Photonic thermal management of coloured objects
The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tun...
Saved in:
Published in | Nature communications Vol. 9; no. 1; pp. 4240 - 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.10.2018
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm
−2
for all colours, and can be as high as 866 Wm
−2
, resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects.
Understanding the tunable range of radiative thermal load for a given colour is important for thermal management of outdoor structures. Here, the authors theoretically and experimentally highlighted all mechanisms through which one can control the radiative thermal load of coloured objects. |
---|---|
AbstractList | Understanding the tunable range of radiative thermal load for a given colour is important for thermal management of outdoor structures. Here, the authors theoretically and experimentally highlighted all mechanisms through which one can control the radiative thermal load of coloured objects. The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm–2 for all colours, and can be as high as 866 Wm–2, resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. Here, these results elucidate the fundamental potentials of photonic thermal management for coloured objects. The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm −2 for all colours, and can be as high as 866 Wm −2 , resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects. Understanding the tunable range of radiative thermal load for a given colour is important for thermal management of outdoor structures. Here, the authors theoretically and experimentally highlighted all mechanisms through which one can control the radiative thermal load of coloured objects. The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm −2 for all colours, and can be as high as 866 Wm −2 , resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects. The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm for all colours, and can be as high as 866 Wm , resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects. The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm−2 for all colours, and can be as high as 866 Wm−2, resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects. The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm-2 for all colours, and can be as high as 866 Wm-2, resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects.The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm-2 for all colours, and can be as high as 866 Wm-2, resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects. |
ArticleNumber | 4240 |
Author | Li, Wei Fan, Shanhui Chen, Zhen Shi, Yu |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-2227-9431 surname: Li fullname: Li, Wei organization: Department of Electrical Engineering, Ginzton Laboratory, Stanford University – sequence: 2 givenname: Yu surname: Shi fullname: Shi, Yu organization: Department of Electrical Engineering, Ginzton Laboratory, Stanford University – sequence: 3 givenname: Zhen surname: Chen fullname: Chen, Zhen organization: Department of Electrical Engineering, Ginzton Laboratory, Stanford University, School of Mechanical Engineering, Southeast University – sequence: 4 givenname: Shanhui surname: Fan fullname: Fan, Shanhui email: shanhui@stanford.edu organization: Department of Electrical Engineering, Ginzton Laboratory, Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30315155$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1483402$$D View this record in Osti.gov |
BookMark | eNp9UstuFDEQtFAQCSE_wAGt4MJliD1-X5BQxCNSJDjA2fL09Ox6NWMHezYSf493J4Ekh_hiy66uri7XS3IUU0RCXjP6gVFuzotgQumGMtNQJbls6DNy0lLBGqZbfnTvfEzOStnSurhlRogX5JhTziST8oSc_9ikOcUAq3mDefLjavLRr3HCOK_SsII0pl3GfpW6LcJcXpHngx8Lnt3up-TXl88_L741V9-_Xl58umpAKj033YCdbbte0r6VVhiqvB60ptTqgSs0gwahUKJQBpCpziAIACOs8YzLduCn5HLh7ZPfuuscJp__uOSDO1ykvHY-zwFGdCgtQCcldMgE12iU4Kbt-x6gt4OglevjwnW96ybsoY6W_fiA9OFLDBu3TjdOMSOtNJXg7UKQyhxcgTAjbCDFWB1xTBguaFtB72-75PR7h2V2UyiA4-gjpl1xLWPWtlJSXaHvHkG31eRY_dyjjDaWH7q-uS_7n967z6sAswAgp1IyDq4q83NI-ynC6Bh1-6i4JSquRsUdouL2lrSPSu_YnyziS1Gp4LjG_F_2E1V_AYogzuM |
CitedBy_id | crossref_primary_10_1016_j_ccst_2022_100066 crossref_primary_10_1007_s12274_023_5916_3 crossref_primary_10_1016_j_solener_2020_10_013 crossref_primary_10_1007_s12274_024_6778_z crossref_primary_10_1021_acsami_1c11552 crossref_primary_10_1002_adom_202202163 crossref_primary_10_1016_j_solener_2020_02_098 crossref_primary_10_1002_advs_202104181 crossref_primary_10_1021_acsami_2c15573 crossref_primary_10_1038_s41524_024_01438_9 crossref_primary_10_1016_j_optcom_2019_124950 crossref_primary_10_1002_adfm_202301924 crossref_primary_10_1007_s10853_021_05973_4 crossref_primary_10_1016_j_mtener_2023_101302 crossref_primary_10_1021_acsphotonics_0c01068 crossref_primary_10_1364_OME_397617 crossref_primary_10_1002_admt_201901007 crossref_primary_10_1126_sciadv_aaz5413 crossref_primary_10_1021_acsami_3c02993 crossref_primary_10_1016_j_fmre_2024_12_019 crossref_primary_10_1103_PhysRevE_109_044311 crossref_primary_10_1002_smll_202206145 crossref_primary_10_1021_acsmaterialslett_0c00322 crossref_primary_10_1021_acsapm_3c02318 crossref_primary_10_1557_mre_2019_15 crossref_primary_10_1021_acs_langmuir_0c00051 crossref_primary_10_1073_pnas_2120557119 crossref_primary_10_29026_oea_2024_230194 crossref_primary_10_1021_acsaem_4c00006 crossref_primary_10_1016_j_apenergy_2018_12_018 crossref_primary_10_1039_C9NR06181A crossref_primary_10_1016_j_apenergy_2024_124436 crossref_primary_10_1002_adma_202414300 crossref_primary_10_3390_life13071493 crossref_primary_10_1021_acsphotonics_0c01471 crossref_primary_10_3390_pr11113063 crossref_primary_10_1364_OE_455722 crossref_primary_10_1038_s41893_019_0348_5 crossref_primary_10_18686_cest_v2i1_144 crossref_primary_10_1021_acsnano_1c10959 crossref_primary_10_3390_nano12152715 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122097 crossref_primary_10_1002_adfm_202400221 crossref_primary_10_1557_mre_2020_18 crossref_primary_10_1016_j_solmat_2022_111854 crossref_primary_10_1021_acs_nanolett_5c00083 crossref_primary_10_1016_j_matt_2024_10_016 crossref_primary_10_1177_00405175231154018 crossref_primary_10_1364_OPTICA_487561 crossref_primary_10_1016_j_enbuild_2024_114949 crossref_primary_10_1002_lpor_202300293 crossref_primary_10_1038_s41578_021_00283_2 crossref_primary_10_1021_acsphotonics_0c00513 crossref_primary_10_1016_j_jobe_2020_101631 crossref_primary_10_1021_acsanm_1c02841 crossref_primary_10_1021_acsaom_4c00030 crossref_primary_10_1038_s41598_019_44781_4 crossref_primary_10_1039_D0CP04902F crossref_primary_10_1088_2632_2153_abc327 crossref_primary_10_1016_j_ijthermalsci_2021_107172 crossref_primary_10_1038_s41377_020_0296_x crossref_primary_10_1364_OL_505357 crossref_primary_10_1021_acsami_2c12400 crossref_primary_10_1016_j_scs_2023_104838 crossref_primary_10_1021_acsnano_1c00903 crossref_primary_10_1063_5_0121043 crossref_primary_10_1063_1_5087281 crossref_primary_10_1038_s41467_024_48826_9 crossref_primary_10_1002_smll_202202400 crossref_primary_10_1126_science_abb0971 crossref_primary_10_1002_adma_202004754 crossref_primary_10_1515_nanoph_2023_0678 crossref_primary_10_1002_aenm_202402202 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123193 crossref_primary_10_1016_j_xcrp_2024_102068 crossref_primary_10_1016_j_solmat_2023_112459 crossref_primary_10_1038_s41377_022_00810_y crossref_primary_10_1021_acsami_3c08790 crossref_primary_10_1364_OE_401368 crossref_primary_10_1063_5_0022667 crossref_primary_10_1364_OL_440878 crossref_primary_10_1364_OME_10_001767 crossref_primary_10_1002_adma_202401577 crossref_primary_10_1016_j_rser_2020_110263 crossref_primary_10_1021_acs_iecr_3c04130 crossref_primary_10_1063_5_0085111 crossref_primary_10_1016_j_solmat_2024_113047 crossref_primary_10_1364_OME_9_001990 crossref_primary_10_1002_adma_202409738 crossref_primary_10_1038_s41563_019_0538_6 crossref_primary_10_1002_adom_202202129 crossref_primary_10_1016_j_applthermaleng_2023_121074 crossref_primary_10_1016_j_mtcomm_2022_105052 crossref_primary_10_1021_acsenergylett_2c01969 crossref_primary_10_1016_j_mattod_2024_12_012 crossref_primary_10_1515_nanoph_2023_0102 crossref_primary_10_1002_adpr_202100338 crossref_primary_10_1016_j_xcrp_2021_100338 crossref_primary_10_1038_s41566_021_00921_9 crossref_primary_10_26599_CF_2025_9200033 crossref_primary_10_1016_j_solmat_2020_110548 crossref_primary_10_1002_smtd_202101379 crossref_primary_10_1021_acsenergylett_1c01486 crossref_primary_10_1039_C9TC05634C crossref_primary_10_1186_s43074_023_00104_5 crossref_primary_10_1002_aenm_202401776 crossref_primary_10_1021_acsami_2c13991 crossref_primary_10_1021_acsami_3c02418 crossref_primary_10_1186_s43593_023_00053_3 crossref_primary_10_1007_s11431_024_2727_9 crossref_primary_10_1007_s40843_024_3264_7 crossref_primary_10_1109_JPHOT_2022_3155715 crossref_primary_10_1021_acsphotonics_2c01857 crossref_primary_10_1016_j_pmatsci_2024_101291 crossref_primary_10_1063_5_0085205 crossref_primary_10_1364_OE_464704 crossref_primary_10_3390_nano11123339 crossref_primary_10_1021_acsami_4c06170 crossref_primary_10_1016_j_isci_2022_104858 crossref_primary_10_1002_eom2_12509 crossref_primary_10_1021_acsnano_2c10279 crossref_primary_10_1039_D3NR04062C crossref_primary_10_1016_j_solmat_2020_110393 crossref_primary_10_1016_j_solener_2023_02_046 crossref_primary_10_1002_adom_202300980 crossref_primary_10_1016_j_nanoen_2020_105517 crossref_primary_10_1002_advs_202204817 crossref_primary_10_1364_OE_397714 crossref_primary_10_1002_adom_202303296 crossref_primary_10_1016_j_solmat_2024_112693 crossref_primary_10_1016_j_joule_2020_02_011 crossref_primary_10_1016_j_mtnano_2022_100239 crossref_primary_10_1021_acsnano_4c17745 crossref_primary_10_1002_aenm_201903921 crossref_primary_10_1007_s10765_024_03382_8 crossref_primary_10_3788_AOS241378 crossref_primary_10_1515_nanoph_2023_0924 crossref_primary_10_1016_j_solener_2025_113343 crossref_primary_10_1021_acs_nanolett_1c04043 crossref_primary_10_1126_sciadv_adr2062 crossref_primary_10_1002_adpr_202000106 crossref_primary_10_1021_acs_nanolett_2c01570 crossref_primary_10_1021_acsaelm_3c01023 crossref_primary_10_1073_pnas_2300856120 crossref_primary_10_1016_j_cej_2024_149245 crossref_primary_10_1021_acsnano_4c02093 crossref_primary_10_1002_adem_202300062 crossref_primary_10_1002_admt_202301808 crossref_primary_10_1515_nanoph_2023_0244 crossref_primary_10_1038_s41467_024_45095_4 crossref_primary_10_1364_OL_487282 crossref_primary_10_1088_1361_6528_ace44f crossref_primary_10_1016_j_energy_2025_135499 crossref_primary_10_1016_j_xcrp_2025_102445 crossref_primary_10_1063_5_0087687 crossref_primary_10_1021_acsphotonics_3c00494 crossref_primary_10_1038_s41467_020_19790_x crossref_primary_10_1021_acsphotonics_1c01648 crossref_primary_10_1103_PhysRevMaterials_6_090201 crossref_primary_10_1021_acsphotonics_9b01005 crossref_primary_10_1039_D3MH00391D crossref_primary_10_1039_D3MH00768E crossref_primary_10_1002_pssa_202100572 crossref_primary_10_1007_s10853_022_07286_6 crossref_primary_10_3390_urbansci9030057 crossref_primary_10_1016_j_compositesb_2025_112344 crossref_primary_10_1016_j_solmat_2024_113365 crossref_primary_10_1002_adfm_202410613 crossref_primary_10_1016_j_nanoen_2019_103998 crossref_primary_10_1063_5_0035138 crossref_primary_10_1515_nanoph_2023_0596 |
Cites_doi | 10.1080/716099690 10.1016/S0927-0248(02)00410-5 10.1021/nl903271d 10.1038/416061a 10.1002/9780470175637 10.1063/1.4835995 10.1038/nnano.2015.309 10.1038/nphoton.2012.146 10.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7 10.1016/S0042-6989(00)00021-3 10.1086/347857 10.1016/j.joule.2017.07.012 10.1002/adma.201501686 10.1016/S0038-092X(00)00031-1 10.1364/OE.24.000A92 10.1038/nature13883 10.1038/s41598-017-05235-x 10.1039/C5TA00694E 10.1016/S0927-0248(02)00409-9 10.1021/acsphotonics.7b01136 10.1364/OE.26.015995 10.1016/0038-092X(75)90062-6 10.1021/acsphotonics.7b00089 10.1016/j.solener.2006.08.005 10.1103/PhysRevLett.107.045901 10.1038/ncomms13729 10.1117/12.665077 10.1073/pnas.1120149109 10.1063/1.329270 10.1146/annurev.publhealth.29.020907.090843 10.1126/science.aai7899 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI) California Institute of Technology (CalTech), Pasadena, CA (United States) |
CorporateAuthor_xml | – name: California Institute of Technology (CalTech), Pasadena, CA (United States) – name: Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-018-06535-0 |
DatabaseName | WRHA-SpringerOpen Free CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Engineering |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_e59ccb55cbe1437e864382dddccd9f40 PMC6185958 1483402 30315155 10_1038_s41467_018_06535_0 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 AAADF AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c567t-bfeb92bd50d2594806a7f770097f36e8f7c46e5e468ce16b8ec4cc8498a1352f3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:29:24 EDT 2025 Thu Aug 21 13:47:03 EDT 2025 Mon Jul 03 03:57:05 EDT 2023 Fri Jul 11 16:27:40 EDT 2025 Wed Aug 13 08:43:36 EDT 2025 Wed Feb 19 02:33:13 EST 2025 Thu Apr 24 23:07:31 EDT 2025 Tue Jul 01 02:21:18 EDT 2025 Fri Feb 21 02:39:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-bfeb92bd50d2594806a7f770097f36e8f7c46e5e468ce16b8ec4cc8498a1352f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC) SC0001293 |
ORCID | 0000-0002-2227-9431 0000000222279431 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-018-06535-0 |
PMID | 30315155 |
PQID | 2118789358 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e59ccb55cbe1437e864382dddccd9f40 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6185958 osti_scitechconnect_1483402 proquest_miscellaneous_2119925507 proquest_journals_2118789358 pubmed_primary_30315155 crossref_citationtrail_10_1038_s41467_018_06535_0 crossref_primary_10_1038_s41467_018_06535_0 springer_journals_10_1038_s41467_018_06535_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-12 |
PublicationDateYYYYMMDD | 2018-10-12 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | FairmanHSBrillMHHemmendingerHHow the CIE 1931 color-matching functions were derived from Wright–Guild dataCol. Res Appl.199722112310.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7 CatalanottiSThe radiative cooling of selective surfacesSol. Energy19751783891975SoEn...17...83C10.1016/0038-092X(75)90062-6 GentleARSmithGBRadiative heat pumping from the Earth using surface phonon resonant nanoparticlesNano. Lett.2010103733792010NanoL..10..373G1:CAS:528:DC%2BC3cXivFKmsw%3D%3D10.1021/nl903271d GreffetJJCoherent emission of light by thermal sourcesNature200241661642002Natur.416...61G1:CAS:528:DC%2BD38XitlSitLo%3D10.1038/416061a SmithGBGentleASwiftPEarpAMrongaNColoured paints based on coated flakes of metal as the pigment, for enhanced solar reflectance and cooler interiors: description and theorySol. Energy Mater. Sol. Cells2003791631771:CAS:528:DC%2BD3sXmt1ajurg%3D10.1016/S0927-0248(02)00409-9 ChenFColorful solar selective absorber integrated with different colored unitsOpt. Express201624A92A1032016OExpr..24...92A1:CAS:528:DC%2BC2sXlsVGiurY%3D10.1364/OE.24.000A92 CohenIBFranklin’s experiments on heat absorption as a function of colorIsis1943344044071:CAS:528:DyaH2cXhtlantw%3D%3D10.1086/347857 GranqvistCGHjortsbergARadiative cooling to low temperatures: General considerations and application to selectively emitting SiO filmsJ. Appl. Phys.198152420542201981JAP....52.4205G1:CAS:528:DyaL3MXmtVKktbo%3D10.1063/1.329270 YengYXEnabling high-temperature nanophotonics for energy applicationsProc. Natl Acad. Sci. USA2012109228022852012PNAS..109.2280Y1:CAS:528:DC%2BC38XivFSjsrs%3D10.1073/pnas.1120149109 Schanda, J. Colorimetry: Understanding the CIE System. (John Wiley & Sons, New Jersey, 2007). ShiYLiWRamanAFanSOptimization of multilayer optical films with a memetic algorithm and mixed integer programmingACS Photonics201856846911:CAS:528:DC%2BC2sXhvFOqsr%2FM10.1021/acsphotonics.7b01136 LiPLarge-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversionAdv. Mater.201527458545911:CAS:528:DC%2BC2MXhtFWjtLvM10.1002/adma.201501686 TripanagnostopoulosYSouliotisMNousiaTSolar collectors with colored absorbersSol. Energy2000683433562000SoEn...68..343T10.1016/S0038-092X(00)00031-1 ChenZZhuLRamanAFanSRadiative cooling to deep sub-freezing temperatures through a 24-h day–night cycleNat. Commun.201672016NatCo...713729C1:CAS:528:DC%2BC28XitFamtrnF10.1038/ncomms13729 ThomasNHChenZFanSMinnichAJSemiconductor-based multilayer selective solar absorber for unconcentrated solar thermal energy conversionSci. Rep.201772017NatSR...7.5362T10.1038/s41598-017-05235-x Farrington, R. & Rugh, J. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range.NREL/CP-540-28960. Available at: http://www.nrel.gov/docs/fy00osti/28960.pdf (2000). E. Goldberg, D. Genetic Algorithms In Search, Optimization, and Machine Learning. (Addison-Wesley Longman Publishing Co., Inc. Boston, MA, 1989). KovatsRSHajatSHeat stress and public health: a critical reviewAnnu. Rev. Public Health200829415510.1146/annurev.publhealth.29.020907.090843 RamanAPAnomaMAZhuLRephaeliEFanSPassive radiative cooling below ambient air temperature under direct sunlightNature20145155405442014Natur.515..540R1:CAS:528:DC%2BC2cXitFanu7bN10.1038/nature13883 IlicOTailoring high-temperature radiation and the resurrection of the incandescent sourceNat. Nanotechnol.2016113203242016NatNa..11..320I1:CAS:528:DC%2BC28Xns1ajtg%3D%3D10.1038/nnano.2015.309 ZhaiYScalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative coolingScience2017355106210662017Sci...355.1062Z1:CAS:528:DC%2BC2sXjvVWjtbo%3D10.1126/science.aai7899 U.S. Energy Information Administration. Residential Energy Consumption Survey (RECS) Available at: https://www.eia.gov/consumption/residential/data/2009/index.php?view=consumption#end-use (2009). SynnefaASantamourisMApostolakisKOn the development, optical properties and thermal performance of cool colored coatings for the urban environmentSol. Energy2007814884972007SoEn...81..488S1:CAS:528:DC%2BD2sXjsVWis7k%3D10.1016/j.solener.2006.08.005 StockmanASharpeLTThe spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotypeVision Res.200040171117371:STN:280:DC%2BD3czovFyruw%3D%3D10.1016/S0042-6989(00)00021-3 ChenFHigh performance colored selective absorbers for architecturally integrated solar applicationsJ. Mater. Chem. A20153735373601:CAS:528:DC%2BC2MXjsFWmsbs%3D10.1039/C5TA00694E De ZoysaMConversion of broadband to narrowband thermal emission through energy recyclingNat. Photonics201265355392012NaPho...6..535D10.1038/nphoton.2012.146 ZhuLRamanAFanSColor-preserving daytime radiative coolingAppl. Phys. Lett.20131032239022013ApPhL.103v3902Z10.1063/1.4835995 LiWShiYChenKZhuLFanSA comprehensive photonic approach for solar cell coolingACS Photonics201747747821:CAS:528:DC%2BC2sXktFOms7Y%3D10.1021/acsphotonics.7b00089 Wyszecki G. & Stiles, W. S. Color Scince: Concepts and methods, quantitative data and formulae. In Color Science: Concepts and Methods, Quantitative Data and Formulae 2nd edn (Wiley-VCH, Germany, 2000). LiWFanSNanophotonic control of thermal radiation for energy applicationsOpt. Express201826159952018OExpr..2615995L10.1364/OE.26.015995 LiuXTaming the blackbody with infrared metamaterials as selective thermal emittersPhys. Rev. Lett.2011107459012011PhRvL.107d5901L10.1103/PhysRevLett.107.045901 FanSThermal photonics and energy applicationsJoule201712642731:CAS:528:DC%2BC1cXpsl2kur4%3D10.1016/j.joule.2017.07.012 Haus, H. Waves and Fields in Optoelectronics. Vol. 32 (Prentice Hall, New Jersey, 1985). SmithGBGentleASwiftPDEarpAMrongaNColoured paints based on iron oxide and silicon oxide coated flakes of aluminium as the pigment, for energy efficient paint: optical and thermal experimentsSol. Energy Mater. Sol. Cells2003791791971:CAS:528:DC%2BD3sXmt1ajurk%3D10.1016/S0927-0248(02)00410-5 BerkAMODTRAN5: 2006 updateProc. SPIE2006623362331F10.1117/12.665077 A Stockman (6535_CR29) 2000; 40 AR Gentle (6535_CR6) 2010; 10 6535_CR2 6535_CR1 X Liu (6535_CR10) 2011; 107 S Fan (6535_CR7) 2017; 1 GB Smith (6535_CR21) 2003; 79 Y Tripanagnostopoulos (6535_CR25) 2000; 68 Y Zhai (6535_CR16) 2017; 355 JJ Greffet (6535_CR9) 2002; 416 O Ilic (6535_CR15) 2016; 11 Y Shi (6535_CR34) 2018; 5 NH Thomas (6535_CR18) 2017; 7 IB Cohen (6535_CR20) 1943; 34 Z Chen (6535_CR17) 2016; 7 M De Zoysa (6535_CR12) 2012; 6 6535_CR35 6535_CR33 6535_CR30 6535_CR31 A Synnefa (6535_CR23) 2007; 81 W Li (6535_CR8) 2018; 26 F Chen (6535_CR26) 2015; 3 AP Raman (6535_CR13) 2014; 515 F Chen (6535_CR27) 2016; 24 YX Yeng (6535_CR11) 2012; 109 P Li (6535_CR14) 2015; 27 HS Fairman (6535_CR32) 1997; 22 A Berk (6535_CR28) 2006; 6233 CG Granqvist (6535_CR5) 1981; 52 L Zhu (6535_CR24) 2013; 103 W Li (6535_CR19) 2017; 4 GB Smith (6535_CR22) 2003; 79 RS Kovats (6535_CR3) 2008; 29 S Catalanotti (6535_CR4) 1975; 17 |
References_xml | – reference: SmithGBGentleASwiftPDEarpAMrongaNColoured paints based on iron oxide and silicon oxide coated flakes of aluminium as the pigment, for energy efficient paint: optical and thermal experimentsSol. Energy Mater. Sol. Cells2003791791971:CAS:528:DC%2BD3sXmt1ajurk%3D10.1016/S0927-0248(02)00410-5 – reference: StockmanASharpeLTThe spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotypeVision Res.200040171117371:STN:280:DC%2BD3czovFyruw%3D%3D10.1016/S0042-6989(00)00021-3 – reference: FairmanHSBrillMHHemmendingerHHow the CIE 1931 color-matching functions were derived from Wright–Guild dataCol. Res Appl.199722112310.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7 – reference: ChenFColorful solar selective absorber integrated with different colored unitsOpt. Express201624A92A1032016OExpr..24...92A1:CAS:528:DC%2BC2sXlsVGiurY%3D10.1364/OE.24.000A92 – reference: ChenZZhuLRamanAFanSRadiative cooling to deep sub-freezing temperatures through a 24-h day–night cycleNat. Commun.201672016NatCo...713729C1:CAS:528:DC%2BC28XitFamtrnF10.1038/ncomms13729 – reference: ZhuLRamanAFanSColor-preserving daytime radiative coolingAppl. Phys. Lett.20131032239022013ApPhL.103v3902Z10.1063/1.4835995 – reference: Schanda, J. Colorimetry: Understanding the CIE System. (John Wiley & Sons, New Jersey, 2007). – reference: U.S. Energy Information Administration. Residential Energy Consumption Survey (RECS) Available at: https://www.eia.gov/consumption/residential/data/2009/index.php?view=consumption#end-use (2009). – reference: ChenFHigh performance colored selective absorbers for architecturally integrated solar applicationsJ. Mater. Chem. A20153735373601:CAS:528:DC%2BC2MXjsFWmsbs%3D10.1039/C5TA00694E – reference: E. Goldberg, D. Genetic Algorithms In Search, Optimization, and Machine Learning. (Addison-Wesley Longman Publishing Co., Inc. Boston, MA, 1989). – reference: GranqvistCGHjortsbergARadiative cooling to low temperatures: General considerations and application to selectively emitting SiO filmsJ. Appl. Phys.198152420542201981JAP....52.4205G1:CAS:528:DyaL3MXmtVKktbo%3D10.1063/1.329270 – reference: RamanAPAnomaMAZhuLRephaeliEFanSPassive radiative cooling below ambient air temperature under direct sunlightNature20145155405442014Natur.515..540R1:CAS:528:DC%2BC2cXitFanu7bN10.1038/nature13883 – reference: CatalanottiSThe radiative cooling of selective surfacesSol. Energy19751783891975SoEn...17...83C10.1016/0038-092X(75)90062-6 – reference: BerkAMODTRAN5: 2006 updateProc. SPIE2006623362331F10.1117/12.665077 – reference: LiuXTaming the blackbody with infrared metamaterials as selective thermal emittersPhys. Rev. Lett.2011107459012011PhRvL.107d5901L10.1103/PhysRevLett.107.045901 – reference: Farrington, R. & Rugh, J. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range.NREL/CP-540-28960. Available at: http://www.nrel.gov/docs/fy00osti/28960.pdf (2000). – reference: SynnefaASantamourisMApostolakisKOn the development, optical properties and thermal performance of cool colored coatings for the urban environmentSol. Energy2007814884972007SoEn...81..488S1:CAS:528:DC%2BD2sXjsVWis7k%3D10.1016/j.solener.2006.08.005 – reference: FanSThermal photonics and energy applicationsJoule201712642731:CAS:528:DC%2BC1cXpsl2kur4%3D10.1016/j.joule.2017.07.012 – reference: ZhaiYScalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative coolingScience2017355106210662017Sci...355.1062Z1:CAS:528:DC%2BC2sXjvVWjtbo%3D10.1126/science.aai7899 – reference: Haus, H. Waves and Fields in Optoelectronics. Vol. 32 (Prentice Hall, New Jersey, 1985). – reference: TripanagnostopoulosYSouliotisMNousiaTSolar collectors with colored absorbersSol. Energy2000683433562000SoEn...68..343T10.1016/S0038-092X(00)00031-1 – reference: LiWShiYChenKZhuLFanSA comprehensive photonic approach for solar cell coolingACS Photonics201747747821:CAS:528:DC%2BC2sXktFOms7Y%3D10.1021/acsphotonics.7b00089 – reference: ThomasNHChenZFanSMinnichAJSemiconductor-based multilayer selective solar absorber for unconcentrated solar thermal energy conversionSci. Rep.201772017NatSR...7.5362T10.1038/s41598-017-05235-x – reference: IlicOTailoring high-temperature radiation and the resurrection of the incandescent sourceNat. Nanotechnol.2016113203242016NatNa..11..320I1:CAS:528:DC%2BC28Xns1ajtg%3D%3D10.1038/nnano.2015.309 – reference: Wyszecki G. & Stiles, W. S. Color Scince: Concepts and methods, quantitative data and formulae. In Color Science: Concepts and Methods, Quantitative Data and Formulae 2nd edn (Wiley-VCH, Germany, 2000). – reference: ShiYLiWRamanAFanSOptimization of multilayer optical films with a memetic algorithm and mixed integer programmingACS Photonics201856846911:CAS:528:DC%2BC2sXhvFOqsr%2FM10.1021/acsphotonics.7b01136 – reference: GentleARSmithGBRadiative heat pumping from the Earth using surface phonon resonant nanoparticlesNano. Lett.2010103733792010NanoL..10..373G1:CAS:528:DC%2BC3cXivFKmsw%3D%3D10.1021/nl903271d – reference: KovatsRSHajatSHeat stress and public health: a critical reviewAnnu. Rev. Public Health200829415510.1146/annurev.publhealth.29.020907.090843 – reference: LiPLarge-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversionAdv. Mater.201527458545911:CAS:528:DC%2BC2MXhtFWjtLvM10.1002/adma.201501686 – reference: LiWFanSNanophotonic control of thermal radiation for energy applicationsOpt. Express201826159952018OExpr..2615995L10.1364/OE.26.015995 – reference: SmithGBGentleASwiftPEarpAMrongaNColoured paints based on coated flakes of metal as the pigment, for enhanced solar reflectance and cooler interiors: description and theorySol. Energy Mater. Sol. Cells2003791631771:CAS:528:DC%2BD3sXmt1ajurg%3D10.1016/S0927-0248(02)00409-9 – reference: De ZoysaMConversion of broadband to narrowband thermal emission through energy recyclingNat. Photonics201265355392012NaPho...6..535D10.1038/nphoton.2012.146 – reference: CohenIBFranklin’s experiments on heat absorption as a function of colorIsis1943344044071:CAS:528:DyaH2cXhtlantw%3D%3D10.1086/347857 – reference: GreffetJJCoherent emission of light by thermal sourcesNature200241661642002Natur.416...61G1:CAS:528:DC%2BD38XitlSitLo%3D10.1038/416061a – reference: YengYXEnabling high-temperature nanophotonics for energy applicationsProc. Natl Acad. Sci. USA2012109228022852012PNAS..109.2280Y1:CAS:528:DC%2BC38XivFSjsrs%3D10.1073/pnas.1120149109 – ident: 6535_CR35 doi: 10.1080/716099690 – volume: 79 start-page: 179 year: 2003 ident: 6535_CR21 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(02)00410-5 – volume: 10 start-page: 373 year: 2010 ident: 6535_CR6 publication-title: Nano. Lett. doi: 10.1021/nl903271d – volume: 416 start-page: 61 year: 2002 ident: 6535_CR9 publication-title: Nature doi: 10.1038/416061a – ident: 6535_CR31 doi: 10.1002/9780470175637 – volume: 103 start-page: 223902 year: 2013 ident: 6535_CR24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4835995 – volume: 11 start-page: 320 year: 2016 ident: 6535_CR15 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.309 – ident: 6535_CR30 – volume: 6 start-page: 535 year: 2012 ident: 6535_CR12 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.146 – volume: 22 start-page: 11 year: 1997 ident: 6535_CR32 publication-title: Col. Res Appl. doi: 10.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7 – volume: 40 start-page: 1711 year: 2000 ident: 6535_CR29 publication-title: Vision Res. doi: 10.1016/S0042-6989(00)00021-3 – volume: 34 start-page: 404 year: 1943 ident: 6535_CR20 publication-title: Isis doi: 10.1086/347857 – ident: 6535_CR2 – volume: 1 start-page: 264 year: 2017 ident: 6535_CR7 publication-title: Joule doi: 10.1016/j.joule.2017.07.012 – volume: 27 start-page: 4585 year: 2015 ident: 6535_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.201501686 – volume: 68 start-page: 343 year: 2000 ident: 6535_CR25 publication-title: Sol. Energy doi: 10.1016/S0038-092X(00)00031-1 – volume: 24 start-page: A92 year: 2016 ident: 6535_CR27 publication-title: Opt. Express doi: 10.1364/OE.24.000A92 – volume: 515 start-page: 540 year: 2014 ident: 6535_CR13 publication-title: Nature doi: 10.1038/nature13883 – volume: 7 year: 2017 ident: 6535_CR18 publication-title: Sci. Rep. doi: 10.1038/s41598-017-05235-x – ident: 6535_CR33 – volume: 3 start-page: 7353 year: 2015 ident: 6535_CR26 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00694E – volume: 79 start-page: 163 year: 2003 ident: 6535_CR22 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(02)00409-9 – volume: 5 start-page: 684 year: 2018 ident: 6535_CR34 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01136 – volume: 26 start-page: 15995 year: 2018 ident: 6535_CR8 publication-title: Opt. Express doi: 10.1364/OE.26.015995 – volume: 17 start-page: 83 year: 1975 ident: 6535_CR4 publication-title: Sol. Energy doi: 10.1016/0038-092X(75)90062-6 – volume: 4 start-page: 774 year: 2017 ident: 6535_CR19 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00089 – volume: 81 start-page: 488 year: 2007 ident: 6535_CR23 publication-title: Sol. Energy doi: 10.1016/j.solener.2006.08.005 – volume: 107 start-page: 45901 year: 2011 ident: 6535_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.045901 – volume: 7 year: 2016 ident: 6535_CR17 publication-title: Nat. Commun. doi: 10.1038/ncomms13729 – volume: 6233 start-page: 62331F year: 2006 ident: 6535_CR28 publication-title: Proc. SPIE doi: 10.1117/12.665077 – volume: 109 start-page: 2280 year: 2012 ident: 6535_CR11 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1120149109 – ident: 6535_CR1 – volume: 52 start-page: 4205 year: 1981 ident: 6535_CR5 publication-title: J. Appl. Phys. doi: 10.1063/1.329270 – volume: 29 start-page: 41 year: 2008 ident: 6535_CR3 publication-title: Annu. Rev. Public Health doi: 10.1146/annurev.publhealth.29.020907.090843 – volume: 355 start-page: 1062 year: 2017 ident: 6535_CR16 publication-title: Science doi: 10.1126/science.aai7899 |
SSID | ssj0000391844 |
Score | 2.626696 |
Snippet | The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour,... Understanding the tunable range of radiative thermal load for a given colour is important for thermal management of outdoor structures. Here, the authors... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4240 |
SubjectTerms | 639/4077 639/624/1075 639/624/399 Automobiles Automotive parts Color Cooling Cooling effects Energy efficiency ENGINEERING Heat Humanities and Social Sciences Load Metamerism Motor vehicles multidisciplinary Paints Photonics Photovoltaic cells Physiology Radiation Science Science (multidisciplinary) Thermal analysis Thermal management |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QpElcEDA-ygYqEjeoXtt8NDnCxDQhgTgwabeocVwNibXTXt-B_x477St7fF52qtS4beLYiV07PwvxKrq2LkMJRcRaFgpLLFoNsdCxi7V0QCY-H3D--MmcnqkP5_r8Rqkvzgmb4IEnxq1QO4CgNQSkrb1Bazh0FWMEiK5TyVunPe-GM5XWYOnIdVHzKZlS2tVapTWhrGzBcKy6KHd2ogTYT5eBFOtPxubvOZO_BE7TfnRyX9ybDcn87TSAB-IO9g_F_lRa8vuBWH2-GEaGvc3Zwrskyssl0SUfupzBqjfXGPMh8J-Y9SNxdvL-y_FpMRdHKECbZixCh8HVIeoy1gy5Upq26ZqGz2V00qDtGlAGNSpjASsTLIICsMrZtiKjq5OPxV4_9PhU5Ni4ADUEUxmnjAyB3CasWnonlyFDl4lqyygPM3I4F7D45lMEW1o_MdcTc31iri8z8Xp55mrCzfgn9Tvm_0LJmNfpBkmCnyXB_08SMnHIs-fJdGD8W-BEIRjJt7GSnORMHG0n1c9quvY1F1u3HArOxMulmRSMoyZtj8Mm0ThXM-xbJp5MMrD0U3KNDLLIMtHsSMfOQHZb-q8XCcTbVIwsR999s5Wjn936O6Oe3QajDsXdmvUg5eUcib3xeoPPybQaw4ukRT8AhG8ecQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLorwaWlCQuIG1SfyIfUKAulRIIA5U6s2KxxOKRJN2N3vg3-NxsqmWR0-RYsdJxjP2Z8_4G8ZeBdtUhS-AB6wEl1ggbxQErkIbKmEhQnw64Pz5iz45lZ_O1Nm04baewiq3Y2IaqEMPtEe-qCgvtiGv3dvLK05Zo8i7OqXQuM3ulHGmoZAus_w477EQ-7mRcjorUwizWMs0MhSl4UTKqnixMx8l2v546aN5_Qty_h05-Yf7NM1Kywfs_gQn83dj_--zW9g9ZHfHBJO_HrHF1_N-IPLbnHDeRax5MYe75H2bE2X1ZoUh7z3tx6wfs9Pl8bcPJ3xKkcBB6XrgvkVvKx9UESoiXil0U7d1TaczWqHRtDVIjQqlNoCl9gZBAhhpTVNG6NWKJ2yv6zs8YDnW1kMFXpfaSi28j4snLJvYJiUjQ5uxcisoBxN_OKWx-OmSH1sYNwrXReG6JFxXZOz1_MzlyJ5xY-33JP-5JjFfpxv96rubDMmhsgBeKfAYoV6NRpMrM4QAEGwrYyOH1HsuAghiwQUKF4IhrnCMiEvljB1tO9VNxrp216qVsZdzcTQz8p00HfabVMfaisjfMvZ01IH5OwVlyoi4LGP1jnbs_MhuSffjPFF565L45eJ732z16Pqz_i-oZzf_xSG7V5GGp7ibI7Y3rDb4PEKnwb9I9vEbiGAUuw priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pi9UwEA7LLoIX8bd1V6ngTcu2aZImx6e4LA8UQRf2FprJ1BXcVvZ1D_73zqR9laer4KnQTtJ0MtN-6Uy-EeJldK0sQwlFRFkXCkssWg2x0LGLsnZAEJ83OL__YE7P1Ppcn-8Jud0Lk5L2E6Vlek1vs8OONyq5dFnZgtlUdUHL9AOmaifbPlit1p_Wy58V5jy3Ss07ZMra3tB45yuUyPrpMJBT3QQ0_8yX_C1omr5FJ3fFnRlE5qtp2PfEHvb3xa2prOSPB-L448UwMuVtzujukiQvlySXfOhyJqqmR4_5EPgvzOahODt59_ntaTEXRihAm2YsQofByRB1GSXTrZSmbbqm4T0ZXW3Qdg0ogxqVsYCVCRZBAVjlbFsR4OrqR2K_H3p8InJsXAAJwVTGKVOHQEsmrFrqk0uQoctEtVWUh5k1nItXfPMpel1bPynXk3J9Uq4vM_FqafN94sz4p_Qb1v8iyXzX6cRw9cXP8-9RO4CgNQQkgNegNRzAjDECRNcp6uSQZ88TbGDuW-AkIRhpXWNrWiBn4mg7qX520Y2XXGjdchg4Ey-Wy-RcHDFpexyuk4xzkinfMvF4soFlnDXXxyA0lolmxzp2HmT3Sv_1IhF4m4pZ5ei-r7d29GtYf1fU0_8TPxS3JVt8yr45Evvj1TU-IwA1huezx_wEIf0Tyg priority: 102 providerName: Springer Nature |
Title | Photonic thermal management of coloured objects |
URI | https://link.springer.com/article/10.1038/s41467-018-06535-0 https://www.ncbi.nlm.nih.gov/pubmed/30315155 https://www.proquest.com/docview/2118789358 https://www.proquest.com/docview/2119925507 https://www.osti.gov/servlets/purl/1483402 https://pubmed.ncbi.nlm.nih.gov/PMC6185958 https://doaj.org/article/e59ccb55cbe1437e864382dddccd9f40 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB5qi-CLeDdtXSL4prG5ze1BZLt0LQstRV3YtyFzSSu0id3Ngv33njO5yOrqky8JJJPbyTmZ7-TMfB8hb6ws0ljHJrIuzaLcxS4qqLERtaVNM2kA4uME57NzdjrPZwu62CG93FFnwNXW1A71pObL6_c_bu8-QsB_aKeMi6NV7sM9TkSETKs0ghR-D3omjooGZx3c91_mTEJCk3dzZ7YfutE_eRp_WNUQbtsg6J8jKX8rp_peavqIPOzgZThu_eEx2XHVE3K_FZy8e0qOLq7qBslwQ8R9N9DyZhj-EtZliBTW66WzYa3x_8zqGZlPT75OTqNOMiEylPEm0qXTMtWWxjZFIpaYFbzkHGdrlBlzouQmZ466nAnjEqaFM7kxIpeiSACKldlzslvVlXtJQselNqnRLGEyZ5nWkEy5pIBzojiZkwFJekMp0_GJo6zFtfJ17Uyo1rgKjKu8cVUckLfDMd9bNo1_tj5G-w8tkQnbb6iXl6oLLOWoNEZTarQD6MedYFjatNYaY2WZw0kO8O0pABTIimtw-JBpIOMRGaTOATnsX6rqfU-lKMEusEAckNfDbgg7rKUUlavXvo2UKZLBBeRF6wPDfWaonAE4LSB8wzs2HmRzT_XtylN7swT55uC673o_-nVbfzfU_v8w1AF5kGIc-NE6h2S3Wa7dKwBcjR6Re3zBYSmmn0ZkbzyefZnB-vjk_OIzbJ2wycj_yhj5aPsJIyMsPw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJvQAkGCE0SbOI5jHxDitWzpQxxaqTc3ticUiW7KPoT6p_iNeJxHtTx66ynSxusk4xn7s2fmG4DnTlUsNalNHLI84ZhiUhXWJYWrHcuV9RCfEpx398TkgH8-LA7X4FefC0Nhlf2cGCZq11g6Ix8xqostyWv35vRHQlWjyLval9Bo1WIbz376Ldv89dYHP74vGBt_3H8_SbqqAoktRLlITI1GMeOK1DHiKklFVdZlSQkNdS5Q1qXlAgvkQlrMhJFoubWSK1llHq3Uue_3ClzluV_JKTN9_Gk40yG2dcl5l5uT5nI052EmSjOZEAlskaQr618oE-AvjTfnf0HcvyM1_3DXhlVwfAtudvA1ftvq221Yw-kduNYWtDy7C6Mvx82CyHZjwpUnvuXJEF4TN3VMFNnLGbq4MXT-M78HB5civPuwPm2m-BBiLJWxzBqRCcVFbozfrGFW-T6p-BmqCLJeUNp2fOVUNuO7Dn7zXOpWuNoLVwfh6jSCl8N_Tlu2jgtbvyP5Dy2JaTv80My-6s5wNRbKWlMU1qCHliVKQa5T55y1TtXcd7JBo6c9YCHWXUvhSXbhd1Qy91vzCDb7QdXd5DDX56ocwbPhtjdr8tVUU2yWoY1SjMjmInjQ6sDwnjlV5vA4MIJyRTtWPmT1zvTbcaAOFxnx2fnnvur16Py1_i-oRxd_xVO4Ptnf3dE7W3vbG3CDkbaHmJ9NWF_MlvjYw7aFeRJsJYajyzbO3xjkUbk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG9CCwQJThBt4jiOfUCI0q5aCqsVolJvbmxPaKV2U_Yh1L_Gr8OTV7U8euspUuI4yXjG-cYz_gbglVMFi01sI4csjTjGGBWZdVHmSsdSZT3Epw3OX8Zi94B_OswO1-BXtxeG0iq7ObGeqF1laY18yKgutqSo3bBs0yIm26P35z8iqiBFkdaunEajIvt48dO7b_N3e9t-rF8zNtr59nE3aisMRDYT-SIyJRrFjMtix4i3JBZFXuY5bW4oU4GyzC0XmCEX0mIijETLrZVcySLxyKVMfb83YD0nr2gA61s748nXfoWHuNcl5-1OnTiVwzmv56U4kRFRwmZRvPI3rIsG-EPljftfgPfvvM0_grf1P3F0F-60YDb80GjfPVjD6X242ZS3vHgAw8lxtSDq3ZBQ5plvedYn24RVGRJh9nKGLqwMrQbNH8LBtYjvEQym1RSfQIi5MpZZIxKhuEiN8a4bJoXvk0qhoQog6QSlbcteTkU0TnUdRU-lboSrvXB1LVwdB_Cmv-e84e64svUWyb9vSbzb9Ylq9l23ZqwxU9aaLLMGPdDMUQoKpDrnrHWq5L6TDRo97eELcfBaSlayC-9fydQ76gFsdoOq26liri8VO4CX_WVv5BS5KaZYLes2SjGingvgcaMD_XumVKfDo8IA8hXtWPmQ1SvTk-OaSFwkxG7nn_u206PL1_q_oJ5e_RUv4JY3TP15b7y_AbcZKXudALQJg8Vsic88hluY562xhHB03fb5G658V0s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photonic+thermal+management+of+coloured+objects&rft.jtitle=Nature+communications&rft.au=Wei+Li&rft.au=Yu+Shi&rft.au=Zhen+Chen&rft.au=Shanhui+Fan&rft.date=2018-10-12&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-018-06535-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e59ccb55cbe1437e864382dddccd9f40 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |