Photonic thermal management of coloured objects

The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tun...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 4240 - 8
Main Authors Li, Wei, Shi, Yu, Chen, Zhen, Fan, Shanhui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.10.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm −2 for all colours, and can be as high as 866 Wm −2 , resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects. Understanding the tunable range of radiative thermal load for a given colour is important for thermal management of outdoor structures. Here, the authors theoretically and experimentally highlighted all mechanisms through which one can control the radiative thermal load of coloured objects.
AbstractList Understanding the tunable range of radiative thermal load for a given colour is important for thermal management of outdoor structures. Here, the authors theoretically and experimentally highlighted all mechanisms through which one can control the radiative thermal load of coloured objects.
The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm–2 for all colours, and can be as high as 866 Wm–2, resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. Here, these results elucidate the fundamental potentials of photonic thermal management for coloured objects.
The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm −2 for all colours, and can be as high as 866 Wm −2 , resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects. Understanding the tunable range of radiative thermal load for a given colour is important for thermal management of outdoor structures. Here, the authors theoretically and experimentally highlighted all mechanisms through which one can control the radiative thermal load of coloured objects.
The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm −2 for all colours, and can be as high as 866 Wm −2 , resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects.
The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm for all colours, and can be as high as 866 Wm , resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects.
The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm−2 for all colours, and can be as high as 866 Wm−2, resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects.
The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm-2 for all colours, and can be as high as 866 Wm-2, resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects.The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm-2 for all colours, and can be as high as 866 Wm-2, resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects.
ArticleNumber 4240
Author Li, Wei
Fan, Shanhui
Chen, Zhen
Shi, Yu
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-2227-9431
  surname: Li
  fullname: Li, Wei
  organization: Department of Electrical Engineering, Ginzton Laboratory, Stanford University
– sequence: 2
  givenname: Yu
  surname: Shi
  fullname: Shi, Yu
  organization: Department of Electrical Engineering, Ginzton Laboratory, Stanford University
– sequence: 3
  givenname: Zhen
  surname: Chen
  fullname: Chen, Zhen
  organization: Department of Electrical Engineering, Ginzton Laboratory, Stanford University, School of Mechanical Engineering, Southeast University
– sequence: 4
  givenname: Shanhui
  surname: Fan
  fullname: Fan, Shanhui
  email: shanhui@stanford.edu
  organization: Department of Electrical Engineering, Ginzton Laboratory, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30315155$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1483402$$D View this record in Osti.gov
BookMark eNp9UstuFDEQtFAQCSE_wAGt4MJliD1-X5BQxCNSJDjA2fL09Ox6NWMHezYSf493J4Ekh_hiy66uri7XS3IUU0RCXjP6gVFuzotgQumGMtNQJbls6DNy0lLBGqZbfnTvfEzOStnSurhlRogX5JhTziST8oSc_9ikOcUAq3mDefLjavLRr3HCOK_SsII0pl3GfpW6LcJcXpHngx8Lnt3up-TXl88_L741V9-_Xl58umpAKj033YCdbbte0r6VVhiqvB60ptTqgSs0gwahUKJQBpCpziAIACOs8YzLduCn5HLh7ZPfuuscJp__uOSDO1ykvHY-zwFGdCgtQCcldMgE12iU4Kbt-x6gt4OglevjwnW96ybsoY6W_fiA9OFLDBu3TjdOMSOtNJXg7UKQyhxcgTAjbCDFWB1xTBguaFtB72-75PR7h2V2UyiA4-gjpl1xLWPWtlJSXaHvHkG31eRY_dyjjDaWH7q-uS_7n967z6sAswAgp1IyDq4q83NI-ynC6Bh1-6i4JSquRsUdouL2lrSPSu_YnyziS1Gp4LjG_F_2E1V_AYogzuM
CitedBy_id crossref_primary_10_1016_j_ccst_2022_100066
crossref_primary_10_1007_s12274_023_5916_3
crossref_primary_10_1016_j_solener_2020_10_013
crossref_primary_10_1007_s12274_024_6778_z
crossref_primary_10_1021_acsami_1c11552
crossref_primary_10_1002_adom_202202163
crossref_primary_10_1016_j_solener_2020_02_098
crossref_primary_10_1002_advs_202104181
crossref_primary_10_1021_acsami_2c15573
crossref_primary_10_1038_s41524_024_01438_9
crossref_primary_10_1016_j_optcom_2019_124950
crossref_primary_10_1002_adfm_202301924
crossref_primary_10_1007_s10853_021_05973_4
crossref_primary_10_1016_j_mtener_2023_101302
crossref_primary_10_1021_acsphotonics_0c01068
crossref_primary_10_1364_OME_397617
crossref_primary_10_1002_admt_201901007
crossref_primary_10_1126_sciadv_aaz5413
crossref_primary_10_1021_acsami_3c02993
crossref_primary_10_1016_j_fmre_2024_12_019
crossref_primary_10_1103_PhysRevE_109_044311
crossref_primary_10_1002_smll_202206145
crossref_primary_10_1021_acsmaterialslett_0c00322
crossref_primary_10_1021_acsapm_3c02318
crossref_primary_10_1557_mre_2019_15
crossref_primary_10_1021_acs_langmuir_0c00051
crossref_primary_10_1073_pnas_2120557119
crossref_primary_10_29026_oea_2024_230194
crossref_primary_10_1021_acsaem_4c00006
crossref_primary_10_1016_j_apenergy_2018_12_018
crossref_primary_10_1039_C9NR06181A
crossref_primary_10_1016_j_apenergy_2024_124436
crossref_primary_10_1002_adma_202414300
crossref_primary_10_3390_life13071493
crossref_primary_10_1021_acsphotonics_0c01471
crossref_primary_10_3390_pr11113063
crossref_primary_10_1364_OE_455722
crossref_primary_10_1038_s41893_019_0348_5
crossref_primary_10_18686_cest_v2i1_144
crossref_primary_10_1021_acsnano_1c10959
crossref_primary_10_3390_nano12152715
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122097
crossref_primary_10_1002_adfm_202400221
crossref_primary_10_1557_mre_2020_18
crossref_primary_10_1016_j_solmat_2022_111854
crossref_primary_10_1021_acs_nanolett_5c00083
crossref_primary_10_1016_j_matt_2024_10_016
crossref_primary_10_1177_00405175231154018
crossref_primary_10_1364_OPTICA_487561
crossref_primary_10_1016_j_enbuild_2024_114949
crossref_primary_10_1002_lpor_202300293
crossref_primary_10_1038_s41578_021_00283_2
crossref_primary_10_1021_acsphotonics_0c00513
crossref_primary_10_1016_j_jobe_2020_101631
crossref_primary_10_1021_acsanm_1c02841
crossref_primary_10_1021_acsaom_4c00030
crossref_primary_10_1038_s41598_019_44781_4
crossref_primary_10_1039_D0CP04902F
crossref_primary_10_1088_2632_2153_abc327
crossref_primary_10_1016_j_ijthermalsci_2021_107172
crossref_primary_10_1038_s41377_020_0296_x
crossref_primary_10_1364_OL_505357
crossref_primary_10_1021_acsami_2c12400
crossref_primary_10_1016_j_scs_2023_104838
crossref_primary_10_1021_acsnano_1c00903
crossref_primary_10_1063_5_0121043
crossref_primary_10_1063_1_5087281
crossref_primary_10_1038_s41467_024_48826_9
crossref_primary_10_1002_smll_202202400
crossref_primary_10_1126_science_abb0971
crossref_primary_10_1002_adma_202004754
crossref_primary_10_1515_nanoph_2023_0678
crossref_primary_10_1002_aenm_202402202
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123193
crossref_primary_10_1016_j_xcrp_2024_102068
crossref_primary_10_1016_j_solmat_2023_112459
crossref_primary_10_1038_s41377_022_00810_y
crossref_primary_10_1021_acsami_3c08790
crossref_primary_10_1364_OE_401368
crossref_primary_10_1063_5_0022667
crossref_primary_10_1364_OL_440878
crossref_primary_10_1364_OME_10_001767
crossref_primary_10_1002_adma_202401577
crossref_primary_10_1016_j_rser_2020_110263
crossref_primary_10_1021_acs_iecr_3c04130
crossref_primary_10_1063_5_0085111
crossref_primary_10_1016_j_solmat_2024_113047
crossref_primary_10_1364_OME_9_001990
crossref_primary_10_1002_adma_202409738
crossref_primary_10_1038_s41563_019_0538_6
crossref_primary_10_1002_adom_202202129
crossref_primary_10_1016_j_applthermaleng_2023_121074
crossref_primary_10_1016_j_mtcomm_2022_105052
crossref_primary_10_1021_acsenergylett_2c01969
crossref_primary_10_1016_j_mattod_2024_12_012
crossref_primary_10_1515_nanoph_2023_0102
crossref_primary_10_1002_adpr_202100338
crossref_primary_10_1016_j_xcrp_2021_100338
crossref_primary_10_1038_s41566_021_00921_9
crossref_primary_10_26599_CF_2025_9200033
crossref_primary_10_1016_j_solmat_2020_110548
crossref_primary_10_1002_smtd_202101379
crossref_primary_10_1021_acsenergylett_1c01486
crossref_primary_10_1039_C9TC05634C
crossref_primary_10_1186_s43074_023_00104_5
crossref_primary_10_1002_aenm_202401776
crossref_primary_10_1021_acsami_2c13991
crossref_primary_10_1021_acsami_3c02418
crossref_primary_10_1186_s43593_023_00053_3
crossref_primary_10_1007_s11431_024_2727_9
crossref_primary_10_1007_s40843_024_3264_7
crossref_primary_10_1109_JPHOT_2022_3155715
crossref_primary_10_1021_acsphotonics_2c01857
crossref_primary_10_1016_j_pmatsci_2024_101291
crossref_primary_10_1063_5_0085205
crossref_primary_10_1364_OE_464704
crossref_primary_10_3390_nano11123339
crossref_primary_10_1021_acsami_4c06170
crossref_primary_10_1016_j_isci_2022_104858
crossref_primary_10_1002_eom2_12509
crossref_primary_10_1021_acsnano_2c10279
crossref_primary_10_1039_D3NR04062C
crossref_primary_10_1016_j_solmat_2020_110393
crossref_primary_10_1016_j_solener_2023_02_046
crossref_primary_10_1002_adom_202300980
crossref_primary_10_1016_j_nanoen_2020_105517
crossref_primary_10_1002_advs_202204817
crossref_primary_10_1364_OE_397714
crossref_primary_10_1002_adom_202303296
crossref_primary_10_1016_j_solmat_2024_112693
crossref_primary_10_1016_j_joule_2020_02_011
crossref_primary_10_1016_j_mtnano_2022_100239
crossref_primary_10_1021_acsnano_4c17745
crossref_primary_10_1002_aenm_201903921
crossref_primary_10_1007_s10765_024_03382_8
crossref_primary_10_3788_AOS241378
crossref_primary_10_1515_nanoph_2023_0924
crossref_primary_10_1016_j_solener_2025_113343
crossref_primary_10_1021_acs_nanolett_1c04043
crossref_primary_10_1126_sciadv_adr2062
crossref_primary_10_1002_adpr_202000106
crossref_primary_10_1021_acs_nanolett_2c01570
crossref_primary_10_1021_acsaelm_3c01023
crossref_primary_10_1073_pnas_2300856120
crossref_primary_10_1016_j_cej_2024_149245
crossref_primary_10_1021_acsnano_4c02093
crossref_primary_10_1002_adem_202300062
crossref_primary_10_1002_admt_202301808
crossref_primary_10_1515_nanoph_2023_0244
crossref_primary_10_1038_s41467_024_45095_4
crossref_primary_10_1364_OL_487282
crossref_primary_10_1088_1361_6528_ace44f
crossref_primary_10_1016_j_energy_2025_135499
crossref_primary_10_1016_j_xcrp_2025_102445
crossref_primary_10_1063_5_0087687
crossref_primary_10_1021_acsphotonics_3c00494
crossref_primary_10_1038_s41467_020_19790_x
crossref_primary_10_1021_acsphotonics_1c01648
crossref_primary_10_1103_PhysRevMaterials_6_090201
crossref_primary_10_1021_acsphotonics_9b01005
crossref_primary_10_1039_D3MH00391D
crossref_primary_10_1039_D3MH00768E
crossref_primary_10_1002_pssa_202100572
crossref_primary_10_1007_s10853_022_07286_6
crossref_primary_10_3390_urbansci9030057
crossref_primary_10_1016_j_compositesb_2025_112344
crossref_primary_10_1016_j_solmat_2024_113365
crossref_primary_10_1002_adfm_202410613
crossref_primary_10_1016_j_nanoen_2019_103998
crossref_primary_10_1063_5_0035138
crossref_primary_10_1515_nanoph_2023_0596
Cites_doi 10.1080/716099690
10.1016/S0927-0248(02)00410-5
10.1021/nl903271d
10.1038/416061a
10.1002/9780470175637
10.1063/1.4835995
10.1038/nnano.2015.309
10.1038/nphoton.2012.146
10.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7
10.1016/S0042-6989(00)00021-3
10.1086/347857
10.1016/j.joule.2017.07.012
10.1002/adma.201501686
10.1016/S0038-092X(00)00031-1
10.1364/OE.24.000A92
10.1038/nature13883
10.1038/s41598-017-05235-x
10.1039/C5TA00694E
10.1016/S0927-0248(02)00409-9
10.1021/acsphotonics.7b01136
10.1364/OE.26.015995
10.1016/0038-092X(75)90062-6
10.1021/acsphotonics.7b00089
10.1016/j.solener.2006.08.005
10.1103/PhysRevLett.107.045901
10.1038/ncomms13729
10.1117/12.665077
10.1073/pnas.1120149109
10.1063/1.329270
10.1146/annurev.publhealth.29.020907.090843
10.1126/science.aai7899
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)
California Institute of Technology (CalTech), Pasadena, CA (United States)
CorporateAuthor_xml – name: California Institute of Technology (CalTech), Pasadena, CA (United States)
– name: Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-018-06535-0
DatabaseName WRHA-SpringerOpen Free
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



CrossRef
PubMed
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Engineering
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_e59ccb55cbe1437e864382dddccd9f40
PMC6185958
1483402
30315155
10_1038_s41467_018_06535_0
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
AAADF
AAPBV
AAYJO
ADQMX
AEDAW
OIOZB
OTOTI
ZA5
5PM
PUEGO
ID FETCH-LOGICAL-c567t-bfeb92bd50d2594806a7f770097f36e8f7c46e5e468ce16b8ec4cc8498a1352f3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:29:24 EDT 2025
Thu Aug 21 13:47:03 EDT 2025
Mon Jul 03 03:57:05 EDT 2023
Fri Jul 11 16:27:40 EDT 2025
Wed Aug 13 08:43:36 EDT 2025
Wed Feb 19 02:33:13 EST 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 01 02:21:18 EDT 2025
Fri Feb 21 02:39:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-bfeb92bd50d2594806a7f770097f36e8f7c46e5e468ce16b8ec4cc8498a1352f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC)
SC0001293
ORCID 0000-0002-2227-9431
0000000222279431
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-018-06535-0
PMID 30315155
PQID 2118789358
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_e59ccb55cbe1437e864382dddccd9f40
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6185958
osti_scitechconnect_1483402
proquest_miscellaneous_2119925507
proquest_journals_2118789358
pubmed_primary_30315155
crossref_citationtrail_10_1038_s41467_018_06535_0
crossref_primary_10_1038_s41467_018_06535_0
springer_journals_10_1038_s41467_018_06535_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-12
PublicationDateYYYYMMDD 2018-10-12
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-12
  day: 12
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References FairmanHSBrillMHHemmendingerHHow the CIE 1931 color-matching functions were derived from Wright–Guild dataCol. Res Appl.199722112310.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7
CatalanottiSThe radiative cooling of selective surfacesSol. Energy19751783891975SoEn...17...83C10.1016/0038-092X(75)90062-6
GentleARSmithGBRadiative heat pumping from the Earth using surface phonon resonant nanoparticlesNano. Lett.2010103733792010NanoL..10..373G1:CAS:528:DC%2BC3cXivFKmsw%3D%3D10.1021/nl903271d
GreffetJJCoherent emission of light by thermal sourcesNature200241661642002Natur.416...61G1:CAS:528:DC%2BD38XitlSitLo%3D10.1038/416061a
SmithGBGentleASwiftPEarpAMrongaNColoured paints based on coated flakes of metal as the pigment, for enhanced solar reflectance and cooler interiors: description and theorySol. Energy Mater. Sol. Cells2003791631771:CAS:528:DC%2BD3sXmt1ajurg%3D10.1016/S0927-0248(02)00409-9
ChenFColorful solar selective absorber integrated with different colored unitsOpt. Express201624A92A1032016OExpr..24...92A1:CAS:528:DC%2BC2sXlsVGiurY%3D10.1364/OE.24.000A92
CohenIBFranklin’s experiments on heat absorption as a function of colorIsis1943344044071:CAS:528:DyaH2cXhtlantw%3D%3D10.1086/347857
GranqvistCGHjortsbergARadiative cooling to low temperatures: General considerations and application to selectively emitting SiO filmsJ. Appl. Phys.198152420542201981JAP....52.4205G1:CAS:528:DyaL3MXmtVKktbo%3D10.1063/1.329270
YengYXEnabling high-temperature nanophotonics for energy applicationsProc. Natl Acad. Sci. USA2012109228022852012PNAS..109.2280Y1:CAS:528:DC%2BC38XivFSjsrs%3D10.1073/pnas.1120149109
Schanda, J. Colorimetry: Understanding the CIE System. (John Wiley & Sons, New Jersey, 2007).
ShiYLiWRamanAFanSOptimization of multilayer optical films with a memetic algorithm and mixed integer programmingACS Photonics201856846911:CAS:528:DC%2BC2sXhvFOqsr%2FM10.1021/acsphotonics.7b01136
LiPLarge-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversionAdv. Mater.201527458545911:CAS:528:DC%2BC2MXhtFWjtLvM10.1002/adma.201501686
TripanagnostopoulosYSouliotisMNousiaTSolar collectors with colored absorbersSol. Energy2000683433562000SoEn...68..343T10.1016/S0038-092X(00)00031-1
ChenZZhuLRamanAFanSRadiative cooling to deep sub-freezing temperatures through a 24-h day–night cycleNat. Commun.201672016NatCo...713729C1:CAS:528:DC%2BC28XitFamtrnF10.1038/ncomms13729
ThomasNHChenZFanSMinnichAJSemiconductor-based multilayer selective solar absorber for unconcentrated solar thermal energy conversionSci. Rep.201772017NatSR...7.5362T10.1038/s41598-017-05235-x
Farrington, R. & Rugh, J. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range.NREL/CP-540-28960. Available at: http://www.nrel.gov/docs/fy00osti/28960.pdf (2000).
E. Goldberg, D. Genetic Algorithms In Search, Optimization, and Machine Learning. (Addison-Wesley Longman Publishing Co., Inc. Boston, MA, 1989).
KovatsRSHajatSHeat stress and public health: a critical reviewAnnu. Rev. Public Health200829415510.1146/annurev.publhealth.29.020907.090843
RamanAPAnomaMAZhuLRephaeliEFanSPassive radiative cooling below ambient air temperature under direct sunlightNature20145155405442014Natur.515..540R1:CAS:528:DC%2BC2cXitFanu7bN10.1038/nature13883
IlicOTailoring high-temperature radiation and the resurrection of the incandescent sourceNat. Nanotechnol.2016113203242016NatNa..11..320I1:CAS:528:DC%2BC28Xns1ajtg%3D%3D10.1038/nnano.2015.309
ZhaiYScalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative coolingScience2017355106210662017Sci...355.1062Z1:CAS:528:DC%2BC2sXjvVWjtbo%3D10.1126/science.aai7899
U.S. Energy Information Administration. Residential Energy Consumption Survey (RECS) Available at: https://www.eia.gov/consumption/residential/data/2009/index.php?view=consumption#end-use (2009).
SynnefaASantamourisMApostolakisKOn the development, optical properties and thermal performance of cool colored coatings for the urban environmentSol. Energy2007814884972007SoEn...81..488S1:CAS:528:DC%2BD2sXjsVWis7k%3D10.1016/j.solener.2006.08.005
StockmanASharpeLTThe spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotypeVision Res.200040171117371:STN:280:DC%2BD3czovFyruw%3D%3D10.1016/S0042-6989(00)00021-3
ChenFHigh performance colored selective absorbers for architecturally integrated solar applicationsJ. Mater. Chem. A20153735373601:CAS:528:DC%2BC2MXjsFWmsbs%3D10.1039/C5TA00694E
De ZoysaMConversion of broadband to narrowband thermal emission through energy recyclingNat. Photonics201265355392012NaPho...6..535D10.1038/nphoton.2012.146
ZhuLRamanAFanSColor-preserving daytime radiative coolingAppl. Phys. Lett.20131032239022013ApPhL.103v3902Z10.1063/1.4835995
LiWShiYChenKZhuLFanSA comprehensive photonic approach for solar cell coolingACS Photonics201747747821:CAS:528:DC%2BC2sXktFOms7Y%3D10.1021/acsphotonics.7b00089
Wyszecki G. & Stiles, W. S. Color Scince: Concepts and methods, quantitative data and formulae. In Color Science: Concepts and Methods, Quantitative Data and Formulae 2nd edn (Wiley-VCH, Germany, 2000).
LiWFanSNanophotonic control of thermal radiation for energy applicationsOpt. Express201826159952018OExpr..2615995L10.1364/OE.26.015995
LiuXTaming the blackbody with infrared metamaterials as selective thermal emittersPhys. Rev. Lett.2011107459012011PhRvL.107d5901L10.1103/PhysRevLett.107.045901
FanSThermal photonics and energy applicationsJoule201712642731:CAS:528:DC%2BC1cXpsl2kur4%3D10.1016/j.joule.2017.07.012
Haus, H. Waves and Fields in Optoelectronics. Vol. 32 (Prentice Hall, New Jersey, 1985).
SmithGBGentleASwiftPDEarpAMrongaNColoured paints based on iron oxide and silicon oxide coated flakes of aluminium as the pigment, for energy efficient paint: optical and thermal experimentsSol. Energy Mater. Sol. Cells2003791791971:CAS:528:DC%2BD3sXmt1ajurk%3D10.1016/S0927-0248(02)00410-5
BerkAMODTRAN5: 2006 updateProc. SPIE2006623362331F10.1117/12.665077
A Stockman (6535_CR29) 2000; 40
AR Gentle (6535_CR6) 2010; 10
6535_CR2
6535_CR1
X Liu (6535_CR10) 2011; 107
S Fan (6535_CR7) 2017; 1
GB Smith (6535_CR21) 2003; 79
Y Tripanagnostopoulos (6535_CR25) 2000; 68
Y Zhai (6535_CR16) 2017; 355
JJ Greffet (6535_CR9) 2002; 416
O Ilic (6535_CR15) 2016; 11
Y Shi (6535_CR34) 2018; 5
NH Thomas (6535_CR18) 2017; 7
IB Cohen (6535_CR20) 1943; 34
Z Chen (6535_CR17) 2016; 7
M De Zoysa (6535_CR12) 2012; 6
6535_CR35
6535_CR33
6535_CR30
6535_CR31
A Synnefa (6535_CR23) 2007; 81
W Li (6535_CR8) 2018; 26
F Chen (6535_CR26) 2015; 3
AP Raman (6535_CR13) 2014; 515
F Chen (6535_CR27) 2016; 24
YX Yeng (6535_CR11) 2012; 109
P Li (6535_CR14) 2015; 27
HS Fairman (6535_CR32) 1997; 22
A Berk (6535_CR28) 2006; 6233
CG Granqvist (6535_CR5) 1981; 52
L Zhu (6535_CR24) 2013; 103
W Li (6535_CR19) 2017; 4
GB Smith (6535_CR22) 2003; 79
RS Kovats (6535_CR3) 2008; 29
S Catalanotti (6535_CR4) 1975; 17
References_xml – reference: SmithGBGentleASwiftPDEarpAMrongaNColoured paints based on iron oxide and silicon oxide coated flakes of aluminium as the pigment, for energy efficient paint: optical and thermal experimentsSol. Energy Mater. Sol. Cells2003791791971:CAS:528:DC%2BD3sXmt1ajurk%3D10.1016/S0927-0248(02)00410-5
– reference: StockmanASharpeLTThe spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotypeVision Res.200040171117371:STN:280:DC%2BD3czovFyruw%3D%3D10.1016/S0042-6989(00)00021-3
– reference: FairmanHSBrillMHHemmendingerHHow the CIE 1931 color-matching functions were derived from Wright–Guild dataCol. Res Appl.199722112310.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7
– reference: ChenFColorful solar selective absorber integrated with different colored unitsOpt. Express201624A92A1032016OExpr..24...92A1:CAS:528:DC%2BC2sXlsVGiurY%3D10.1364/OE.24.000A92
– reference: ChenZZhuLRamanAFanSRadiative cooling to deep sub-freezing temperatures through a 24-h day–night cycleNat. Commun.201672016NatCo...713729C1:CAS:528:DC%2BC28XitFamtrnF10.1038/ncomms13729
– reference: ZhuLRamanAFanSColor-preserving daytime radiative coolingAppl. Phys. Lett.20131032239022013ApPhL.103v3902Z10.1063/1.4835995
– reference: Schanda, J. Colorimetry: Understanding the CIE System. (John Wiley & Sons, New Jersey, 2007).
– reference: U.S. Energy Information Administration. Residential Energy Consumption Survey (RECS) Available at: https://www.eia.gov/consumption/residential/data/2009/index.php?view=consumption#end-use (2009).
– reference: ChenFHigh performance colored selective absorbers for architecturally integrated solar applicationsJ. Mater. Chem. A20153735373601:CAS:528:DC%2BC2MXjsFWmsbs%3D10.1039/C5TA00694E
– reference: E. Goldberg, D. Genetic Algorithms In Search, Optimization, and Machine Learning. (Addison-Wesley Longman Publishing Co., Inc. Boston, MA, 1989).
– reference: GranqvistCGHjortsbergARadiative cooling to low temperatures: General considerations and application to selectively emitting SiO filmsJ. Appl. Phys.198152420542201981JAP....52.4205G1:CAS:528:DyaL3MXmtVKktbo%3D10.1063/1.329270
– reference: RamanAPAnomaMAZhuLRephaeliEFanSPassive radiative cooling below ambient air temperature under direct sunlightNature20145155405442014Natur.515..540R1:CAS:528:DC%2BC2cXitFanu7bN10.1038/nature13883
– reference: CatalanottiSThe radiative cooling of selective surfacesSol. Energy19751783891975SoEn...17...83C10.1016/0038-092X(75)90062-6
– reference: BerkAMODTRAN5: 2006 updateProc. SPIE2006623362331F10.1117/12.665077
– reference: LiuXTaming the blackbody with infrared metamaterials as selective thermal emittersPhys. Rev. Lett.2011107459012011PhRvL.107d5901L10.1103/PhysRevLett.107.045901
– reference: Farrington, R. & Rugh, J. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range.NREL/CP-540-28960. Available at: http://www.nrel.gov/docs/fy00osti/28960.pdf (2000).
– reference: SynnefaASantamourisMApostolakisKOn the development, optical properties and thermal performance of cool colored coatings for the urban environmentSol. Energy2007814884972007SoEn...81..488S1:CAS:528:DC%2BD2sXjsVWis7k%3D10.1016/j.solener.2006.08.005
– reference: FanSThermal photonics and energy applicationsJoule201712642731:CAS:528:DC%2BC1cXpsl2kur4%3D10.1016/j.joule.2017.07.012
– reference: ZhaiYScalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative coolingScience2017355106210662017Sci...355.1062Z1:CAS:528:DC%2BC2sXjvVWjtbo%3D10.1126/science.aai7899
– reference: Haus, H. Waves and Fields in Optoelectronics. Vol. 32 (Prentice Hall, New Jersey, 1985).
– reference: TripanagnostopoulosYSouliotisMNousiaTSolar collectors with colored absorbersSol. Energy2000683433562000SoEn...68..343T10.1016/S0038-092X(00)00031-1
– reference: LiWShiYChenKZhuLFanSA comprehensive photonic approach for solar cell coolingACS Photonics201747747821:CAS:528:DC%2BC2sXktFOms7Y%3D10.1021/acsphotonics.7b00089
– reference: ThomasNHChenZFanSMinnichAJSemiconductor-based multilayer selective solar absorber for unconcentrated solar thermal energy conversionSci. Rep.201772017NatSR...7.5362T10.1038/s41598-017-05235-x
– reference: IlicOTailoring high-temperature radiation and the resurrection of the incandescent sourceNat. Nanotechnol.2016113203242016NatNa..11..320I1:CAS:528:DC%2BC28Xns1ajtg%3D%3D10.1038/nnano.2015.309
– reference: Wyszecki G. & Stiles, W. S. Color Scince: Concepts and methods, quantitative data and formulae. In Color Science: Concepts and Methods, Quantitative Data and Formulae 2nd edn (Wiley-VCH, Germany, 2000).
– reference: ShiYLiWRamanAFanSOptimization of multilayer optical films with a memetic algorithm and mixed integer programmingACS Photonics201856846911:CAS:528:DC%2BC2sXhvFOqsr%2FM10.1021/acsphotonics.7b01136
– reference: GentleARSmithGBRadiative heat pumping from the Earth using surface phonon resonant nanoparticlesNano. Lett.2010103733792010NanoL..10..373G1:CAS:528:DC%2BC3cXivFKmsw%3D%3D10.1021/nl903271d
– reference: KovatsRSHajatSHeat stress and public health: a critical reviewAnnu. Rev. Public Health200829415510.1146/annurev.publhealth.29.020907.090843
– reference: LiPLarge-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversionAdv. Mater.201527458545911:CAS:528:DC%2BC2MXhtFWjtLvM10.1002/adma.201501686
– reference: LiWFanSNanophotonic control of thermal radiation for energy applicationsOpt. Express201826159952018OExpr..2615995L10.1364/OE.26.015995
– reference: SmithGBGentleASwiftPEarpAMrongaNColoured paints based on coated flakes of metal as the pigment, for enhanced solar reflectance and cooler interiors: description and theorySol. Energy Mater. Sol. Cells2003791631771:CAS:528:DC%2BD3sXmt1ajurg%3D10.1016/S0927-0248(02)00409-9
– reference: De ZoysaMConversion of broadband to narrowband thermal emission through energy recyclingNat. Photonics201265355392012NaPho...6..535D10.1038/nphoton.2012.146
– reference: CohenIBFranklin’s experiments on heat absorption as a function of colorIsis1943344044071:CAS:528:DyaH2cXhtlantw%3D%3D10.1086/347857
– reference: GreffetJJCoherent emission of light by thermal sourcesNature200241661642002Natur.416...61G1:CAS:528:DC%2BD38XitlSitLo%3D10.1038/416061a
– reference: YengYXEnabling high-temperature nanophotonics for energy applicationsProc. Natl Acad. Sci. USA2012109228022852012PNAS..109.2280Y1:CAS:528:DC%2BC38XivFSjsrs%3D10.1073/pnas.1120149109
– ident: 6535_CR35
  doi: 10.1080/716099690
– volume: 79
  start-page: 179
  year: 2003
  ident: 6535_CR21
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(02)00410-5
– volume: 10
  start-page: 373
  year: 2010
  ident: 6535_CR6
  publication-title: Nano. Lett.
  doi: 10.1021/nl903271d
– volume: 416
  start-page: 61
  year: 2002
  ident: 6535_CR9
  publication-title: Nature
  doi: 10.1038/416061a
– ident: 6535_CR31
  doi: 10.1002/9780470175637
– volume: 103
  start-page: 223902
  year: 2013
  ident: 6535_CR24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4835995
– volume: 11
  start-page: 320
  year: 2016
  ident: 6535_CR15
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.309
– ident: 6535_CR30
– volume: 6
  start-page: 535
  year: 2012
  ident: 6535_CR12
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.146
– volume: 22
  start-page: 11
  year: 1997
  ident: 6535_CR32
  publication-title: Col. Res Appl.
  doi: 10.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7
– volume: 40
  start-page: 1711
  year: 2000
  ident: 6535_CR29
  publication-title: Vision Res.
  doi: 10.1016/S0042-6989(00)00021-3
– volume: 34
  start-page: 404
  year: 1943
  ident: 6535_CR20
  publication-title: Isis
  doi: 10.1086/347857
– ident: 6535_CR2
– volume: 1
  start-page: 264
  year: 2017
  ident: 6535_CR7
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.012
– volume: 27
  start-page: 4585
  year: 2015
  ident: 6535_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501686
– volume: 68
  start-page: 343
  year: 2000
  ident: 6535_CR25
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(00)00031-1
– volume: 24
  start-page: A92
  year: 2016
  ident: 6535_CR27
  publication-title: Opt. Express
  doi: 10.1364/OE.24.000A92
– volume: 515
  start-page: 540
  year: 2014
  ident: 6535_CR13
  publication-title: Nature
  doi: 10.1038/nature13883
– volume: 7
  year: 2017
  ident: 6535_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05235-x
– ident: 6535_CR33
– volume: 3
  start-page: 7353
  year: 2015
  ident: 6535_CR26
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00694E
– volume: 79
  start-page: 163
  year: 2003
  ident: 6535_CR22
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(02)00409-9
– volume: 5
  start-page: 684
  year: 2018
  ident: 6535_CR34
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01136
– volume: 26
  start-page: 15995
  year: 2018
  ident: 6535_CR8
  publication-title: Opt. Express
  doi: 10.1364/OE.26.015995
– volume: 17
  start-page: 83
  year: 1975
  ident: 6535_CR4
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(75)90062-6
– volume: 4
  start-page: 774
  year: 2017
  ident: 6535_CR19
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00089
– volume: 81
  start-page: 488
  year: 2007
  ident: 6535_CR23
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2006.08.005
– volume: 107
  start-page: 45901
  year: 2011
  ident: 6535_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.045901
– volume: 7
  year: 2016
  ident: 6535_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13729
– volume: 6233
  start-page: 62331F
  year: 2006
  ident: 6535_CR28
  publication-title: Proc. SPIE
  doi: 10.1117/12.665077
– volume: 109
  start-page: 2280
  year: 2012
  ident: 6535_CR11
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1120149109
– ident: 6535_CR1
– volume: 52
  start-page: 4205
  year: 1981
  ident: 6535_CR5
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.329270
– volume: 29
  start-page: 41
  year: 2008
  ident: 6535_CR3
  publication-title: Annu. Rev. Public Health
  doi: 10.1146/annurev.publhealth.29.020907.090843
– volume: 355
  start-page: 1062
  year: 2017
  ident: 6535_CR16
  publication-title: Science
  doi: 10.1126/science.aai7899
SSID ssj0000391844
Score 2.626696
Snippet The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour,...
Understanding the tunable range of radiative thermal load for a given colour is important for thermal management of outdoor structures. Here, the authors...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4240
SubjectTerms 639/4077
639/624/1075
639/624/399
Automobiles
Automotive parts
Color
Cooling
Cooling effects
Energy efficiency
ENGINEERING
Heat
Humanities and Social Sciences
Load
Metamerism
Motor vehicles
multidisciplinary
Paints
Photonics
Photovoltaic cells
Physiology
Radiation
Science
Science (multidisciplinary)
Thermal analysis
Thermal management
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QpElcEDA-ygYqEjeoXtt8NDnCxDQhgTgwabeocVwNibXTXt-B_x477St7fF52qtS4beLYiV07PwvxKrq2LkMJRcRaFgpLLFoNsdCxi7V0QCY-H3D--MmcnqkP5_r8Rqkvzgmb4IEnxq1QO4CgNQSkrb1Bazh0FWMEiK5TyVunPe-GM5XWYOnIdVHzKZlS2tVapTWhrGzBcKy6KHd2ogTYT5eBFOtPxubvOZO_BE7TfnRyX9ybDcn87TSAB-IO9g_F_lRa8vuBWH2-GEaGvc3Zwrskyssl0SUfupzBqjfXGPMh8J-Y9SNxdvL-y_FpMRdHKECbZixCh8HVIeoy1gy5Upq26ZqGz2V00qDtGlAGNSpjASsTLIICsMrZtiKjq5OPxV4_9PhU5Ni4ADUEUxmnjAyB3CasWnonlyFDl4lqyygPM3I4F7D45lMEW1o_MdcTc31iri8z8Xp55mrCzfgn9Tvm_0LJmNfpBkmCnyXB_08SMnHIs-fJdGD8W-BEIRjJt7GSnORMHG0n1c9quvY1F1u3HArOxMulmRSMoyZtj8Mm0ThXM-xbJp5MMrD0U3KNDLLIMtHsSMfOQHZb-q8XCcTbVIwsR999s5Wjn936O6Oe3QajDsXdmvUg5eUcib3xeoPPybQaw4ukRT8AhG8ecQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLorwaWlCQuIG1SfyIfUKAulRIIA5U6s2KxxOKRJN2N3vg3-NxsqmWR0-RYsdJxjP2Z8_4G8ZeBdtUhS-AB6wEl1ggbxQErkIbKmEhQnw64Pz5iz45lZ_O1Nm04baewiq3Y2IaqEMPtEe-qCgvtiGv3dvLK05Zo8i7OqXQuM3ulHGmoZAus_w477EQ-7mRcjorUwizWMs0MhSl4UTKqnixMx8l2v546aN5_Qty_h05-Yf7NM1Kywfs_gQn83dj_--zW9g9ZHfHBJO_HrHF1_N-IPLbnHDeRax5MYe75H2bE2X1ZoUh7z3tx6wfs9Pl8bcPJ3xKkcBB6XrgvkVvKx9UESoiXil0U7d1TaczWqHRtDVIjQqlNoCl9gZBAhhpTVNG6NWKJ2yv6zs8YDnW1kMFXpfaSi28j4snLJvYJiUjQ5uxcisoBxN_OKWx-OmSH1sYNwrXReG6JFxXZOz1_MzlyJ5xY-33JP-5JjFfpxv96rubDMmhsgBeKfAYoV6NRpMrM4QAEGwrYyOH1HsuAghiwQUKF4IhrnCMiEvljB1tO9VNxrp216qVsZdzcTQz8p00HfabVMfaisjfMvZ01IH5OwVlyoi4LGP1jnbs_MhuSffjPFF565L45eJ732z16Pqz_i-oZzf_xSG7V5GGp7ibI7Y3rDb4PEKnwb9I9vEbiGAUuw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pi9UwEA7LLoIX8bd1V6ngTcu2aZImx6e4LA8UQRf2FprJ1BXcVvZ1D_73zqR9laer4KnQTtJ0MtN-6Uy-EeJldK0sQwlFRFkXCkssWg2x0LGLsnZAEJ83OL__YE7P1Ppcn-8Jud0Lk5L2E6Vlek1vs8OONyq5dFnZgtlUdUHL9AOmaifbPlit1p_Wy58V5jy3Ss07ZMra3tB45yuUyPrpMJBT3QQ0_8yX_C1omr5FJ3fFnRlE5qtp2PfEHvb3xa2prOSPB-L448UwMuVtzujukiQvlySXfOhyJqqmR4_5EPgvzOahODt59_ntaTEXRihAm2YsQofByRB1GSXTrZSmbbqm4T0ZXW3Qdg0ogxqVsYCVCRZBAVjlbFsR4OrqR2K_H3p8InJsXAAJwVTGKVOHQEsmrFrqk0uQoctEtVWUh5k1nItXfPMpel1bPynXk3J9Uq4vM_FqafN94sz4p_Qb1v8iyXzX6cRw9cXP8-9RO4CgNQQkgNegNRzAjDECRNcp6uSQZ88TbGDuW-AkIRhpXWNrWiBn4mg7qX520Y2XXGjdchg4Ey-Wy-RcHDFpexyuk4xzkinfMvF4soFlnDXXxyA0lolmxzp2HmT3Sv_1IhF4m4pZ5ei-r7d29GtYf1fU0_8TPxS3JVt8yr45Evvj1TU-IwA1huezx_wEIf0Tyg
  priority: 102
  providerName: Springer Nature
Title Photonic thermal management of coloured objects
URI https://link.springer.com/article/10.1038/s41467-018-06535-0
https://www.ncbi.nlm.nih.gov/pubmed/30315155
https://www.proquest.com/docview/2118789358
https://www.proquest.com/docview/2119925507
https://www.osti.gov/servlets/purl/1483402
https://pubmed.ncbi.nlm.nih.gov/PMC6185958
https://doaj.org/article/e59ccb55cbe1437e864382dddccd9f40
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB5qi-CLeDdtXSL4prG5ze1BZLt0LQstRV3YtyFzSSu0id3Ngv33njO5yOrqky8JJJPbyTmZ7-TMfB8hb6ws0ljHJrIuzaLcxS4qqLERtaVNM2kA4uME57NzdjrPZwu62CG93FFnwNXW1A71pObL6_c_bu8-QsB_aKeMi6NV7sM9TkSETKs0ghR-D3omjooGZx3c91_mTEJCk3dzZ7YfutE_eRp_WNUQbtsg6J8jKX8rp_peavqIPOzgZThu_eEx2XHVE3K_FZy8e0qOLq7qBslwQ8R9N9DyZhj-EtZliBTW66WzYa3x_8zqGZlPT75OTqNOMiEylPEm0qXTMtWWxjZFIpaYFbzkHGdrlBlzouQmZ466nAnjEqaFM7kxIpeiSACKldlzslvVlXtJQselNqnRLGEyZ5nWkEy5pIBzojiZkwFJekMp0_GJo6zFtfJ17Uyo1rgKjKu8cVUckLfDMd9bNo1_tj5G-w8tkQnbb6iXl6oLLOWoNEZTarQD6MedYFjatNYaY2WZw0kO8O0pABTIimtw-JBpIOMRGaTOATnsX6rqfU-lKMEusEAckNfDbgg7rKUUlavXvo2UKZLBBeRF6wPDfWaonAE4LSB8wzs2HmRzT_XtylN7swT55uC673o_-nVbfzfU_v8w1AF5kGIc-NE6h2S3Wa7dKwBcjR6Re3zBYSmmn0ZkbzyefZnB-vjk_OIzbJ2wycj_yhj5aPsJIyMsPw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJvQAkGCE0SbOI5jHxDitWzpQxxaqTc3ticUiW7KPoT6p_iNeJxHtTx66ynSxusk4xn7s2fmG4DnTlUsNalNHLI84ZhiUhXWJYWrHcuV9RCfEpx398TkgH8-LA7X4FefC0Nhlf2cGCZq11g6Ix8xqostyWv35vRHQlWjyLval9Bo1WIbz376Ldv89dYHP74vGBt_3H8_SbqqAoktRLlITI1GMeOK1DHiKklFVdZlSQkNdS5Q1qXlAgvkQlrMhJFoubWSK1llHq3Uue_3ClzluV_JKTN9_Gk40yG2dcl5l5uT5nI052EmSjOZEAlskaQr618oE-AvjTfnf0HcvyM1_3DXhlVwfAtudvA1ftvq221Yw-kduNYWtDy7C6Mvx82CyHZjwpUnvuXJEF4TN3VMFNnLGbq4MXT-M78HB5civPuwPm2m-BBiLJWxzBqRCcVFbozfrGFW-T6p-BmqCLJeUNp2fOVUNuO7Dn7zXOpWuNoLVwfh6jSCl8N_Tlu2jgtbvyP5Dy2JaTv80My-6s5wNRbKWlMU1qCHliVKQa5T55y1TtXcd7JBo6c9YCHWXUvhSXbhd1Qy91vzCDb7QdXd5DDX56ocwbPhtjdr8tVUU2yWoY1SjMjmInjQ6sDwnjlV5vA4MIJyRTtWPmT1zvTbcaAOFxnx2fnnvur16Py1_i-oRxd_xVO4Ptnf3dE7W3vbG3CDkbaHmJ9NWF_MlvjYw7aFeRJsJYajyzbO3xjkUbk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG9CCwQJThBt4jiOfUCI0q5aCqsVolJvbmxPaKV2U_Yh1L_Gr8OTV7U8euspUuI4yXjG-cYz_gbglVMFi01sI4csjTjGGBWZdVHmSsdSZT3Epw3OX8Zi94B_OswO1-BXtxeG0iq7ObGeqF1laY18yKgutqSo3bBs0yIm26P35z8iqiBFkdaunEajIvt48dO7b_N3e9t-rF8zNtr59nE3aisMRDYT-SIyJRrFjMtix4i3JBZFXuY5bW4oU4GyzC0XmCEX0mIijETLrZVcySLxyKVMfb83YD0nr2gA61s748nXfoWHuNcl5-1OnTiVwzmv56U4kRFRwmZRvPI3rIsG-EPljftfgPfvvM0_grf1P3F0F-60YDb80GjfPVjD6X242ZS3vHgAw8lxtSDq3ZBQ5plvedYn24RVGRJh9nKGLqwMrQbNH8LBtYjvEQym1RSfQIi5MpZZIxKhuEiN8a4bJoXvk0qhoQog6QSlbcteTkU0TnUdRU-lboSrvXB1LVwdB_Cmv-e84e64svUWyb9vSbzb9Ylq9l23ZqwxU9aaLLMGPdDMUQoKpDrnrHWq5L6TDRo97eELcfBaSlayC-9fydQ76gFsdoOq26liri8VO4CX_WVv5BS5KaZYLes2SjGingvgcaMD_XumVKfDo8IA8hXtWPmQ1SvTk-OaSFwkxG7nn_u206PL1_q_oJ5e_RUv4JY3TP15b7y_AbcZKXudALQJg8Vsic88hluY562xhHB03fb5G658V0s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photonic+thermal+management+of+coloured+objects&rft.jtitle=Nature+communications&rft.au=Wei+Li&rft.au=Yu+Shi&rft.au=Zhen+Chen&rft.au=Shanhui+Fan&rft.date=2018-10-12&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-018-06535-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e59ccb55cbe1437e864382dddccd9f40
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon