Global mycorrhizal plant distribution linked to terrestrial carbon stocks

Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant–fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hind...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 5077 - 10
Main Authors Soudzilovskaia, Nadejda A., van Bodegom, Peter M., Terrer, César, Zelfde, Maarten van’t, McCallum, Ian, Luke McCormack, M., Fisher, Joshua B., Brundrett, Mark C., de Sá, Nuno César, Tedersoo, Leho
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.11.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant–fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hindered by the scarcity of information on mycorrhizal distributions. Here we present global, high-resolution maps of vegetation biomass distribution by dominant mycorrhizal associations. Arbuscular, ectomycorrhizal, and ericoid mycorrhizal vegetation store, respectively, 241 ± 15, 100 ± 17, and 7 ± 1.8 GT carbon in aboveground biomass, whereas non-mycorrhizal vegetation stores 29 ± 5.5 GT carbon. Soil carbon stocks in both topsoil and subsoil are positively related to the community-level biomass fraction of ectomycorrhizal plants, though the strength of this relationship varies across biomes. We show that human-induced transformations of Earth’s ecosystems have reduced ectomycorrhizal vegetation, with potential ramifications to terrestrial carbon stocks. Our work provides a benchmark for spatially explicit and globally quantitative assessments of mycorrhizal impacts on ecosystem functioning and biogeochemical cycling. Mycorrhizas—mutualistic relationships formed between fungi and most plant species—are functionally linked to soil carbon stocks. Here the authors map the global distribution of mycorrhizal plants and quantify links between mycorrhizal vegetation patterns and terrestrial carbon stocks.
AbstractList Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant-fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hindered by the scarcity of information on mycorrhizal distributions. Here we present global, high-resolution maps of vegetation biomass distribution by dominant mycorrhizal associations. Arbuscular, ectomycorrhizal, and ericoid mycorrhizal vegetation store, respectively, 241 ± 15, 100 ± 17, and 7 ± 1.8 GT carbon in aboveground biomass, whereas non-mycorrhizal vegetation stores 29 ± 5.5 GT carbon. Soil carbon stocks in both topsoil and subsoil are positively related to the community-level biomass fraction of ectomycorrhizal plants, though the strength of this relationship varies across biomes. We show that human-induced transformations of Earth's ecosystems have reduced ectomycorrhizal vegetation, with potential ramifications to terrestrial carbon stocks. Our work provides a benchmark for spatially explicit and globally quantitative assessments of mycorrhizal impacts on ecosystem functioning and biogeochemical cycling.Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant-fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hindered by the scarcity of information on mycorrhizal distributions. Here we present global, high-resolution maps of vegetation biomass distribution by dominant mycorrhizal associations. Arbuscular, ectomycorrhizal, and ericoid mycorrhizal vegetation store, respectively, 241 ± 15, 100 ± 17, and 7 ± 1.8 GT carbon in aboveground biomass, whereas non-mycorrhizal vegetation stores 29 ± 5.5 GT carbon. Soil carbon stocks in both topsoil and subsoil are positively related to the community-level biomass fraction of ectomycorrhizal plants, though the strength of this relationship varies across biomes. We show that human-induced transformations of Earth's ecosystems have reduced ectomycorrhizal vegetation, with potential ramifications to terrestrial carbon stocks. Our work provides a benchmark for spatially explicit and globally quantitative assessments of mycorrhizal impacts on ecosystem functioning and biogeochemical cycling.
Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant–fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hindered by the scarcity of information on mycorrhizal distributions. Here we present global, high-resolution maps of vegetation biomass distribution by dominant mycorrhizal associations. Arbuscular, ectomycorrhizal, and ericoid mycorrhizal vegetation store, respectively, 241 ± 15, 100 ± 17, and 7 ± 1.8 GT carbon in aboveground biomass, whereas non-mycorrhizal vegetation stores 29 ± 5.5 GT carbon. Soil carbon stocks in both topsoil and subsoil are positively related to the community-level biomass fraction of ectomycorrhizal plants, though the strength of this relationship varies across biomes. We show that human-induced transformations of Earth’s ecosystems have reduced ectomycorrhizal vegetation, with potential ramifications to terrestrial carbon stocks. Our work provides a benchmark for spatially explicit and globally quantitative assessments of mycorrhizal impacts on ecosystem functioning and biogeochemical cycling. Mycorrhizas—mutualistic relationships formed between fungi and most plant species—are functionally linked to soil carbon stocks. Here the authors map the global distribution of mycorrhizal plants and quantify links between mycorrhizal vegetation patterns and terrestrial carbon stocks.
Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant–fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hindered by the scarcity of information on mycorrhizal distributions. Here we present global, high-resolution maps of vegetation biomass distribution by dominant mycorrhizal associations. Arbuscular, ectomycorrhizal, and ericoid mycorrhizal vegetation store, respectively, 241 ± 15, 100 ± 17, and 7 ± 1.8 GT carbon in aboveground biomass, whereas non-mycorrhizal vegetation stores 29 ± 5.5 GT carbon. Soil carbon stocks in both topsoil and subsoil are positively related to the community-level biomass fraction of ectomycorrhizal plants, though the strength of this relationship varies across biomes. We show that human-induced transformations of Earth’s ecosystems have reduced ectomycorrhizal vegetation, with potential ramifications to terrestrial carbon stocks. Our work provides a benchmark for spatially explicit and globally quantitative assessments of mycorrhizal impacts on ecosystem functioning and biogeochemical cycling.
Mycorrhizas—mutualistic relationships formed between fungi and most plant species—are functionally linked to soil carbon stocks. Here the authors map the global distribution of mycorrhizal plants and quantify links between mycorrhizal vegetation patterns and terrestrial carbon stocks.
ArticleNumber 5077
Author de Sá, Nuno César
Zelfde, Maarten van’t
Terrer, César
Luke McCormack, M.
van Bodegom, Peter M.
Fisher, Joshua B.
McCallum, Ian
Tedersoo, Leho
Soudzilovskaia, Nadejda A.
Brundrett, Mark C.
Author_xml – sequence: 1
  givenname: Nadejda A.
  orcidid: 0000-0003-4659-2585
  surname: Soudzilovskaia
  fullname: Soudzilovskaia, Nadejda A.
  email: n.a.soudzilovskaia@cml.leidenuniv.nl
  organization: Institute of Environmental Sciences, Leiden University
– sequence: 2
  givenname: Peter M.
  orcidid: 0000-0003-0771-4500
  surname: van Bodegom
  fullname: van Bodegom, Peter M.
  organization: Institute of Environmental Sciences, Leiden University
– sequence: 3
  givenname: César
  orcidid: 0000-0002-5479-3486
  surname: Terrer
  fullname: Terrer, César
  organization: Institut de Ciència i Tecnologia Ambientals (ICTA) Universitat Autonoma de Barcelona, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory
– sequence: 4
  givenname: Maarten van’t
  surname: Zelfde
  fullname: Zelfde, Maarten van’t
  organization: Institute of Environmental Sciences, Leiden University
– sequence: 5
  givenname: Ian
  surname: McCallum
  fullname: McCallum, Ian
  organization: Ecosystems Services and Management Program, International Institute for Applied Systems Analysis
– sequence: 6
  givenname: M.
  orcidid: 0000-0002-8300-5215
  surname: Luke McCormack
  fullname: Luke McCormack, M.
  organization: Center for Tree Science, The Morton Arboretum
– sequence: 7
  givenname: Joshua B.
  surname: Fisher
  fullname: Fisher, Joshua B.
  organization: Jet Propulsion Laboratory, California Institute of Technology, Joint Institute for Regional Earth System Science and Engineering, University of California
– sequence: 8
  givenname: Mark C.
  orcidid: 0000-0002-2501-9037
  surname: Brundrett
  fullname: Brundrett, Mark C.
  organization: School of Biological Sciences, Faculty of Science, University of Western Australia
– sequence: 9
  givenname: Nuno César
  orcidid: 0000-0001-7035-5913
  surname: de Sá
  fullname: de Sá, Nuno César
  organization: Institute of Environmental Sciences, Leiden University
– sequence: 10
  givenname: Leho
  surname: Tedersoo
  fullname: Tedersoo, Leho
  organization: Natural History Museum and Institute of Ecology and Earth Sciences, University of Tartu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31700000$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1615894$$D View this record in Osti.gov
BookMark eNp9ks1u1DAUhS1URMvQF2CBIth0E_BvnGyQUEXLSJXYwNpynOsZTzP2YDtI5elxmhbaLppF4uR-9_jk-L5GRz54QOgtwR8JZu2nxAlvZI1JVxM23-kLdEIxJzWRlB09WB-j05R2uFysIy3nr9AxI3J-xydofTmGXo_V_saEGLfuT1kfRu1zNbiUo-un7IKvRuevYahyqDLECHOlgEbHvhRTDuY6vUEvrR4TnN49V-jnxdcf59_qq--X6_MvV7URjcz1wKTFYJoWsJZykNAJLQQGzJlupeHWWCJmr4J2Q8fbpsGaGmy17C1tOLAVWi-6Q9A7dYhur-ONCtqp2w8hbpSO2ZkRlBkMYbwbeoYbbi3vuGglaAxW94KWGFfo86J1mPo9DAZ8jnp8JPq44t1WbcJv1bSsJVQUgfeLQEjZqWRcBrM1wXswWZGGiLbjBTq72yWGX1MJT-1dMjCWmCFMSVFGGCvhNF1BPzxBd2GKvuQ5U1R2jDFZqHcPbf_ze3-sBWgXwMSQUgSrijM9n2T5CzcqgtU8RGoZIlXGR90OUdlkheiT1nv1Z5vY0pQK7DcQ_9t-pusv-sHYZQ
CitedBy_id crossref_primary_10_1038_s41558_019_0545_2
crossref_primary_10_1073_pnas_2308811121
crossref_primary_10_1007_s00572_021_01063_0
crossref_primary_10_1007_s42729_020_00396_7
crossref_primary_10_3390_f15010064
crossref_primary_10_1016_j_tplants_2022_03_005
crossref_primary_10_1111_1365_2745_13868
crossref_primary_10_3390_agronomy11081531
crossref_primary_10_3390_f15010187
crossref_primary_10_1016_j_soilbio_2021_108417
crossref_primary_10_1007_s11104_023_05925_8
crossref_primary_10_1007_s00572_021_01029_2
crossref_primary_10_1016_j_soilbio_2025_109746
crossref_primary_10_1002_ecy_3688
crossref_primary_10_1016_j_apsoil_2021_104027
crossref_primary_10_1111_pce_15245
crossref_primary_10_3390_agronomy14071446
crossref_primary_10_1134_S1064229323601178
crossref_primary_10_1002_ecy_4015
crossref_primary_10_1007_s00248_021_01721_y
crossref_primary_10_1016_j_ufug_2025_128745
crossref_primary_10_1016_j_tree_2022_06_003
crossref_primary_10_1111_1365_2745_14393
crossref_primary_10_1146_annurev_ecolsys_012021_095454
crossref_primary_10_1111_gcb_16659
crossref_primary_10_1111_1758_2229_13253
crossref_primary_10_1111_nph_17572
crossref_primary_10_1016_j_envres_2023_115379
crossref_primary_10_1016_j_jprot_2021_104428
crossref_primary_10_1016_j_cub_2023_02_027
crossref_primary_10_1016_j_apsoil_2024_105778
crossref_primary_10_1016_j_pedobi_2024_150989
crossref_primary_10_1038_s41467_021_27479_y
crossref_primary_10_1016_j_ecoinf_2024_102701
crossref_primary_10_7717_peerj_17125
crossref_primary_10_1016_j_cub_2021_11_002
crossref_primary_10_1016_j_soilbio_2021_108385
crossref_primary_10_3389_fmicb_2021_634325
crossref_primary_10_3390_ijms242015349
crossref_primary_10_1146_annurev_arplant_061722_090342
crossref_primary_10_1111_nph_18307
crossref_primary_10_1007_s00572_021_01051_4
crossref_primary_10_2139_ssrn_4011550
crossref_primary_10_21829_abm128_2021_1906
crossref_primary_10_1016_j_tim_2024_06_006
crossref_primary_10_2139_ssrn_4160293
crossref_primary_10_3390_land10090968
crossref_primary_10_1007_s11104_024_07125_4
crossref_primary_10_3390_ijpb15020028
crossref_primary_10_1038_s41559_021_01471_7
crossref_primary_10_1016_j_scitotenv_2022_158809
crossref_primary_10_1016_j_tree_2022_10_003
crossref_primary_10_1016_j_apsoil_2024_105344
crossref_primary_10_1111_1365_2745_13927
crossref_primary_10_1111_nph_16598
crossref_primary_10_1016_j_ejsobi_2023_103494
crossref_primary_10_1016_j_geoderma_2025_117188
crossref_primary_10_1007_s10021_024_00949_2
crossref_primary_10_1007_s42832_020_0070_2
crossref_primary_10_1093_dnares_dsac053
crossref_primary_10_1017_qpb_2021_11
crossref_primary_10_1002_mlf2_12127
crossref_primary_10_1016_j_mtbio_2023_100560
crossref_primary_10_4168_aair_2024_16_6_571
crossref_primary_10_1002_ecy_3260
crossref_primary_10_1111_nph_19748
crossref_primary_10_1126_science_aba1223
crossref_primary_10_1093_femsec_fiad041
crossref_primary_10_1016_j_soilbio_2021_108151
crossref_primary_10_1038_s44358_025_00030_3
crossref_primary_10_1111_nph_18365
crossref_primary_10_1111_ddi_13688
crossref_primary_10_3389_ffgc_2020_00097
crossref_primary_10_1029_2020WR027721
crossref_primary_10_3897_mycokeys_107_125549
crossref_primary_10_1007_s11056_021_09875_w
crossref_primary_10_1016_j_fbr_2024_100381
crossref_primary_10_1029_2021GL092764
crossref_primary_10_1016_j_catena_2024_108118
crossref_primary_10_1038_s41561_020_0607_0
crossref_primary_10_1016_j_soilbio_2020_108024
crossref_primary_10_1007_s42729_022_01078_2
crossref_primary_10_1038_s41597_022_01913_2
crossref_primary_10_1093_jpe_rtad021
crossref_primary_10_1016_j_apsoil_2024_105360
crossref_primary_10_1007_s10021_021_00712_x
crossref_primary_10_1007_s11104_020_04627_9
crossref_primary_10_1111_nph_17661
crossref_primary_10_1038_s41559_022_01702_5
crossref_primary_10_1111_nph_19723
crossref_primary_10_1111_geb_13236
crossref_primary_10_1038_s41467_021_22459_8
crossref_primary_10_3389_fmicb_2020_01953
crossref_primary_10_1071_CP23252
crossref_primary_10_1111_nph_19560
crossref_primary_10_1111_nph_70012
crossref_primary_10_1038_s43017_023_00456_3
crossref_primary_10_3389_ffgc_2023_1135270
crossref_primary_10_1186_s13717_023_00440_1
crossref_primary_10_1016_j_soilbio_2022_108578
crossref_primary_10_3389_fpls_2021_711720
crossref_primary_10_1016_j_scitotenv_2023_165003
crossref_primary_10_1007_s10123_023_00443_0
crossref_primary_10_1016_j_pedsph_2023_12_015
crossref_primary_10_1111_nph_17547
crossref_primary_10_1007_s00572_024_01156_6
crossref_primary_10_1007_s10668_024_05422_7
crossref_primary_10_1016_j_jenvman_2024_120754
crossref_primary_10_1016_j_envres_2024_120106
crossref_primary_10_1007_s13225_023_00520_9
crossref_primary_10_1093_plcell_koac303
crossref_primary_10_1007_s00253_023_12480_w
crossref_primary_10_1016_j_resconrec_2024_107704
crossref_primary_10_1111_pce_14519
crossref_primary_10_1016_j_envres_2025_121459
crossref_primary_10_1038_s41467_023_44172_4
crossref_primary_10_1016_j_pedsph_2024_02_007
crossref_primary_10_1007_s11104_023_06211_3
crossref_primary_10_1111_nph_70087
crossref_primary_10_3389_fspas_2022_797146
crossref_primary_10_1002_ecy_4501
crossref_primary_10_1002_ecy_3259
crossref_primary_10_5194_bg_21_1391_2024
crossref_primary_10_3390_agronomy12071563
crossref_primary_10_3390_agronomy14040743
crossref_primary_10_1038_s42003_023_04722_4
crossref_primary_10_1016_j_tplants_2021_12_009
crossref_primary_10_3389_ffgc_2023_1304897
crossref_primary_10_3389_fpls_2024_1349401
crossref_primary_10_3390_genes11111293
crossref_primary_10_1007_s00253_023_12992_5
crossref_primary_10_1126_sciadv_add4468
crossref_primary_10_1111_nph_19541
crossref_primary_10_1007_s10021_022_00757_6
crossref_primary_10_1016_j_baae_2020_09_009
crossref_primary_10_1016_j_baae_2024_08_003
crossref_primary_10_1038_s41559_023_02298_0
crossref_primary_10_7717_peerj_12701
crossref_primary_10_1016_j_geoderma_2023_116414
crossref_primary_10_1111_nph_16796
crossref_primary_10_3389_ffgc_2020_00043
crossref_primary_10_3389_fmicb_2022_911116
crossref_primary_10_1155_2023_7208341
crossref_primary_10_1038_s41467_022_32671_9
crossref_primary_10_1007_s13199_021_00792_2
crossref_primary_10_1073_pnas_2026733119
crossref_primary_10_1029_2021GL094514
crossref_primary_10_1029_2022MS003204
crossref_primary_10_1016_j_ecofro_2024_12_008
crossref_primary_10_1016_j_soilbio_2023_109124
crossref_primary_10_1111_1365_2745_14250
crossref_primary_10_1038_s42003_022_03341_9
crossref_primary_10_1080_10549811_2024_2447717
crossref_primary_10_3390_f15111982
crossref_primary_10_1038_s41467_023_36888_0
crossref_primary_10_3389_feart_2022_799694
crossref_primary_10_1016_j_rama_2022_05_003
crossref_primary_10_1111_nph_20003
crossref_primary_10_1146_annurev_ecolsys_011720_090819
crossref_primary_10_3390_f14071337
crossref_primary_10_1525_elementa_005
crossref_primary_10_1038_s41586_021_03306_8
crossref_primary_10_1038_s41597_022_01916_z
crossref_primary_10_1111_nph_17072
crossref_primary_10_3389_ffgc_2023_1187127
crossref_primary_10_1016_j_baae_2020_10_002
crossref_primary_10_3389_fmicb_2020_598321
crossref_primary_10_1007_s12237_024_01343_w
crossref_primary_10_1093_conphys_coaa061
crossref_primary_10_3897_rio_8_e85873
crossref_primary_10_1007_s11104_023_06458_w
crossref_primary_10_1126_sciadv_adj8016
crossref_primary_10_1016_j_soilbio_2023_109253
crossref_primary_10_1111_gcb_70105
crossref_primary_10_1111_nph_18207
crossref_primary_10_1002_ecm_1568
Cites_doi 10.1126/science.aai8212
10.1111/nph.13961
10.1111/nph.14206
10.1111/gcb.12113
10.1038/sdata.2017.70
10.1016/j.rse.2017.07.037
10.1007/s10021-014-9806-0
10.1111/1365-2745.12918
10.1111/nph.13447
10.1038/nature12901
10.1139/b04-123
10.1002/2014JG002660
10.1073/pnas.1706103114
10.1016/j.soilbio.2018.02.016
10.1890/07-0823.1
10.1016/j.funeco.2016.05.005
10.3334/ORNLDAAC/1388
10.1126/science.1256688
10.1007/978-3-319-56363-3_19
10.1111/nph.12139
10.1111/gcb.13264
10.1126/science.aab1161
10.1038/nclimate2581
10.1146/annurev-ecolsys-110512-135914
10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
10.1126/science.aaf4610
10.1016/j.geoderma.2016.01.034
10.5194/bg-16-457-2019
10.1111/gcb.14132
10.1111/nph.14409
10.5194/gmd-8-2315-2015
10.1038/s41586-019-1128-0
10.1146/annurev-environ-012913-093456
10.1071/AR9870847
10.1198/000313001300339897
10.1038/ngeo2520
10.1126/science.aai8291
10.1007/978-3-319-56363-3_9
10.1111/nph.13648
10.1016/S0065-2504(08)60099-9
10.1007/978-0-387-87458-6
10.1007/978-1-4939-0524-9_3
10.1111/ele.12631
10.1007/BF01972080
10.1111/j.1466-8238.2006.00279.x
10.1007/978-3-642-88533-4_15
10.1016/j.soilbio.2015.06.016
10.1371/journal.pone.0169748
10.1016/j.ppees.2016.06.002
10.1016/j.funeco.2008.10.005
10.1007/s11104-008-9877-9
10.1111/nph.14872
10.1111/gcb.14368
10.1111/j.1466-8238.2010.00540.x
10.1111/brv.12538
10.1007/s00572-005-0033-6
10.1139/b04-060
10.1038/s41558-019-0545-2
10.1007/978-3-319-56363-3_17
10.1111/nph.12221
ContentType Journal Article
Copyright The Author(s) 2019
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – sequence: 0
  name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-019-13019-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Biological Science Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef


Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_cdc1349db3064ff494587ea0efab5210
PMC6838125
1615894
31700000
10_1038_s41467_019_13019_2
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
  grantid: vidi grant 016.161.318
  funderid: https://doi.org/10.13039/501100003246
– fundername: ;
  grantid: vidi grant 016.161.318
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
PUEGO
ID FETCH-LOGICAL-c567t-d37f0ec68e0a77d7e95a550e043a87c4fcf150003529d948660a2c0fa7bf264e3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:22:51 EDT 2025
Thu Aug 21 18:01:35 EDT 2025
Thu Dec 05 06:24:21 EST 2024
Mon Jul 21 11:30:14 EDT 2025
Wed Aug 13 04:50:23 EDT 2025
Thu Apr 03 07:11:07 EDT 2025
Tue Jul 01 04:08:46 EDT 2025
Thu Apr 24 23:10:30 EDT 2025
Fri Feb 21 02:38:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-d37f0ec68e0a77d7e95a550e043a87c4fcf150003529d948660a2c0fa7bf264e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC52-07NA27344
LLNL-JRNL-795542
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0002-5479-3486
0000-0001-7035-5913
0000-0003-4659-2585
0000-0002-2501-9037
0000-0003-0771-4500
0000-0002-8300-5215
0000000170355913
0000000346592585
0000000254793486
0000000307714500
0000000283005215
0000000225019037
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-13019-2
PMID 31700000
PQID 2312793337
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_cdc1349db3064ff494587ea0efab5210
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6838125
osti_scitechconnect_1615894
proquest_miscellaneous_2313356769
proquest_journals_2312793337
pubmed_primary_31700000
crossref_citationtrail_10_1038_s41467_019_13019_2
crossref_primary_10_1038_s41467_019_13019_2
springer_journals_10_1038_s41467_019_13019_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-07
PublicationDateYYYYMMDD 2019-11-07
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-07
  day: 07
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – sequence: 0
  name: Nature Publishing Group
– name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References BrundrettMCDistribution and evolution of mycorrhizal types and other specialised roots in AustraliaEcol. Stud.201723036139410.1007/978-3-319-56363-3_17
PanYBirdseyRAPhillipsOLJacksonRBThe structure, distribution, and biomass of the world’s forestsAnnu. Rev. Ecol., Evolution, Syst.20134459362210.1146/annurev-ecolsys-110512-135914
WurzburgerNBrookshireENJMcCormackMLankauRMycorrhizal fungi as drivers and modulators of terrestrial ecosystem processesNew Phytologist201721399699910.1111/nph.1440928079936
HartleyAJUncertainty in plant functional type distributions and its impact on land surface modelsRemote Sens. Environ.201720371892017RSEnv.203...71H10.1016/j.rse.2017.07.037
ORNL DAAC. Dataset “Bailey Ecoregions of the Continents (Province)”https://doi.org/10.3334/ORNLDAAC/1388 (2017).
KarstJMarczakLJonesMDTurkingtonRThe mutualism-parasitism continuum in ectomycorrhizas: a quantitative assessment using meta-analysisEcology2008891032104210.1890/07-0823.118481528
Swaty, R., Michael, H. M., Deckert, R. & Gehring, C. A. Mapping the potential mycorrhizal associations of the conterminous United States of America. Fungal Ecol.24, 139–147 (2016).
CotrufoMFFormation of soil organic matter via biochemical and physical pathways of litter mass lossNat. Geosci.201587767792015NatGe...8..776C1:CAS:528:DC%2BC2MXhsFaqtb%2FN10.1038/ngeo2520
PoirierVRoumetCMunsonADThe root of the matter: linking root traits and soil organic matter stabilization processesSoil Biol. Biochem.20181202462591:CAS:528:DC%2BC1cXjsl2rt74%3D10.1016/j.soilbio.2018.02.016
BatjesNHarmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocksGeoderma201626961682016Geode.269...61B1:CAS:528:DC%2BC28XitFChur4%3D10.1016/j.geoderma.2016.01.034
BrundrettMCMycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosisPlant Soil200932037771:CAS:528:DC%2BD1MXmvFGjt7g%3D10.1007/s11104-008-9877-9
PhillipsRPBrzostekEMidgleyMGThe mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forestsNew Phytologist201319941511:CAS:528:DC%2BC3sXosFartLs%3D10.1111/nph.1222123713553
Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Global Change Biol.24, 4544–4553 (2018).
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extentsions in Ecology with R (Springer, 2009).
TesteFPPlant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublandsScience20173551731762017Sci...355..173T1:CAS:528:DC%2BC2sXms12itw%3D%3D10.1126/science.aai8291
ESA. CCI Land cover map 2015 (https://www.esa-landcover-cci.org/) (2017).
DormannCF(2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution dataGlob. Ecol. Biogeogr.20071612913810.1111/j.1466-8238.2006.00279.x
BrzostekERFisherJBPhillipsRPModeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade‐offs and multipath resistance uptake improve predictions of retranslocationJ. Geophys. Res.20141191684169710.1002/2014JG002660
FisherJoshua B.SweeneySeanBrzostekEdward R.EvansTom P.JohnsonDaniel J.MyersJonathan A.BourgNorman A.WolfAmy T.HoweRobert W.PhillipsRichard P.Tree-mycorrhizal associations detected remotely from canopy spectral propertiesGlobal Change Biology2016227259626072016GCBio..22.2596F10.1111/gcb.1326427282323
BrundrettMCMycorrhizas in natural ecosystemsAdv. Ecol. Res.19912117131310.1016/S0065-2504(08)60099-9
CraigMatthew E.TurnerBenjamin L.LiangChaoClayKeithJohnsonDaniel J.PhillipsRichard P.Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matterGlobal Change Biology2018248331733302018GCBio..24.3317C10.1111/gcb.1413229573504
PoulterBPlant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change InitiativeGeosci. Model Dev.20158231523282015GMD.....8.2315P10.5194/gmd-8-2315-2015
BennettJAPlant-soil feedbacks and mycorrhizal type influence temperate forest population dynamicsScience20173551811842017Sci...355..181B1:CAS:528:DC%2BC2sXms12hsg%3D%3D10.1126/science.aai821228082590
TedersooLGlobal diversity and geography of soil fungiScience2014346107810881:CAS:528:DC%2BC2cXhvFKqtb7P10.1126/science.1256688
LinGMcCormackMLMaCGuoDSimilar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forestsNew Phytologist2017213144014511:CAS:528:DC%2BC2sXoslalsA%3D%3D10.1111/nph.1420627678253
Jo, I. et al. Neglecting plant–microbe symbioses leads to underestimation of modeled climate impacts. Sci. Adv. (in the press).
ReadDJLeakeJRPerez-MorenoJMycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomesCan. J. Bot.200482124312631:CAS:528:DC%2BD2cXptFGqsb0%3D10.1139/b04-123
FernandezCWKennedyPGRevisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils?New Phytologist2016209138213941:CAS:528:DC%2BC28Xit12mtr0%3D10.1111/nph.1364826365785
AverillCHawkesCVEctomycorrhizal fungi slow soil carbon cyclingEcol. Lett.20161993794710.1111/ele.1263127335203
FisherJBModeling the terrestrial biosphereAnnu. Rev. Environ. Resour.2014399112310.1146/annurev-environ-012913-093456
Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2008).
Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).
FAO. Global Forest Resource Assessement (2000).
ShiMNeglecting plant–microbe symbioses leads to underestimation of modeled climate impactsBiogeosciences2019164574652019BGeo...16..457S10.5194/bg-16-457-2019
DavisonJGlobal assessment of arbuscular mycorrhizal fungus diversity reveals very low endemismScience20153499709732015Sci...349..970D1:CAS:528:DC%2BC2MXhsVSlsr3O10.1126/science.aab116126315436
OlsonDMTerrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversityBioscience20015193393810.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
SchepaschenkoDA dataset of forest biomass structure for EurasiaSci. Data2017410.1038/sdata.2017.70285099115433390
SteidingerBSClimatic controls of decomposition drive the global biogeography of forest-tree symbiosesNature20195694044082019Natur.569..404S1:CAS:528:DC%2BC1MXpslGlurg%3D10.1038/s41586-019-1128-031092941
HenglTSoilGrids250m: Global gridded soil information based on machine learningPLoS ONE201712e016974810.1371/journal.pone.01697481:CAS:528:DC%2BC2sXhsFGlt7jO282077525313206
ReadDJMycorrhizas in ecosystemsExperientia19914737639110.1007/BF01972080
Bailey, R. G. Ecoregions. The Ecosystem Geography of the Oceans and Continents (Springer New York, 2014).
Lamotte, M. in Tropical Ecological Systems 179–222 (Springer, 1975).
Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA36, 9575–9580 (2017).
TerrerCNitrogen and phosphorus constrain the CO2fertilization of global plant biomassNat. Clim. Change201996846892019NatCC...9..684T1:CAS:528:DC%2BC1MXhsFKju73K10.1038/s41558-019-0545-2
MenzelADistribution patterns of arbuscular mycorrhizal and non-mycorrhizalplant species in GermanyPerspect. Plant Ecol., Evolution Syst.201621788810.1016/j.ppees.2016.06.002
TedersooLBrundrettMCEvolution of ectomycorrhizal symbiosis in plantsEcol. Stud.201723040746710.1007/978-3-319-56363-3_19
TerrerCViccaSHungateBAPhillipsRPPrenticeICMycorrhizal association as a primary control of the CO2 fertilization effectScience201635372742016Sci...353...72T1:CAS:528:DC%2BC28XhtVOgtLrK10.1126/science.aaf461027365447
WangBQiuYLPhylogenetic distribution and evolution of mycorrhizas in land plantsMycorrhiza2006162993631:STN:280:DC%2BD28vit1OltA%3D%3D10.1007/s00572-005-0033-616845554
MbuthiaLWLong term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil qualitySoil Biol. Biochem.20158924341:CAS:528:DC%2BC2MXhtV2hsr3E10.1016/j.soilbio.2015.06.016
ShiZWangFLiuYResponse of soil respiration under different mycorrhizal strategies to precipitation and temperatureJ. Soil Sci. Plant Nutr.201212411420
FAO, OECD. Oilseeds and Oilseed Products. OECD-FAO Agricultural Outlook (OECD Publishing, 2013).
HoenigJMHeiseyDMThe abuse of power: the pervasive fallacy of power calculations for data analysisAm. Statistician2001551924184903910.1198/000313001300339897
LeakeJRNetworks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioningCan. J. Bot.2004821016104510.1139/b04-060
AverillCTurnerBLFinziACMycorrhiza-mediated competition between plants and decomposers drives soil carbon storageNature20145055435452014Natur.505..543A1:CAS:528:DC%2BC2cXhtFOls70%3D10.1038/nature1290124402225
Ruiz-BenitoPStand structure and recent climate change constrain stand basal area change in European forests: a comparison across boreal, temperate, and Mediterranean biomesEcosystems2014171439145410.1007/s10021-014-9806-0
NewshamKUpsonRReadDMycorrhizas and dark septate root endophytes in polar regionsFungal Ecol.20092102010.1016/j.funeco.2008.10.005
EkbladAProduction and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilizationNew Phytologist20162118748851:CAS:528:DC%2BC28XhtFegtrnI10.1111/nph.1396127118132
ThompsonJDecline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflowerAust. J. Agric. Res.1987388478671:CAS:528:DyaL2sXmtFKltbk%3D10.1071/AR9870847
SoudzilovskaiaNAQuantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon c
NA Soudzilovskaia (13019_CR30) 2015; 208
13019_CR67
FP Teste (13019_CR7) 2017; 355
13019_CR26
V Poirier (13019_CR45) 2018; 120
13019_CR61
C Averill (13019_CR11) 2014; 505
13019_CR65
13019_CR64
BS Steidinger (13019_CR51) 2019; 569
P Ruiz-Benito (13019_CR62) 2014; 17
CF Dormann (13019_CR68) 2007; 16
YY Liu (13019_CR38) 2015; 5
J Thompson (13019_CR40) 1987; 38
César Terrer (13019_CR21) 2017; 217
ER Brzostek (13019_CR17) 2014; 119
MC Brundrett (13019_CR4) 1991; 21
A Ekblad (13019_CR54) 2016; 211
MC Brundrett (13019_CR2) 2009; 320
T Näsholm (13019_CR23) 2013; 198
13019_CR34
13019_CR33
DJ Read (13019_CR3) 1991; 47
CW Fernandez (13019_CR22) 2016; 209
JA Bennett (13019_CR6) 2017; 355
L Tedersoo (13019_CR27) 2014; 346
T Hengl (13019_CR49) 2017; 12
RP Phillips (13019_CR12) 2013; 199
DJ Read (13019_CR14) 2004; 82
Matthew E. Craig (13019_CR16) 2018; 24
A Menzel (13019_CR25) 2016; 21
13019_CR32
NH Batjes (13019_CR50) 2017; 9
B Wang (13019_CR39) 2006; 16
M Shi (13019_CR18) 2019; 16
EC Ellis (13019_CR31) 2010; 19
JB Fisher (13019_CR29) 2014; 39
N Wurzburger (13019_CR9) 2017; 213
J Davison (13019_CR28) 2015; 349
AJ Hartley (13019_CR37) 2017; 203
N Batjes (13019_CR47) 2016; 269
MF Cotrufo (13019_CR43) 2013; 19
B Poulter (13019_CR63) 2015; 8
DM Olson (13019_CR46) 2001; 51
J Karst (13019_CR56) 2008; 89
Y Pan (13019_CR60) 2013; 44
C Terrer (13019_CR13) 2016; 353
13019_CR42
MC Brundrett (13019_CR24) 2017; 230
MF Cotrufo (13019_CR44) 2015; 8
13019_CR1
C Averill (13019_CR20) 2016; 19
K Newsham (13019_CR48) 2009; 2
LW Mbuthia (13019_CR41) 2015; 89
P Kohout (13019_CR58) 2017; 230
Joshua B. Fisher (13019_CR36) 2016; 22
13019_CR57
L Tedersoo (13019_CR59) 2017; 230
13019_CR52
13019_CR10
13019_CR53
C Terrer (13019_CR15) 2019; 9
JM Hoenig (13019_CR66) 2001; 55
G Lin (13019_CR19) 2017; 213
JR Leake (13019_CR5) 2004; 82
K Zhu (13019_CR55) 2018; 106
Z Shi (13019_CR8) 2012; 12
D Schepaschenko (13019_CR35) 2017; 4
References_xml – reference: TedersooLBrundrettMCEvolution of ectomycorrhizal symbiosis in plantsEcol. Stud.201723040746710.1007/978-3-319-56363-3_19
– reference: HenglTSoilGrids250m: Global gridded soil information based on machine learningPLoS ONE201712e016974810.1371/journal.pone.01697481:CAS:528:DC%2BC2sXhsFGlt7jO282077525313206
– reference: KarstJMarczakLJonesMDTurkingtonRThe mutualism-parasitism continuum in ectomycorrhizas: a quantitative assessment using meta-analysisEcology2008891032104210.1890/07-0823.118481528
– reference: ZhuKMcCormackMLLankauRAEganJFWurzburgerNAssociation of ectomycorrhizal trees with high carbon-to-nitrogen ratio soils across temperate forests is driven by smaller nitrogen not larger carbon stocksJ. Ecol.20181065245351:CAS:528:DC%2BC1cXisF2nu7s%3D10.1111/1365-2745.12918
– reference: WangBQiuYLPhylogenetic distribution and evolution of mycorrhizas in land plantsMycorrhiza2006162993631:STN:280:DC%2BD28vit1OltA%3D%3D10.1007/s00572-005-0033-616845554
– reference: PoirierVRoumetCMunsonADThe root of the matter: linking root traits and soil organic matter stabilization processesSoil Biol. Biochem.20181202462591:CAS:528:DC%2BC1cXjsl2rt74%3D10.1016/j.soilbio.2018.02.016
– reference: DavisonJGlobal assessment of arbuscular mycorrhizal fungus diversity reveals very low endemismScience20153499709732015Sci...349..970D1:CAS:528:DC%2BC2MXhsVSlsr3O10.1126/science.aab116126315436
– reference: TesteFPPlant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublandsScience20173551731762017Sci...355..173T1:CAS:528:DC%2BC2sXms12itw%3D%3D10.1126/science.aai8291
– reference: KohoutPBiogeography of ericoid mycorrhizaEcol. Stud.201723017919310.1007/978-3-319-56363-3_9
– reference: Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA36, 9575–9580 (2017).
– reference: AverillCHawkesCVEctomycorrhizal fungi slow soil carbon cyclingEcol. Lett.20161993794710.1111/ele.1263127335203
– reference: NäsholmTAre ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests?New Phytologist201319821422110.1111/nph.121391:CAS:528:DC%2BC3sXjtlWntb8%3D23356503
– reference: SchepaschenkoDA dataset of forest biomass structure for EurasiaSci. Data2017410.1038/sdata.2017.70285099115433390
– reference: CotrufoMFFormation of soil organic matter via biochemical and physical pathways of litter mass lossNat. Geosci.201587767792015NatGe...8..776C1:CAS:528:DC%2BC2MXhsFaqtb%2FN10.1038/ngeo2520
– reference: Bailey, R. G. Ecoregions. The Ecosystem Geography of the Oceans and Continents (Springer New York, 2014).
– reference: ESA. CCI Land cover map 2015 (https://www.esa-landcover-cci.org/) (2017).
– reference: ORNL DAAC. Dataset “Bailey Ecoregions of the Continents (Province)”https://doi.org/10.3334/ORNLDAAC/1388 (2017).
– reference: CotrufoMFWallensteinMDBootCMDenefKPaulEThe Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?Glob. Change Biol.2013199889952013GCBio..19..988C10.1111/gcb.12113
– reference: ShiZWangFLiuYResponse of soil respiration under different mycorrhizal strategies to precipitation and temperatureJ. Soil Sci. Plant Nutr.201212411420
– reference: CraigMatthew E.TurnerBenjamin L.LiangChaoClayKeithJohnsonDaniel J.PhillipsRichard P.Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matterGlobal Change Biology2018248331733302018GCBio..24.3317C10.1111/gcb.1413229573504
– reference: FernandezCWKennedyPGRevisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils?New Phytologist2016209138213941:CAS:528:DC%2BC28Xit12mtr0%3D10.1111/nph.1364826365785
– reference: PhillipsRPBrzostekEMidgleyMGThe mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forestsNew Phytologist201319941511:CAS:528:DC%2BC3sXosFartLs%3D10.1111/nph.1222123713553
– reference: Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extentsions in Ecology with R (Springer, 2009).
– reference: BrundrettMCMycorrhizas in natural ecosystemsAdv. Ecol. Res.19912117131310.1016/S0065-2504(08)60099-9
– reference: HoenigJMHeiseyDMThe abuse of power: the pervasive fallacy of power calculations for data analysisAm. Statistician2001551924184903910.1198/000313001300339897
– reference: NewshamKUpsonRReadDMycorrhizas and dark septate root endophytes in polar regionsFungal Ecol.20092102010.1016/j.funeco.2008.10.005
– reference: Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Global Change Biol.24, 4544–4553 (2018).
– reference: PoulterBPlant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change InitiativeGeosci. Model Dev.20158231523282015GMD.....8.2315P10.5194/gmd-8-2315-2015
– reference: BrundrettMCMycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosisPlant Soil200932037771:CAS:528:DC%2BD1MXmvFGjt7g%3D10.1007/s11104-008-9877-9
– reference: PanYBirdseyRAPhillipsOLJacksonRBThe structure, distribution, and biomass of the world’s forestsAnnu. Rev. Ecol., Evolution, Syst.20134459362210.1146/annurev-ecolsys-110512-135914
– reference: Swaty, R., Michael, H. M., Deckert, R. & Gehring, C. A. Mapping the potential mycorrhizal associations of the conterminous United States of America. Fungal Ecol.24, 139–147 (2016).
– reference: MenzelADistribution patterns of arbuscular mycorrhizal and non-mycorrhizalplant species in GermanyPerspect. Plant Ecol., Evolution Syst.201621788810.1016/j.ppees.2016.06.002
– reference: WurzburgerNBrookshireENJMcCormackMLankauRMycorrhizal fungi as drivers and modulators of terrestrial ecosystem processesNew Phytologist201721399699910.1111/nph.1440928079936
– reference: TerrerCésarViccaSaraStockerBenjamin D.HungateBruce A.PhillipsRichard P.ReichPeter B.FinziAdrien C.PrenticeI. ColinEcosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisitionNew Phytologist2017217250752210.1111/nph.148721:CAS:528:DC%2BC1cXit1altQ%3D%3D29105765
– reference: SteidingerBSClimatic controls of decomposition drive the global biogeography of forest-tree symbiosesNature20195694044082019Natur.569..404S1:CAS:528:DC%2BC1MXpslGlurg%3D10.1038/s41586-019-1128-031092941
– reference: FisherJBModeling the terrestrial biosphereAnnu. Rev. Environ. Resour.2014399112310.1146/annurev-environ-012913-093456
– reference: Ruiz-BenitoPStand structure and recent climate change constrain stand basal area change in European forests: a comparison across boreal, temperate, and Mediterranean biomesEcosystems2014171439145410.1007/s10021-014-9806-0
– reference: EllisECGoldewijkKKSiebertSLightmanDRamankuttyNAnthropogenic transformation of the biomes, 1700 to 2000Glob. Ecol. Biogeogr.201019589606
– reference: TerrerCNitrogen and phosphorus constrain the CO2fertilization of global plant biomassNat. Clim. Change201996846892019NatCC...9..684T1:CAS:528:DC%2BC1MXhsFKju73K10.1038/s41558-019-0545-2
– reference: AverillCTurnerBLFinziACMycorrhiza-mediated competition between plants and decomposers drives soil carbon storageNature20145055435452014Natur.505..543A1:CAS:528:DC%2BC2cXhtFOls70%3D10.1038/nature1290124402225
– reference: BatjesNHarmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocksGeoderma201626961682016Geode.269...61B1:CAS:528:DC%2BC28XitFChur4%3D10.1016/j.geoderma.2016.01.034
– reference: HartleyAJUncertainty in plant functional type distributions and its impact on land surface modelsRemote Sens. Environ.201720371892017RSEnv.203...71H10.1016/j.rse.2017.07.037
– reference: LiuYYRecent reversal in loss of global terrestrial biomass. Nature Climate changeNat. Clim. Change201554704742015NatCC...5..470L10.1038/nclimate2581
– reference: DormannCF(2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution dataGlob. Ecol. Biogeogr.20071612913810.1111/j.1466-8238.2006.00279.x
– reference: TerrerCViccaSHungateBAPhillipsRPPrenticeICMycorrhizal association as a primary control of the CO2 fertilization effectScience201635372742016Sci...353...72T1:CAS:528:DC%2BC28XhtVOgtLrK10.1126/science.aaf461027365447
– reference: ReadDJLeakeJRPerez-MorenoJMycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomesCan. J. Bot.200482124312631:CAS:528:DC%2BD2cXptFGqsb0%3D10.1139/b04-123
– reference: Lamotte, M. in Tropical Ecological Systems 179–222 (Springer, 1975).
– reference: TedersooLGlobal diversity and geography of soil fungiScience2014346107810881:CAS:528:DC%2BC2cXhvFKqtb7P10.1126/science.1256688
– reference: BrzostekERFisherJBPhillipsRPModeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade‐offs and multipath resistance uptake improve predictions of retranslocationJ. Geophys. Res.20141191684169710.1002/2014JG002660
– reference: MbuthiaLWLong term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil qualitySoil Biol. Biochem.20158924341:CAS:528:DC%2BC2MXhtV2hsr3E10.1016/j.soilbio.2015.06.016
– reference: Jo, I. et al. Neglecting plant–microbe symbioses leads to underestimation of modeled climate impacts. Sci. Adv. (in the press).
– reference: FisherJoshua B.SweeneySeanBrzostekEdward R.EvansTom P.JohnsonDaniel J.MyersJonathan A.BourgNorman A.WolfAmy T.HoweRobert W.PhillipsRichard P.Tree-mycorrhizal associations detected remotely from canopy spectral propertiesGlobal Change Biology2016227259626072016GCBio..22.2596F10.1111/gcb.1326427282323
– reference: BennettJAPlant-soil feedbacks and mycorrhizal type influence temperate forest population dynamicsScience20173551811842017Sci...355..181B1:CAS:528:DC%2BC2sXms12hsg%3D%3D10.1126/science.aai821228082590
– reference: ShiMNeglecting plant–microbe symbioses leads to underestimation of modeled climate impactsBiogeosciences2019164574652019BGeo...16..457S10.5194/bg-16-457-2019
– reference: ThompsonJDecline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflowerAust. J. Agric. Res.1987388478671:CAS:528:DyaL2sXmtFKltbk%3D10.1071/AR9870847
– reference: FAO. Global Forest Resource Assessement (2000).
– reference: BrundrettMCDistribution and evolution of mycorrhizal types and other specialised roots in AustraliaEcol. Stud.201723036139410.1007/978-3-319-56363-3_17
– reference: OlsonDMTerrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversityBioscience20015193393810.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
– reference: ReadDJMycorrhizas in ecosystemsExperientia19914737639110.1007/BF01972080
– reference: FAO, OECD. Oilseeds and Oilseed Products. OECD-FAO Agricultural Outlook (OECD Publishing, 2013).
– reference: LeakeJRNetworks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioningCan. J. Bot.2004821016104510.1139/b04-060
– reference: Soudzilovskaia, N. et al. FungalRoot: global online database of plant mycorrhizal associations. Preprint at https://www.biorxiv.org/content/10.1101/717488v1
– reference: EkbladAProduction and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilizationNew Phytologist20162118748851:CAS:528:DC%2BC28XhtFegtrnI10.1111/nph.1396127118132
– reference: Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).
– reference: LinGMcCormackMLMaCGuoDSimilar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forestsNew Phytologist2017213144014511:CAS:528:DC%2BC2sXoslalsA%3D%3D10.1111/nph.1420627678253
– reference: BatjesNHWoSIS: providing standardised soil profile data for the world. Earth System ScienceData20179114
– reference: Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2008).
– reference: SoudzilovskaiaNAQuantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cyclingNew Phytologist20152082802931:CAS:528:DC%2BC2MXhsVChsr%2FK10.1111/nph.1344726011828
– volume: 355
  start-page: 181
  year: 2017
  ident: 13019_CR6
  publication-title: Science
  doi: 10.1126/science.aai8212
– volume: 211
  start-page: 874
  year: 2016
  ident: 13019_CR54
  publication-title: New Phytologist
  doi: 10.1111/nph.13961
– volume: 213
  start-page: 1440
  year: 2017
  ident: 13019_CR19
  publication-title: New Phytologist
  doi: 10.1111/nph.14206
– volume: 19
  start-page: 988
  year: 2013
  ident: 13019_CR43
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12113
– ident: 13019_CR1
– volume: 4
  year: 2017
  ident: 13019_CR35
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.70
– volume: 203
  start-page: 71
  year: 2017
  ident: 13019_CR37
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.037
– volume: 17
  start-page: 1439
  year: 2014
  ident: 13019_CR62
  publication-title: Ecosystems
  doi: 10.1007/s10021-014-9806-0
– volume: 106
  start-page: 524
  year: 2018
  ident: 13019_CR55
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.12918
– volume: 208
  start-page: 280
  year: 2015
  ident: 13019_CR30
  publication-title: New Phytologist
  doi: 10.1111/nph.13447
– volume: 505
  start-page: 543
  year: 2014
  ident: 13019_CR11
  publication-title: Nature
  doi: 10.1038/nature12901
– volume: 82
  start-page: 1243
  year: 2004
  ident: 13019_CR14
  publication-title: Can. J. Bot.
  doi: 10.1139/b04-123
– ident: 13019_CR33
– volume: 119
  start-page: 1684
  year: 2014
  ident: 13019_CR17
  publication-title: J. Geophys. Res.
  doi: 10.1002/2014JG002660
– ident: 13019_CR52
  doi: 10.1073/pnas.1706103114
– volume: 120
  start-page: 246
  year: 2018
  ident: 13019_CR45
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.02.016
– volume: 89
  start-page: 1032
  year: 2008
  ident: 13019_CR56
  publication-title: Ecology
  doi: 10.1890/07-0823.1
– ident: 13019_CR26
  doi: 10.1016/j.funeco.2016.05.005
– ident: 13019_CR57
  doi: 10.3334/ORNLDAAC/1388
– volume: 346
  start-page: 1078
  year: 2014
  ident: 13019_CR27
  publication-title: Science
  doi: 10.1126/science.1256688
– volume: 230
  start-page: 407
  year: 2017
  ident: 13019_CR59
  publication-title: Ecol. Stud.
  doi: 10.1007/978-3-319-56363-3_19
– volume: 198
  start-page: 214
  year: 2013
  ident: 13019_CR23
  publication-title: New Phytologist
  doi: 10.1111/nph.12139
– volume: 22
  start-page: 2596
  issue: 7
  year: 2016
  ident: 13019_CR36
  publication-title: Global Change Biology
  doi: 10.1111/gcb.13264
– volume: 349
  start-page: 970
  year: 2015
  ident: 13019_CR28
  publication-title: Science
  doi: 10.1126/science.aab1161
– ident: 13019_CR65
– volume: 5
  start-page: 470
  year: 2015
  ident: 13019_CR38
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2581
– volume: 44
  start-page: 593
  year: 2013
  ident: 13019_CR60
  publication-title: Annu. Rev. Ecol., Evolution, Syst.
  doi: 10.1146/annurev-ecolsys-110512-135914
– volume: 51
  start-page: 933
  year: 2001
  ident: 13019_CR46
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
– volume: 353
  start-page: 72
  year: 2016
  ident: 13019_CR13
  publication-title: Science
  doi: 10.1126/science.aaf4610
– volume: 269
  start-page: 61
  year: 2016
  ident: 13019_CR47
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.01.034
– volume: 16
  start-page: 457
  year: 2019
  ident: 13019_CR18
  publication-title: Biogeosciences
  doi: 10.5194/bg-16-457-2019
– volume: 24
  start-page: 3317
  issue: 8
  year: 2018
  ident: 13019_CR16
  publication-title: Global Change Biology
  doi: 10.1111/gcb.14132
– volume: 213
  start-page: 996
  year: 2017
  ident: 13019_CR9
  publication-title: New Phytologist
  doi: 10.1111/nph.14409
– volume: 8
  start-page: 2315
  year: 2015
  ident: 13019_CR63
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-8-2315-2015
– volume: 569
  start-page: 404
  year: 2019
  ident: 13019_CR51
  publication-title: Nature
  doi: 10.1038/s41586-019-1128-0
– volume: 39
  start-page: 91
  year: 2014
  ident: 13019_CR29
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev-environ-012913-093456
– ident: 13019_CR34
– volume: 38
  start-page: 847
  year: 1987
  ident: 13019_CR40
  publication-title: Aust. J. Agric. Res.
  doi: 10.1071/AR9870847
– volume: 55
  start-page: 19
  year: 2001
  ident: 13019_CR66
  publication-title: Am. Statistician
  doi: 10.1198/000313001300339897
– volume: 8
  start-page: 776
  year: 2015
  ident: 13019_CR44
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2520
– ident: 13019_CR64
– volume: 355
  start-page: 173
  year: 2017
  ident: 13019_CR7
  publication-title: Science
  doi: 10.1126/science.aai8291
– volume: 230
  start-page: 179
  year: 2017
  ident: 13019_CR58
  publication-title: Ecol. Stud.
  doi: 10.1007/978-3-319-56363-3_9
– volume: 209
  start-page: 1382
  year: 2016
  ident: 13019_CR22
  publication-title: New Phytologist
  doi: 10.1111/nph.13648
– volume: 21
  start-page: 171
  year: 1991
  ident: 13019_CR4
  publication-title: Adv. Ecol. Res.
  doi: 10.1016/S0065-2504(08)60099-9
– ident: 13019_CR67
  doi: 10.1007/978-0-387-87458-6
– ident: 13019_CR32
  doi: 10.1007/978-1-4939-0524-9_3
– volume: 19
  start-page: 937
  year: 2016
  ident: 13019_CR20
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12631
– volume: 47
  start-page: 376
  year: 1991
  ident: 13019_CR3
  publication-title: Experientia
  doi: 10.1007/BF01972080
– volume: 16
  start-page: 129
  year: 2007
  ident: 13019_CR68
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/j.1466-8238.2006.00279.x
– ident: 13019_CR61
  doi: 10.1007/978-3-642-88533-4_15
– volume: 89
  start-page: 24
  year: 2015
  ident: 13019_CR41
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.06.016
– volume: 12
  start-page: e0169748
  year: 2017
  ident: 13019_CR49
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0169748
– volume: 21
  start-page: 78
  year: 2016
  ident: 13019_CR25
  publication-title: Perspect. Plant Ecol., Evolution Syst.
  doi: 10.1016/j.ppees.2016.06.002
– volume: 2
  start-page: 10
  year: 2009
  ident: 13019_CR48
  publication-title: Fungal Ecol.
  doi: 10.1016/j.funeco.2008.10.005
– volume: 320
  start-page: 37
  year: 2009
  ident: 13019_CR2
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9877-9
– ident: 13019_CR42
– volume: 217
  start-page: 507
  issue: 2
  year: 2017
  ident: 13019_CR21
  publication-title: New Phytologist
  doi: 10.1111/nph.14872
– ident: 13019_CR53
  doi: 10.1111/gcb.14368
– volume: 19
  start-page: 589
  year: 2010
  ident: 13019_CR31
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/j.1466-8238.2010.00540.x
– ident: 13019_CR10
  doi: 10.1111/brv.12538
– volume: 12
  start-page: 411
  year: 2012
  ident: 13019_CR8
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 16
  start-page: 299
  year: 2006
  ident: 13019_CR39
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-005-0033-6
– volume: 82
  start-page: 1016
  year: 2004
  ident: 13019_CR5
  publication-title: Can. J. Bot.
  doi: 10.1139/b04-060
– volume: 9
  start-page: 684
  year: 2019
  ident: 13019_CR15
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-019-0545-2
– volume: 230
  start-page: 361
  year: 2017
  ident: 13019_CR24
  publication-title: Ecol. Stud.
  doi: 10.1007/978-3-319-56363-3_17
– volume: 9
  start-page: 1
  year: 2017
  ident: 13019_CR50
  publication-title: Data
– volume: 199
  start-page: 41
  year: 2013
  ident: 13019_CR12
  publication-title: New Phytologist
  doi: 10.1111/nph.12221
SSID ssj0000391844
Score 2.6505482
Snippet Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant–fungal associations formed by most plant species. Ecosystems dominated by...
Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant-fungal associations formed by most plant species. Ecosystems dominated by...
Mycorrhizas—mutualistic relationships formed between fungi and most plant species—are functionally linked to soil carbon stocks. Here the authors map the...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5077
SubjectTerms 631/158/2445
631/158/852
704/158/47
704/47/4113
BASIC BIOLOGICAL SCIENCES
Biogeochemical cycles
Biogeochemistry
Biomass
Carbon
Ecological function
Ecosystem
Ecosystems
Ectomycorrhizas
Environmental impact
Geographic Mapping
Human influences
Humanities and Social Sciences
multidisciplinary
Mycorrhizae
Plant species
Plants
Plants (botany)
Science
Science (multidisciplinary)
Soil - chemistry
Subsoils
Topsoil
Vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KINBLafrpJi0u9NaaaCXZko9JaEgL7amB3IQ0lkho6g27ziH99ZmRvdtsPy_dg3dZacF-GmneMLNvAN74JgQrvKi6hi4ao6pC8ljZ4I0hfzaTuYjm0-fm5FR_PKvP7rT64pqwUR54BG4fO2QFvS4wVU5Jt7q2JnoRkw_kenK0Tj7vTjCVz2DVUuiip3_JCGX3lzqfCcRoKjq26So3PFEW7Ke3OW2s35HNX2smf0qcZn90_BAeTESyPBgfYAfuxf4RbI-tJW8ew4dRzL_8dkPh5eL84jt9vrokGMuOpXKnLlcl529jVw7zkvDlNh1sjyX6RaBB4oX4dfkETo_ffzk6qaa2CRXWjRmqTpkkIjY2CsK7M7GtPcUhUWjlrUGdMM3qnEKUbddq2zTCSxTJm5CIHkX1FLb6eR-fQ4kS21oGjwqjjjIFCuaIAnWSXCv3Ji9gtoLQ4aQpzq0tLl3ObSvrRtgdAe4y7E4W8Hb9m6tRUeOvsw95ZdYzWQ07f0E24iYbcf-ykQJ2eV0dkQpWxkUuIcLBMdm1rS5gb7XcbtrAS0e0V9LRpZQp4PV6mLYe51N8H-fXeY5SNdcIF_BstI71fSrWPaRXAWbDbjYeZHOkvzjP8t6NJRYl6wLerSzsx239GagX_wOoXbgv8w6ZVcLswdawuI4viXQN4VXeX7fdXidw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1oQUHiBlEd24mdEwLEUpDgRKXeLD9pRUmW3fTQ_vrOON5Uy6N7yEZrR3LGM57PntlvCHllWmsVNbTyLVyEC7yy0bhKWSMl-LOapSSar9_ag0Px5ag5ygdu65xWuVkT00LtB4dn5PuAQxjoEufy7fJ3hVWjMLqaS2jcJLdq8DSY0qUWn-YzFmQ_V0Lk_8pQrvbXIq0MgGsqWLzhyrb8UaLth68BzOtfkPPvzMk_wqfJKy3ukbsZTpbvpvm_T26E_gG5PRWYPH9IPk-U_uWvc9hkro5PLuB-eQrCLD0S5uZaVyVGcYMvx6EEKWOxDtTK0pmVhUZAh-7n-hE5XHz8_uGgysUTKte0cqw8l5EG16pAQepehq4xsBsJVHCjpBPRxbpJgUTW-U6otqWGORqNtBFAUuCPyU4_9OEpKR1zXcOscdwFEVi0sKUDIOQZOFisUF6QeiNC7TKzOBa4ONUpws2VnsSuQeA6iV2zgryen1lOvBrX9n6PMzP3RE7s9MOw-qGziWnnHXIteoubqhhFJxolg6EhGgsghRZkF-dVA7RAflyHiURu1Ah5VScKsreZbp3NeK2vlK4gL-dmMECMqpg-DGepD-cNZgoX5MmkHfM4ObIfwqcgcktvtl5ku6U_OU4k360CLMWagrzZaNjVsP4vqGfXv8UuucOS7tcVlXtkZ1ydhecAqkb7IlnOJT1kHoI
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrZC4IMoztKAgcYMIr-3EznFBVGUluECl3izbsWlFSard9FB-fWecB1ooSOSQRLEtOeMZ-3Nm8g3AK1s5p5llRVPhSfogChetL7SzSuF6tuApiObT5-r4RK5Oy9Md4NO_MCloP1Fapml6ig57u5HJpBGQFDjr4hmn3T2iakfd3lsuV19W85cV4jzXUo5_yDChb2m8tQolsn68dGhUtwHNP-Mlf3OaprXo6D7cG0Fkvhy6vQ87oX0Ad4a0ktcP4eNA5J__uMat5frs_CfeX16gCPOGaHLHDFc5-W5Dk_ddjrKlFB2ki7m3a4eFiAn9980jODn68PX9cTGmTCh8Wam-aISKLPhKB4ayblSoS4t7kMCksFp5GX1clMl9yOumlrqqmOWeRatcRGgUxGPYbbs2PIXcc1-X3FkvfJCBR4cbOYQ_DcdllfKSZ7CYRGj8yCdOaS0uTPJrC20GsRsUuEliNzyD13Oby4FN45-139HIzDWJCTs96NbfzKgZxjeeGBYbR1upGGUtS62CZSFah9CEZXBA42oQUBArrqfwId8bArq6lhkcTsNtRuPdGIS8HKctIVQGL-diNDvypdg2dFepjhAlxQdn8GTQjrmfgjgP8chAbenN1otsl7TnZ4nau9KIoHiZwZtJw3516--CevZ_1Q_gLk-2sCiYOoTdfn0VniO06t2L0ZZuABm9HaU
  priority: 102
  providerName: Springer Nature
Title Global mycorrhizal plant distribution linked to terrestrial carbon stocks
URI https://link.springer.com/article/10.1038/s41467-019-13019-2
https://www.ncbi.nlm.nih.gov/pubmed/31700000
https://www.proquest.com/docview/2312793337
https://www.proquest.com/docview/2313356769
https://www.osti.gov/servlets/purl/1615894
https://pubmed.ncbi.nlm.nih.gov/PMC6838125
https://doaj.org/article/cdc1349db3064ff494587ea0efab5210
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTUi8IH6TbVRB4g0Cju3EzgNCXbUyKm1CQKW-WbbjbBOl3dJOovz1nJ2kqFAQfXCq2K3c853vu57zHcALnRsjiSZJmWPDrWOJqbRNpNFCoD9LaThEc3qWn4z5aJJNdqArd9QKcLE1tPP1pMb19PX369U7NPi3zSPj8s2CB3NHsJLgjowtbsl76JmEr2hw2sL9sDOzAgMan2imhKcJDmDtczTbv2bDVwVKf7zM0fS2wdE_T1X-lloNHmt4D-62UDPuN7pxH3bc7AHcbopPrh7Ch4buP_62wgC0vrj8ge-vpijouPRkum0drNhneF0ZL-cxroAv5OE1Nra6NtiJyNF-XTyC8fD4y-AkaQsrJDbLxTIpmaiIs7l0BFekFK7INEYqjnCmpbC8slWahSQjLcqCyzwnmlpSaWEqBFCOPYbd2XzmnkJsqS0yarRl1nFHK4PhHoKkkqLz9dXLI0g7ESrbso774hdTFbLfTKpG7AoFroLYFY3g5fozVw3nxj9HH_mVWY_0fNnhxrw-V635KVtaz8NYGh9wVRUveCaF08RV2iCAIREc-HVVCDs8d671h4zsUnk4LAsewWG33KrTUIXAmOLmxpiI4Pm6G43TZ1z0zM1vwhjGMn-KOIInjXas58k8MyK-IhAberPxQzZ7ZpcXgQA8l4izaBbBq07Dfk3r74La_49pHsAdGgwgTYg4hN1lfeOeIepamh7cEhOBrRy-78Fevz_6PMLr0fHZx094d5APeuH_jF4wuZ9r4ixT
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQwheENcRNiBI8ATRUtuJnQeEuJWWXZ42aW_Gdhw2MZLSdkLlR_EbOcdJOpXL3taHtKrdyjkXn8859vkAnpncWpWaNClzvAjneWIr4xJljZQYzwYsbKLZ289Hh-LTUXa0Br_6szC0rbKfE8NEXTaOnpFvIw5haEucy9eT7wmxRlF2tafQaM1ixy9-4JJt9mr8HvX7nLHhh4N3o6RjFUhclst5UnJZpd7lyqc4nFL6IjMI030quFHSicpVgyxk2FhRFkLleWqYSysjbYXowXP83ytwVXCM5HQyffhx-UyHqq0rIbqzOSlX2zMRZiLEUQkGC7yylfgXaALwrUF3_hfE_Xun5h_p2hAFh7fgZgdf4zetvd2GNV_fgWstoeXiLoxbCoH42wIXtdPjk5_4eXKKyotLKtDbcWvFlDX2ZTxvYtQqkYOQF8TOTC02Ihp1X2f34PBSxHof1uum9g8gdswVGbPGceeFZ5XFJSQCr5JhQCdG9AgGvQi16yqZE6HGqQ4Zda50K3aNAtdB7JpF8GL5m0lbx-PC3m9JM8ueVIM7fNFMv-jOpbUrHdV2LC0t4qpKFCJT0pvUV8YiKEoj2CS9aoQyVI_X0cYlN9cEsVUhItjq1a27aWOmz408gqfLZnR4yuKY2jdnoQ_nGe1MjmCjtY7lODlVW8RXBHLFblZuZLWlPjkORcVzhdiNZRG87C3sfFj_F9TDi-_iCVwfHezt6t3x_s4m3GDBDwZJKrdgfT49848Q0M3t4-BFMXy-bLf9DcTMWtg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN-EDQgSPEFU13bi5AEhxlZtDKoJMWlvxnFsNjGa0nZC5U_jr-POSTqVj70tD0lVu5VzH77f5S53AM9MVpY5MyypMjxJ60RSemOTvDRKoT0b8JBE82GU7R7Kd0fp0Rr86t6FobTKbk8MG3VVW3pG3kccwlGWhFB936ZFHGwPX0--J9RBiiKtXTuNRkT23eIHum-zV3vbyOvnnA93Pr3dTdoOA4lNMzVPKqE8czbLHcOlVcoVqUHI7pgUJldWeusHaYi28aIqZJ5lzHDLvFGlRyThBP7vFVhX5BX1YH1rZ3TwcfmEh2qv51K2b-owkfdnMuxLiKoSNB145ivWMDQNwEuNyv0vwPt33uYfwdtgE4c34UYLZuM3jfTdgjU3vg1Xm_aWizuw1zQUiL8t0MWdHp_8xM-TU2RlXFG53rbTVkwxZFfF8zpGHlOrENKJ2JppiYOITe3X2V04vBTC3oPeuB67BxBbbouUl8YK66TjvkSHEmFYxdG8U3_0CAYdCbVt65pTe41THeLrItcN2TUSXAeyax7Bi-VvJk1VjwtnbxFnljOpInf4op5-0a2Ca1tZqvRYleTSeS8LmebKGea8KREisQg2iK8agQ1V57WUxmTnmgB3XsgINjt263YTmelzkY_g6XIY1Z9iOmbs6rMwR4iU8pQjuN9Ix3Kdgmov4hGBWpGblRtZHRmfHIcS41mOSI6nEbzsJOx8Wf8n1MOL7-IJXEOV1e_3RvsbcJ0HNRgkTG1Cbz49c48Q3c3Lx60axfD5sjX3N-P-YGo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+mycorrhizal+plant+distribution+linked+to+terrestrial+carbon+stocks&rft.jtitle=Nature+communications&rft.au=Soudzilovskaia%2C+Nadejda+A&rft.au=van+Bodegom%2C+Peter+M&rft.au=Terrer%2C+C%C3%A9sar&rft.au=Zelfde%2C+Maarten+Van%27t&rft.date=2019-11-07&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=5077&rft_id=info:doi/10.1038%2Fs41467-019-13019-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon