cNZgoX5MmkHfM4ObIfwqcgcktvtl5ku6U_OU4k360CLMWagrzZaNjVsP4vqGfXv8UuucOS7tcVlXtkZ1ydhecAqkb7IlnOJT1kHoI priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrZC4IMoztKAgcYMIr-3EznFBVGUluECl3izbsWlFSard9FB-fWecB1ooSOSQRLEtOeMZ-3Nm8g3AK1s5p5llRVPhSfogChetL7SzSuF6tuApiObT5-r4RK5Oy9Md4NO_MCloP1Fapml6ig57u5HJpBGQFDjr4hmn3T2iakfd3lsuV19W85cV4jzXUo5_yDChb2m8tQolsn68dGhUtwHNP-Mlf3OaprXo6D7cG0Fkvhy6vQ87oX0Ad4a0ktcP4eNA5J__uMat5frs_CfeX16gCPOGaHLHDFc5-W5Dk_ddjrKlFB2ki7m3a4eFiAn9980jODn68PX9cTGmTCh8Wam-aISKLPhKB4ayblSoS4t7kMCksFp5GX1clMl9yOumlrqqmOWeRatcRGgUxGPYbbs2PIXcc1-X3FkvfJCBR4cbOYQ_DcdllfKSZ7CYRGj8yCdOaS0uTPJrC20GsRsUuEliNzyD13Oby4FN45-139HIzDWJCTs96NbfzKgZxjeeGBYbR1upGGUtS62CZSFah9CEZXBA42oQUBArrqfwId8bArq6lhkcTsNtRuPdGIS8HKctIVQGL-diNDvypdg2dFepjhAlxQdn8GTQjrmfgjgP8chAbenN1otsl7TnZ4nau9KIoHiZwZtJw3516--CevZ_1Q_gLk-2sCiYOoTdfn0VniO06t2L0ZZuABm9HaU priority: 102 providerName: Springer Nature |
Title | Global mycorrhizal plant distribution linked to terrestrial carbon stocks |
URI | https://link.springer.com/article/10.1038/s41467-019-13019-2 https://www.ncbi.nlm.nih.gov/pubmed/31700000 https://www.proquest.com/docview/2312793337 https://www.proquest.com/docview/2313356769 https://www.osti.gov/servlets/purl/1615894 https://pubmed.ncbi.nlm.nih.gov/PMC6838125 https://doaj.org/article/cdc1349db3064ff494587ea0efab5210 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTUi8IH6TbVRB4g0Cju3EzgNCXbUyKm1CQKW-WbbjbBOl3dJOovz1nJ2kqFAQfXCq2K3c853vu57zHcALnRsjiSZJmWPDrWOJqbRNpNFCoD9LaThEc3qWn4z5aJJNdqArd9QKcLE1tPP1pMb19PX369U7NPi3zSPj8s2CB3NHsJLgjowtbsl76JmEr2hw2sL9sDOzAgMan2imhKcJDmDtczTbv2bDVwVKf7zM0fS2wdE_T1X-lloNHmt4D-62UDPuN7pxH3bc7AHcbopPrh7Ch4buP_62wgC0vrj8ge-vpijouPRkum0drNhneF0ZL-cxroAv5OE1Nra6NtiJyNF-XTyC8fD4y-AkaQsrJDbLxTIpmaiIs7l0BFekFK7INEYqjnCmpbC8slWahSQjLcqCyzwnmlpSaWEqBFCOPYbd2XzmnkJsqS0yarRl1nFHK4PhHoKkkqLz9dXLI0g7ESrbso774hdTFbLfTKpG7AoFroLYFY3g5fozVw3nxj9HH_mVWY_0fNnhxrw-V635KVtaz8NYGh9wVRUveCaF08RV2iCAIREc-HVVCDs8d671h4zsUnk4LAsewWG33KrTUIXAmOLmxpiI4Pm6G43TZ1z0zM1vwhjGMn-KOIInjXas58k8MyK-IhAberPxQzZ7ZpcXgQA8l4izaBbBq07Dfk3r74La_49pHsAdGgwgTYg4hN1lfeOeIepamh7cEhOBrRy-78Fevz_6PMLr0fHZx094d5APeuH_jF4wuZ9r4ixT |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQwheENcRNiBI8ATRUtuJnQeEuJWWXZ42aW_Gdhw2MZLSdkLlR_EbOcdJOpXL3taHtKrdyjkXn8859vkAnpncWpWaNClzvAjneWIr4xJljZQYzwYsbKLZ289Hh-LTUXa0Br_6szC0rbKfE8NEXTaOnpFvIw5haEucy9eT7wmxRlF2tafQaM1ixy9-4JJt9mr8HvX7nLHhh4N3o6RjFUhclst5UnJZpd7lyqc4nFL6IjMI030quFHSicpVgyxk2FhRFkLleWqYSysjbYXowXP83ytwVXCM5HQyffhx-UyHqq0rIbqzOSlX2zMRZiLEUQkGC7yylfgXaALwrUF3_hfE_Xun5h_p2hAFh7fgZgdf4zetvd2GNV_fgWstoeXiLoxbCoH42wIXtdPjk5_4eXKKyotLKtDbcWvFlDX2ZTxvYtQqkYOQF8TOTC02Ihp1X2f34PBSxHof1uum9g8gdswVGbPGceeFZ5XFJSQCr5JhQCdG9AgGvQi16yqZE6HGqQ4Zda50K3aNAtdB7JpF8GL5m0lbx-PC3m9JM8ueVIM7fNFMv-jOpbUrHdV2LC0t4qpKFCJT0pvUV8YiKEoj2CS9aoQyVI_X0cYlN9cEsVUhItjq1a27aWOmz408gqfLZnR4yuKY2jdnoQ_nGe1MjmCjtY7lODlVW8RXBHLFblZuZLWlPjkORcVzhdiNZRG87C3sfFj_F9TDi-_iCVwfHezt6t3x_s4m3GDBDwZJKrdgfT49848Q0M3t4-BFMXy-bLf9DcTMWtg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN-EDQgSPEFU13bi5AEhxlZtDKoJMWlvxnFsNjGa0nZC5U_jr-POSTqVj70tD0lVu5VzH77f5S53AM9MVpY5MyypMjxJ60RSemOTvDRKoT0b8JBE82GU7R7Kd0fp0Rr86t6FobTKbk8MG3VVW3pG3kccwlGWhFB936ZFHGwPX0--J9RBiiKtXTuNRkT23eIHum-zV3vbyOvnnA93Pr3dTdoOA4lNMzVPKqE8czbLHcOlVcoVqUHI7pgUJldWeusHaYi28aIqZJ5lzHDLvFGlRyThBP7vFVhX5BX1YH1rZ3TwcfmEh2qv51K2b-owkfdnMuxLiKoSNB145ivWMDQNwEuNyv0vwPt33uYfwdtgE4c34UYLZuM3jfTdgjU3vg1Xm_aWizuw1zQUiL8t0MWdHp_8xM-TU2RlXFG53rbTVkwxZFfF8zpGHlOrENKJ2JppiYOITe3X2V04vBTC3oPeuB67BxBbbouUl8YK66TjvkSHEmFYxdG8U3_0CAYdCbVt65pTe41THeLrItcN2TUSXAeyax7Bi-VvJk1VjwtnbxFnljOpInf4op5-0a2Ca1tZqvRYleTSeS8LmebKGea8KREisQg2iK8agQ1V57WUxmTnmgB3XsgINjt263YTmelzkY_g6XIY1Z9iOmbs6rMwR4iU8pQjuN9Ix3Kdgmov4hGBWpGblRtZHRmfHIcS41mOSI6nEbzsJOx8Wf8n1MOL7-IJXEOV1e_3RvsbcJ0HNRgkTG1Cbz49c48Q3c3Lx60axfD5sjX3N-P-YGo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+mycorrhizal+plant+distribution+linked+to+terrestrial+carbon+stocks&rft.jtitle=Nature+communications&rft.au=Soudzilovskaia%2C+Nadejda+A&rft.au=van+Bodegom%2C+Peter+M&rft.au=Terrer%2C+C%C3%A9sar&rft.au=Zelfde%2C+Maarten+Van%27t&rft.date=2019-11-07&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=5077&rft_id=info:doi/10.1038%2Fs41467-019-13019-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |