Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen)
CEACAM5 and CEACAM6 are overexpressed in many cancers and are associated with adhesion and invasion. The effects of three monoclonal antibodies targeting different epitopes on these antigens (NH2-terminal [MN-3] and A1B1 domains [MN-15] shared by CEACAM5 and CEACAM6 and the A3B3 domain [MN-14] restr...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 65; no. 19; pp. 8809 - 8817 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.10.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CEACAM5 and CEACAM6 are overexpressed in many cancers and are associated with adhesion and invasion. The effects of three monoclonal antibodies targeting different epitopes on these antigens (NH2-terminal [MN-3] and A1B1 domains [MN-15] shared by CEACAM5 and CEACAM6 and the A3B3 domain [MN-14] restricted to CEACAM5) were evaluated in migration, invasion, and adhesion assays in vitro using a panel of human pancreatic, breast, and colonic cancer cell lines, and in the GW-39 human colonic micrometastasis model in vivo. MN-3 Fab' and MN-15 Fab' were both effective at inhibiting cell migration. MN-15 Fab' treatment inhibited invasion, reducing cell penetration through an extracellular matrix (ECM). MN-3 Fab' also decreased invasion but was less effective than MN-15 Fab' in four of five cell lines. All three monoclonal antibody (mAb) Fabs decreased adhesion of tumor cells to endothelial cells by 49% to 58%. MN-15 Fab' but not MN-3 or MN-14 Fabs induced a decrease in adhesion of three of six cell lines to the ECM protein, fibronectin, but adhesion to vitronectin, laminin, collagen-I, and collagen-IV was not affected. In vivo studies showed that treatment with MN-3 Fab' or MN-15 Fab' of mice implanted with GW-39 human colonic cancer cells increased their survival (P < 0.025 and P < 0.01, respectively). These studies show that antibody Fabs that target either CEACAM5 or CEACAM6 affect cell migration, cell invasion, and cell adhesion in vitro, and that MN-15 and MN-3 Fabs have antimetastatic effects in vivo, resulting in improved survival of mice with metastases. Thus, blocking the N and A1B1 domains of CEACAM5/CEACAM6 can impede the metastatic process. |
---|---|
AbstractList | CEACAM5 and CEACAM6 are overexpressed in many cancers and are associated with adhesion and invasion. The effects of three monoclonal antibodies targeting different epitopes on these antigens (NH2-terminal [MN-3] and A1B1 domains [MN-15] shared by CEACAM5 and CEACAM6 and the A3B3 domain [MN-14] restricted to CEACAM5) were evaluated in migration, invasion, and adhesion assays in vitro using a panel of human pancreatic, breast, and colonic cancer cell lines, and in the GW-39 human colonic micrometastasis model in vivo. MN-3 Fab' and MN-15 Fab' were both effective at inhibiting cell migration. MN-15 Fab' treatment inhibited invasion, reducing cell penetration through an extracellular matrix (ECM). MN-3 Fab' also decreased invasion but was less effective than MN-15 Fab' in four of five cell lines. All three monoclonal antibody (mAb) Fabs decreased adhesion of tumor cells to endothelial cells by 49% to 58%. MN-15 Fab' but not MN-3 or MN-14 Fabs induced a decrease in adhesion of three of six cell lines to the ECM protein, fibronectin, but adhesion to vitronectin, laminin, collagen-I, and collagen-IV was not affected. In vivo studies showed that treatment with MN-3 Fab' or MN-15 Fab' of mice implanted with GW-39 human colonic cancer cells increased their survival (P < 0.025 and P < 0.01, respectively). These studies show that antibody Fabs that target either CEACAM5 or CEACAM6 affect cell migration, cell invasion, and cell adhesion in vitro, and that MN-15 and MN-3 Fabs have antimetastatic effects in vivo, resulting in improved survival of mice with metastases. Thus, blocking the N and A1B1 domains of CEACAM5/CEACAM6 can impede the metastatic process. Abstract CEACAM5 and CEACAM6 are overexpressed in many cancers and are associated with adhesion and invasion. The effects of three monoclonal antibodies targeting different epitopes on these antigens (NH2-terminal [MN-3] and A1B1 domains [MN-15] shared by CEACAM5 and CEACAM6 and the A3B3 domain [MN-14] restricted to CEACAM5) were evaluated in migration, invasion, and adhesion assays in vitro using a panel of human pancreatic, breast, and colonic cancer cell lines, and in the GW-39 human colonic micrometastasis model in vivo. MN-3 Fab′ and MN-15 Fab′ were both effective at inhibiting cell migration. MN-15 Fab′ treatment inhibited invasion, reducing cell penetration through an extracellular matrix (ECM). MN-3 Fab′ also decreased invasion but was less effective than MN-15 Fab′ in four of five cell lines. All three monoclonal antibody (mAb) Fabs decreased adhesion of tumor cells to endothelial cells by 49% to 58%. MN-15 Fab′ but not MN-3 or MN-14 Fabs induced a decrease in adhesion of three of six cell lines to the ECM protein, fibronectin, but adhesion to vitronectin, laminin, collagen-I, and collagen-IV was not affected. In vivo studies showed that treatment with MN-3 Fab′ or MN-15 Fab′ of mice implanted with GW-39 human colonic cancer cells increased their survival (P < 0.025 and P < 0.01, respectively). These studies show that antibody Fabs that target either CEACAM5 or CEACAM6 affect cell migration, cell invasion, and cell adhesion in vitro, and that MN-15 and MN-3 Fabs have antimetastatic effects in vivo, resulting in improved survival of mice with metastases. Thus, blocking the N and A1B1 domains of CEACAM5/CEACAM6 can impede the metastatic process. CEACAM5 and CEACAM6 are overexpressed in many cancers and are associated with adhesion and invasion. The effects of three monoclonal antibodies targeting different epitopes on these antigens (NH sub(2)-terminal [MN-3] and A1B1 domains [MN-15] shared by CEACAM5 and CEACAM6 and the A3B3 domain [MN-14] restricted to CEACAM5) were evaluated in migration, invasion, and adhesion assays in vitro using a panel of human pancreatic, breast, and colonic cancer cell lines, and in the GW-39 human colonic micrometastasis model in vivo. MN-3 Fab' and MN-15 Fab' were both effective at inhibiting cell migration. MN-15 Fab' treatment inhibited invasion, reducing cell penetration through an extracellular matrix (ECM). MN-3 Fab' also decreased invasion but was less effective than MN-15 Fab' in four of five cell lines. All three monoclonal antibody (mAb) Fabs decreased adhesion of tumor cells to endothelial cells by 49% to 58%. MN-15 Fab' but not MN-3 or MN-14 Fabs induced a decrease in adhesion of three of six cell lines to the ECM protein, fibronectin, but adhesion to vitronectin, laminin, collagen-I, and collagen-IV was not affected. In vivo studies showed that treatment with MN-3 Fab' or MN-15 Fab' of mice implanted with GW-39 human colonic cancer cells increased their survival (P < 0.025 and P < 0.01, respectively). These studies show that antibody Fabs that target either CEACAM5 or CEACAM6 affect cell migration, cell invasion, and cell adhesion in vitro, and that MN-15 and MN-3 Fabs have antimetastatic effects in vivo, resulting in improved survival of mice with metastases. Thus, blocking the N and A1B1 domains of CEACAM5/CEACAM6 can impede the metastatic process. CEACAM5 and CEACAM6 are overexpressed in many cancers and are associated with adhesion and invasion. The effects of three monoclonal antibodies targeting different epitopes on these antigens (NH2-terminal [MN-3] and A1B1 domains [MN-15] shared by CEACAM5 and CEACAM6 and the A3B3 domain [MN-14] restricted to CEACAM5) were evaluated in migration, invasion, and adhesion assays in vitro using a panel of human pancreatic, breast, and colonic cancer cell lines, and in the GW-39 human colonic micrometastasis model in vivo. MN-3 Fab' and MN-15 Fab' were both effective at inhibiting cell migration. MN-15 Fab' treatment inhibited invasion, reducing cell penetration through an extracellular matrix (ECM). MN-3 Fab' also decreased invasion but was less effective than MN-15 Fab' in four of five cell lines. All three monoclonal antibody (mAb) Fabs decreased adhesion of tumor cells to endothelial cells by 49% to 58%. MN-15 Fab' but not MN-3 or MN-14 Fabs induced a decrease in adhesion of three of six cell lines to the ECM protein, fibronectin, but adhesion to vitronectin, laminin, collagen-I, and collagen-IV was not affected. In vivo studies showed that treatment with MN-3 Fab' or MN-15 Fab' of mice implanted with GW-39 human colonic cancer cells increased their survival (P < 0.025 and P < 0.01, respectively). These studies show that antibody Fabs that target either CEACAM5 or CEACAM6 affect cell migration, cell invasion, and cell adhesion in vitro, and that MN-15 and MN-3 Fabs have antimetastatic effects in vivo, resulting in improved survival of mice with metastases. Thus, blocking the N and A1B1 domains of CEACAM5/CEACAM6 can impede the metastatic process. |
Author | HANSEN, Hans J GOLDENBERG, David M BLUMENTHAL, Rosalyn D |
Author_xml | – sequence: 1 givenname: Rosalyn D surname: BLUMENTHAL fullname: BLUMENTHAL, Rosalyn D organization: Center for Molecular Medicine and Immunology, Garden State Cancer Center, Belleville, New Jersey, United States – sequence: 2 givenname: Hans J surname: HANSEN fullname: HANSEN, Hans J organization: Immunomedics, Inc, Morris Plains, New Jersey, United States – sequence: 3 givenname: David M surname: GOLDENBERG fullname: GOLDENBERG, David M organization: Center for Molecular Medicine and Immunology, Garden State Cancer Center, Belleville, New Jersey, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17131499$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16204051$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFDEUhoNU7Lb6E5TcKC049WTyMZnLYWhrodYbvQ752m1kJ6nJrLB3_nQz7mIvhQPng-c9Iec9QycxRY_QWwJXhHD5CQBkw1nXXlkdG-ANsBZeoBXhVDYdY_wErf4xp-islB-15QT4K3RKRAusNiv0-y4-BhPmkCJOa6zdoy-1_ohD_KUPlY4OT37WpUYo2OzrZA4mueALnnXe-DnEDR6vh3H4IvDFwzg0PVz-1R2GHF-MOtsQk59M3qcYLB7qjo2Pl6_Ry7XeFv_mmM_R95vrb-Pn5v7r7d043DeWi25uDAUphG1B9Ix2RrKWOWmlpqYlrbeOLB8C5wgx1DEqBaXGcZAEgDBCBD1HHw57n3L6ufNlVlMo1m-3Ovq0K0pIwfuWy_-CpKOSc-gryA-gzamU7NfqKYdJ570ioBaP1HJ_tdxfjcODAq4Wj6ru3fGBnZm8e1YdTanA-yOgi9XbddbRhvLMdYQS1vf0D9g4mCM |
CODEN | CNREA8 |
CitedBy_id | crossref_primary_10_1016_j_urolonc_2024_01_032 crossref_primary_10_1053_j_gastro_2019_09_023 crossref_primary_10_1186_s40164_021_00250_1 crossref_primary_10_1371_journal_pone_0058714 crossref_primary_10_1371_journal_pcbi_1006436 crossref_primary_10_3390_cancers15225368 crossref_primary_10_1016_j_biocel_2015_02_005 crossref_primary_10_1093_abbs_gmu001 crossref_primary_10_9738_INTSURG_D_15_00333_1 crossref_primary_10_1186_1471_2407_9_119 crossref_primary_10_1155_2019_1806034 crossref_primary_10_1111_cas_15057 crossref_primary_10_1152_ajplung_90596_2008 crossref_primary_10_1177_17588359211072621 crossref_primary_10_1186_1471_2407_7_2 crossref_primary_10_1371_journal_pone_0113023 crossref_primary_10_2147_OTT_S278013 crossref_primary_10_2174_1386207321666191010114149 crossref_primary_10_1038_s41416_024_02678_8 crossref_primary_10_15324_kjcls_2019_51_4_475 crossref_primary_10_1016_j_tips_2012_06_001 crossref_primary_10_1016_j_jconrel_2021_10_006 crossref_primary_10_1073_pnas_0600982103 crossref_primary_10_1111_cas_14750 crossref_primary_10_1007_s13277_012_0344_0 crossref_primary_10_1016_j_cancergencyto_2007_06_002 crossref_primary_10_1016_j_yexcr_2014_04_007 crossref_primary_10_1111_1759_7714_14599 crossref_primary_10_1371_journal_pone_0052692 crossref_primary_10_1016_j_cej_2024_153728 crossref_primary_10_1021_acs_analchem_1c03562 crossref_primary_10_1080_07357907_2018_1458858 crossref_primary_10_1016_j_ejmech_2019_02_017 crossref_primary_10_1038_sj_bjc_6603276 crossref_primary_10_1016_j_molonc_2013_03_005 crossref_primary_10_1136_jcp_2010_082602 crossref_primary_10_1089_hyb_2011_0009 crossref_primary_10_1074_jbc_M800543200 crossref_primary_10_3390_ijms12010078 crossref_primary_10_1016_j_tranon_2021_101277 crossref_primary_10_1097_PAT_0000000000000215 crossref_primary_10_1152_ajplung_00055_2011 crossref_primary_10_1038_s41698_021_00228_6 crossref_primary_10_1016_j_canlet_2021_10_041 crossref_primary_10_1002_ijc_27582 crossref_primary_10_1038_sj_bjc_6605610 crossref_primary_10_1002_pmic_201000811 crossref_primary_10_1007_s00432_023_05468_6 crossref_primary_10_1158_1078_0432_CCR_07_1363 crossref_primary_10_18632_aging_202493 crossref_primary_10_2174_1566524021666210806155231 crossref_primary_10_1158_1078_0432_CCR_05_2286 crossref_primary_10_1007_s10585_009_9288_1 crossref_primary_10_1016_j_bbrc_2006_08_073 crossref_primary_10_3390_biom11060905 crossref_primary_10_3390_cancers13225596 crossref_primary_10_1002_jcp_22615 crossref_primary_10_1369_0022155415603768 crossref_primary_10_1134_S1990519X13050040 crossref_primary_10_1172_JCI37905 crossref_primary_10_1016_j_exphem_2010_03_018 crossref_primary_10_3389_fimmu_2017_01406 crossref_primary_10_1021_pr100157p crossref_primary_10_1016_j_cell_2021_08_023 crossref_primary_10_1111_cas_13437 crossref_primary_10_1002_cncr_27794 crossref_primary_10_1096_fj_12_203786 crossref_primary_10_1186_s12885_023_11352_w crossref_primary_10_4103_ejim_ejim_107_19 crossref_primary_10_1186_1476_4598_11_74 crossref_primary_10_1016_j_bbrc_2017_01_111 crossref_primary_10_1097_SLA_0b013e3181a3ddbd crossref_primary_10_1038_s41598_020_71643_1 crossref_primary_10_1007_s00432_015_1925_2 crossref_primary_10_1002_pmic_201200323 crossref_primary_10_7314_APJCP_2014_15_9_3927 crossref_primary_10_1053_j_gastro_2012_03_039 crossref_primary_10_1177_1010428317691687 crossref_primary_10_4049_jimmunol_1600606 crossref_primary_10_1021_acs_jproteome_5b00819 crossref_primary_10_1111_jgh_12083 crossref_primary_10_1002_ijc_31586 crossref_primary_10_1038_s41598_019_48104_5 crossref_primary_10_1038_sj_bjc_6604548 crossref_primary_10_1158_1078_0432_CCR_06_1027 crossref_primary_10_1007_s00428_014_1688_1 crossref_primary_10_1016_j_lungcan_2023_107356 crossref_primary_10_1371_journal_pone_0017532 crossref_primary_10_1371_journal_pone_0090524 crossref_primary_10_1158_0008_5472_CAN_14_1032 crossref_primary_10_46310_tjim_839545 crossref_primary_10_1016_j_cca_2012_09_003 crossref_primary_10_1002_jcb_22708 crossref_primary_10_1016_j_ajpath_2013_12_013 crossref_primary_10_3390_cancers13174414 crossref_primary_10_1016_j_febslet_2014_08_023 crossref_primary_10_1002_ijc_22487 crossref_primary_10_1038_srep35734 crossref_primary_10_1038_s41598_017_11482_9 crossref_primary_10_1002_VIW_20230029 crossref_primary_10_1186_s12906_015_0707_3 crossref_primary_10_1002_path_2545 crossref_primary_10_1002_lpor_200910024 crossref_primary_10_1021_bc2004999 crossref_primary_10_1038_onc_2017_303 crossref_primary_10_1155_2013_685641 crossref_primary_10_1158_0008_5472_CAN_11_0543 crossref_primary_10_3892_etm_2012_774 crossref_primary_10_1016_j_jim_2011_06_017 crossref_primary_10_1186_1471_2407_10_295 crossref_primary_10_1042_CS20220581 crossref_primary_10_1158_1535_7163_MCT_23_0461 crossref_primary_10_1016_j_ejca_2012_07_019 crossref_primary_10_12688_f1000research_126721_1 crossref_primary_10_12688_f1000research_126721_2 crossref_primary_10_1007_s10549_013_2756_y crossref_primary_10_1093_glycob_cwz053 crossref_primary_10_1007_s00277_007_0388_1 crossref_primary_10_1186_s40880_016_0178_z crossref_primary_10_3892_or_2015_4338 crossref_primary_10_1073_pnas_2319055121 crossref_primary_10_3892_ol_2016_4439 crossref_primary_10_1016_j_biomaterials_2015_07_012 crossref_primary_10_3389_fphar_2024_1355893 crossref_primary_10_1016_S1077_9108_08_70545_0 crossref_primary_10_1021_acsami_9b16702 crossref_primary_10_1371_journal_pone_0131699 crossref_primary_10_3892_ijo_2024_5615 crossref_primary_10_1089_cbr_2019_3141 crossref_primary_10_4161_cbt_28876 crossref_primary_10_1097_MD_0000000000002795 crossref_primary_10_1007_s00384_018_03230_w crossref_primary_10_3389_fimmu_2019_01892 crossref_primary_10_1093_icvts_ivv382 crossref_primary_10_1016_S1077_9108_08_70689_3 crossref_primary_10_3389_fcell_2023_1198338 crossref_primary_10_1002_jcb_24175 crossref_primary_10_1016_j_jconrel_2012_04_043 crossref_primary_10_3390_ph16101461 crossref_primary_10_3892_ijo_2013_1860 crossref_primary_10_1007_s00280_018_3518_7 crossref_primary_10_5966_sctm_2012_0036 crossref_primary_10_3390_jpm10040235 crossref_primary_10_1007_s10555_013_9444_6 crossref_primary_10_1016_j_compbiolchem_2023_107897 crossref_primary_10_18632_oncotarget_19415 crossref_primary_10_1016_j_ygyno_2008_12_004 crossref_primary_10_1039_C9NR04976B crossref_primary_10_3390_cancers15143536 |
Cites_doi | 10.1023/A:1014566127493 10.1002/ijc.2910630308 10.1200/JCO.2003.55.135 10.1016/0092-8674(89)90970-7 10.1038/sj.onc.1207036 10.1038/sj.onc.1207775 10.1016/S0140-6736(94)92398-1 10.1016/S0021-9258(19)61463-8 10.1006/excr.1996.3405 10.1111/j.1349-7006.1991.tb01767.x 10.1016/j.bbrc.2004.03.128 10.1158/1535-7163.1559.3.12 10.1023/A:1024513815374 10.1097/00007890-196611000-00013 10.1016/S0002-9440(10)64764-5 10.1093/jnci/57.1.11 10.1159/000067255 10.1002/ijc.2910550216 10.1016/S1040-8428(85)80008-1 10.1002/jcla.1860050510 10.1074/jbc.M402051200 10.1006/scbi.1998.0119 10.1016/0006-291X(92)91760-N 10.26443/mjm.v3i1.472 10.1083/jcb.124.4.619 10.1002/(SICI)1097-0215(19990909)82:6<880::AID-IJC18>3.0.CO;2-S 10.1083/jcb.148.4.779 10.1002/1097-0215(20001001)88:1<53::AID-IJC8>3.0.CO;2-7 10.1038/sj.neo.7900201 10.1007/BF02936368 10.1007/BF01753839 10.1007/s00262-004-0597-6 10.1016/0161-5890(87)90164-7 10.1111/j.1349-7006.1998.tb00546.x 10.1016/0006-291X(89)91679-3 10.1002/(SICI)1097-0215(20000401)86:1<30::AID-IJC5>3.0.CO;2-I 10.1201/9781482283402 10.1038/sj.bjc.6602113 10.1093/jnci/83.9.627 10.1038/sj.onc.1204000 10.1006/bbrc.1996.0320 10.1083/jcb.118.2.457 10.1158/0008-5472.CAN-04-0424 10.1074/jbc.M212500200 |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS |
Copyright_xml | – notice: 2005 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TO H94 7X8 |
DOI | 10.1158/0008-5472.can-05-0420 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Oncogenes and Growth Factors Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 8817 |
ExternalDocumentID | 10_1158_0008_5472_CAN_05_0420 16204051 17131499 |
Genre | Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: PHS HHS grantid: R01 99529 |
GroupedDBID | --- -ET .55 .GJ 08R 18M 29B 2WC 34G 39C 3O- 476 53G 5GY 5RE 5VS 6J9 8WZ A6W AAPBV AAUGY ABOCM ABPTK ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFFNX AFHIN AFOSN AFRAH AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CS3 D0S DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 IQODW J5H KQ8 L7B LSO MVM OHT OK1 P0W P2P PQQKQ RCR RHF RHI RNS SJN TR2 UDS VH1 W2D W8F WH7 WHG WOQ X7M XFK XJT YKV YZZ ZA5 ZCG ZGI CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TO H94 7X8 |
ID | FETCH-LOGICAL-c567t-b30866c2069437b8424d8c8a3b212ecd120400dd11b3d438633bd508100141163 |
ISSN | 0008-5472 |
IngestDate | Fri Oct 25 22:41:50 EDT 2024 Sat Oct 05 05:54:07 EDT 2024 Thu Sep 26 17:49:05 EDT 2024 Sat Sep 28 07:50:27 EDT 2024 Sun Oct 29 17:09:59 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Carcinoembryonic antigen Target Tumor associated antigen Targeting Oncofetal antigen Antimetastatic agent Malignant tumor Monoclonal antibody Inhibition Metastasis Adhesion Invasion |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c567t-b30866c2069437b8424d8c8a3b212ecd120400dd11b3d438633bd508100141163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://aacrjournals.org/cancerres/article-pdf/65/19/8809/2535231/8809-8817.pdf |
PMID | 16204051 |
PQID | 17385509 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_68659258 proquest_miscellaneous_17385509 crossref_primary_10_1158_0008_5472_CAN_05_0420 pubmed_primary_16204051 pascalfrancis_primary_17131499 |
PublicationCentury | 2000 |
PublicationDate | 2005-10-01 |
PublicationDateYYYYMMDD | 2005-10-01 |
PublicationDate_xml | – month: 10 year: 2005 text: 2005-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2005 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | 2022061621030331800_B39 2022061621030331800_B38 2022061621030331800_B37 2022061621030331800_B36 2022061621030331800_B35 2022061621030331800_B34 2022061621030331800_B5 2022061621030331800_B6 2022061621030331800_B3 2022061621030331800_B4 2022061621030331800_B1 2022061621030331800_B2 2022061621030331800_B33 2022061621030331800_B32 2022061621030331800_B31 2022061621030331800_B30 2022061621030331800_B9 2022061621030331800_B7 2022061621030331800_B8 2022061621030331800_B49 2022061621030331800_B48 2022061621030331800_B47 2022061621030331800_B46 2022061621030331800_B45 2022061621030331800_B44 2022061621030331800_B43 2022061621030331800_B42 2022061621030331800_B41 2022061621030331800_B40 2022061621030331800_B19 2022061621030331800_B18 2022061621030331800_B17 2022061621030331800_B16 2022061621030331800_B15 2022061621030331800_B14 2022061621030331800_B58 2022061621030331800_B13 2022061621030331800_B57 2022061621030331800_B12 2022061621030331800_B56 2022061621030331800_B11 2022061621030331800_B55 2022061621030331800_B10 2022061621030331800_B54 2022061621030331800_B53 2022061621030331800_B52 2022061621030331800_B51 2022061621030331800_B50 2022061621030331800_B29 2022061621030331800_B28 2022061621030331800_B27 2022061621030331800_B26 2022061621030331800_B25 2022061621030331800_B24 2022061621030331800_B23 2022061621030331800_B22 2022061621030331800_B21 2022061621030331800_B20 |
References_xml | – ident: 2022061621030331800_B15 doi: 10.1023/A:1014566127493 – ident: 2022061621030331800_B50 – ident: 2022061621030331800_B48 – ident: 2022061621030331800_B57 doi: 10.1002/ijc.2910630308 – ident: 2022061621030331800_B21 – ident: 2022061621030331800_B23 doi: 10.1200/JCO.2003.55.135 – ident: 2022061621030331800_B12 doi: 10.1016/0092-8674(89)90970-7 – ident: 2022061621030331800_B28 doi: 10.1038/sj.onc.1207036 – ident: 2022061621030331800_B29 doi: 10.1038/sj.onc.1207775 – ident: 2022061621030331800_B46 doi: 10.1016/S0140-6736(94)92398-1 – ident: 2022061621030331800_B34 doi: 10.1016/S0021-9258(19)61463-8 – ident: 2022061621030331800_B51 doi: 10.1006/excr.1996.3405 – ident: 2022061621030331800_B52 doi: 10.1111/j.1349-7006.1991.tb01767.x – ident: 2022061621030331800_B39 – ident: 2022061621030331800_B58 doi: 10.1016/j.bbrc.2004.03.128 – ident: 2022061621030331800_B17 doi: 10.1158/1535-7163.1559.3.12 – ident: 2022061621030331800_B41 – ident: 2022061621030331800_B54 doi: 10.1023/A:1024513815374 – ident: 2022061621030331800_B42 doi: 10.1097/00007890-196611000-00013 – ident: 2022061621030331800_B19 doi: 10.1016/S0002-9440(10)64764-5 – ident: 2022061621030331800_B2 doi: 10.1093/jnci/57.1.11 – ident: 2022061621030331800_B33 doi: 10.1159/000067255 – ident: 2022061621030331800_B7 – ident: 2022061621030331800_B36 doi: 10.1002/ijc.2910550216 – ident: 2022061621030331800_B3 doi: 10.1016/S1040-8428(85)80008-1 – ident: 2022061621030331800_B4 doi: 10.1002/jcla.1860050510 – ident: 2022061621030331800_B45 – ident: 2022061621030331800_B49 doi: 10.1074/jbc.M402051200 – ident: 2022061621030331800_B6 doi: 10.1006/scbi.1998.0119 – ident: 2022061621030331800_B18 doi: 10.1016/0006-291X(92)91760-N – ident: 2022061621030331800_B5 doi: 10.26443/mjm.v3i1.472 – ident: 2022061621030331800_B26 doi: 10.1083/jcb.124.4.619 – ident: 2022061621030331800_B44 – ident: 2022061621030331800_B10 doi: 10.1002/(SICI)1097-0215(19990909)82:6<880::AID-IJC18>3.0.CO;2-S – ident: 2022061621030331800_B38 doi: 10.1083/jcb.148.4.779 – ident: 2022061621030331800_B55 doi: 10.1002/1097-0215(20001001)88:1<53::AID-IJC8>3.0.CO;2-7 – ident: 2022061621030331800_B27 – ident: 2022061621030331800_B22 doi: 10.1038/sj.neo.7900201 – ident: 2022061621030331800_B20 doi: 10.1007/BF02936368 – ident: 2022061621030331800_B9 doi: 10.1007/BF01753839 – ident: 2022061621030331800_B37 – ident: 2022061621030331800_B16 doi: 10.1007/s00262-004-0597-6 – ident: 2022061621030331800_B32 doi: 10.1016/0161-5890(87)90164-7 – ident: 2022061621030331800_B8 doi: 10.1111/j.1349-7006.1998.tb00546.x – ident: 2022061621030331800_B43 – ident: 2022061621030331800_B13 doi: 10.1016/0006-291X(89)91679-3 – ident: 2022061621030331800_B56 doi: 10.1002/(SICI)1097-0215(20000401)86:1<30::AID-IJC5>3.0.CO;2-I – ident: 2022061621030331800_B53 – ident: 2022061621030331800_B1 – ident: 2022061621030331800_B14 doi: 10.1201/9781482283402 – ident: 2022061621030331800_B31 doi: 10.1038/sj.bjc.6602113 – ident: 2022061621030331800_B40 doi: 10.1093/jnci/83.9.627 – ident: 2022061621030331800_B47 doi: 10.1038/sj.onc.1204000 – ident: 2022061621030331800_B25 doi: 10.1006/bbrc.1996.0320 – ident: 2022061621030331800_B24 doi: 10.1083/jcb.118.2.457 – ident: 2022061621030331800_B11 – ident: 2022061621030331800_B30 doi: 10.1158/0008-5472.CAN-04-0424 – ident: 2022061621030331800_B35 doi: 10.1074/jbc.M212500200 |
SSID | ssj0005105 |
Score | 2.3041022 |
Snippet | CEACAM5 and CEACAM6 are overexpressed in many cancers and are associated with adhesion and invasion. The effects of three monoclonal antibodies targeting... Abstract CEACAM5 and CEACAM6 are overexpressed in many cancers and are associated with adhesion and invasion. The effects of three monoclonal antibodies... |
SourceID | proquest crossref pubmed pascalfrancis |
SourceType | Aggregation Database Index Database |
StartPage | 8809 |
SubjectTerms | Animals Antibodies - immunology Antibodies - pharmacology Antigens, CD - immunology Biological and medical sciences Carcinoembryonic Antigen - immunology Cell Adhesion - drug effects Cell Adhesion - immunology Cell Adhesion Molecules - antagonists & inhibitors Cell Adhesion Molecules - immunology Cell Line, Tumor Cell Movement - drug effects Cell Movement - immunology Colonic Neoplasms - immunology Colonic Neoplasms - pathology Colonic Neoplasms - therapy Dissemination Endothelial Cells - cytology Endothelial Cells - drug effects Endothelial Cells - immunology Female GPI-Linked Proteins Humans Lung Neoplasms - immunology Lung Neoplasms - secondary Lung Neoplasms - therapy Medical sciences Mice Mice, Nude Neoplasm Invasiveness Neoplasm Metastasis Neoplasms - immunology Neoplasms - pathology Neoplasms - therapy Tumor cell Tumors Xenograft Model Antitumor Assays |
Title | Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16204051 https://search.proquest.com/docview/17385509 https://search.proquest.com/docview/68659258 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKkBASQnxTPoYPHDZlCU1sp86xlME21B1QJ-0WxbFDK5VkalOkcuIv5G_i2U7qdoyJcYmsJH6x8n5-fs_-2Q-htxkMeb1YMD_POQQoEsIdwULhh7EqFFjNUGZ6c_LoND46oyfn7LzT-bXBWlrWIsh_XLmv5H-0CvdAr3qX7A00uxYKN6AM-oUraBiu_6Tj43IyFdPW5xvIidJzX7bbf8_asqFSqDoDP1CfPgL-5qCsp6LS_EFvbJjgZvH_ENQyik16nuHAT3p6wkDXtQ-YWe_VmYfKSn0T85VJnaMlfdWWK9n0cocaSnOvOUhoYmpayodp22wWbExAvNfmsawnJvOA96VaZLNV6X0InG0sm1kiXfJO1g8-VTPp-GmGnO-Ngq1pDLYmxDnTzH1GbR6fQDlr3Kf2vMnWXNvUEi0skw3jC6Yo2RzIud0V-ucgwbhlVdoPBsPBqaEw0qjnRsWWCXBpsFxTGE3wxLhevOepFpOCmLTHUi3mFrodgeEztIHjz45y1FBq2y83O8pAzLsrW7PlK927yBbQbQubb-XvAZFxjMYP0P0mosEDC8-HqKPKR-jOqOFsPEY_HUpxVeAWpQe4xegBBpRhh1AsVtghFK8RihuE4j2Lz31Tr0En3ruMTdxgc_8JOvt4OB4e-U3eDz9ncb_2BYE4O84jvSeb9AWnEZU85xkR4GepXIaRHnmkDENBJCU8JkRICDRCw1qGAOMp2imrUj1HOCaUFgXJIVBPaMFIouKeVEkeFzyJcka7KGj_cHphj3dJr9VsF-1u6cHV6ockpEnSRW9axaRgqfXyW1aqarmAN4g-PfCaN2KuSQ6Md9Ezq1EnXaeNAPy8uGl7X6K7rre9Qjv1fKlegxtdi12Dzd94oLdA |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+Adhesion%2C+Invasion%2C+and+Metastasis+by+Antibodies+Targeting+CEACAM6+%28NCA-90%29+and+CEACAM5+%28Carcinoembryonic+Antigen%29&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Blumenthal%2C+Rosalyn+D.&rft.au=Hansen%2C+Hans+J.&rft.au=Goldenberg%2C+David+M.&rft.date=2005-10-01&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=65&rft.issue=19&rft.spage=8809&rft.epage=8817&rft_id=info:doi/10.1158%2F0008-5472.CAN-05-0420&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_0008_5472_CAN_05_0420 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |