Decoding reactive structures in dilute alloy catalysts
Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Understanding and modeling catalytic reaction pathways and kinetics require atomic level knowledge of the active sites. These structures often change dynamically during reactions and are d...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 832 - 9 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.02.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Understanding and modeling catalytic reaction pathways and kinetics require atomic level knowledge of the active sites. These structures often change dynamically during reactions and are difficult to decipher. A prototypical example is the hydrogen-deuterium exchange reaction catalyzed by dilute Pd-in-Au alloy nanoparticles. From a combination of catalytic activity measurements, machine learning-enabled spectroscopic analysis, and first-principles based kinetic modeling, we demonstrate that the active species are surface Pd ensembles containing only a few (from 1 to 3) Pd atoms. These species simultaneously explain the observed X-ray spectra and equate the experimental and theoretical values of the apparent activation energy. Remarkably, we find that the catalytic activity can be tuned on demand by controlling the size of the Pd ensembles through catalyst pretreatment. Our data-driven multimodal approach enables decoding of reactive structures in complex and dynamic alloy catalysts.
Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Here the authors report a data-driven approach for understanding catalytic reactions mechanisms in dilute bimetallic catalysts by combining X-ray absorption spectroscopy with activity studies and kinetic modeling. |
---|---|
AbstractList | Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Understanding and modeling catalytic reaction pathways and kinetics require atomic level knowledge of the active sites. These structures often change dynamically during reactions and are difficult to decipher. A prototypical example is the hydrogen-deuterium exchange reaction catalyzed by dilute Pd-in-Au alloy nanoparticles. From a combination of catalytic activity measurements, machine learning-enabled spectroscopic analysis, and first-principles based kinetic modeling, we demonstrate that the active species are surface Pd ensembles containing only a few (from 1 to 3) Pd atoms. These species simultaneously explain the observed X-ray spectra and equate the experimental and theoretical values of the apparent activation energy. Remarkably, we find that the catalytic activity can be tuned on demand by controlling the size of the Pd ensembles through catalyst pretreatment. Our data-driven multimodal approach enables decoding of reactive structures in complex and dynamic alloy catalysts. Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Understanding and modeling catalytic reaction pathways and kinetics require atomic level knowledge of the active sites. These structures often change dynamically during reactions and are difficult to decipher. A prototypical example is the hydrogen-deuterium exchange reaction catalyzed by dilute Pd-in-Au alloy nanoparticles. From a combination of catalytic activity measurements, machine learning-enabled spectroscopic analysis, and first-principles based kinetic modeling, we demonstrate that the active species are surface Pd ensembles containing only a few (from 1 to 3) Pd atoms. These species simultaneously explain the observed X-ray spectra and equate the experimental and theoretical values of the apparent activation energy. Remarkably, we find that the catalytic activity can be tuned on demand by controlling the size of the Pd ensembles through catalyst pretreatment. Our data-driven multimodal approach enables decoding of reactive structures in complex and dynamic alloy catalysts.Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Here the authors report a data-driven approach for understanding catalytic reactions mechanisms in dilute bimetallic catalysts by combining X-ray absorption spectroscopy with activity studies and kinetic modeling. Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Understanding and modeling catalytic reaction pathways and kinetics require atomic level knowledge of the active sites. These structures often change dynamically during reactions and are difficult to decipher. A prototypical example is the hydrogen-deuterium exchange reaction catalyzed by dilute Pd-in-Au alloy nanoparticles. From a combination of catalytic activity measurements, machine learning-enabled spectroscopic analysis, and first-principles based kinetic modeling, we demonstrate that the active species are surface Pd ensembles containing only a few (from 1 to 3) Pd atoms. These species simultaneously explain the observed X-ray spectra and equate the experimental and theoretical values of the apparent activation energy. Remarkably, we find that the catalytic activity can be tuned on demand by controlling the size of the Pd ensembles through catalyst pretreatment. Our data-driven multimodal approach enables decoding of reactive structures in complex and dynamic alloy catalysts.Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Understanding and modeling catalytic reaction pathways and kinetics require atomic level knowledge of the active sites. These structures often change dynamically during reactions and are difficult to decipher. A prototypical example is the hydrogen-deuterium exchange reaction catalyzed by dilute Pd-in-Au alloy nanoparticles. From a combination of catalytic activity measurements, machine learning-enabled spectroscopic analysis, and first-principles based kinetic modeling, we demonstrate that the active species are surface Pd ensembles containing only a few (from 1 to 3) Pd atoms. These species simultaneously explain the observed X-ray spectra and equate the experimental and theoretical values of the apparent activation energy. Remarkably, we find that the catalytic activity can be tuned on demand by controlling the size of the Pd ensembles through catalyst pretreatment. Our data-driven multimodal approach enables decoding of reactive structures in complex and dynamic alloy catalysts. Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Here the authors report a data-driven approach for understanding catalytic reactions mechanisms in dilute bimetallic catalysts by combining X-ray absorption spectroscopy with activity studies and kinetic modeling. Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Understanding and modeling catalytic reaction pathways and kinetics require atomic level knowledge of the active sites. These structures often change dynamically during reactions and are difficult to decipher. A prototypical example is the hydrogen-deuterium exchange reaction catalyzed by dilute Pd-in-Au alloy nanoparticles. From a combination of catalytic activity measurements, machine learning-enabled spectroscopic analysis, and first-principles based kinetic modeling, we demonstrate that the active species are surface Pd ensembles containing only a few (from 1 to 3) Pd atoms. These species simultaneously explain the observed X-ray spectra and equate the experimental and theoretical values of the apparent activation energy. Remarkably, we find that the catalytic activity can be tuned on demand by controlling the size of the Pd ensembles through catalyst pretreatment. Our data-driven multimodal approach enables decoding of reactive structures in complex and dynamic alloy catalysts. Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Here the authors report a data-driven approach for understanding catalytic reactions mechanisms in dilute bimetallic catalysts by combining X-ray absorption spectroscopy with activity studies and kinetic modeling. |
ArticleNumber | 832 |
Author | Sautet, Philippe Płonka, Anna M. Ngan, Hio Tong Marcella, Nicholas Lim, Jin Soo Owen, Cameron J. Torrisi, Steven B. van der Hoeven, Jessi E. S. Foucher, Alexandre C. Marinkovic, Nebojsa S. Kozinsky, Boris Frenkel, Anatoly I. Aizenberg, Joanna Yan, George Weaver, Jason F. Stach, Eric A. |
Author_xml | – sequence: 1 givenname: Nicholas orcidid: 0000-0002-2224-532X surname: Marcella fullname: Marcella, Nicholas organization: Department of Materials Science and Chemical Engineering, Stony Brook University – sequence: 2 givenname: Jin Soo orcidid: 0000-0001-8406-7568 surname: Lim fullname: Lim, Jin Soo organization: Department of Chemistry and Chemical Biology, Harvard University – sequence: 3 givenname: Anna M. surname: Płonka fullname: Płonka, Anna M. organization: Department of Materials Science and Chemical Engineering, Stony Brook University – sequence: 4 givenname: George surname: Yan fullname: Yan, George organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles – sequence: 5 givenname: Cameron J. orcidid: 0000-0002-2543-7415 surname: Owen fullname: Owen, Cameron J. organization: Department of Chemistry and Chemical Biology, Harvard University – sequence: 6 givenname: Jessi E. S. surname: van der Hoeven fullname: van der Hoeven, Jessi E. S. organization: Department of Chemistry and Chemical Biology, Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University – sequence: 7 givenname: Alexandre C. orcidid: 0000-0001-5042-4002 surname: Foucher fullname: Foucher, Alexandre C. organization: Department of Materials Science and Engineering, University of Pennsylvania – sequence: 8 givenname: Hio Tong orcidid: 0000-0001-6987-2067 surname: Ngan fullname: Ngan, Hio Tong organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles – sequence: 9 givenname: Steven B. orcidid: 0000-0002-4283-8077 surname: Torrisi fullname: Torrisi, Steven B. organization: Department of Physics, Harvard University – sequence: 10 givenname: Nebojsa S. orcidid: 0000-0003-3579-3453 surname: Marinkovic fullname: Marinkovic, Nebojsa S. organization: Department of Chemical Engineering, Columbia University – sequence: 11 givenname: Eric A. orcidid: 0000-0002-3366-2153 surname: Stach fullname: Stach, Eric A. organization: Department of Materials Science and Engineering, University of Pennsylvania – sequence: 12 givenname: Jason F. surname: Weaver fullname: Weaver, Jason F. organization: Department of Chemical Engineering, University of Florida – sequence: 13 givenname: Joanna orcidid: 0000-0002-2343-8705 surname: Aizenberg fullname: Aizenberg, Joanna organization: Department of Chemistry and Chemical Biology, Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University – sequence: 14 givenname: Philippe orcidid: 0000-0002-8444-3348 surname: Sautet fullname: Sautet, Philippe organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Department of Chemistry and Biochemistry, University of California, Los Angeles – sequence: 15 givenname: Boris orcidid: 0000-0002-0638-539X surname: Kozinsky fullname: Kozinsky, Boris email: bkoz@seas.harvard.edu organization: Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Robert Bosch LLC, Research and Technology Center – sequence: 16 givenname: Anatoly I. orcidid: 0000-0002-5451-1207 surname: Frenkel fullname: Frenkel, Anatoly I. email: anatoly.frenkel@stonybrook.edu organization: Department of Materials Science and Chemical Engineering, Stony Brook University, Chemistry Division, Brookhaven National Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35149699$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1846156$$D View this record in Osti.gov |
BookMark | eNp9kktvFSEYhompsfXYP-DCTHTjZpT7ZWNiqtYmTdzomjDAnHIyByowbc6_l9Npa9tF2UDged_vwvcaHMQUPQBvEfyEIJGfC0WUix5i3GNJOO-vX4AjDCnqkcDk4MH5EByXsoFtEYUkpa_AIWGIKq7UEeDfvE0uxHWXvbE1XPmu1DzbOmdfuhA7F6a5-s5MU9p11lQz7Uotb8DL0UzFH9_uK_Dnx_ffJz_781-nZydfz3vLuKj9YEdmGFbGCIgGhwlxxnml-KDIMCLJiXEEjo45IdxgpWGeDpxCxEc2sMavwNni65LZ6MsctibvdDJB31ykvNYm12Anr5ly0ihouBeECoflyC0dRwq5QMRA17y-LF6X87D1zvpYs5kemT5-ieFCr9OVlpII3pq-Au8Xg1Rq0MWG6u2FTTF6W3XrLEeMN-jjbZSc_s6-VL0NxfppMtGnuWjMscRKcMUa-uEJuklzjq2fe0pIgRXfU-8epn2f790fNgAvgM2plOzHewRBvZ8VvcyKbrOib2ZFXzeRfCJq5Zga0r70MD0vJYu0tDhx7fP_tJ9R_QNSX9Mu |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_2c00495 crossref_primary_10_1002_advs_202207109 crossref_primary_10_1039_D2CP01446G crossref_primary_10_1021_acs_accounts_3c00589 crossref_primary_10_1021_jacs_2c02538 crossref_primary_10_1021_jacs_4c07167 crossref_primary_10_1016_j_apcatb_2023_122547 crossref_primary_10_1021_acs_jpcc_2c04982 crossref_primary_10_1002_cctc_202300400 crossref_primary_10_1002_ange_202412680 crossref_primary_10_1002_smll_202307087 crossref_primary_10_1021_acs_jpclett_4c02903 crossref_primary_10_1016_j_aichem_2024_100045 crossref_primary_10_1016_j_cattod_2024_114877 crossref_primary_10_1021_acscatal_3c02671 crossref_primary_10_1021_acs_iecr_4c01029 crossref_primary_10_1039_D4TA03030C crossref_primary_10_1038_s41929_022_00807_1 crossref_primary_10_1039_D2CP02107B crossref_primary_10_1038_s41929_024_01165_w crossref_primary_10_1038_s41929_023_00911_w crossref_primary_10_3390_chemistry5010034 crossref_primary_10_1021_acs_chemrev_2c00733 crossref_primary_10_1021_acs_jpcc_2c08477 crossref_primary_10_1002_aic_18625 crossref_primary_10_1002_anie_202412680 crossref_primary_10_26599_NRE_2023_9120068 crossref_primary_10_1021_acs_chemmater_3c00970 crossref_primary_10_1021_acsnano_4c04193 crossref_primary_10_1021_acscatal_4c04913 crossref_primary_10_1021_jacs_5c00842 crossref_primary_10_1002_adma_202301836 crossref_primary_10_1063_5_0130431 crossref_primary_10_1021_acs_jpcc_2c05929 crossref_primary_10_59761_RCR5148 crossref_primary_10_1021_acscatal_2c03560 crossref_primary_10_1002_cctc_202300180 crossref_primary_10_1038_s41467_024_48192_6 crossref_primary_10_1002_adfm_202308813 crossref_primary_10_1021_acs_jpcc_3c00571 crossref_primary_10_1557_s43577_022_00466_4 crossref_primary_10_1038_s41467_024_51068_4 crossref_primary_10_1021_acs_accounts_2c00087 crossref_primary_10_1021_acs_jpcc_3c01727 crossref_primary_10_1021_acscatal_4c00886 crossref_primary_10_1021_acsanm_3c04278 crossref_primary_10_1021_jacs_4c07075 crossref_primary_10_1016_j_jcat_2024_115367 crossref_primary_10_1007_s11426_022_1537_6 crossref_primary_10_1016_j_jcat_2025_115942 crossref_primary_10_1039_D4EY00002A crossref_primary_10_1002_sstr_202300555 crossref_primary_10_1016_j_apsusc_2023_156857 |
Cites_doi | 10.1111/twec.12898 10.1007/s11244-018-1057-4 10.1103/PhysRevLett.83.1814 10.1016/j.checat.2021.06.001 10.1021/acs.jpclett.7b02364 10.1021/acscatal.8b02168 10.1039/c0cs90031a 10.1016/0022-3093(95)00355-X 10.1021/acs.chemrev.0c00582 10.1116/1.4820493 10.1021/jp046540q 10.1107/S0909049505012719 10.1039/C7NR04435F 10.1063/1.480097 10.1021/jacs.0c06401 10.1021/acscatal.9b04243 10.1021/acs.chemrev.0c00078 10.1039/C9CY02338K 10.1039/c2cs35160a 10.1038/s42004-020-0293-2 10.1109/MCSE.2014.80 10.1021/acs.chemrev.7b00776 10.1021/acs.jpcc.8b08849 10.1103/PhysRevB.79.155107 10.1063/1.1323224 10.1098/rsta.2015.0077 10.1021/acs.chemmater.5b04406 10.1021/acsami.1c06714 10.1021/acsomega.0c06321 10.1021/acscatal.7b03752 10.1039/b800260f 10.1021/cs4006259 10.1103/PhysRevLett.77.3865 10.1073/pnas.2010413117 10.1016/S0021-9517(03)00057-5 10.1038/s41929-019-0327-2 10.1126/science.1164170 10.1103/PhysRevB.40.3616 10.1039/c2cs35185d 10.1021/acscatal.1c01400 10.1039/D0CP02098B 10.1021/acs.jpcc.9b04863 10.1021/jacs.8b07515 10.1021/acs.chemmater.9b01779 10.1116/1.579564 10.1039/c2cy00487a 10.1021/acs.jpcc.8b04108 10.1021/acscatal.9b02761 10.1016/j.apsusc.2019.04.036 10.1021/acs.accounts.8b00490 10.1103/PhysRevB.50.17953 10.1016/j.susc.2015.03.023 10.1021/acs.chemmater.5b00866 10.1021/jp910896k 10.1016/S0360-0564(02)46023-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Harvard Univ., Cambridge, MA (United States) Brookhaven National Lab. (BNL), Upton, NY (United States) |
CorporateAuthor_xml | – name: Brookhaven National Lab. (BNL), Upton, NY (United States) – name: Harvard Univ., Cambridge, MA (United States) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-022-28366-w |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_59d8a90a6e7347d28f6c4ff406713a0d PMC8837610 1846156 35149699 10_1038_s41467_022_28366_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: DOE BES grant No. DE-SC0012573. – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c567t-bcf5a529aa701bd233dade996b93bf1863ad30fd5d77dbc8a5e4b64016f5b5d23 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:24:50 EDT 2025 Thu Aug 21 14:33:14 EDT 2025 Fri May 19 00:34:10 EDT 2023 Tue Aug 05 09:52:43 EDT 2025 Wed Aug 13 04:34:24 EDT 2025 Mon Jul 21 05:45:45 EDT 2025 Tue Jul 01 04:17:45 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Fri Feb 21 02:38:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c567t-bcf5a529aa701bd233dade996b93bf1863ad30fd5d77dbc8a5e4b64016f5b5d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) SC0012573; SC0012704 BNL-222863-2022-JAAM |
ORCID | 0000-0002-5451-1207 0000-0003-3579-3453 0000-0002-2543-7415 0000-0002-0638-539X 0000-0002-4283-8077 0000-0002-2343-8705 0000-0002-2224-532X 0000-0002-3366-2153 0000-0001-5042-4002 0000-0002-8444-3348 0000-0001-6987-2067 0000-0001-8406-7568 0000000169872067 0000000254511207 0000000233662153 000000020638539X 0000000223438705 0000000225437415 0000000242838077 0000000284443348 0000000150424002 000000022224532X 0000000184067568 0000000335793453 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-28366-w |
PMID | 35149699 |
PQID | 2627872965 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_59d8a90a6e7347d28f6c4ff406713a0d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8837610 osti_scitechconnect_1846156 proquest_miscellaneous_2628297695 proquest_journals_2627872965 pubmed_primary_35149699 crossref_primary_10_1038_s41467_022_28366_w crossref_citationtrail_10_1038_s41467_022_28366_w springer_journals_10_1038_s41467_022_28366_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-11 |
PublicationDateYYYYMMDD | 2022-02-11 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Timoshenko, Lu, Lin, Frenkel (CR31) 2017; 8 Greeley, Mavrikakis (CR38) 2005; 109 Hannagan, Giannakakis, Flytzani-Stephanopoulos, Sykes (CR14) 2020; 120 Weckhuysen (CR25) 2010; 39 Cortright, Dumesic (CR53) 2001; 46 Lim (CR9) 2020; 142 CR36 Kim, Henkelman (CR22) 2013; 3 CR35 Tao (CR16) 2008; 322 Ravel, Newville (CR43) 2005; 12 Wrasman (CR10) 2018; 140 Luneau (CR34) 2020; 10 Sen, Gellman (CR37) 2018; 8 Piella, Bastús, Puntes (CR41) 2016; 28 Henkelman, Jónsson (CR50) 2000; 113 Kondrat, van Bokhoven (CR26) 2019; 62 Blöchl (CR44) 1994; 50 CR2 Zafeiratos, Piccinin, Teschner (CR17) 2012; 2 Dong, Dong, Jiang (CR1) 2020; 43 Perdew, Burke, Ernzerhof (CR47) 1996; 77 Luneau (CR30) 2020; 3 Wellendorff (CR49) 2015; 640 Frenkel (CR27) 2014; 32 Henkelman, Jónsson (CR51) 1999; 111 Marcella (CR28) 2020; 22 Gao, Goodman (CR15) 2012; 41 Methfessel, Paxton (CR46) 1989; 40 O’Connor (CR39) 2020; 117 van Spronsen (CR7) 2019; 123 Luneau (CR11) 2020; 120 Dahl (CR4) 1999; 83 An, Ha, Yoo, Kim (CR23) 2017; 9 van der Hoeven (CR33) 2021; 11 Personick (CR3) 2016; 374 Liu, Corma (CR13) 2018; 118 Lim, Molinari, Duanmu, Sautet, Kozinsky (CR19) 2019; 123 Hirschl, Delbecq, Sautet, Hafner (CR20) 2003; 217 Yates (CR6) 1995; 13 Yang, Shen, Han (CR24) 2019; 483 Giannakakis, Flytzani-Stephanopoulos, Sykes (CR12) 2019; 52 Chun (CR21) 2021; 1 Towns (CR56) 2014; 16 Kresse (CR45) 1995; 193 Nørskov (CR5) 2008; 37 Tao, Zhang, Luan, Zhang (CR8) 2012; 41 Vignola (CR40) 2018; 8 Mao, Campbell (CR55) 2019; 9 Luneau (CR29) 2019; 31 Liu (CR32) 2021; 13 Vignola (CR18) 2018; 122 van der Hoeven (CR42) 2021; 6 Csonka (CR48) 2009; 79 Chen, Mavrikakis (CR52) 2020; 10 Wang (CR54) 2019; 2 L Liu (28366_CR13) 2018; 118 HY Kim (28366_CR22) 2013; 3 BWJ Chen (28366_CR52) 2020; 10 J Wellendorff (28366_CR49) 2015; 640 BM Weckhuysen (28366_CR25) 2010; 39 JP Perdew (28366_CR47) 1996; 77 JS Lim (28366_CR9) 2020; 142 R Hirschl (28366_CR20) 2003; 217 RD Cortright (28366_CR53) 2001; 46 Z Mao (28366_CR55) 2019; 9 JT Yates (28366_CR6) 1995; 13 I Sen (28366_CR37) 2018; 8 MA van Spronsen (28366_CR7) 2019; 123 N Marcella (28366_CR28) 2020; 22 Y Liu (28366_CR32) 2021; 13 J Towns (28366_CR56) 2014; 16 F Tao (28366_CR8) 2012; 41 J Piella (28366_CR41) 2016; 28 K Dong (28366_CR1) 2020; 43 M Luneau (28366_CR29) 2019; 31 JES van der Hoeven (28366_CR33) 2021; 11 F Gao (28366_CR15) 2012; 41 M Luneau (28366_CR30) 2020; 3 AI Frenkel (28366_CR27) 2014; 32 CR O’Connor (28366_CR39) 2020; 117 JES van der Hoeven (28366_CR42) 2021; 6 S Zafeiratos (28366_CR17) 2012; 2 RT Hannagan (28366_CR14) 2020; 120 JS Lim (28366_CR19) 2019; 123 S Dahl (28366_CR4) 1999; 83 H An (28366_CR23) 2017; 9 CJ Wrasman (28366_CR10) 2018; 140 H Chun (28366_CR21) 2021; 1 PE Blöchl (28366_CR44) 1994; 50 J Greeley (28366_CR38) 2005; 109 T Wang (28366_CR54) 2019; 2 28366_CR36 28366_CR2 G Henkelman (28366_CR50) 2000; 113 M Luneau (28366_CR34) 2020; 10 G Giannakakis (28366_CR12) 2019; 52 28366_CR35 B Ravel (28366_CR43) 2005; 12 SA Kondrat (28366_CR26) 2019; 62 J Timoshenko (28366_CR31) 2017; 8 G Kresse (28366_CR45) 1995; 193 F Tao (28366_CR16) 2008; 322 JK Nørskov (28366_CR5) 2008; 37 M Methfessel (28366_CR46) 1989; 40 ML Personick (28366_CR3) 2016; 374 Y Yang (28366_CR24) 2019; 483 G Henkelman (28366_CR51) 1999; 111 E Vignola (28366_CR40) 2018; 8 E Vignola (28366_CR18) 2018; 122 M Luneau (28366_CR11) 2020; 120 GI Csonka (28366_CR48) 2009; 79 |
References_xml | – volume: 43 start-page: 1665 year: 2020 end-page: 1698 ident: CR1 article-title: How renewable energy consumption lower global CO emissions? Evidence from countries with different income levels publication-title: World Econ. doi: 10.1111/twec.12898 – volume: 62 start-page: 1218 year: 2019 end-page: 1227 ident: CR26 article-title: A perspective on counting catalytic active sites and rates of reaction using X-ray spectroscopy publication-title: Top. Catal. doi: 10.1007/s11244-018-1057-4 – volume: 83 start-page: 8314 year: 1999 ident: CR4 article-title: Role of Steps in N2 Activation on Ru(0001) publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.1814 – volume: 1 start-page: 855 year: 2021 end-page: 869 ident: CR21 article-title: First-principle-data-integrated machine-learning approach for high-throughput searching of ternary electrocatalyst toward oxygen reduction reaction publication-title: Chem. Catal. doi: 10.1016/j.checat.2021.06.001 – volume: 8 start-page: 5091 year: 2017 end-page: 5098 ident: CR31 article-title: Supervised machine-learning-based determination of three-dimensional structure of metallic nanoparticles publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02364 – volume: 8 start-page: 10486 year: 2018 end-page: 10497 ident: CR37 article-title: Kinetic fingerprints of catalysis by subsurface hydrogen publication-title: ACS Catal. doi: 10.1021/acscatal.8b02168 – volume: 39 start-page: 4557 year: 2010 end-page: 4559 ident: CR25 article-title: Preface: recent advances in the in-situ characterization of heterogeneous catalysts publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs90031a – volume: 193 start-page: 222 year: 1995 end-page: 229 ident: CR45 article-title: Ab initio molecular dynamics for liquid metals publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00355-X – volume: 120 start-page: 12834 year: 2020 end-page: 12872 ident: CR11 article-title: Guidelines to achieving high selectivity for the hydrogenation of α,β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: a review publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00582 – volume: 32 start-page: 20801 year: 2014 ident: CR27 article-title: Critical review: effects of complex interactions on structure and dynamics of supported metal catalysts publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.4820493 – ident: CR35 – volume: 109 start-page: 3460 year: 2005 end-page: 3471 ident: CR38 article-title: Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys publication-title: J. Phys. Chem. B doi: 10.1021/jp046540q – volume: 46 start-page: 161 year: 2001 end-page: 264 ident: CR53 article-title: Kinetics of heterogeneous catalytic reactions: analysis of reaction schemes publication-title: Adv. Catal. – volume: 12 start-page: 537 year: 2005 end-page: 541 ident: CR43 article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 9 start-page: 12077 year: 2017 end-page: 12086 ident: CR23 article-title: Understanding the atomic-level process of CO-adsorption-driven surface segregation of Pd in (AuPd)147 bimetallic nanoparticles publication-title: Nanoscale doi: 10.1039/C7NR04435F – volume: 111 start-page: 7010 year: 1999 end-page: 7022 ident: CR51 article-title: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives publication-title: J. Chem. Phys. doi: 10.1063/1.480097 – volume: 142 start-page: 15907 year: 2020 end-page: 15916 ident: CR9 article-title: Evolution of metastable structures at bimetallic surfaces from microscopy and machine-learning molecular dynamics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06401 – volume: 10 start-page: 441 year: 2020 end-page: 450 ident: CR34 article-title: Achieving high selectivity for alkyne hydrogenation at high conversions with compositionally optimized PdAu nanoparticle catalysts in Raspberry colloid templated SiO publication-title: ACS Catal. doi: 10.1021/acscatal.9b04243 – volume: 120 start-page: 12044 year: 2020 end-page: 12088 ident: CR14 article-title: Single-atom alloy catalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00078 – volume: 10 start-page: 671 year: 2020 end-page: 689 ident: CR52 article-title: How coverage influences thermodynamic and kinetic isotope effects for H2/D2 dissociative adsorption on transition metals publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY02338K – volume: 41 start-page: 8009 year: 2012 end-page: 8020 ident: CR15 article-title: Pd–Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35160a – volume: 3 start-page: 46 year: 2020 ident: CR30 article-title: Enhancing catalytic performance of dilute metal alloy nanomaterials publication-title: Commun. Chem. doi: 10.1038/s42004-020-0293-2 – ident: CR36 – volume: 16 start-page: 62 year: 2014 end-page: 74 ident: CR56 article-title: XSEDE: accelerating scientific discovery publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2014.80 – volume: 118 start-page: 4981 year: 2018 end-page: 5079 ident: CR13 article-title: Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00776 – volume: 123 start-page: 8312 year: 2019 end-page: 8323 ident: CR7 article-title: Dynamics of surface alloys: rearrangement of Pd/Ag(111) induced by CO and O publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.8b08849 – volume: 79 start-page: 155107 year: 2009 ident: CR48 article-title: Assessing the performance of recent density functionals for bulk solids publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.155107 – volume: 113 start-page: 9978 year: 2000 end-page: 9985 ident: CR50 article-title: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 374 start-page: 20150077 year: 2016 ident: CR3 article-title: Catalyst design for enhanced sustainability through fundamental surface chemistry publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2015.0077 – volume: 28 start-page: 1066 year: 2016 end-page: 1075 ident: CR41 article-title: Size-controlled synthesis of Sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04406 – volume: 13 start-page: 53363 year: 2021 end-page: 53374 ident: CR32 article-title: Probing active sites in Cu Pd cluster catalysts by machine-learning-assisted X-ray absorption spectroscopy publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.1c06714 – ident: CR2 – volume: 6 start-page: 7034 year: 2021 end-page: 7046 ident: CR42 article-title: Structural control over bimetallic core–shell nanorods for surface-enhanced Raman spectroscopy publication-title: ACS Omega doi: 10.1021/acsomega.0c06321 – volume: 8 start-page: 1662 year: 2018 end-page: 1671 ident: CR40 article-title: Evaluating the risk of C–C bond formation during selective hydrogenation of acetylene on palladium publication-title: ACS Catal. doi: 10.1021/acscatal.7b03752 – volume: 37 start-page: 2163 year: 2008 end-page: 2171 ident: CR5 article-title: The nature of the active site in heterogeneous metal catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/b800260f – volume: 3 start-page: 2541 year: 2013 end-page: 2546 ident: CR22 article-title: CO adsorption-driven surface segregation of Pd on Au/Pd bimetallic surfaces: role of defects and effect on CO oxidation publication-title: ACS Catal. doi: 10.1021/cs4006259 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR47 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 117 start-page: 22657 year: 2020 end-page: 22664 ident: CR39 article-title: Facilitating hydrogen atom migration via a dense phase on palladium islands to a surrounding silver surface publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2010413117 – volume: 217 start-page: 354 year: 2003 end-page: 366 ident: CR20 article-title: Adsorption of unsaturated aldehydes on the (111) surface of a Pt-Fe alloy catalyst from first principles publication-title: J. Catal. doi: 10.1016/S0021-9517(03)00057-5 – volume: 2 start-page: 773 year: 2019 end-page: 779 ident: CR54 article-title: Rational design of selective metal catalysts for alcohol amination with ammonia publication-title: Nat. Catal. doi: 10.1038/s41929-019-0327-2 – volume: 322 start-page: 932 year: 2008 end-page: 934 ident: CR16 article-title: Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles publication-title: Science doi: 10.1126/science.1164170 – volume: 40 start-page: 3616 year: 1989 end-page: 3621 ident: CR46 article-title: High-precision sampling for Brillouin-zone integration in metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.40.3616 – volume: 41 start-page: 7980 year: 2012 end-page: 7993 ident: CR8 article-title: Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35185d – volume: 11 start-page: 6971 year: 2021 end-page: 6981 ident: CR33 article-title: Entropic control of HD exchange rates over dilute Pd-in-Au alloy nanoparticle catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.1c01400 – volume: 22 start-page: 18902 year: 2020 end-page: 18910 ident: CR28 article-title: Neural network assisted analysis of bimetallic nanocatalysts using X-ray absorption near edge structure spectroscopy publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP02098B – volume: 123 start-page: 16332 year: 2019 end-page: 16344 ident: CR19 article-title: Automated detection and characterization of surface restructuring events in bimetallic catalysts publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b04863 – volume: 140 start-page: 12930 year: 2018 end-page: 12939 ident: CR10 article-title: Synthesis of colloidal Pd/Au dilute alloy nanocrystals and their potential for selective catalytic oxidations publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07515 – volume: 31 start-page: 5759 year: 2019 end-page: 5768 ident: CR29 article-title: Dilute Pd/Au alloy nanoparticles embedded in colloid-templated porous SiO : stable Au-based oxidation catalysts publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01779 – volume: 13 start-page: 1359 year: 1995 ident: CR6 article-title: Surface chemistry at metallic step defect sites publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.579564 – volume: 2 start-page: 1787 year: 2012 end-page: 1801 ident: CR17 article-title: Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment publication-title: Catal. Sci. Technol. doi: 10.1039/c2cy00487a – volume: 122 start-page: 15456 year: 2018 end-page: 15463 ident: CR18 article-title: Acetylene adsorption on Pd-Ag alloys: evidence for limited island formation and strong reverse segregation from Monte Carlo simulations publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b04108 – volume: 9 start-page: 9465 year: 2019 end-page: 9473 ident: CR55 article-title: Apparent activation energies in complex reaction mechanisms: a simple relationship via degrees of rate control publication-title: ACS Catal. doi: 10.1021/acscatal.9b02761 – volume: 483 start-page: 991 year: 2019 end-page: 1005 ident: CR24 article-title: Diffusion mechanisms of metal atoms in PdAu bimetallic catalyst under CO atmosphere based on ab initio molecular dynamics publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.04.036 – volume: 52 start-page: 237 year: 2019 end-page: 247 ident: CR12 article-title: Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00490 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR44 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 640 start-page: 36 year: 2015 end-page: 44 ident: CR49 article-title: A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals publication-title: Surf. Sci. doi: 10.1016/j.susc.2015.03.023 – volume: 8 start-page: 10486 year: 2018 ident: 28366_CR37 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02168 – volume: 79 start-page: 155107 year: 2009 ident: 28366_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.155107 – volume: 22 start-page: 18902 year: 2020 ident: 28366_CR28 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP02098B – volume: 39 start-page: 4557 year: 2010 ident: 28366_CR25 publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs90031a – volume: 10 start-page: 671 year: 2020 ident: 28366_CR52 publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY02338K – volume: 2 start-page: 1787 year: 2012 ident: 28366_CR17 publication-title: Catal. Sci. Technol. doi: 10.1039/c2cy00487a – volume: 118 start-page: 4981 year: 2018 ident: 28366_CR13 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00776 – volume: 193 start-page: 222 year: 1995 ident: 28366_CR45 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(95)00355-X – volume: 13 start-page: 1359 year: 1995 ident: 28366_CR6 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.579564 – volume: 32 start-page: 20801 year: 2014 ident: 28366_CR27 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.4820493 – volume: 3 start-page: 2541 year: 2013 ident: 28366_CR22 publication-title: ACS Catal. doi: 10.1021/cs4006259 – volume: 16 start-page: 62 year: 2014 ident: 28366_CR56 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2014.80 – volume: 123 start-page: 8312 year: 2019 ident: 28366_CR7 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.8b08849 – volume: 8 start-page: 1662 year: 2018 ident: 28366_CR40 publication-title: ACS Catal. doi: 10.1021/acscatal.7b03752 – volume: 12 start-page: 537 year: 2005 ident: 28366_CR43 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 3 start-page: 46 year: 2020 ident: 28366_CR30 publication-title: Commun. Chem. doi: 10.1038/s42004-020-0293-2 – volume: 120 start-page: 12044 year: 2020 ident: 28366_CR14 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00078 – ident: 28366_CR36 doi: 10.1021/acs.chemmater.5b00866 – volume: 123 start-page: 16332 year: 2019 ident: 28366_CR19 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b04863 – volume: 640 start-page: 36 year: 2015 ident: 28366_CR49 publication-title: Surf. Sci. doi: 10.1016/j.susc.2015.03.023 – volume: 6 start-page: 7034 year: 2021 ident: 28366_CR42 publication-title: ACS Omega doi: 10.1021/acsomega.0c06321 – volume: 9 start-page: 12077 year: 2017 ident: 28366_CR23 publication-title: Nanoscale doi: 10.1039/C7NR04435F – ident: 28366_CR35 doi: 10.1021/jp910896k – volume: 83 start-page: 8314 year: 1999 ident: 28366_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.1814 – volume: 11 start-page: 6971 year: 2021 ident: 28366_CR33 publication-title: ACS Catal. doi: 10.1021/acscatal.1c01400 – volume: 37 start-page: 2163 year: 2008 ident: 28366_CR5 publication-title: Chem. Soc. Rev. doi: 10.1039/b800260f – volume: 46 start-page: 161 year: 2001 ident: 28366_CR53 publication-title: Adv. Catal. doi: 10.1016/S0360-0564(02)46023-3 – volume: 41 start-page: 7980 year: 2012 ident: 28366_CR8 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35185d – volume: 43 start-page: 1665 year: 2020 ident: 28366_CR1 publication-title: World Econ. doi: 10.1111/twec.12898 – volume: 40 start-page: 3616 year: 1989 ident: 28366_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.40.3616 – volume: 28 start-page: 1066 year: 2016 ident: 28366_CR41 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04406 – volume: 50 start-page: 17953 year: 1994 ident: 28366_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 109 start-page: 3460 year: 2005 ident: 28366_CR38 publication-title: J. Phys. Chem. B doi: 10.1021/jp046540q – volume: 10 start-page: 441 year: 2020 ident: 28366_CR34 publication-title: ACS Catal. doi: 10.1021/acscatal.9b04243 – volume: 113 start-page: 9978 year: 2000 ident: 28366_CR50 publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 31 start-page: 5759 year: 2019 ident: 28366_CR29 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01779 – volume: 9 start-page: 9465 year: 2019 ident: 28366_CR55 publication-title: ACS Catal. doi: 10.1021/acscatal.9b02761 – volume: 2 start-page: 773 year: 2019 ident: 28366_CR54 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0327-2 – volume: 483 start-page: 991 year: 2019 ident: 28366_CR24 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.04.036 – volume: 62 start-page: 1218 year: 2019 ident: 28366_CR26 publication-title: Top. Catal. doi: 10.1007/s11244-018-1057-4 – volume: 142 start-page: 15907 year: 2020 ident: 28366_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06401 – volume: 217 start-page: 354 year: 2003 ident: 28366_CR20 publication-title: J. Catal. doi: 10.1016/S0021-9517(03)00057-5 – volume: 111 start-page: 7010 year: 1999 ident: 28366_CR51 publication-title: J. Chem. Phys. doi: 10.1063/1.480097 – volume: 1 start-page: 855 year: 2021 ident: 28366_CR21 publication-title: Chem. Catal. doi: 10.1016/j.checat.2021.06.001 – ident: 28366_CR2 – volume: 13 start-page: 53363 year: 2021 ident: 28366_CR32 publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.1c06714 – volume: 117 start-page: 22657 year: 2020 ident: 28366_CR39 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2010413117 – volume: 52 start-page: 237 year: 2019 ident: 28366_CR12 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00490 – volume: 122 start-page: 15456 year: 2018 ident: 28366_CR18 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b04108 – volume: 120 start-page: 12834 year: 2020 ident: 28366_CR11 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00582 – volume: 41 start-page: 8009 year: 2012 ident: 28366_CR15 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35160a – volume: 374 start-page: 20150077 year: 2016 ident: 28366_CR3 publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2015.0077 – volume: 322 start-page: 932 year: 2008 ident: 28366_CR16 publication-title: Science doi: 10.1126/science.1164170 – volume: 140 start-page: 12930 year: 2018 ident: 28366_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07515 – volume: 8 start-page: 5091 year: 2017 ident: 28366_CR31 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02364 – volume: 77 start-page: 3865 year: 1996 ident: 28366_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 |
SSID | ssj0000391844 |
Score | 2.5728874 |
Snippet | Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Understanding and modeling catalytic reaction... Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Here the authors report a data-driven approach... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 832 |
SubjectTerms | 119/118 140/58 147/28 639/301/299/1013 639/638/77/885 639/638/77/887 Absorption spectroscopy Bimetals Catalysts Catalytic activity Catalytic mechanisms Deuterium Dilution Energy efficiency First principles Gold Heterogeneous catalysis Humanities and Social Sciences Hydrogen-deuterium exchange INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Learning algorithms Machine learning MATERIALS SCIENCE Modelling multidisciplinary Nanoalloys Nanoparticles Palladium Porous materials Renewable energy Science Science (multidisciplinary) Spectrum analysis X ray absorption X ray spectra X-ray absorption spectroscopy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ja9wwFBYhUMilNGmaOktxobfWRNauY7cQeuipgdyEtkcHiqcwE8L8-zzJnkmm6XLpyWA_gf3prZb0PULeAFCavOdd0B46ESB21lvaCemp1YARGCrb51d1eSW-XMvrB62-yp6wkR54BO5c2mRwsFdZc6ETM6CiAMA4hOWVp6l4X4x5D4qp6oO5xdJFTKdkKDfnC1F9Qtm8jhFVqe52KxJVwn68zNGwfpdsPt4z-cvCaY1HF8_I0ymRbN-PH7BPdvJwQJ6MrSVXz4n6hHVliUstZoXVp7UjVewN1tftbGjTDHUut2XdfdXWnzirxXJxSK4uPn_7eNlNPRK6KJVediGC9JJZ7zXtQ2KcJ58yFjHB8gC9UdwnTiHJpHUK0XiZRVBYVCmQQaL8C7I7zIf8krSZgeo9QOSASGcZmAimFzkGITQLtCH9Gi8XJwLx0sfih6sL2dy4EWOHGLuKsbttyNvNmJ8jfcZfpT-UadhIFurregMVwk0K4f6lEA05KZPoMIMoNLix7BeKS4fqgMmbasjpem7dZK0LxxRDv8Wskg15vXmMdlYWT_yQ5zdVppxCVhZljkZV2LxnOQ1hlbUN0VtKsvUh20-G2ffK5W0MevgesX23Vqf71_ozUMf_A6gTsseKOZTuNv0p2UUlzGeYYS3Dq2pMdyDHIbA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEG40IngR304SZQRvOmSm330SX2vw4MlAbk0_dSHMRGdD2H-fqp7ZDesjp4WdGuip_urVVV1FyOuc2zY6xxqvXG64z6ExzrQNF641KoMFzqXb5zd5fMK_norT-cBtnMsqNzqxKOo4BDwjP6KSAraokeLd-a8Gp0ZhdnUeoXGb3OnA0mBJl1582Z6xYPdzzfl8V6Zl-mjkRTNgCTvYVSmbyx17VNr2w88A4vUvl_Pvysk_0qfFKi0ekPuzO1m_n_b_IbmV-kfk7jRgcv2YyE8QXaJ1qsE3LJqtnhrGXkCUXS_7Oi4BeanG7Pu6Lkc563E1PiEni8_fPx4386SEJgipVo0PWThBjXOq7XykjEUXE4Qy3jCfOy2Zi6zNUUSlog_aicS9hNBKZuEF0D8le_3Qp-ekTjTLzuUcWGZcJeEp97rjKXjOFfVtRboNv2yY24jjNIszW9LZTNuJxxZ4bAuP7WVF3mzfOZ-aaNxI_QG3YUuJDbDLH8PvH3aWJytM1IApJ5OCZUaqsww8Z3BPIOp2bazIAW6iBT8Cm-EGrBoKKwtwABdOVuRws7d2ltnRXiOsIq-2j0HaMIXi-jRcFBq8iywN0DyboLBdJ96JMNKYiqgdkOx8yO6TfvmzdPTWGvR8B7x9u4HT9bL-z6j9m7_igNyjCHScXtMdkj2AV3oBHtTKvyxicgVDZhl8 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEC7WXQQvsr57d5UWvGljd945jo9lmYMXXdhbyFMHpEfskWX-vZV098joKnhq6FQgqXyVqiSVLwAvUmrbYC1tnLSpYS75RlvdNozbVsuEHjgVts8P4uKSLa_41QGQ-S5MSdovlJZlmp6zw14PrJh0zj1HhyhEc30LjjJVO2L7aLFYflzudlYy57libLoh01J1Q-U9L1TI-vGzRqO6KdD8M1_yt0PT4ovOj-HuFETWi7HZ9-Ag9vfh9vis5PYBiHe4psw-qcaIsMxn9UgTi_0d6lVfhxXiLdb5zH1blw2c7bAZHsLl-ftPby-a6X2ExnMhN43ziVtOtLWy7VwglAYbIi5gnKYudUpQG2ibAg9SBueV5ZE5gQsqkbjjKP8IDvt1H59AHUkSnU3J00SZjNwR5lTHoneMSeLaCrpZX8ZP5OH5DYuvphxiU2VGHRvUsSk6NtcVvNzV-TZSZ_xT-k0ehp1kpr0uP9bfP5sJBobroBBJVkSJzQxEJeFZShiU4FrbtqGC0zyIBqOHTIHrc66Q3xiEAwZuooKzeWzNZKmDIYLgnEW04BU83xWjjeWDE9vH9Y8ik28gC40yj0co7NqZb0JooXUFcg8kex3ZL-lXXwqPt1I4u3eo21cznH416--KOvk_8VO4QzLw8xs23RkcItziU4yjNu7ZZDg_AfuKGRc priority: 102 providerName: Springer Nature |
Title | Decoding reactive structures in dilute alloy catalysts |
URI | https://link.springer.com/article/10.1038/s41467-022-28366-w https://www.ncbi.nlm.nih.gov/pubmed/35149699 https://www.proquest.com/docview/2627872965 https://www.proquest.com/docview/2628297695 https://www.osti.gov/servlets/purl/1846156 https://pubmed.ncbi.nlm.nih.gov/PMC8837610 https://doaj.org/article/59d8a90a6e7347d28f6c4ff406713a0d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEB_uA8EX8dv1zrKCb7q6m83H5kGkV68eBQ9RC30LySbRwrHVa4-z_72T7G6lWn3yZQPJBLKT32Rm8jED8Mz7PLdal5kR2mfU-DqTWuYZZTqXwqMG9jHa5zk_m9LJjM32oE931DFwudO1C_mkppcXL398X79BgX_dPhmvXi1pFPdwLx2VJefZ9T4comYSIaPB-87cjytzKdGhod3bmd1dt_RTDOOPxQLFbZcJ-udNyt-OU6OWGt-GW515mQ5bPNyBPdfchRttwsn1PeBv0dsM2ipFWzGudGkbQPYKve503qR2jkh0aTiNX6dxa2e9XC3vw3R8-nl0lnWZE7KacbHKTO2ZZkRqLfLCWFKWVluHro2RpfFFxUtty9xbZoWwpq40c9RwdLW4Z4Yh_QM4aBaNewSpI54X2vu69CUVjhlCTVVQVxtKBTF5AkXPL1V3YcVDdosLFY-3y0q1PFbIYxV5rK4TeL7p860NqvFP6pMwDRvKEBA7Viwuv6hOvhSTtkKMae4EDtOSyvOaeo_mCnrhOrcJHIVJVGhXhOC4dbhFVK8UwgFNOp7AcT-3qoegIpzgakYkZwk83TSj9IUjFd24xVWkCW-TuUSahy0UNuMMbyQklzIBsQWSrR_ZbmnmX2OE76rCdb9A3r7o4fRrWH9n1OP_wagjuEmCOIScN8UxHCAI3RO0u1ZmAPtiJvBbjd8N4HA4nHyaYHlyev7hI9aO-GgQdzQGUeh-Ahc6MIU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLuhBYIEJ4ia-JX4gBBQli0tPbVSb8ZPWAllC7vVav8Uv5EZJ9lqefTWU6TEkezxNy-PZ4aQ5zGWpTeGFbY2seA2ukIZVRZcmFLVETRwTNU-j-T4hH86Facb5NeQC4PXKgeZmAS1nzo8I9-lkgK2qJLizdmPArtGYXR1aKHRweIgLBfgss1e7-_B_r6gdPTh-P246LsKFE7Iel5YF4URVBlTl5X1lDFvfACz3ypmY9VIZjwroxe-rr11jRGBWwluiIzCCo-FDkDkX-MMNDlmpo8-rs50sNp6w3mfm1OyZnfGkyTCK_Ogx6UsFmv6L7UJgMcU2PlfJu7fNzX_CNcmLTi6TW715mv-tsPbHbIR2rvketfQcnmPyD3wZlEb5mCLJkmadwVqz8Grzydt7ieA9JBjtH-Zp6Oj5Ww-u09OroSGD8hmO23DFskDjbIyMToWGa-DsJTbpuLBWc5rasuMVAO9tOvLlmP3jO86hc9Zozsaa6CxTjTWi4y8XP1z1hXtuHT0O9yG1UgsuJ1eTH9-1T3_aqF8Axg2MtQwTU-bKB2PEcwh8PJN6TOyjZuowW7B4rsObym5uQY4gMkoM7Iz7K3uZcRMXyA6I89Wn4G7MWRj2jA9T2Mw91kqGPOwg8JqnpiDoaRSGanXQLK2kPUv7eRbqiDeNKBXKqDtqwFOF9P6P6EeXb6Kp-TG-PjzoT7cPzrYJjcpgh4751Q7ZBOgFh6D9Ta3TxLL5OTLVfPob7TMWAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrUBcEO-GFggSnCDaxPEjPiBE2a5ailYVolJvxk9YCSWFbLXav8avY-wkWy2P3nqKlDiSPf7m5RnPIPTC-zy3SpWZ5spnRHuTCSXyjFCVC-5BA_tY7XPGDk_JhzN6toV-DXdhQlrlIBOjoLaNCWfkY8wwYAsLRse-T4s4mUzfnv_IQgepEGkd2ml0EDl2qyW4b-2bowns9UuMpwef3x9mfYeBzFDGF5k2niqKhVI8L7TFZWmVdeACaFFqX1SsVLbMvaWWc6tNpagjmoFLwjzV1IaiByD-t3nwikZoe_9gdvJpfcITaq9XhPQ3dfKyGrckyqWQQA9anbFsuaENY9MAeDTA3P8yeP_O2_wjeBt14vQOut0bs-m7Dn130Zar76EbXXvL1X3EJuDbBt2YgmUa5Wralau9AB8_ndepnQPuXRpi_6s0HiSt2kX7AJ1eCxUfolHd1G4HpQ57VijvTelLwh3VmOiqIM5oQjjWeYKKgV7S9EXMQy-N7zIG08tKdjSWQGMZaSyXCXq1_ue8K-Fx5ej9sA3rkaH8dnzR_Pwqe26WVNgKEK2Y4zBNiyvPDPEejCPw-VVuE7QbNlGCFRNK8ZqQs2QWEuAABiRL0N6wt7KXGK28xHeCnq8_A6-HAI6qXXMRx4Sb0EzAmEcdFNbzDDcyBBMiQXwDJBsL2fxSz7_FeuJVBVqmANq-HuB0Oa3_E-rx1at4hm4Cf8qPR7PjXXQLB8yHNjrFHhoB0twTMOUW-mnPMyn6ct1s-htzfF2S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+reactive+structures+in+dilute+alloy+catalysts&rft.jtitle=Nature+communications&rft.au=Nicholas+Marcella&rft.au=Jin+Soo+Lim&rft.au=Anna+M.+P%C5%82onka&rft.au=George+Yan&rft.date=2022-02-11&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41467-022-28366-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_59d8a90a6e7347d28f6c4ff406713a0d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |